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Abstract. A multi-fingerprint analysis is applied to the
detection and attribution of anthropogenic climate
change. While a single fingerprint is optimal for the detec-
tion of climate change, further tests of the statistical con-
sistency of the detected climate change signal with model
predictions for different candidate forcing mechanisms
require the simultaneous application of several finger-
prints. Model-predicted climate change signals are de-
rived from three anthropogenic global warming simula-
tions for the period 1880 to 2049 and two simulations
forced by estimated changes in solar radiation from 1700
to 1992. In the first global warming simulation, the forcing
is by greenhouse gas only, while in the remaining two
simulations the direct influence of sulfate aerosols is also
included. From the climate change signals of the green-
house gas only and the average of the two greenhouse gas-
plus-aerosol simulations, two optimized fingerprint pat-
terns are derived by weighting the model-predicted cli-
mate change patterns towards low-noise directions. The
optimized fingerprint patterns are then applied as a filter
to the observed near-surface temperature trend patterns,
yielding several detection variables. The space-time struc-
ture of natural climate variability needed to determine the
optimal fingerprint pattern and the resultant signal-to-
noise ratio of the detection variable is estimated from
several multi-century control simulations with different
CGCMs and from instrumental data over the last 136 y.
Applying the combined greenhouse gas-plus-aerosol fin-
gerprint in the same way as the greenhouse gas only
fingerprint in a previous work, the recent 30-y trends
(1966—1995) of annual mean near surface temperature are
again found to represent a significant climate change at
the 97.5% confidence level. However, using both the
greenhouse gas and the combined forcing fingerprints in
a two-pattern analysis, a substantially better agreement
between observations and the climate model prediction is
found for the combined forcing simulation. Anticipating
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that the influence of the aerosol forcing is strongest for
longer term temperature trends in summer, application of
the detection and attribution test to the latest observed
50-y trend pattern of summer temperature yielded statist-
ical consistency with the greenhouse gas-plus-aerosol
simulation with respect to both the pattern and amplitude
of the signal. In contrast, the observations are inconsistent
with the greenhouse-gas only climate change signal at
a 95% confidence level for all estimates of climate varia-
bility. The observed trend 1943—1992 is furthermore in-
consistent with a hypothesized solar radiation change
alone at an estimated 90% confidence level. Thus, in
contrast to the single pattern analysis, the two pattern
analysis is able to discriminate between different forcing
hypotheses in the observed climate change signal. The
results are subject to uncertainties associated with the
forcing history, which is poorly known for the solar and
aerosol forcing, the possible omission of other important
forcings, and inevitable model errors in the computation
of the response to the forcing. Further uncertainties in the
estimated significance levels arise from the use of model
internal variability simulations and relatively short instru-
mental observations (after subtraction of an estimated
greenhouse gas signal) to estimate the natural climate
variability. The resulting confidence limits accordingly
vary for different estimates using different variability
data. Despite these uncertainties, however, we consider
our results sufficiently robust to have some confidence
in our finding that the observed climate change is consis-
tent with a combined greenhouse gas and aerosol forcing,
but inconsistent with greenhouse gas or solar forcing
alone.

1 Introduction

Since the beginning of industrialization, the concentration
of greenhouse gases and anthropogenic sulfate aerosols
in the atmosphere has continuously increased. There is
considerable debate whether the global warming observed
during this period can be distinguished from natural
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climate variability and whether the climate change signal,
if detected, can be attributed to anthropogenic forcing.
Estimates of natural climate variability based on a simple
box model (Wigley and Raper 1990) and long simulations
with realistic coupled ocean-atmosphere general circula-
tion models (CGCMs; Stouffer et al. 1994) indicate that
the observed 100-y trend of global mean temperature is
larger than can be explained by the variability of these
simulations. Applying information on the space-time struc-
ture of the greenhouse gas signal, and the natural climate
variability in an optimal fingerprint method, Hegerl et al.
(1996) showed that the latest observed 20- and 30-y
temperature trend patterns lie above the 95% significance
level of current estimates of natural variability. It has been
shown by Santer et al. (1995a) that the inclusion of aerosols
enhances the agreement between observed and simulated
global temperature patterns in summer and autumn and
yields statistically significant trends in pattern correlation
in these seasons with respect to climate variability esti-
mates from unforced control simulations. The inclusion of
aerosols also enhanced the pattern correlation of
simulated and observed decadal mean temperature pat-
terns (Mitchell et al. 1995a). A general agreement between
observations and simulations has also been found for
tropospheric temperature changes (Santer et al. 1996b;
Tett et al. 1996). Thus there exists substantial evidence for
a forced climate change in the recent decades. A compre-
hensive summary of the findings of recent pattern-based
detection studies is given in the 1995 IPCC Working
Group 1 Second Assessment report (Santer et al. 1996a).

Nevertheless, as pointed out in the IPCC report, al-
though a high similarity between observed and simulated
patterns suggests that the climate change has indeed been
caused by the simulated anthropogenic forcing mecha-
nisms, similar patterns can in principle also be caused by
other candidate forcing mechanisms in combination with
natural climate variability. Thus the attribution of a detec-
ted climate change to a particular forcing mechanism
requires the simultaneous consideration of all relevant
candidate forcing mechanisms.

To investigate the consistency of the observed climate
change with model predictions for different candidate
forcing mechanisms we apply here a multi-fingerprint
analysis technique. We follow the optimal multi-finger-
print method of Hasselmann (1979, 1993, 1997 which is
referred to in the following as Ha97), in which each
fingerprint is obtained by rotating the associated signal
pattern away from regions of high natural variability
towards low noise directions. Santer et al. (1996a) refer to
such approaches generally as ‘‘stage 3 detection studies’’.
We note that the optimization is introduced in our case to
maximize the signal-to-noise ratio in estimating the con-
tribution from different climate change signals to the
observations, but is not a prerequisite of the attribution
approach as such.

As observed climate data we use the near-surface tem-
perature data set of Jones and Briffa (1992). We apply
a simplified form of the general space-time dependent
optimal fingerprint method of Hasselmann (1993, Ha97)
in which the rotation of the signal guess-patterns is carried
out with respect to the spatial coordinates only, rather
than in full space-time. The signal patterns are obtained

from simulations with coupled ocean-atmosphere general
circulation models (CGCMs). A basically similar ap-
proach has recently been applied to the space time evolu-
tion of near surface temperature, using 7—17 y band-
passed data and climate change signals derived from time-
dependent energy balance model simulations (North and
Stevens, 1998). Their results are consistent with ours. Here
we use multi-decadal linear trends to describe the time-
evolution of the climate change signal. We analyze time
intervals of 50 y or shorter, since for such intervals the
relevant level of natural variability can be estimated with
higher confidence from model control simulations and
even, to some extent, from observations. By focusing on
shorter time intervals we also make use of the fact that
most transient CGCM simulations yield a marked en-
hancement of the warming rate in recent decades (Hassel-
mann et al. 1995; Cubasch et al. 1995; Mitchell et al.
1995a) which is associated with the increase in the forcing
and a warming delay due to the heat uptake by the oceans.
An optimal trend interval for exploiting the predicted
warming acceleration is about 30 y. However, somewhat
longer trends, e.g. over 50 y, are more efficient at distin-
guishing a sulfate aerosol signal from the background
noise, since the global mean sulfate burden has been
increasing nearly linearly over the last 40 to 50 y (see also
Santer et al. 1996b).

An additional forcing which may have influenced the
observed temperature record in the relevant detection
time scale range of a few decades to a century is a vari-
ation in solar insulation. Estimates of such variations have
been derived by Hoyt and Schatten (1993) and Lean et al.
(1995). Since the estimates suggest a relatively minor in-
crease in solar radiation over the previous 50 y, whereas
both anthropogenic forcing factors have been strongly
increasing in the same period, 50-y temperature trends
might provide also a good discriminator between solar
and anthropogenic forced variations.

Thus, we consider three climate change signals, which
we derive from simulations forced with greenhouse gases
alone, greenhouse gases plus aerosols, and changes in
solar radiation (Cubasch et al. 1996; 1997). A single-finger-
print detection analysis using the combined greenhouse
gas-plus-aerosol signal, applied to observed 30-y temper-
ature trend patterns yields results very similar to the
earlier positive detection results of Hegerl et al. (1996,
referred to in the following as Hetal96) using a greenhouse
gas only fingerprint. The similarities in the results, despite
differences in the forcing patterns, can be explained by the
fact that for a single fingerprint the response is dominated
by the global mean temperature increase, and is relatively
insensitive to spatial details of the pattern (Santer et al.
1993; 1995a; Hetal96). However, if a multi-pattern optimal
fingerprint method is applied, differences in the pattern
details become important, and we find that the observa-
tions are no longer consistent with greenhouse gas forced
climate change alone. They are also found to be inconsist-
ent (at a lower significance level) with solar forced climate
change alone, However, they remain consistent with
a combined greenhouse gas-plus-aerosol forcing.

We use only two fingerprint patterns for our analysis,
one for the greenhouse warming and one for the addi-
tional, statistically orthogonal pattern representing the
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aerosol forcing. We have not introduced a third finger-
print pattern representing the response to solar varia-
tions, since it was not possible to reliably separate the
response pattern for this relatively small forcing from
the overlying climate variability noise over parts of
the planet (Cubasch et al. 1997; see Sect. 2.3). Thus,
we represent the solar forcing signal as a time dependent
linear combination of the two response patterns for
anthropogenic forcing.

The attribution of climate change to a given cause is
subject to more uncertainties than the detection of climate
change (Santer et al. 1996a). The candidate mechanisms
need to be specified, together with the magnitude of the
forcing and the magnitude and pattern of the response. As
pointed out in Hetal96 and Ha97, for detection, the pre-
dicted amplitudes of the forcing and response are irrel-
evant, and the predicted climate change patterns need not
be correct. An incorrect pattern reduces the power of the
detection test, possibly preventing detection, but will not
normally lead to false detection claims. However, for
attribution, incorrect forcing and model errors producing
incorrect response predictions result in an incorrect as-
sessment of the consistency between climate change simu-
lations and observations, and can lead either to a failure
to recognize a response signal or to an unjustified attribu-
tion claim. In this context we note that in the case of solar
and sulfate aerosol forcing, there is still high uncertainty
regarding the magnitude and pattern of the forcing, in
addition to inevitable errors in the models themselves. In
principle, the impact of model errors can be incorporated
in the attribution analysis (Ha97). However, this has not
been attempted in the present study, since the relevant
model error covariance matrix for decadal trends is diffi-
cult to estimate. Further uncertainties, which affect in this
case both the detection and attribution analysis, are asso-
ciated with the estimate of natural climate variability from
model simulations and observational time series of limited
extent.

Another limitation of both the detection and attribu-
tion method is the basic assumption that different forcing
mechanisms can be superimposed linearly without inter-
acting with each other and with the natural climate varia-
bility. This is essential for our method of separating the
contributions from natural variability and different com-
binations of forcing. Fortunately, there are indications
that this is an acceptable approximation, at least for the
greenhouse gas and aerosol forcing response (Santer et al.
1995).

The work is structured as follows: Sect. 2 outlines the
optimal fingerprint method for detection and attribution
of climate change. In Sect. 3, some results of the climate
model simulations are shown and the data used for ap-
plying the detection and attribution approach are speci-
fied. Results for annual mean data are given in Sect. 4 and
5, using one or two fingerprints, respectively. A similar
analysis for seasonally stratified data is presented in Sect.
6, where we test also the consistency of the observed
climate change with each of the hypothesized forcing
mechanisms. We conclude with a summary and discussion
of the results in Sect. 7. A summary of the various steps
involved in the optimal multi-pattern method and further
technical details are given in the Appendix.

2 The optimal fingerprint method for detection and
attribution

Various pattern analysis methods have been proposed
which make use of the model-predicted patterns of an-
thropogenic (or other externally forced) climate change to
distinguish the forced signal from natural climate variabil-
ity (noise) (see reviews in Barnett et al. 1991; 1994). The
optimal fingerprint method (Hasselmann et al. 1979; 1993)
adopted here is based on an enhancement of features of
the climate change signal associated with low natural
variability relative to features which are more strongly
contaminated by noise. Such techniques which maximize
the signal-to-noise ratio are considerably more powerful
than the selection of arbitrary climate indices (e.g. the
global mean temperature) as detection variable, but re-
quire knowledge of the space-time structures of both the
signal and the noise. This approach is useful not only for
the early detection of externally forced climate change, but
also to distinguish between different candidate forcing
mechanisms in the attribution problem (Ha97). The
optimal fingerprint method has been applied by Santer
et al. (1995b) for the detection of ocean global warming
in a model simulation study and by Hetal96 for the
detection of a greenhouse warming signal in near surface
temperature data. It can be shown that the optimal finger-
print method is closely related to other optimal averaging
or filtering methods (Bell 1986; North et al. 1995; see
Hegerl and North 1997) which provide an optimal
estimate of the amplitude of a climate change signal in
the presence of noise, and to similar approaches which
have been used in other fields of signal processing (see
Hasselmann 1979; Allen and Tett 1997).

2.1 Optimal fingerprints

Observations of recent climate evolution may contain
several climate change signals, e.g. through greenhouse
warming, increasing aerosol concentrations, or changes in
solar radiation. To distinguish between different candi-
date mechanisms, it is useful to introduce several finger-
prints f

1 l
, l"12p associated with the different signal

guess-patterns gl predicted for the different forcings, and
to consider a vector of detection variables defined by the
scalar products (Hasselmann 1993, Ha97)
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i
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1
TW, l"12p (1)

where W
1
"(W

i
)i"12n represents the observed climate

state vector (in some n-dimensional, e.g. gridpoint, space).
Underlines indicate climate vectors, a superscript ‘‘¹ ’’ the
transposed vector. The optimal fingerprints are defined
such that they maximize the square signal-to-noise ratio
for each individual signal component. This yields at the
same time the maximal multi-variate signal-to-noise ratio
for the combined multi-pattern signal. For optimal detec-
tion (disregarding the question of attribution) the restric-
tion to a single fingerprint generally yields the highest
signal-to-noise ratio, since the significance of a given cli-
mate change signal decreases with increasing dimension
(e.g. Ha97). The optimal fingerprints are given by the
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product of the original signal guess-pattern with the in-
verse C~1 of the covariance matrix (C

ij
)i, j"12n"SWI

i
WI

k
T

of the random climate noise WI
1
,

f
6 l
"C~1g

6 l
. (2)

where the cornered brackets denote the statistical expecta-
tion. The covariance matrix can be estimated using sam-
ples of model-derived or observed climate noise (see later).
The multiplication with the inverse covariance matrix
suppresses features of the signal pattern associated with
high natural variability and enhances pattern features for
which the variability is low. This is seen most readily in
the EOF representation C"diag(p2

i
)i"12n , for which the

fingerprint is obtained by simply dividing the EOF co-
efficients of the signal pattern by the variance of climate
noise p2

i
.

Equations (1) and (2) show that the application of an
optimal fingerprint can be understood as regressing the
observations upon the model signal pattern using a scalar
product (and metric) which takes the noise in the variable
components, as represented by C~1, into account. A more
elegant representation is to understand the fingerprint f

1
ilas the contravariant dual vector of the covariant signal

pattern vector g
6 li

(Hasselmann 1979; Ha97).
The normalization of the individual signal patterns and

associated fingerprints is basically arbitrary. We shall
normalize the signal patterns such that

g
6
Tl C~1g

6 l
"1 (3)

which implies for the fingerprints, according to Eq. (2),

f
6
Tl C f

6 l
"1. (4)

We cannot impose orthonormality of the original signal
patterns, since these are specified as the response to differ-
ent forcings, which in general will not be orthogonal.
However, we shall nevertheless find it convenient later to
transform to an orthonormal set of signal patterns and
fingerprints, consisting of linear combinations of the orig-
inal signal patterns and fingerprints, for which

g
6
Tl C~1g

6 k"dlk
f
6
Tl C f

6 k
"dlk . (5)

Detection is said to be achieved at some prescribed
significance level P (e.g. 95%) if the ‘‘null’’ hypothesis that
the observed detection variable d (or vector of detection
variables) can be explained by natural variability alone is
rejected at that significance level, i.e. if the probability that
a signal of at least the estimated magnitude is sampled
from the natural variability ensemble lies below the level
1!P (e.g. 5%). Here, as in the subsequent treatment of
the attribution problem, we adopt a conventional non-
Bayesian approach, in which probabilities are introduced
only with respect to an ensemble of realizations (or when
such an ensemble can be constructed from statistically
stationary time series). From a Bayesian viewpoint it can
be argued that the rejection of the null hypothesis at some
prescribed significance level, implying the acceptance of
the alternative hypothesis of an externally forced climate
change, cannot be meaningfully formulated without

specifying the prior probability of the alternative hypothe-
sis. However, since there exists no statistical basis
for the determination of this probability, it can be ex-
pressed only as a subjective ‘‘degree of belief ’’ (see Earman
1992). Prefer to remain within the less controversial con-
fines of conventional non-Bayesian statistics, a pilot ap-
plication of Bayesian detection is attempted in Leroy
(1997).

2.2 Application of multiple optimal fingerprints to the
attribution problem

The rejection of the null hypothesis in the detection test
implies only that the magnitude of the detection variable,
defined with respect to some assumed signal direction, is
too large to be explained by natural variability. It does not
address the question whether the observations are in fact
consistent with the model predicted signal, or with other
model simulations using different forcing hypothesis (e.g.
greenhouse gases alone, greenhouse gases plus aerosols,
solar insolation changes, and so forth). This is the essence
of the attribution problem.

To test the consistency of a detected climate change
signal with the signal predicted by a model we need to
represent the observed climate change signal in terms of
the model signal patterns g

6 l
, l"1, 2,2 , p:

W
1
"

p
+
l/1

alg
6 l
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i
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where WI
1
r is a residual. If the response to all external

forcing has been properly represented by the signal pat-
terns, WI

1
r will consist of climate noise only. The estimated

signal pattern amplitudes al will consist generally of linear
combinations of the detection variables dl and can be
computed by a multi-pattern regression using the metric
C~1. Thus, the p-dimensional amplitude vector
a"(al)l"12p is obtained from the condition that the
mean square residual WI

1
r (defined in terms of the metric

C~1) is minimized:

WI
1
rTC~1WI

1
r"min (7)

This least square fit yields (Ha97)

+
l

Glkal"g
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C~1W
1
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where

Glk"g
6
Tl C~1 · g

6 k
. (9)

If the signal patterns are statistically orthonormal relative
to the noise covariance matrix (Eq. 5), G

1 lk
is the unit

matrix G
1 lk

"diag(1). The detection variable components
are then statistically uncorrelated and yield the amplitude
estimate directly: al"dl.(For a consistent invariant tensor notation for the dual
co- and contravariant detection and amplitude variables
dl and al, respectively, using the metric Glk , we refer to
Ha97.)
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2.3 Estimation of confidence intervals for the attribution
test

For the attribution test, we intercompare the predicted
and observed signal vectors a"(al)l"12p specifying the
amplitudes of the climate change patterns g

6 l
(vectors in

the p-dimensional detection variable space are printed
bold). To assess the statistical significance of deviations
between the two amplitude vectors, we need to determine
the uncertainties in both signals.

The uncertainty of the model predicted climate change
signal consists generally of two contributions:

1. The uncertainty associated with the estimate of the
climate change signal derived from a single or a small
number of model simulations which are contaminated by
model-generated climate variability.

2. The uncertainty associated with systematic model
errors, ideally characterized by some model error
covariance matrix. For the signal patterns used in this
study, the uncertainties are discussed in Sect. 3. The errors
are difficult to estimate quantitatively, and we shall there-
fore not include them in our statistical test. However, they
need to be kept in mind when interpreting the results.

In principle, the first uncertainty can be removed by
carrying out a large number of simulations, starting from
different initial conditions, and forming the ensemble
average (Cubasch et al. 1994). However, an adequate noise
reduction is often not feasible due to computer time lim-
itations (note that N simulations reduce the rms uncer-
tainty only byJN). Thus, the imperfect model estimated
climate change signal will differ from the ‘‘true’’ (un-
known) model predicted climate change signal
a
M
"(al

M
)l"12p by a sampling error governed by the

statistics of the model’s internal variability. In the follow-
ing we assume that the superimposed climate variability is
Gaussian, although an approach similar to the one dis-
cussed later can also be performed for other statistics.
Then, the model climate change signal derived from
a single simulation y represents a realization from a Gaus-
sian distribution y&N(a

M
,R

M
) where R

M
denotes the

model noise covariance matrix in the p-dimensional space
spanned by the different climate change signals. Note that
the signal uncertainty will also extend into the remaining
dimensions of the climate phase space, but these dimen-
sions are irrelevant for the problem of distinguishing be-
tween a given finite set of p candidate forcing mechanisms.
Since we assume that the noise is superimposed linearly
on the climate change signal, R

M
can be inferred from

the variations in the signal estimate due to noise only,
which can be computed from a long control simulation
using the same climate model. If y is computed from the
average of N different simulations, R

M
, is reduced by the

factor 1/N.
Similarly, the climate change signal estimated from the

observations will deviate from the ‘‘true’’ underlying cli-
mate change signal a

obs
"(al

obs
)l"12p through the super-

imposed internal variability of the climate system. The
signal vector inferred from the observations x will
then also originate from a normal distribution x&
N(a

obs
, R

obs
). If the climate model simulates the internal

variability noise correctly, and all relevant forcings were
considered, the uncertainty associated with a single model
simulation R

M
would equal R

obs
. However, this is not

exactly the case, as will be discussed further in Sect. 5.
Both uncertainties enter in the attribution test, in which

we consider now the statistical significance of the differ-
ence vector x—y: We make the hypothesis that the model
predicted climate change signal (or combination of sig-
nals) is correct. In this case a

obs
"a

M
, and the probability

distribution of the difference vector x—y between the ob-
servations x and model simulation y is given by the
normal distribution

x!y&N (0, R
obs

#R
M

)"N (0, R ), x&N (y, R). (10)

where we have set R"R
obs

#R
M

, since the noise realiz-
ations of the model and the observations are independent.
From the distribution Eq. (10) we can define ellipsoids of
constant probability density containing, say, 90% of the
realizations of the difference vector x!y (von Storch and
Zwiers in preparation 1997). If the model simulated cli-
mate change signal disagrees significantly from the obser-
vations, i.e. if the observations are not contained in the
90% uncertainty ellipsoid, the associated forcing mecha-
nism is rejected as a plausible cause for the observed
climate change signal at the 90% confidence level. Con-
versely, if the difference vector x!y lies within this ellip-
soid, the observations are considered to be statistically
consistent with the postulated forcing mechanism, or sum
of forcing mechanisms. A more rigorous terminology
would be to say in this case that the observations are not
inconsistent with the postulated forcing. However, we
shall use the simpler but less precise direct wording.

3 Components of the detection and attribution approach

We describe in the following the basic ingredients of
our multi-pattern detection and attribution analysis:
the observed data; the model simulations forced with
greenhouse gases, greenhouse gases plus aerosols, and
varying solar insolation; the signal-guess patterns derived
from the global warming simulations; and the data for
natural climate variability. We focus here on annual mean
values: the generalization to seasonal values is described
in Sect 6.

3.1 Observations

The observed near-surface temperature data used for the
multi-fingerprint approach have been compiled as
anomalies (with respect to the average of the years
1950—1979) of monthly mean near surface temperature on
a 5°]5° global grid by Jones and Briffa (1992) and Jones
(1994 a, b). The data range from the year 1854 to 1995,
with data coverage changing in time. Global—mean near-
surface temperature curves and the decadal mean pattern
of temperature change based on these data are presented
in the Supplementary Report to the IPCC Working
Group 1 Scientific Assessment (Folland et al. 1992). As in
Hetal96, annual mean values at a gridbox were computed
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if at least one seasonal mean (computed from at least one
month) was available, otherwise the annual mean was
indicated as missing. This criterion allows a relatively high
spatial coverage, but may introduce some additional
noise. It corresponds to a similar criterion applied to the
computation of decadal mean patterns in Folland et al.
(1992). Our results were found to be insensitive to the
criterion (e.g. use of a stricter acceptance condition of at
least three seasonal means for an annual average). We also
made a sensitivity test applying the newer, updated
dataset used in IPCC 1995 (Nicholls et al. 1996; Parker
et al. 1994). This yielded some difference in the results, but
without affecting our basic conclusions. In the computa-
tion of averages of simulated and observed data as well as
in the subsequent multi-fingerprint analysis, we con-
sidered only gridpoints for which the observations enable
the computation of multi-decadal trends after 1949 with
no than one missing year between any two years with
data. This yields approximately 75% global coverage for
annual mean data (see Fig. 3). 30-y trend patterns com-
puted in this manner are shown in Hetal96.

3.2 Climate change simulations

The temperature change patterns for greenhouse gas only
and combined greenhouse gas-plus-aerosol forcing are
derived from five climate change simulations with the
coupled ocean atmosphere model ECHAM3#LSG, in
the following referred to as HAM3L (Hasselmann et al.
1995; Voss et al. submitted 1997). The model is a new
version of the Hamburg CGCM (Cubasch et al. 1992;
Maier-Reimer et al. 1993; Roeckner et al. 1992) using an
updated atmosphere model (ECHAM3) at a spectral T21
resolution. Three anthropogenic climate change experi-
ments start with forcing conditions of the year 1880 and
are continued up to the year 2049. Two simulations (A
and B) were carried out for a combination of both green-
house gas forcing and the direct (albedo) effect of sulfate
aerosols, while in the third simulation (C), only the green-
house gas forcing was considered. The two greenhouse
gas-plus-aerosol simulations differ only through the intro-
duction of a small perturbation (at least an order of
magnitude smaller than the uncertainty in the aerosol
forcing, see Penner et al. 1995) into the aerosol fields of
one of the runs. Using more than one simulation enables
a better separation of the climate change signal from the
internal climate variability (as discussed above, and is
evident from the independent fluctuations of the two
simulations).

The greenhouse gas concentrations were expressed in
terms of net equivalent CO

2
concentrations (Houghton

et al. 1990). From 1880 to the present these were recon-
structed from direct measurements since 1957 and, prior
to that date, from estimates derived from ice cores (Schön-
wiese et al. 1990; Houghton et al. 1990). For the future,
the IPCC Scenario A data were used (Houghton et al.
1990). The sulphate aerosol data were kindly made avail-
able by the Meteorological Institute of the Stockholm
University and were calculated using the MOGUNTIA
sulphur model (Langner and Rohde 1991) from historical
SO

2
emissions, based essentially on Mylona (1993) and

Gschwandtner et al. (1986), and from projected future
emissions from the IPCC 1992 scenario A (Pepper et al.
1992).

The scenario forcing fields are similar to those shown in
Mitchell et al. (1995a, b), except that the pattern of the
aerosol forcing was not spatially fixed before 1990, but
was allowed to respond to the spatially changing patterns
of sulfur emissions (see Mitchell and Johns 1997). The
forcing fields are shown in Cubasch et al. (1996). The
impact of the computed aerosol concentrations was repre-
sented in the CGCM as an increased effective surface
albedo. The global mean of the radiative forcing at the top
of the atmosphere due to the aerosols is approximately
!0.7 W/m2 in 1980. Indirect effects of aerosols on the
formation and radiative properties of clouds were not
considered. These are generally estimated to be of compa-
rable magnitude to the direct effects, and may produce
different climate change patterns (Jones et al. 1994;
Boucher and Lohmann 1995). Our computations of the
aerosol climate impact must therefore be regarded as only
qualitative.

We furthermore use two simulations (SOL1 and SOL2),
starting from different states of the control simulation,
forced with estimated solar radiation variations between
1700 and 1992 after Hoyt and Schatten (1993). A slightly
different index of solar variations has been proposed by
Lean et al. (1995), see Crowley and Kim (1996). The simu-
lations are described in Cubasch et al. (1997). Estimates of
solar radiation variations are highly uncertain and con-
troversial, so that the results of these simulations must
also be regarded with caution.

Figure 1 shows the time evolution of the average over
the analysis area (covered by observations) of near surface
temperature of the observations and the simulations
for the three forcing cases. The two pairs of greenhouse
gas-plus-aerosol simulations A and B and solar forcing
experiments SOL1 and SOL2 were averaged, while the
greenhouse gas only case was represented by a single
experiment C. All temperature change patterns are
computed relative to the mean over the reference period
1950—1979. The residual drift of the control simulation
may have slightly influenced the time evolution of the
anthropogenic climate change experiments (see later), es-
pecially in the early part of the simulation.

The two curves from the anthropogenic climate change
simulations follow each other rather closely until about
1975. From 1975 onwards, the influence of the aerosols
becomes noticeable, the greenhouse gas only experiment
C showing a temperature rise of about 0.3 K per decade,
compared to 0.2 K per decade for the mean of the aerosol
experiments A and B. The mean of the simulations with
varying solar forcing shows some rise in global mean
temperature over the period 1880 to 1992. The visual
impression of Fig. 1 is that it is hard to distinguish which
of the different forcing hypotheses agrees best with the
observations on the basis of global mean temperature
alone.

Figure 2 shows the regional distribution of annual
mean changes in northern hemispheric temperature for
the simulations (a) without and (b) with inclusion of the
aerosol forcing. The aerosols show the largest effects in the
Northern Hemisphere, where the main sources of the
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Fig. 1. Time evolution of global mean near surface air temperature from climate model simulations compared with observations (5-y running
mean). The model simulations are driven with greenhouse gas forcing only (simulation C), greenhouse gas-plus-aerosol forcing (experiments A,
B, averaged in the figure) and estimated variations in solar radiation (simulations SOL1, SOL2, similarly averaged). Temperature changes are
defined relative to the mean of years 1950—1979 and are averaged only over areas used for the detection analysis for which a sufficient number
of observations is available (see Fig. 3)

Fig. 2. Change of annual mean near surface air temperature (in °C) in the mean over the decade 2040—2049 relative to the initial decade of the
simulations (1880—1889) for the greenhouse gas only experiment C (top) and the average of (A#B)/2 of the two experiments with greenhouse
gas-plus-aerosol forcing (bottom)

Fig. 3a–c. Dominant annual mean climate change signal (first EOF) for a greenhouse gas only forcing and b the average (A]B)/2 of the two
combined greenhouse gas-plus-aerosol forcing experiments (normalized to same mean square deviation). The patterns are restricted to
grid-points for which reliable trends could be calculated since 1949 from the observations. c Shows the greenhouse gas-plus-aerosol pattern
after orthogonalization (using the metric given by the inverse noise covariance matrix, Eq. 5) with respect to the greenhouse gas only signal
pattern. This represents the additional, statistically independent climate change pattern associated with the aerosol forcing
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anthropogenic sulphate aerosols are located. This hemi-
sphere also shows the strongest seasonal signal (Cubasch
et al. 1996). The impact of the aerosol forcing is largest in
summer and in low-and mid-latitudes, where the albedo
effect is more effective due to the stronger insulation.

3.3 Signal patterns of the model predicted climate change

As mentioned, we use two signal patterns g
6 l

and asso-
ciated fingerprints f

6 l
for the detection and attribution

analysis: one for the greenhouse gas only signal g
6 c

and one
for the combined greenhouse gas-plus-aerosol signal g

6 ab
.

It would have been desirable to complete the signal pat-
tern set by using also a third pattern representing the
response to variations in solar forcing. Cubasch et al.
(1997) did in fact derive a solar forcing response pattern by
performing a regression of the solar forcing time series
onto the surface temperature model response, which
could, however, not be reliably separated from the overly-
ing climate variability noise over parts of the planet
(Cubasch et al. 1997). The authors found a strong resem-
blance of that pattern to the greenhouse warming pattern,
the physical mechanism of the pattern differences could
not be clearly established due to superimposed noise.
Since previous tests showed that the results using optimal
fingerprints tend to deteriorate rapidly for strongly noise
contaminated signals, we prefer to analyze the solar forc-
ing response here in the pattern space spanned by our two
anthropogenic response signals. A discrimination between
the response to solar and greenhouse gas forcing using
both response patterns (using Euclidean rather than opti-
mal metric), was attempted in Cubasch et al. (1997). The
results showed that the recent observed temperature
trends resemble rather the greenhouse warming pattern
than the solar response pattern.

In the case of greenhouse gas forcing, it was shown by
Cubasch et al. (1992) that the first EOF (empirical ortho-
gonal function) captures most of the model response.
Accordingly, we define the temperature change patterns for
both anthropogenic forcing cases as the first EOFs of the
model response. We used the full length of the time series
to compute the EOFs rather than the response only up to
the present time, since in the latter case the response (as
computed from only one or two simulations) was still
relatively small and was contaminated by climate variabil-
ity noise. Defining the signal patterns in terms of the EOFs
proved to be a more stable choice in the present case than
the previous definition of Hetal96 in terms of the difference
between the last and an early decade of the simulation.

This applies particularly for the combined forcing simu-
lations, for which the climate change signal is smaller than
for the greenhouse gas only simulation, while for the
greenhouse gas only signal the difference between the two
definitions is relatively minor. As in our previous defini-
tion of the global mean temperatures, the EOFs are com-
puted from anomalies relative to the average over the
model years 1950—1979 (i.e. relative to the reference period
used in the observations) and only over areas with suffi-
cient observational coverage. This ensures that the EOFs
focus on the variance in the same areas which are used
later for detection.

Fig. 4. Time evolution of the first 3 EOFs of the mean of the two
greenhouse gas-plus-aerosol forcing simulations. The first EOF cap-
tures most of the increasing climate change signal, while higher
EOFs contain mainly noise

The first EOF of simulation C yields a very stable
representation of the annual mean climate change signal,
explaining about 90% of the time evolution (Fig. 3a). To
enhance the signal-to-noise ratio, the signal pattern
(Fig. 3b) for the greenhouse gas-plus-aerosol simulations
A, B was determined from the first EOF of the mean of
both simulations (A#B)/2. The signal pattern is rather
similar to the greenhouse gas climate change signal except
in the northern mid-latitudes, where the warming is re-
duced due to the aerosol effect. The full signal pattern
correlation (including the spatial mean) between the
EOFs of simulations (A#B)/2 and C is r*"0.93, while
the reduced (‘‘centered’’; Santer et al. 1993) correlation,
after subtraction of the spatial mean, is r"0.32.

As in greenhouse gas only simulations the first EOF of
the mean (A#B)/2 of both greenhouse gas-plus-aerosol
forcing simulations captures most of the time-evolution of
the combined greenhouse gas-plus-aerosol climate change
signal (Fig. 4). It explains 73% of the variance of the
averaged simulation (compared to 59% for the single
simulation A). The remaining EOFs show no systematic
trends in the model years after about 1980 and have
the appearance of noise. This result is confirmed by
the computed 30-y trends of the principal components
(not shown). Nevertheless, in the case of the greenhouse
gas-plus-aerosol simulation, where the spatial distribution
of the aerosol forcing varies in time, some spatial details
of the predicted present-day climate change pattern are
presumably distorted through the use of the first EOF of
the entire simulation as time invariant signal pattern.
Thus the strong cooling over China in the first EOF,
Fig. 2, 3b, is governed largely by the strong increase in
aerosol forcing predicted in the IPCC scenario for the next
century. Unfortunately, a more reliable computation of
the present climate change signal would require a larger
number of climate change simulations than is presently
feasible.
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Some uncertainty is introduced by a drift in the
HAM3L model. The drift appears to originate in the
ice-edge area of the Southern Hemisphere and causes
a global mean warming of approximately 0.5 °C in the first
160 y of the simulation. Since we have computed the
climate change pattern relative to a constant mean state
(the average over the model years 1950—79), the slow
warming trends especially in the first half of this century
(Fig. 1) in the anomaly simulations A, B and C, and
thereby also the signal pattern, could be influenced by
a common model drift. However, the area in which the
strongest drift occurs, the high southern latitudes, are not
included in our signal guess-pattern (see Fig. 3). In order
to qualitatively assess the effect of drift, we have also
computed the first EOF of the climate change simulation
defined relative to the contemporal state of the control
simulation (i.e. by subtracting CTL year by year from the
climate change simulations, see discussion in Cubasch
et al. 1992). The resulting time evolution of the first princi-
pal components after the model year 1970 is very similar
in both cases. The first EOFs are also very similar, with
a centered pattern correlation of r"0.97. The differences
between the patterns (not shown) have the appearance of
climate variability noise. We have used our original signal
pattern definition, since subtracting the control simula-
tion introduces additional noise.

The Hadley Center simulations (Johns et al. 1997;
Mitchell and Johns 1997; Mitchell et al. 1995a, b; Katten-
berg et al. 1996) yield similar rates of temperature increase
to ours, both with and without aerosols, and quite similar
spatial patterns. However, the responses to the two forc-
ings separate about 20 y earlier in the Hadley Centre
simulations. The climate change pattern of our new green-
house warming simulation C shows a different pattern of
warming over Europe and more pronounced warming
over parts of the Northern Hemisphere mid-latitude land
masses than previous simulations using an earlier version
of the Hamburg climate model (Cubasch et al. 1992;
1994a,b). This may be attributed to a more realistic circu-
lation, especially over the North Atlantic, in the updated
atmosphere model ECHAM3 (Roeckner et al. 1992).
However, the differences between the climate change sig-
nal of simulation C and the climate change signals of the
earlier simulations (characterized by a centred signal pat-
tern correlation of r"0.47 for the EIN simulation of
Cubasch et al. 1994b, and r"0.64 for the scenario
A simulation of Cubasch et al. 1992) are still substantially
smaller than the differences with respect to the combined
greenhouse gas and aerosol simulation.

In summary, there are uncertainties of the signal pat-
tern associated with the initial residual drift of the control
simulation, possible errors in the model response, the
definition of the present-day response from the first EOF
of the entire simulation, and the inadequate removal of the
natural variability noise achievable with a single green-
house gas only simulation C and two greenhouse gas-
plus-aerosol simulations (Cubasch et al. 1994). Still larger
uncertainties arise from our present insufficient know-
ledge of the sulfate concentrations and, in particular, the
resulting forcing (e.g. we have disregarded indirect aerosol
forcing). We have also ignored other possible mechanisms
of externally forced climate change, such as changes in

ozone concentration, non-sulfate aerosols and land-surface
changes. These shortcomings must be kept in mind in our
later discussion of the attribution problem.

3.4 Natural climate variability

Estimates of the space-time structure of the natural near-
surface temperature variability are needed for two pur-
poses: to estimate the noise covariance matrix (Eq. 2) for
the computation of the optimal fingerprint; and to esti-
mate the variability of the detection variable in order to
compute significance levels for climate change detection
and confidence ellipses for attribution. We use both model
data and observations to estimate the natural variability.

Our model data consists of four CGCM simulations of
the present climate over several centuries: 1000 y from
a simulation with the model ECHAM/LSG, referred in
the following as HAML (von Storch 1994; von Storch
et al. 1997), a 1000 y simulation with the GFDL model
(Manabe and Stouffer 1993, 1996), 700 years with the
model HAM3L, which has also been used for the climate
change simulations, and 611 annual means from the con-
trol simulation with the HADCM2 model (Mitchell et al.
1995a; Johns et al. 1997; Tett et al. 1997). HAML has been
used for a number of climate change simulations pre-
viously and is described in Cubasch et al. (1992). The
HADCM2 model has a finer resolution of 2.5° latit-
ude]3.75 ° longitude than the other models.

The observed near-surface temperature data are taken
from Jones and Briffa (1992). We obtain an estimate of the
observed internal variability of climate by subtracting an
estimated greenhouse gas signal in the same way as de-
scribed in Hetal96. The pattern of the subtracted signal is
based on the first EOF of the model simulation C, but the
time evolution of the pattern amplitude was smoothed by
fitting a linear response model that was then forced with
the same forcing as in the climate model (and CO

2
obser-

vations between 1860 and 1880). The residual, referred to
in the following as ‘‘VOBS’’, should provide a better
estimate of the unforced climate variability than the raw
observations, but will presumably still be contaminated
by the climate response to natural or uncorrected anthro-
pogenic external forcings (volcanic eruptions, changes in
solar radiation, aerosol forcing, as well as a possible resid-
ual greenhouse warming signal). The VOBS dataset is
discussed in Jones and Hegerl (in preparation 1997).

3.5 Construction of the optimal fingerprints

The noise covariance matrix used for constructing the
optimized fingerprints from the signal patterns g

6 c
and g

6 abis estimated from 30-year trend patterns derived from the
HAML simulation. The dimension of the full gridpoint
space is too high to estimate the noise covariance matrix
reliably from the limited amount of data. All data used in
the detection and attribution analysis (i.e. the signal
guess-patterns, the observed trend patterns and all model
trend patterns) are therefore truncated to the same lower
dimensional subspace. The dimension of the sub-space

Hegerl et al.: Multi-fingerprint detection and attribution analysis of greenhouse gas, gas-plus-aerosol and solar climate change 621



Fig. 5. Optimal fingerprint calculated from the HAML variability data for the greenhouse gas-plus-aerosol climate change signal. The
optimal fingerprint shows a cooling in the North Atlantic and changed patterns over the large land masses relative to the climate change
pattern (Fig. 3b), but retains the main feature that the warming is weaker in the Northern Hemisphere than in the Southern Hemisphere
(normalized in the same way as Fig. 3)

Fig. 6. Evolution of the detection variable (computed with the optimal fingerprint) for 30-y trend patterns from the observations, the average
(A]B)/2 of the simulations A, B, simulation C and the average of simulations SOL1 and SOL2. The time refers to the final year of the 30-y
interval used to compute the trend pattern. 95% confidence intervals derived from four sets of variability data are also indicated (note that the
HAM3L and the GFDL confidence limit are very close). For the present one-tailed test (the signal is expected to be positive) the positive
confidence limit corresponds to the 97.5% significance level. The recent observed trends exceed this limit, indicating that they represent
a significant climate change at the 97.5% confidence level. Also shown are the observations after a model-derived estimate of the evolution of
the greenhouse gas signal has been subtracted. The fingerprint is normalized relative to the standard deviation of the HAML noise, the unit
value of the detection variable corresponding to the standard deviation of the HAML noise

should be significantly smaller than the effective number
of independent realizations of the available data, which
determines the rank of the estimated covariance matrix.
We chose the first 10 EOFs of the greenhouse gas-plus-
aerosol forcing simulation A (for a discussion of the trunc-
ation, see Appendix).

Figure 5 shows the optimal fingerprint for the green-
house gas-plus-aerosol forcing for annual mean near sur-
face temperature (transformed back into gridpoint space).
Compared to the original signal guess-pattern (Fig. 3b),
the reduced warming south of Greenland is changed to
a cooling extending into Northern Europe. The pattern
over large land masses is also changed, for example over
North America. The optimal fingerprint for the green-
house gas only signal (not shown) exhibits substantially
more warming in northern mid-latitudes than that for the
combined forcing. It resembles on the large scale the
optimal fingerprint based on the earlier EIN greenhouse
warming signal.

4 Results for a single fingerprint

For climate change detection, as opposed to attribution,
a single-pattern analysis, as used in Hetal96, is the most
effective approach, since the power of a statistical test is
the higher the smaller the number of dimensions (see e.g.

Hasselmann 1979). We therefore first carry out a single
pattern detection analysis, applying the signal pattern
from the mean greenhouse gas-plus-aerosol forcing ex-
periment (A#B)/2 in the same way as in Hetal96, to
investigate whether the inclusion of anthropogenic aero-
sol forcing significantly affects the previous detection re-
sults. Subsequently, we shall apply the two fingerprints
derived from the anthropogenic forcing experiments to
address the attribution question and assess which of the
three experiments C, (A#B)/2 or (SOL1#SOL2)/2, is
the most consistent with the observations.

For the detection test, we need to compute the detection
variable Eq. (1) from the observations, estimate the varia-
bility of the detection variable associated with natural
climate variability and assess then the statistical signifi-
cance of the latest 30-y trends. Technical details of each of
these steps are given in Hetal96. Figure 6 shows the time
evolution of the computed detection variable d (t) (Eq. 1)
obtained by applying the optimal fingerprint derived from
the experiment (A#B)/2 to the spatial patterns of run-
ning 30-y trends W

1
(t) computed from the observations.

The fingerprint is normalized with respect to the metric
defined by the HAML covariance matrix (Eqs. 3, 4). Also
shown for comparison in Fig. 6 are the time evolutions of
the detection variables obtained by applying the optimal
fingerprint of the (A#B)/2 experiment to the running
30-y trends of the climate change simulations (A#B)/2,
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C and (SOL1#SOL2)/2. The recent rapid increase in the
detection variable for the observations agrees quite well
with the time evolution of the detection variable com-
puted from the anthropogenic climate change simulations
(but is seen also until 1992 in the solar simulation). The
detection variable for both anthropogenic climate change
simulations stabilizes at a constant level in the first half of
the next century, indicating a constant rate of temperature
increase at that time.

As expected, the time evolution of the greenhouse gas
only simulation C shows an earlier warming than the
greenhouse gas-plus-aerosol simulation (A#B)/2. (How-
ever, the warming also occurs earlier than in the previous
EIN greenhouse warming only simulation of Cubasch
et al. 1995 used by Hetal96. This must be attributed partly
to model changes and a delayed warming in the EIN
simulation associated with the experimental setup,
Cubasch et al. 1995, partly to statistical natural variability
fluctuations, as seen in the Monte Carlo experiments of
Cubasch et al. 1994).

Since both predicted signal patterns (Fig. 3a, b) have a
strong global mean warming contribution, the detection
variables are dominated by the global mean warming
trends (see Santer et al. 1993; 1995a; Hetal96, and the
figure in Hegerl and North 1997). This explains why the
trends from simulation C are not strongly reduced, al-
though the signal pattern for simulation C differs from the
assumed signal pattern for simulation (A#B)/2. It also
explains why the evolution of the detection variable com-
puted for the observations using the greenhouse gas-plus-
aerosol fingerprint is quite similar to the earlier results
using a greenhouse warming only fingerprint. The distinc-
tion between the different forcing hypotheses is better seen
using a two-pattern approach, as will be discussed in the
next section.

In Fig. 6, the detection variable for the latest observed
trend (1966—1995) d computed with the optimal finger-
print f

6 ab
for the greenhouse gas-plus-aerosol forcing is

seen to exceed the 95% confidence intervals (discussed
later) for climate noise, as estimated from three CGCM
simulations and observations. Since positive values of the
detection variable are expected for anthropogenic climate
change, the significance levels can be based on a one-sided
test. For this test, the upper limits of the two-sided 95%
confidence intervals in Fig. 6 correspond to 97.5% signifi-
cance limits. Thus we conclude that the latest observed
trend (1966—1995) exceeds the 97.5% significance level for
an observed climate change signal for all available esti-
mates of natural variability, and that the null hypothesis
that the observed temperature trends are natural can be
rejected.

The peak warming trends are seen to exceed the esti-
mated 95% confidence intervals of natural variability
trends not only in the last decades, but also in the first half
of this century. This is consistent with but also a caution-
ary reminder of the statistical nature of the detection test:
the detection variable is expected to exceed the 97.5%
one-sided significance level 2.5% of the time also in the
absence of a greenhouse gas forcing (see also Barnett et al.
1996, for uncertainties in decadal and secular model varia-
bility). But we note the basic distinction between the test
for an unusual event at a specified time (namely the last

30 y) and the occurrence of an unusual event at some
unspecified time. The computed 30-y trends of a 570 y
paleoclimatic record of summer mean temperatures over
Northern Hemisphere land confirm that the warming in
the early part of this century was indeed an unusual event,
yielding the largest 30-y trend in the entire paleoclimatic
record (Bradley et al. 1993). Some of this trend may
represent an early anthropogenic signal. The observations
with the estimated greenhouse gas signal subtracted
(dashed line) lie substantially closer to the model internal
variability domain. Estimates of solar insolation changes
also indicate a possible increase in solar irradiance during
this period (see orange line). This suggests that the ob-
served warming in the first half of this century was partly
forced (by a small increase in greenhouse gas concentra-
tions, possibly also an increase in solar insulation), partly
an extreme event of internal climate variability. The
strong warming in the early part of this century will be
discussed again later in the context of the 50-y Northern
Hemisphere summer trends.

The 95% confidence intervals were estimated indepen-
dently for each set of climate variability data and are
based on the mean square variability SdI 2T of the detection
variable for 30-y trends computed from these data, assum-
ing normal distributions. The HAML simulation, which
was used to estimate the covariance matrix, was excluded,
since the non-independence of the optimized fingerprint
and the data would have yielded an artificially suppressed
value of SdI 2T in addition to that model’s already rather
low variance (Hetal96). In estimating from observational
data, gaps in the time series before 1949 were filled by
a least-square regression. The estimate of the 95% confi-
dence intervals from the estimated variances of the differ-
ent variability data sets were corrected for sampling bias
of the relatively short time series using Monte Carlo
simulations of a Gaussian first-order auto-regressive pro-
cess with the same time series length and autocorrelation
as the data (see Hetal96).

The observations yield higher variability levels than the
coupled models, and the model estimates also differ
among each other. However, the differences between ob-
served and simulated variances are in fact smaller than the
differences in the 95% confidence intervals shown in
Fig. 7. This is because the 95% confidence intervals, infer-
red from the Monte Carlo simulations, are approximately
2.4 times the estimated standard deviation for the relative-
ly short observed times series, as compared to a factor of
2.0—2.1 for the longer model simulations.

For a quantitative estimate of the benefit of using the
optimal fingerprint method it is useful to consider the
signal-to-noise ratio

s/n"
d

SdI 2T1@2
(11)

for various alternative definitions of the detection vari-
able. Table 1 lists the signal-to-noise ratios estimated from
different sets of variability data and for three different
definitions of the detection variable: (a) the global mean
(uniform fingerprint); (b) the scalar product of the obser-
vations with the signal guess-pattern ( f"g); and (c) the
detection variable computed with the optimal fingerprint
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Fig. 7. Centered pattern correlations (with spatial mean subtracted)
between observed 30-y trends and the dominant climate change
signal for the average (A]B)/2 of the greenhouse gas-plus-aerosol
simulations (solid line) and the greenhouse gas only simulation
C (dashed line). Also shown are the correlations of the observed trend
patterns with the solar response pattern (dotted line; pattern shown
in Cubasch et al. 1997)

Table 1. Estimates of the signal-to-noise ratio for the latest observed
near surface temperature trends using different fingerprints

HAML HAM3 GFDL HADC VOBS ROBS
L M2

Mean! 6.00 5.14 4.28 3.21 2.99 2.58
Non-optimal" 5.92 5.66 4.57 3.35 3.20 2.71
Optimal# (6.92) 4.87$ 4.47$ 4.36 3.40 2.81
Improvement:
Non-optimal/
mean 0% 8% 7% 4% 7% 5%
optimal/non- (17%) !20% !2% 30% 7% 4%
optimal

!Mean: a uniform fingerprint yielding the global mean as detection
variable;
"Non-optimal: the signal guess-pattern;
#Optimal: the optimal fingerprint.

Also listed are the improvements in the signal-to-noise ratios
through use of Non-optimal relative to Mean and Optimal relative
to Non-optimal. Columns depict the estimates from different varia-
bility data: the control simulations HAML, HAM3L, GFDL,
HADCM2, and the observations with a previously estimated an-
thropogenic greenhouse gas signal subtracted (VOBS) and without
subtraction of the greenhouse gas component (ROBS). The optim-
ization is performed in a space which is truncated to the first 10
EOFs of simulation A. Here and in the following tables the signal-
to-noise ratios using the optimal fingerprint for HAML are given in
parentheses, since these have a positive bias due to the use of the
same data for the optimization. Bold numbers indicate that the
results are significant at the 97.5% level; italics 95%;
$Denotes a decrease in signal-to-noise ratio due to optimization,
indicating problems in the optimization (see Sect. 5)

(Eq. 2). The improvements in the estimated signal-to-
noise ratio for the latest observed trend using the signal
guess-pattern as fingerprint relative to the straightforward
global mean is on the order of 5% for most data, while the

possible further gain from the use of the optimal finger-
print rather than the signal pattern depends strongly on
the set of variability data used to estimate SdI 2T. The
standard deviation SdI 2T generally decreases when the
optimal fingerprint is used (with all fingerprints nor-
malized, Eq. 4, using the unit matrix for the non-optimized
case), but as d may also decrease, the signal- to-noise ratio
does not necessarily increase in all cases. For example, the
standard deviation estimated from 30-y trends of the
HADCM2 control simulation using the optimal finger-
print was only slightly smaller than that estimated from
the observed variability data when the signal pattern was
used as fingerprint, but the variability decreased more in
the HADCM2 data than in the observations through use
of the optimized fingerprint, leading to a stronger increase
in signal-to-noise (s/n) ratio for the HADCM2 data. On
the other hand, using the GFDL variability decreased s/n
marginally for the optimal fingerprint, while the HAM3L
variability data yielded even lower values for the opti-
mized fingerprint.

The differences in the reduction in SdI 2T resulting from
use of the same optimized fingerprint indicates that the
structure of the variability on time scales of several de-
cades is not consistent for the different models. The full
potential of the optimal fingerprint approach will presum-
ably be realized only when the models are able to simulate
the real climate variability with higher fidelity. However,
we should keep in mind that a poor estimate of the noise
covariance matrix leading to a ‘‘wrong’’, i.e. not truly
optimal, fingerprint will merely reduce the power of the
detection method. This may result in the inability to detect
a climate change signal which an accurate fingerprint
would have detected, but it will not normally lead to an
incorrect detection claim.

We conclude that the reliability of the estimated signifi-
cance level of the latest observed trends is limited prim-
arily by the reliability of the variability estimates. How-
ever, the high signal-to-noise ratios listed in Table 1 pro-
vide a cushion against the uncertainties in variability
estimates, yielding some confidence in the positive detec-
tion result.

5 Application of a two-pattern analysis

While we have shown in the previous section that the
latest observed 30-y trend patterns indicate a statistically
significant climate change, the cause of this change has not
been clearly established. The differences between the de-
tection variable computed from the observations and the
values computed from differently forced model simula-
tions are too small compared to the noise to attempt to
rank the simulations with respect to their ability to ex-
plain the observations. Also, the high values of the detec-
tion variable computed from recent trend patterns are
mainly due to a strong global mean warming component
which is common to all forcing mechanisms, rather
than a high similarity between the detailed predicted and
observed climate change patterns. Figure 7 shows the
centred pattern correlation r* (t) (after subtraction of
the spatial mean) between the observed 30-y trend
patterns and the model derived climate change patterns
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for anthropogenic climate change. Although the pattern
correlation is seen to increase if aerosol forcing is taken
into account (see also Santer et al. 1995a, 1996b; Mitchell
et al. 1995a; Tett et al. 1996), the results shown in Fig. 7 do
not allow a clear distinction between these two forcing
hypotheses: The centered pattern correlation between ob-
served 30-y trend patterns and the greenhouse gas only
signal pattern or the solar signal pattern (shown in
Cubasch et al. 1997) is smaller than the corresponding
correlation for the greenhouse gas-plus-aerosol signal pat-
tern for the trends ending between 1970 and 1990, but of
the same order of magnitude (&0.2—0.3) for the latest
observed trends. The relatively small values of the correla-
tion agree with other results using seasonal and decadal
mean data (Santer et al. 1995a; Mitchell et al. 1995a).

Thus to distinguish between different forcing mecha-
nisms, we need to resort to a multi-fingerprint method as
described in Sect. 2. To illustrate the technique we intro-
duce first two fingerprints, corresponding to the green-
house gas only and greenhouse gas-plus-aerosol forcing
cases, for the same annual mean 30-y trends as used in the
previous section. Subsequently we consider 50-y northern
summer trends, which should be more effective in identify-
ing the aerosol influence.

Since both signal guess patterns contain a strong global
mean warming component (Fig. 3a, b), the associated
detection variables d
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be highly correlated. The effect of the aerosol forcing can
be better distinguished from the greenhouse gas only
forcing if in place of the greenhouse gas-plus-aerosol sig-
nal a second signal pattern g
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orthogonal (with respect to the metric C~1, Eq. 5) to the
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The normalization factors R are chosen to satisfy the
normalization condition (Eq. 3). For the orthonormal
signal patterns g

6 l
, the detection variables can be directly

equated with the amplitude estimates (Eqs. 8, 9).
Figure 3c shows the statistically orthogonal signal-

guess pattern. If the Euclidean metric is used (with the unit
matrix substituted for the inverse covariance matrix in Eq.
12), the resultant orthogonal signal pattern g

6
@
2

is qualitat-
ively similar, with a (zonally somewhat more uniform)
cooling in the northern mid-latitudes due to higher level
of sulfur emissions in this latitude band. However, the
Euclidean metric is not the natural metric for the present
problem, since the property is lost where the detection
variables are identical to the signal amplitudes and
uncorrelated.

Figure 8a shows the evolution of the observed running
30-y trend patterns in the two-dimensional phase space
spanned by the detection variables d

1
and d

2
. In the

orthonormal pattern representation, each point in the
phase space represents an amplitude estimate of the green-
house gas only pattern (a1"d

1
) and the orthogonalized

aerosol forcing pattern (a2"d
2
). The combined green-

house gas-plus-aerosol climate change pattern can be ex-
pressed in terms of the pattern g
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and the aerosol

forcing pattern g
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in the form:
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greenhouse-gas only signal (d
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"0) in Fig. 8a, while the

arrow AB represents the direction of the greenhouse gas-
plus-aerosol signal (as predicted by the model) d
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Figure 8a indicates that the latest trend patterns, e.g. the
trends 1948—77 until 1966—1995, generally agree more
closely with the greenhouse gas-plus-aerosol forcing cli-
mate change signal than with the greenhouse gas only
signal. To judge the statistical significance of those results,
Fig. 8b shows the paths of the detection variable of 30-y
trend patterns together with the corresponding climate
noise data computed from 30-y trends for different model
control simulations and for the observed variability data.
The figures clarify the relation between the different
single-pattern detection results discussed previously (e.g.
Fig. 7). Projection of all data onto the direction AB yields
the detection variable and noise distribution for the green-
house gas-plus-aerosol forcing signal pattern, while pro-
jection onto the direction C yields the corresponding
result for the greenhouse gas only signal pattern. It is clear
from a visual inspection that the detection results for both
signal patterns will be rather similar, as the angle between
the two pattern directions is rather small. A distinction
between the two cases can be made only in the two-
dimensional phase space.

Figure 8b also shows the 95% confidence ellipses for
two-dimensional Gaussian distributions fitted to the dif-
ferent sets of climate variability. The bias due to sampling,
which was estimated using Monte Carlo techniques in the
one-dimensional detection test, has not been taken into
account in the computation of the two-dimensional confi-
dence areas. Thus we do not show estimates of the confi-
dence ellipses for the relatively short observed time series.
For the longer model time series (611 to 1000 y), the
ellipsoids can be estimated with some confidence. The
percentage of detection variable samples for internal
variability which lie outside the respective confidence
ellipses is relatively close to 5% for most data (5.3% for
GFDL, 6.3% for HADCM2), which suggests that the
Gaussian distribution is generally an acceptable approxi-
mation. The exceptionally small percentage of detection
variables outside the confidence ellipse for HAM3L
(2.0%) suggests that these data are influenced either by an
outlier in the variability data or a deviation from normal-
ity due to model drift. The differences in the noise distribu-
tions of the internal variability simulated by the different
climate models, as expressed by the confidence ellipses, are
clearly larger than can be explained by sampling uncer-
tainty.

As a first test whether the inclusion of aerosols signifi-
cantly improves the statistical agreement between the
observations and the model climate change pattern we
consider the signal-to-noise ratio of the second (aerosol)
component d

2
for the latest observed trend. If the signal-

to-noise ratio is sufficiently high to reject the hypothesis
that d

2
represents climate noise only, we conclude

that there is a significant aerosol related pattern in
the observations. Note that since the orthogonal signal
pattern (Fig. 3c) has a spatial mean close to zero, this
test is independent of the global mean warming which
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Fig. 8. a Evolution of the observed temperature trends in a phase space spanned by (1) the detection variable using the signal pattern for
greenhouse warming and (2) the statistically orthogonal signal pattern representing the aerosol effect. The detection variable for trend patterns
ending in different time periods are shown in different colors and are also marked in the figure. The arrows show the direction of the time
evolution. b Shows the results for the observations compared to the detection variables computed with 30-y trend patterns from various climate
variability data sets. The 95% confidence ellipses are computed from the detection variable covariances assuming Gaussian distributions

Fig. 9. a Signal guess pattern (first EOF) for northern summer (JJA) derived from the greenhouse gas only simulation; b orthogonalized
pattern derived from the greenhouse gas-plus-aerosol simulation (normalized to the same mean square deviation)

Fig. 10. Observed pattern of 50-y trends (in °C/decade) for the period 1946—1995 in northern summer (JJA; data from Jones and Briffa)
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Table 2. Estimates of the signal-to-noise ratio of the detection
variable d

2
computed with the component of the greenhouse gas-

plus-aerosol pattern which is orthogonal to the greenhouse gas
pattern (Fig. 3)

c
2
/c

1
! HAML HAM3 GFDL HADC VOBS

L M2

Non-optimal 0.32 0.80 0.49 1.09 0.56 0.84
optimal 0.31 (2.32) 1.48 2.60 1.67 1.97

!c
2
/c

1
denotes the ratio of the contributions from the orthogonalized

pattern (Fig. 3c) and the greenhouse gas pattern (Fig. 3a) to the
greenhouse gas-plus-aerosol climate change pattern (Eq. 13). Bold
(italicised) values indicate that the contribution of the aerosol pat-
tern is larger than expected from noise, at the 95 (90)% confidence
level. Notation otherwise as in Table 1

dominates the value of d
1
. Since we wish to investigate the

consistency of the observations with a greenhouse gas
only signal pattern (corresponding to zero values of d

2
),

unusually high positive or negative signals are relevant.
Thus two-sided confidence intervals, as opposed to the
previous 1-sided test for single pattern detection, are used.

Table 2 shows that d
2

is larger than noise at the 90%
confidence level only if the estimate of climate variability
is derived from the GFDL control simulation, but is
insignificant at this confidence level relative to the
HADCM2 and HAM3L noise estimates (a comparison
with the noise estimates from the observations with the
greenhouse gas signal subtracted is not shown, as this
would be biased through a possible residual aerosol sig-
nal). The sampling uncertainty in the confidence levels due
to the finite length of the time series has been estimated
and corrected using Monte Carlo simulations in the same
way as for the detection confidence levels. The magnitude
of the detection component d

2
in the latest observed trend

pattern (and thus the outcome of the consistency test) is
sensitive to technical details of the optimization proced-
ure. If the scalar product between the (non-optimized)
orthogonal signal pattern and the observations is used to
compute d

2
, the resulting value is insignificant relative to

all estimates of climate variability (Table 2). The angle
between signal patterns (expressed by the ratio c

2
/c

1
,

Eq. 14) varies with the truncation level and with the varia-
bility data used for estimating the covariance matrix
(Eq. 5). This implies uncertainties in the computation of
the statistically orthogonal signal pattern (i.e. in the form
of the ellipses, Fig. 10b). Furthermore, even for the rela-
tively stable c

2
/c

1
values in Table 2, the value of d

2
in the

observations is sensitive to the analysis parameters. We
conclude from the relatively low signal-to-noise ratio,
combined with these uncertainties, that the contribution
of the aerosol pattern to the observed annual mean 30-y
trend patterns cannot at present be convincingly distin-
guished from noise.

We have also formally applied the attribution test de-
scribed in Sect. 2 to distinguish if the observed trend
patterns are consistent (Eq. 10) with the model values
derived for the greenhouse gas only forcing, the green-
house gas-plus-aerosol forcing and the solar forcing.
Again, the results were not fully conclusive: the difference
between the observations and the model solar only forced

30-y trends was still within a 90% significance ellipse
(although close to the border). The separation between the
observations and a greenhouse gas only signal was signifi-
cant at the 90% level, but as mentioned above this result
was sensitive to technical details. The present observed
30-y trends were in relatively good agreement with the
model greenhouse gas and aerosol signal. However, we
have already mentioned that seasonally stratified data
and longer trends should be more suitable for distinguish-
ing between different forcing hypotheses.

6 Results for seasonally stratified data

6.1 Seasonal structure of anthropogenic climate change
signals

It may be anticipated that the strongest effect of aerosols
will be seen in the Northern Hemispheric summer and
autumn. This is confirmed by the studies of Santer et al.
(1995a) for simulations using a mixed-layer ocean GCM
and Cubasch et al. (1996) for HAM3L model simulations.
Thus, we shall focus our seasonal detection and attribu-
tion analysis on the (northern) summer. Furthermore, for
the reasons stated earlier, we shall consider 50-y rather
than 30-y trends. However, before embarking on the spe-
cific analysis of a single season, we consider first all four
seasons, using as before 30-y trends for better comparison
with the annual mean analysis.

The signal guess patterns for seasonal mean data are
identified, as in the case of annual means, with the first
EOFs computed from each transient global warming
simulation. The area with acceptable data coverage is
generally smaller for seasonal data (&66% of the earth’s
surface, where a seasonal datapoint is accepted for a grid-
box if at least one month is observed) than for the annual
mean data (&75%, as discussed in Sect. 3, see Fig. 10).
The first EOF of the average (A#B)/2 of the two green-
house gas-plus-aerosol forcing simulations explains ap-
proximately 48% of the variance in (northern) winter and
spring and 58% in summer and autumn, compared with
73% for the annual mean. For the greenhouse gas only
simulation C, the first EOF explains about 80% of the
variance in winter and spring and about 85% in summer
and autumn, compared to 92% for the annual mean. The
higher explained variance for the annual mean data fol-
lows from the reduction of the natural variability noise
through averaging over the annual cycle, while the rela-
tively larger explained variance in summer and autumn
is a consequence of the generally lower noise in those
seasons.

Figure 9 shows the signal guess pattern for summer for
greenhouse gas only forcing compared to the statistically
orthogonal pattern introduced by the additional aerosol
forcing (the patterns were computed for the 50-y trends
discussed in the following section, but are very similar to
the 30-y trend patterns). The greenhouse gas only pattern
is very similar to the annual mean pattern, except for
a smaller warming in the northern high latitudes. The
statistically orthogonal pattern in summer is more zonally
homogeneous (and also more similar to the orthogonal
signal for summer if the Euclidean metric is used).
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The time evolution of the EOF coefficients for seasonal
data is very similar to the annual mean case (see Fig. 4).
Trends computed from the principal component time
series confirm that for trends ending after about 1990,
the first EOF captures most the climate change signals in
all seasons, the higher EOFs having the appearance of
noise with no clear trend. However, prior to this date,
EOFs 2 or 3 pick up some of the cooling signal in the
1940s to 1970s, when the aerosol forcing was relatively
strong compared with the still rather weak greenhouse gas
forcing.

The results for the evolution of the detection variables
for the four seasons confirm the previous annual mean
results and are thus not given in detail: all seasonal data
indicated highly significant values of the recent trend
patterns in all seasons. Also, the observations indicate
a positive but insignificant aerosol forcing pattern in all
seasons except winter. However, the amplitude of the
aerosol related pattern cannot be rigorously distinguished
from noise in any season. A rather interesting feature of
the results using seasonally stratified data was that the
robustness of the (single-pattern) detection variable results
using the optimal fingerprint varied with the season. The
use of the optimal fingerprint yielded rather good results
(i.e. an increase in signal-to-noise ratio) for most data for
summer and autumn. In contrast, the signal-to-noise ratio
decreased (relatively independent of technical details, such
as the truncation level, data used for optimization, etc.) in
winter and spring when the optimal fingerprints were
used. We suspect that the lower-resolution models have
difficulty in correctly treating cyclonic wave activity in
winter. This suspicion is supported by some improvement
in the results obtained when data from the higher resolu-
tion HADCM2 model were used for optimization.

6.2 Application of the attribution test to 50-year trends
of summer data

As has been mentioned, 30-y trends were chosen for the
analysis of the annual mean data in order to focus on the
accelerating greenhouse warming predicted by climate
models for the most recent decades. However, this choice
is not optimal for distinguishing between global warming
due to greenhouse gases alone and greenhouse gas-plus-
aerosol forcing. Aerosol forcing shows a pronounced
fairly linear increase over the last 40—50y, and we there-
fore expect that 50-y trends should be more suitable for
the attribution issue. This is indicated also by the results of
Santer et al. (1995a), who found that in correlations of
climate change patterns including the spatial mean, 30-y
trends yield the strongest differentiation from natural
variability noise, whereas if the spatial mean is removed
(and thus the bulk of the warming signal), the residual
observed spatial pattern correlates better with the pre-
dicted signal if longer trends are considered and the data
are seasonally stratified. As the aerosol effect is further-
more expected to be strongest in the northern summer, we
shall accordingly focus on 50-y trends in this season.

Figure 10 shows the pattern of the latest observed 50-y
trends for the period 1946—1995 for Northern Hemi-
spheric summer, from the data of Jones and Briffa (1992).

The reduced warming or cooling in the Northern Hemi-
sphere is in qualitative agreement with the climate change
pattern of the greenhouse gas-plus-aerosol model simula-
tion (see Cubasch et al. 1996). For the detection and
attribution analysis, the 50-y trends were analyzed in
essentially the same way as the 30-y trends. However,
since the sampling uncertainties become larger when lon-
ger trends are considered, we augmented the original data
from the HADCM2 control run by data from a recently
completed extension of the simulation, yielding 976 realiz-
ations of each season. At the same time we truncated the
representation to a 6-dimensional space prior to optimiza-
tion rather than a 10-dimensional space, since the 1000 y
of HAML data yield proportionally less independent
50-y trends than 30-y trends. Since the first 6 EOFs of
the greenhouse gas-plus-aerosol forcing simulation
A were insufficient to represent the greenhouse gas
only pattern (indicated, for example, by differences in
the time evolution of the non-optimized detection variable
before and after truncation), the 6th EOF was replaced
by the first EOF of the greenhouse gas only simulation
(after orthonormalization relative to the first five base
vectors), thereby ensuring that the pattern was properly
represented.

Table 3 lists the signal-to-noise ratios for the detection
variable d

2
associated with the aerosol pattern. The most

recent 50-y trend has a significantly higher d
2

component
than any of the variability data at the 90% confidence
level (even at the 95% confidence level for most data).
Table 3 also shows that this result is not strongly depen-
dent on the use of optimal fingerprints. The signal-to-
noise ratio is nearly as high if the non-optimized signal
guess-patterns are used to compute the detection variable.
The results using optimal fingerprints show higher signal-
to-noise ratios mainly because the fingerprints are better
separated, as indicated by the higher ratios of c

2
/c

1
(Eq.

14). The relatively similar results of the analysis using the
signal-guess patterns indicates that our results are not
subject to uncertainty associated with technical details of
the optimization (e.g. truncation level).

A further analysis using data over land and ocean
separately revealed that both land and ocean contribute
to the statistical significance of the aerosol pattern. This
can also be anticipated from Figs 9b and 10, which show
aerosol induced cooling over both land and ocean in the
northern mid-latitudes.

We turn now to the attribution method described in
Sect. 2. Here the two-dimensional detection vector is con-
sidered to determine whether the observed climate change
is consistent with the proposed forcing mechanisms. This
involves assessing the difference between the detection

Table 3. Same as Table 2, but for 50-y observed temperature trends
of summer data. The contribution of the aerosol pattern is larger
than expected from noise in all cases, at the 90 (95)% confidence level
for the values printed in italics (bold italics)

Summer, 50y c
2
/c

1
HAML HAM3L GFDL HADCM2

Non-optimal 0.50 3.89 2.25 3.64 1.98
Optimal 0.63 4.49 2.86 4.22 2.53
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Fig. 11. a Evolution of observed 50-y northern summer trends in a phase space spanned by the detection variable for the greenhouse gas only
and greenhouse gas-plus-aerosol forcing signal patterns, together with various estimates for climate variability (see Fig. 8b) and their
associated 95% confidence ellipses. b Evolution of observed 50-y northern summer trends, as in a, together with the evolution of the observed
trends after subtraction of a computed greenhouse gas component (green curve) and the evolution of the simulated trends for the average of the
two solar forcing experiments (orange line). The relatively strong warming in the early part of the century can be partly attributed to a small
greenhouse warming signal (note the weaker observed signal when the greenhouse warming signal is subtracted). Possibly, it may also be
partly due to an increase in solar forcing at about this time. The residual trend presumably represents an extreme natural variability event.

Fig. 12. Attribution diagram for the observed 50-year northern summer surface temperature trends. The evolution path of the observed
detection vector in phase space is the same as in Fig. 11, the latest trend for the period 1946–1995 being represented by a large black dot. The
corresponding model predictions and associated 90% confidence ellipses for the difference between the observed and predicted detection
vectors are also shown for the three different forcing mechanisms. For the model simulations used to compute the basic signal patterns of the
phase space, the confidence ellipses are centered on a projection (denoted by ‘‘X’’) of the model values for the trend period 1946–1995 (indicated
by an appropriately colored dot) onto the respective pattern direction, since the noise-free model climate change signal should lie in the this
direction (Fig. 3). The detection variable for the latest observed 50-y trend lies inside the confidence ellipse for the combined forcing signal, but
outside the confidence ellipse of the greenhouse gas only signal. The observed trend ending in 1992 is also marginally inconsistent with the
respective trend of the solar simulation (orange diamond). Thus the observations are inconsistent (at a 90% confidence level) with a pure
greenhouse gas or solar forced climate change signal but consistent with a greenhouse gas-plus-aerosol climate change signal

vector computed from the most recent observed 50-y sum-
mer trends for the years 1946—1995 and the corresponding
detection vector predicted by the model simulation using
three different forcing mechanisms. If the difference vector
lies within a given confidence ellipse determined by the
uncertainty in the estimates of the observed and model

simulated detection vectors (Eq. 6), the climate change is
regarded as consistent (formally not inconsistent) with the
proposed mechanism, otherwise the attribution test fails.

Figure 11a shows the evolution of the detection vector
for the observed 50-y trends in summer in the two-pattern
phase space. The figure also shows samples of detection
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variables computed from 50-y summer trends based on
different climate noise data and the estimated 95% confid-
ence ellipses. The sampling distribution again suggests
that the use of a Gaussian distribution is justified, the
percentage of climate variability detection variables out-
side the confidence ellipses lying relatively close to 5% for
all data (4% for HAM3L, 3.8% for GFDL and 5.0% for
HADCM2). The most recent observed 50-y trend for
summer shows a strong contribution of the aerosol related
pattern (as discussed for Table 3). This trend also deviates
from all estimates of climate variability at the 95% confid-
ence level and thus confirms a significant climate change.

Figure 11a indicates further that the strong trends in the
early part of this century agree slightly better with green-
house only warming than with the greenhouse gas-plus-
aerosol forced climate change. These trends are highly
exceptional relative to the model internal noise samples.
To investigate the origin of these trends, we show in
Fig. 11b the detection variables computed from the obser-
vations after subtraction of the estimated greenhouse gas
forced component (VOBS). As in the annual mean case,
this yields a path which lies closer to the model internal
variability (as represented by the HADCM2 ellipse), but
still represents an exceptionally strong event in this period
outside the 95% confidence ellipse. The solar forced simu-
lation again exhibits a trend of similar magnitude around
this time. As discussed, this is suggestive of a combination
of a forced component and an exceptional variability
event in the warming record in the early part of this
century. The detection variables for VOBS also lie outside
the model noise confidence ellipse for some very early
trend patterns (which may be associated with the sparsity
of the observations) and for the most recent trends, which
resemble a pure aerosol signal (Roeckner et al. 1995).

Figure 12 shows the results of the attribution method
for summer 50-y trend patterns. The values of the detec-
tion variables computed from simulated trend patterns
1946—1995 are given by coloured dots (for the last trends
in the solar simulation, 1943—1992, by a coloured dia-
mond). For the anthropogenic climate change simula-
tion, we prefer to project the detection vectors onto the
directions of the signal pattern as defined by the EOFs of
the full simulation (see Sect. 2), yielding the coloured
crosses. We believe that this definition will provide less
noise contaminated estimates of the model signal vectors
for the latest trends, at least with respect to the signal
directions. However, if the non-modified model trend vec-
tors are used instead, the attribution analysis yields essen-
tially the same results.

The covariance matrix R characterizing the confidence
ellipse of the difference vector between the observed and
model simulated trend signals is given by the sum of the
covariance matrix R

M
of the statistical model signal uncer-

tainty and the corresponding covariance matrix R
obs

of the
natural variability noise in the observations (Sect. 2, Eq. 10).
The covariance matrix R

M
estimated from the HAM3L

internal variability must be divided by two for the mean
greenhouse gas-plus-aerosol simulation (A#B)/2 and the
solar simulations (SOL1#SOL2)/2 in order to allow
for the reduction in uncertainty through averaging over
two simulations. Since the internal variability of the
HADCM2 model yielded the ellipse with the largest area

(Fig. 11a), we use this model as the most conservative of
our estimates of natural climate variability.

The latest observed 50-y summer trend pattern agrees
surprisingly well with the model prediction for the green-
house gas-plus-aerosol simulation, as indicated by the
very small signal difference vector in this case. The differ-
ence vector lies well within the 90% confidence ellipse. In
contrast, the observed trend pattern lies far outside the
90% and the 95% (not shown) confidence ellipse of the
greenhouse gas only forced climate change signal. The
statistical results listed for the aerosol component d

2
in

Table 3 indicate that this statistical inconsistency is found
even when only the contribution from the aerosol forcing
is considered, disregarding the additional inconsistency
arising from the higher predicted mean warming compon-
ent d

1
in the direction of the greenhouse gas only warming

signal.
The observations 1943—1992 (black diamond) lie out-

side the 90% confidence interval for the solar forcing
simulation. The inconsistency in this case is relatively
small. However, the increasing amplitude of the global
warming component in the observations after 1992 (at a
time when the solar insulation rather decreased), and
the results of Lean et al. (1995) and Cubasch et al.
(1997) support the conclusion that the present observed
warming is inconsistent with a purely solar forced climate
change.

Our results for the anthropogenic signals are consistent
with the results of Santer et al. (1995a). The authors found
an increase during the latest decades of the (centred)
pattern correlation between the observed and simulated
summer and autumn near surface temperatures, where the
signal patterns were taken from an equilibrium green-
house gas-plus-aerosol forcing experiment using a
coupled atmosphere-mixed layer ocean model.

We conclude that the latest (1946—1995) 50-y trend of
observed near surface summer temperatures is statistically
inconsistent with the greenhouse gas only forced climate
change simulation at a confidence level higher than 95%
and with purely solar forced climate change at a 90%
confidence level, while it is highly consistent with the
greenhouse gas-plus-aerosol forcing simulation.

7 Discussion and conclusions

In a detection and attribution study of externally forced
climate change, we have applied single and multi-finger-
print analyses to observed patterns of 30-y trends of
annual mean and 50-y trends of summer near surface
temperatures. We used climate change signals derived
from five new model simulations, one forced with green-
house gases only, two with additional (direct) sulphate
aerosol forcing, and two forced with hypothesized vari-
ations of solar radiation. Using a single fingerprint de-
rived from the average of the two greenhouse gas-plus-
aerosol forced climate change simulations, we confirm the
result of the previous study of Hetal96 that the latest
observed 30-y trend pattern of annual mean data, ending
in 1995, can be distinguished from our estimates of natural
climate variability at a 97.5% significance level, i.e. the
probability of observing a trend which yields values as
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high as the observed detection variable due to natural
climate variability alone is less than 2.5%.

The latest observed warming trend agrees better, both
in terms of pattern and amplitude, with a greenhouse
gas-plus-aerosol signal than with a greenhouse gas only
signal. The distinction between the three forcing scenarios
is best studied in the phase space spanned by the two
signal patterns (the signal pattern associated with in-
creases in solar radiation is poorly defined and was thus
not used as an additional guess pattern). The two-pattern
attribution analysis shows that the observed climate
change is consistent with the greenhouse gas-plus-aerosol
forced signal computed with the HAM3L model for 30-y
annual mean trends and for 50-y trends for (northern)
summer, the season with the most pronounced aerosol
impact.

On the other hand, the latest observed 50-y summer
trend pattern is inconsistent at the 95% confidence level
with pure greenhouse gas forcing and at the 90% confid-
ence level with pure solar forcing. Qualitatively similar
results were obtained for 30-y trends of annual mean data.
In contrast to the results for northern summer, the con-
clusions in this case were subject to uncertainties asso-
ciated with technical details of the analysis.

Our investigations indicate that the most effective data
filter is generally different for the detection problem, in
which the goal is to distinguish between forced climate
change and internal climate variability, and the attribu-
tion problem, in which the consistency of the climate
change signals computed for different candidate forcing
mechanisms with an observed and noisy climate change
signal is tested. The strongest and most stable signal for
climate change detection is found in the 30-y trends of
annual mean data. This corresponds to the recent acceler-
ated warming predicted by models. However, the largest
difference between pure greenhouse gas and greenhouse
gas-plus-aerosol forced climate change appears in the 50-y
trends in northern summer. This is consistent with the
near linear increase in aerosol forcing since the middle of
this century and the stronger impact of aerosols on the
radiation balance in the northern summer.

Our results are subject to uncertainties associated with
the model-derived climate change signals. Possible sys-
tematic errors in the climate model, e.g. errors in the
model sensitivity or arising from the residual model drift
(whose effect is estimated as small) have not been taken
explicitly into account. The time series of the solar insula-
tion changes is highly uncertain. Further uncertainties
remain both in the representation of the direct aerosol
forcing and in the contribution from the indirect aerosol
forcing. The latter has been ignored in our simulations,
but is estimated to be of comparable magnitude to the
direct forcing. As a test of the impact of uncertainties in
the spatial details of the predicted warming pattern, we
superimposed a tropical Pacific cooling pattern suggested
by Cane et al. (1997) upon the model climate change
signal. The results of the detection and attribution analy-
sis were very similar, which increases our confidence that
our results are not sensitive to such details.

A further critical aspect of our analysis are the uncer-
tainties in the estimate of climate variability. The climate
noise was inferred from observations (after subtraction of

an estimate of the climate change signal) and from the
internal variability of different CGCM control simula-
tions. The impact of uncertainties in the natural variabil-
ity estimates was most apparent in the analysis of the
winter and spring seasonal data. The strong dependence
of the results on the noise estimates of different models
and the failure to systematically increase the signal-to-
noise ratio through optimization suggest that for these
seasons the structure of the observed multi-decadal clim-
ate variability is not correctly reproduced by the different
climate models. Such model divergences in the description
of the natural climate variability necessarily result in un-
certainties in the outcome of all detection and attribution
strategies based on pattern oriented methods. The full
potential of the optimal fingerprint method will presum-
ably not be realized before these uncertainties are resolved
through further model improvements and intercom-
parison studies.

In addition to uncertainties associated with possible
model errors and insufficient data, our results are subject
to the fundamental uncertainties of statistics. These are
highlighted by the relatively high excursions of the detec-
tion variable associated with the warming in the early part
of this century. Our results suggest that this warming was
caused by an extreme event of natural climate variability,
in combination with a small greenhouse warming signal
and, possibly, an increase in solar insolation.

These caveats not withstanding, the signal-to-noise
ratio for our detection of a climate change signal in the
annual mean 30-y temperature trends is quite high, and
largely independent of the details of the optimization and
the data used to estimate climate variability. Furthermore,
the statistical significance of the inconsistency of the
greenhouse gas only signal with the observations found
for the 50-y summer trends is also high and quite stable.
Thus we have some confidence in our principal con-
clusions.

We remark finally that our approach to the attribution
of a detected significant climate change to different candi-
date mechanisms is necessarily limited to hypotheses
which are specified a priori and can be linearly superim-
posed. However, at present we are not aware of any other
convincing explanation of the present climate change.

We conclude from our analysis that the multi-finger-
print method is a useful quantitative approach for the
attribution problem of deciding whether an observed clim-
ate change signal is consistent, at some prescribed confi-
dence level, with one or a number of competing candidate
forcing mechanisms. While a single-pattern analysis yields
the result that a significant climate change has been ob-
served which is consistent with either hypothesis of a pure
greenhouse gas warming or a greenhouse gas-plus-aerosol
forcing, or possibly the third hypothesis of a solar forced
climate change, we conclude from a two-pattern analysis
that the observed climate change is consistent only with a
greenhouse gas-plus-aerosol signal.
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Appendix: Implementation of the optimal multi-pattern
detection and attribution method

We describe in the following the algorithm used for the
numerical implementation of the multi-fingerprint
method, including details relevant for the application to
the present investigation. The algorithm consisted of the
following steps:

1 Prepare data

Choose the set of signal patterns representing the spatial
patterns of climate change associated with different forc-
ing mechanisms (using only regions that are reliably
simulated and adequately covered by observations, see
Fig. 3). We used only a greenhouse gas and a greenhouse
gas-plus-aerosol signal pattern, since the solar response
pattern could not be sufficiently separated from noise and
the greenhouse gas pattern (Cubasch et al. 1996).

Choose a low-dimensional base space which is suitable
for representing (1) the climate change signals and (2) the
climate variability. We chose the EOFs of the summer/
annual mean data of simulation A. The results were essen-
tially the same if the EOFS were computed instead from
simulation B, A concatenated with B, or C. We found that
for this choice both signal guess patterns (for greenhouse
gas only and greenhouse gas-plus-aerosol forcing) were
adequately represented, since the non-optimized multi-
fingerprint results were not affected qualitatively by
a transition from gridpoint space to the truncated space.
Using EOFs of the average greenhouse gas-plus-aerosol
simulation (A#B)/2 would not have been appropriate,
since it would not have fulfilled condition (2), while the use
of EOFs from the control simulation (although theoret-
ically more satisfactory) did not fulfil condition (1) at
typically chosen truncation levels of up to 12 EOFs.

For summer, the base space was augmented by the first
EOF of simulation C, since 6 EOFs of A were unable to
adequately represent the greenhouse gas signal pattern
(indicated by differences in non-optimized multi-finger-
print results after truncation).

Choose at least two independent sets of data for estima-
ting the climate variability, one for computing the noise
covariance matrix (we chose HAML), the others for esti-
mating the statistics of the detection variables (we used
four different data sets, VOBS, HAM3L, GFDL,
HADCM2).

Choose data for the predicted signal evolution from
differently forced climate change simulations. In our case,

we computed trend patterns from model simulations C,
(A#B)/2, (SOL1#SOL2)/2.

2 Determine truncation

The truncation was determined using the same consider-
ations as in Hetal96, which represented a compromise
between

1. Retaining a sufficient number of degrees of freedom
to rotate the signal guess patterns away from noise.

2. Avoiding a rotation of the fingerprint into directions
representing spurious small scale components with un-
realistically low noise levels arising from inadequate
sampling.

Figure A1 shows the (uncentred) correlation between
the signal-pattern and the optimal fingerprint as a func-
tion of the truncation level. The truncation level is chosen
as 10, since this is the end of the plateau which we suspect
represents the transition region between (1) and (2). We
are confident that our results are not sensitive to the
chosen truncation level, since small changes in the trunc-
ation level did not yield significantly different results, as
indicated, for example, by the stable detection results and
attribution results for 50-y summer trends. A more rigor-
ous critierion for choosing the truncation level has been
suggested by Allen and Tett (1997). The results were also
basically insensitive to the substitution of other data in
place of the HAML data for the estimation of the noise
covariance.

3 Perform the multi-fingerprint analysis

Truncate all data in the same base space chosen in (1) to
the truncation level chosen in (2), yielding g

6 l
, l"12p,

W, WI and W
S
. Estimate the noise covariance matrix from

the chosen variability data, yielding C~1, and compute f
6 l

,
l"12p (Eq. 2), possibly orthogonalizing the finger-
prints (Eq. 5).

Fig. A1. Uncentered correlation between the guess pattern and the
optimal fingerprint as a function of the number of EOFs in a trun-
cated EOF representation
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Compute detection variables (Eq. 1) for the observa-
tions and the climate change simulations. Compute also
detection variables from the variability data in order to
estimate the statistics of the detection variables.

Compute the signal-to-noise ratio (Eq. 11) for the detec-
tion variable computed for the latest observations and test
the null hypothesis that the observations indicate no sig-
nificant climate change (Sect. 2.1).

Compute the amplitude of each climate change pattern
for the observations and model simulations (Eq. 8). Test
the consistency between both (Eq. 10, Sect. 2.3).
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