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Abstract. The multi-variate optimal fingerprint method
for the detection of an externally forced climate change
signal in the presence of natural internal variability is
extended to the attribution problem. To determine
whether a climate change signal which has been detected
in observed climate data can be attributed to a particular
climate forcing mechanism, or combination of mecha-
nisms, the predicted space—time dependent climate change
signal patterns for the candidate climate forcings must be
specified. In addition to the signal patterns, the method
requires input information on the space—time dependent
covariance matrices of the natural climate variability and
of the errors of the predicted signal patterns. The detection
and attribution problem is treated as a sequence of indi-
vidual consistency tests applied to all candidate forcing
mechanisms, as well as to the null hypothesis that no
climate change has taken place, within the phase space
spanned by the predicted climate change patterns. As
output the method yields a significance level for the detec-
tion of a climate change signal in the observed data and
individual confidence levels for the consistency of the
retrieved climate change signal with each of the forcing
mechanisms. A statistically significant climate change
signal is regarded as consistent with a given forcing mech-
anism if the statistical confidence level exceeds a given
critical value, but is attributed to that forcing only if all
other candidate climate change mechanisms (from a finite
set of proposed mechanisms) are rejected at that confi-
dence level. Although all relations can be readily
expressed in standard matrix notation, the analysis is
carried out using tensor notation, with a metric given by
the natural-variability covariance matrix. This simplifies
the derivations and clarifies the invariant relation between
the covariant signal patterns and their contravariant fin-
gerprint counterparts. The signal patterns define the
reduced vector space in which the climate trajectories are
analyzed, while the fingerprints are needed to project the
climate trajectories onto this reduced space.

1 Introduction

There is mounting evidence that the global warming due
to increasing atmospheric greenhouse gas concentrations
predicted by state-of-the-art coupled ocean-atmosphere
global circulation models (CGCMs) is beginning to
emerge from the background noise of natural climate
variability (see summary in IPCC Second Assessment
Report, Santer et al. 1996a). However, much of the evid-
ence is still qualitative or circumstantial. There have been
relatively few attempts to assign a quantitative measure to
the probability that a climate change signal distinct from
natural climate variability can be detected in observed
climate data.

A basic obstacle for quantitative signal-to-noise ana-
lyses is that they require information on the space—time
structure of both the predicted climate signal and the
climate variability. While the predicted signal properties
can be inferred from model computations, the estimation
of the required space—time covariance structure of natural
climate variability from model simulations and observa-
tions is more difficult. Thus, although general multi-
variate theories for the optimal detection of a space—time
dependent climate change signal in the presence of natural
climate variability noise have now been developed (Has-
selmann 1979; Bell 1982, 1986; Hasselmann 1993, referred
to in the following as H; North et al. 1995; North and Kim
1995; Hegerl and North 1997), there have been relatively
few quantitative applications of these methods (Santer
et al. 1995a; Hasselmann et al. 1995; Hegerl et al. 1996,
1997). The latter authors conclude (with various caveats
regarding the uncertain estimation of the natural climate
variability) that a climate change signal distinct from
internal natural climate variability can be detected today
with a statistical significance exceeding 95%. We refer to
Santer et al. (1996a) for a more complete summary of
recent detection studies.

The theoretical formulation of the attribution problem
appears to have received less attention than the theory of
detection. The problem of attributing a detected climate
change signal to a given forcing mechanism has been
variously discussed in the literature, but the investigations
have been largely qualitative. With the exception of the



recent investigaton of Hegerl et al. (1997), the estimation
of a quantitative ‘attribution confidence level’, in analogy
with the signal-to-noise ‘detection significance level’, has
not been attempted.

In contrast to the detection problem, for which it is
sufficient to establish that a climate change has occurred
which cannot be ascribed, within some given statistical
significance limit, to natural (internal) climate variability,
attribution requires in addition the demonstration
that the detected climate change signal is indeed most
likely (in the statistical sense of scientific confirmation
theory, see Earman 1992) due to the assumed cause, e.g.
an increase in greenhouse gas concentrations, rather
than some other external forcing mechanism, like
a change in the solar constant or modified land-use
practices (see Pennell et al. 1993). As the first step, it
must be demonstrated that the retrieved climate change
signal is consistent, within given error bounds, with the
signal predicted by the assumed forcing mechanism. In
the next step, it must then be demonstrated that the signal
cannot be explained by other candidate mechanisms. The
outcome of such a multiple-forcing test may well be that
the signal is consistent with several different forcing
mechanisms, or combinations of forcing mechanisms, or
that the detected climate change is not consistent with
any of the proposed mechanisms or combinations of
mechanisms.

A discrimination between competing forcing mecha-
nisms can clearly be meaningfully attempted only if all
candidate mechanisms and their associated climate
change signals are specified. This implies that the multi-
variate fingerprint method must be applied in its general
multi-pattern form, rather than in the reduced single-
signal pattern version used in most previous detection
studies.

Attribution analyses are necessarily limited to tests of
consistency. Even if it has been shown that a detected
climate change signal is consistent with only one forcing
mechanism, or combination of forcing mechanisms, with-
in a finite set of candidate mechanisms, it can never be
ruled out that there exist other, overlooked forcing mech-
anisms, that could also produce the observed climate
change signal. Both single- and multi-pattern attribution
tests must be regarded as truncated approximations of an
ideally infinite sequence of consistency tests applied to all
conceivable climate forcing mechanisms. Unequivocal
attribution is achieved only in the hypothetical infinite-
sequence limit. But it is questionable whether such a limit
can be meaningfully defined, quite apart from its practi-
cality (Earman 1992). We must, therefore, restrict ourselves
in principal to a statistical definition of attribution
that applies only in the limited sense of establishing
a ranking within a given finite set of candidate forcing
mechanisms.

The attribution method applied in this study represents
an extension of the general multi-pattern fingerprint ap-
proach developed by H for the problem of climate change
detection. After reviewing briefly the multi-variate finger-
print detection method in Sect. 2, the extension to the
attribution problem is developed in Sect. 3. The final
Sect. 4 gives a summary of the results and presents some
conclusions.

2 The detection problem

Here we review briefly the multi-fingerprint method of
multi-variate climate change detection, following the ap-
proach of H for the general space—time dependent
problem. We return, for better illustration of the interre-
lationship between fingerprint and signal patterns, to the
co- and contra-variant tensor notation of Hasselmann’s
(1979) earlier analysis of the spatial signal-to-noise prob-
lem (see also the Appendix and Thacker 1995).

2.1 Terminology

We shall use the term climate change in the following to
denote the response of the climate system to external
forcing, as opposed to natural internal climate variability
generated by interactions within the climate system. Ac-
cording to this terminology, climate variations due to
volcanic activity or variations in the solar constant are
classed as (natural) climate change, rather than as climate
variability. An alternative terminology refers to these vari-
ations also as natural variability, climate variability being
regarded as a superposition of externally forced and inter-
nally generated components, the term climate change
being reserved for anthropogenic climate modifications
only. However, for the detection and attribution problem
our definitions will be found to be more convenient. Thus,
climate change in our terminology can be of either natural
or of anthropogenic origin, while climate variability is
always natural. The definition loses precision if interac-
tions between climate change and internal natural climate
variability are considered, but in our applications we shall
regard the climate state to first order simply as a linear
superposition of climate change and climate variability.

The present definitions are more consistent than alter-
native earlier attempts to distinguish between climate
change and climate variability on the basis of time scales,
or in terms of climate change ‘events’ as opposed to
‘continuous’ climate fluctuations. In practice, the time
scales of internal climate variability and externally forced
climate change overlap, so that for a given finite time scale
it is not possible to distinguish between ‘events’ and ‘con-
tinuous fluctuations’. Indeed, the impossibility of
distinguishing between externally generated climate
change and internal climate variability on the basis of time
scale considerations alone is the essence of the detection
and attribution problem.

We consider a vector time series /
a
(t) of climate data,

which we assume can be represented as a superposition

/
a
"/s

a
#/I

a
(1)

of a climate change signal /s
a

and a natural-variability
component /I

a
. The index a refers to different types of

climate data, e.g. temperature or precipitation, and to the
location or averaging region of the data. The data set can
represent either observed data or synthetic data from
a model simulation. The climate vector /

a
need not re-

present a dynamically complete description of the climate
state. In fact, in detection and attribution applications,
/
a

will normally consist of only a small subset of the

602 Hasselmann: Multi-pattern fingerprint method for detection and attribution of climate change



components of the complete climate state vector needed,
for example, for a dynamical model integration. We re-
quire only that the time-lagged second moments
R

ab
(t, q)"S/I

a
(t#q)/I

a
(t)T can be estimated from observa-

tions or model simulations with sufficient accuracy for
a meaningful signal-to-noise analysis. Here and in the
following, cornered parentheses S2T denote ensemble
means, the climate variability is assumed to have zero
mean, S/I

a
(t)T"0 (the ensemble mean having been sub-

tracted in the definition of the climate state) and the
statistics are assumed to be stationary, so that R

ab
depends

only on the time lag q, or cyclostationary, so that R
ab

is
periodic with respect to the variable t.

For a general space—time dependent analysis, it will be
convenient to use a compressed notation in which the
trajectory of the observed climate vector is denoted as
a vector t"(t

i
),(/

a
(t
b
)) with a composite index

i,(a, b) composed of the climate state index a and the
index b of the discretized time variable (t

b
)"(t

1
, t

2
,2).

The time-lagged second moments R
ab
(q) or R

ab
(t, q) are

represented in this compressed notation by the covariance
matrix

C
ij
"St

i
t
j
T. (2)

We point out, however, that although we shall refer to
the vector t as the climate state trajectory, all relations
derived in the following apply formally also to the case
that t represents some time dependent derived product of
/
a
(t) (for example, running climate trends defined over

finite time intervals, see Santer et al. 1995a; Hegerl et al.
1996, 1997), so that t"t(t) . All following relations apply
then for a given time. The inclusion of the time variable
together with the space variables in a fully space—time
dependent detection and attribution analysis has the ad-
vantage of formally maximizing the significance levels for
both detection and attribution; it is also more consistent
from a general signal analysis viewpoint. However, the
separate treatment of the time dependence, as in Santer
et al. (1995a) and Hegerl et al. (1996, 1997), yields more
insight into the time evolution of the climate change
signal.

To decide whether an observed trajectory t contains a
climate change signal that can be distinguished from
noise, we need to estimate the probability that t repres-
ents a realization of the natural variability ensemble t3 .
For this we need to know the multi-variate probability
distribution p(t3 ) of t3 . We make the usual assumption that
the distribution is Gaussian,

p(tI )"(2n)~n@2DCD~1@2exp[!oJ 2/2], (3)

where

oJ 2"CijtI
i
tI
j

(4)

and n is the dimension of the vector t
i
, DCD the determinant

of C
ij

and Cij denotes the inverse of the covariance matrix,

CijC
jk
"di

k
. (5)

Repeated tensor indices are summed in accordance with
the tensor summation convention.

We distinguish here and in the following between
lower-index covariant tensor forms (including vectors)
and upper-index contravariant tensors. Co- and contra-
variant tensor components are related through the metric,
which we identify with the covariance matrix C

ij
. Thus the

operations of index raising and lowering are defined by

X2i2
2

"CijX2

2j2

X2

2i2
"C

ij
X2j2

2
(6)

The definition of the climate trajectory vector as a
covariant vector is arbitrary in the present context. The
role of co- and contravariant variables can be inter-
changed. We adopt here the original assignments of
Hasselmann (1979).

We note that the results presented later can all be
readily expressed, as in H, in standard matrix notation,
without distinguishing between co- and contravariant ten-
sors. However, in this case insight into the invariant
nature of the theory with respect to arbitrary linear trans-
formations is lost, including, in particular, the dual
relation between the fingerprint and signal patterns (Eq.
(20) below). Furthermore, one can no longer appeal to the
trivial case of a unit covariance matrix in the derivation of
the basic relations (20), (21). However, an alternative
matrix notation which similarly expresses the invariant
structure of the theory is presented in the Appendix.

For each trajectory t there exists a constant probability
surface o2(tI )"Cijt3

i
tI

j
"const"Cijt

i
t

j
which contains

the vector t. We consider then the integral

PM o":
o8 È'oÈ

p (tI )dtI
1
2dtI

n
(7)

of the n-dimensional probability density over the region
oJ 2(tI )'o2(t) outside the surface o2(t3 )"o2(t)"const. If
PM o is small, 5%, say, the null hypothesis that t represents
a realization of the natural variability ensemble is said to
be rejected with a risk PM o. Conversely, a climate change
signal is said to have been detected in the data at a signific-
ance level Po"(1!PM o) (95%).

We note that our definition of climate change detection
refers only to the probability of the null hypothesis, based
on the relation between the observed climate trajectory
and the natural climate variability. We make no reference
to the probability of the alternative hypothesis of the
existence of an external forcing mechanism that produces
the climate change. This is not feasible within the frame-
work of conventional statistics, since there exists no data
ensemble for the definition of such a probability. How-
ever, it is possible to extend the present detection and
attribution analysis within a Bayesian framework by in-
troducing subjective prior probabilities (‘‘degrees of
belief’’) for the various candidate forcing mechanisms.
Observations condition the prior probabilities, yielding
modified posterior probabilities (see Earman 1992). Al-
though the Bayesian approach is attractive in capturing
some of the uncertainties related to the ‘‘degree of belief’’
in external forcings and model predictions which are cen-
tral issues in much of the controversy associated with the
detection and attribution problem, we shall remain here
within the framework of conventional statisics based on
existing ensembles of realizations.
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2.2 Reduction of the detection space

In practice, this straightforward statistical detection test
can be applied successfully only if the vector dimension
n of the climate state trajectory is small. Unfortunately,
the situation is normally just the reverse: the discretization
of a set of time series of gridded climate data will normally
yield a vector t of very high dimension. The problem of
many dimensions is that even a relatively large climate
change signal ts relative to the noise component in some
given but unknown direction in phase space cannot be
detected in the presence of noise distributed over a large
number of other components. For successful detection
and attribution, the dimension of the detection space must
be strongly reduced, ideally to a single dimension by
specifying the direction of the anticipated climate change
signal, or to a small number of climate change patterns if
more than one candidate forcing mechanism is considered.

The impact of the number of dimensions on the detec-
tion power can best be demonstrated by transforming to
ortho-normal variables

t@
i
"¹ j

i
t

j
(8)

t@i"¹# i
j
tj, (9)

where ¹# i
j

denotes the transposed inverse of the trans-
formation matrix ¹j

i
,

¹j
i
¹# i

k
"dj

k
. (10)

In the ortho-normal system, the covariance matrix and its
inverse are transformed to the unit co- and contra-variant
matrices I

ij
and Iij, respectively,

C@
ij
"StI @

i
tI @
j
T"¹k

i
¹ l

j
C

kl
"I

ij
(11)

C{ij"StI @itI @jT"¹# i
k
¹# j

l
Ckl"Iij. (12)

The transformation ¹j
i
can be obtained by first diagonal-

izing C
ij

by a rotation to EOF (empirical orthogonal
runction) variables and then rescaling all EOFs to unit
variance. In the space—time dependent problem, the EOFs
consist of the set of all frequency-dependent complex
EOFs of the discrete covariance spectrum of the time
series /

a
(t
b
) . The estimation of C

ij
and the associated

transformation ¹j
i
from finite data sets is not straightfor-

ward; it is discussed in some detail in H and Hegerl et al.
(1996) for the case of stationary statistics. One needs
generally to perform an initial reduction of the dimension
of the observed climate space t, for example by projection
on to a small number of EOFs (typically 10) with ad-
equately defined statistics. This follows already from the
consideration that the rank of the estimated covariance
matrix cannot be larger than the effective number of
statistically independent data samples used to estimate the
covariances. The reduction problem is basically the same
but becomes more critical in the cyclostationary case. For
the present theoretical discussion, however, these prob-
lems are irrelevant and we shall simply regard C

ij
and the

transformation ¹ j
i

as given.
In the ortho-normal system the quadratic form (4) is

transformed to the Euclidean form

o@2"+
i

(tI {2
i
) (13)

and the probability distribution (3) is reduced to the
product expression

p(tI @)"<
i

(2n)~1@2exp[!tI @
i
2/2]. (14)

Assume now that the direction of the anticipated cli-
mate change signal in the ortho-normal system is known,
and that the system has been rotated such that this is the
direction t

1
. If the magnitude of the signal is a, the

detection significance level of the signal in the case of
a uni-variate test in the t

1
-direction is given by

P(1)
a

"(2n)~1@2:a
~a

exp[!tI 2
1
/2]dtI

1
(15)

This may be compared with the probability

P(n)
a
":

o8 È)aÈ
<
i

(2n)~1@2exp[!tI 2
i
/2]dtI

1
2dtI

n
. (16)

of detecting the climate change signal in the full n-dimen-
sional space. The integral (16) can be expressed in terms of
the incomplete C-function. However, an upper bound
P# (n)
a

on P(n)
a

, which illustrates more clearly the origin of the
detection degradation as the number of dimensions is
increased, can be obtained more simply by replacing the
spherical integration domain oJ 2)a2 in (16) by the larger
cubical domain encompassing the n-sphere, Dt

1
D(a,

Dt
2
D(a,2, Dt

n
D(a. One obtains in this case

P(n)
a

(P# (n)
a
"(P(1)

a
)n (17)

Thus the significance level for the detection of a climate
change signal of amplitude Dt

1
D"a"2, say, in the ortho-

normal coordinate system, corresponding to a univariate
value P(1)

2
+95%, is reduced to less than 0.9510+0.6 in

a 10-dimensional detection exercise, and to less than
0.95100+0.006 for 100 dimensions! A reduction of the
detection space to a small number of 1—3 signal patterns is
therefore essential for effective climate change detection.

2.3 The optimal fingerprint

In the ortho-normal coordinate system, it is self-evident
from the isotropic symmetry of the problem that if the
signal lies in the direction of the first coordinate, the
univariate detection test should also be carried out with
respect to the first coordinate. How does this result trans-
form to a signal ts

i
oriented in some given guess-pattern

direction g
i
in an arbitrary coordinate system? To esti-

mate the amplitude of the signal from the observed data
t in the general case we write

t
i
"dg

i
#tr

i
(18)

where the coefficient d (the detection variable) is deter-
mined by the scalar multiplication of the observed data
with a suitably defined fingerprint f i,

d"f it
i
, (19)

and tr
i
is a residual which we wish to minimize.

It is common practice in many applications to deter-
mine the coefficient d by minimizing the mean square
error +

i
S(tr

i
)2T. However, in the present case this is not
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appropriate. Firstly, the mean square error is not invari-
ant with respect to linear transformations to other
variables. Secondly, our goal for the purpose of detection
is to not to maximize the explained variance in a particu-
lar reference system, but rather to maximize the squared
signal-to-noise ratio d2/SdI 2T for an arbitrary reference
system, where dI "f itI

i
is the detection variable deter-

mined by the natural climate variability in the absence of a
climate change signal. Since the signal-to-noise ratio is
independent of the scaling of d, for detection applications
we need to determine only the direction of the fingerprint.
It was shown in H, and is shown again trivially below (see
also Hasselmann 1979), that the maximization of the sig-
nal-to-noise ratio yields the fingerprint

f i"Cijg
j
,gi, (20)

where the signal pattern and fingerprint can be nor-
malized, without loss of generality, such that

Cijg
i
g
j
"f ig

i
"C

ij
f if j"1. (21)

Thus, the optimal fingerprint represents the contravariant
counterpart of the covariant guess pattern. (We neverthe-
less use different symbols for the fingerprint and signal
rather than distinguishing the two only by the position of
the index to emphasize the basic difference in the role of
the two patterns. In the detection literature this distinc-
tion is sometimes overlooked.)

In the present co- and contravariant notation the result
(20), (21) follows immediately from the argument indicated
above that in the special case of an ortho-normal reference
system, C{ij"Iij"unit matrix, the fingerprint and signal
pattern must have the same directions for reasons of
isotropic symmetry:

f @i"Iijg@
j
"C{ijg@

j
, (22)

where we may define g@
i
, f @i as unit vectors,

Iijg@
i
g@
j
"C{ijg@

i
g@
j
"1, (23)

I
ij

f {if {j"C@
ij

f {if {j"1. (24)

Since Eqs. (22)—(24) are tensor relations, they must hold
not only in the ortho-normal reference system, but in any
reference system, as expressed by Eqs. (20), (21).

If we progress now from the question of detection to the
problem of attribution, the scaling of the fingerprint pat-
tern and detection variable is no longer irrelevant. In this
case we need to estimate the amplitude of the retrieved
climate change signal in order to compare it with the
predicted amplitude. The amplitude scaling defined by the
normalization condition (21) has the reasonable property
that it minimizes the statistical mean square residual
or2"Cijtr

i
tr
j
defined with respect to the metric C

ij
. This

can again be immediately seen in the ortho-normal refer-
ence system and must then be valid, since or2 is an
invariant scalar, in any reference system.

The invariant least square solution can be derived from
maximum likelihood arguments. If it is assumed that the
probability distribution of climate trajectories t3 can be
represented as a normal distribution with covariance
matrix C

ij
and an unknown non-zero mean St3

i
T"d@g

i
in

the direction of the signal pattern, the value of d@ which
yields a maximum probability density for the given realiz-
ation t is given by d@"d. We shall return to this view
later in the attribution problem, when we derive an alter-
native maximum likelihood estimate of the climate change
signal allowing not only for the natural variability of the
observed data but also for the uncertainty of the predicted
climate change signal.

Geometrically, the relation between the fingerprint and
signal guess patterns can be best understood by rotating
to the EOF representation, for which C

ij
"p2

(i)
I
ij
,

Cij"p~2
(i)

Iij, where p
(i)

denotes the variance of the i’th
EOF (the summation convention is not applied to indices
in parentheses). Writing

g
i
"+

m

c
(m)

e(m)
i

, (25)

where c
(m)

denotes the coefficient of the m’th EOF e(m)
i

, the
fingerprint pattern is given, according to (20), by

f i"+
m

c
(m)

p~2
(m)

Iije(m)
j

(26)

The factor p~2
(m)

in (26) attenuates the high-noise EOF
components in the fingerprint pattern relative to the low-
noise components. Thus, the optimal fingerprint is ob-
tained by turning the original signal vector away from
directions of high noise towards low noise directions (see
Hasselmann 1979, Fig. 1).

2.4 The multi-pattern case

These results can be readily generalized to the case of
p signal patterns gl, l"1,2, p (see H). If the climate
trajectory is represented as an optimal linear combination

t
i
"dlgli#tr

i
(27)

of the guess patterns (applying the summation convention
also to the indices l of the p guess patterns), the condition
that the quadratic form or2"o2(tr), see Eq. (4), for the
residual is minimized (maximizing also the multi-variate
signal-to-noise ratio for the coefficient vector d"(dl))
yields, as determining equations for the coefficients dl of
the retrieved climate change signal the set of p linear
equations

Dlkdk"f ilti
(l"1, 2 , p), (28)

where

f il"Cijglj ("gil) (29)

denotes the fingerprint of the l’th guess pattern, in anal-
ogy with the definition (20) in the single pattern case, and

Dlk"f ilgki"Cijgligkj. (30)

The solution can be expressed in a concise form by
introducing the operations of index raising and lowering
also for Greek guess-pattern indices, using as the metric
the matrix Dlk defined by the scalar products of the signal
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patterns. Introducing the covariant multi-pattern detec-
tion coefficients, given, in analogy with the definition for
the scalar single-pattern detection coefficient d, Eq. (19),
by

dl"f ilti
, (31)

the contravariant detection coefficients may be expressed
as

dl"Dlkf ikti
"f lit

i
, (32)

where Dlk denotes the inverse of Dlk,

DlkDkj"dlj. (33)

It follows from Eq. (32) that Dlk represents the covariance
matrix of the natural variability components dI l of the
contravariant detection coefficients,

Dlk"SdI ldI kT"f lif kjSt3
i
t3
j
T"f ligk

i
, (34)

while

Dlk"SdI ldI kT"f il f jkSt3
i
t3
j
T"f ilgki (35)

represents the corresponding covariance matrix of the
natural variability contribution of the covariant detection
coefficients.

Depending on the context, the multi-pattern detection
problem is seen to lead to a detection vector that can
appear either in a co- or a contravariant form with respect
to the metric Dlk. We shall refer to the contravariant
detection coefficients dl, which appear in the original
representation (27) of the climate trajectory in terms of the
signal patterns, as pattern amplitudes. The covariant detec-
tion coefficients dl, defined by the straightforward
generalization, Eq. (31), of the expression (19) for the scal-
ar detection variable, will be termed simply the detection
variables. The detection variables arise naturally in the
multivariate detection test (see H), while the pattern am-
plitudes are the appropriate coefficients occurring in the
representation of the climate change signal in terms of the
predicted signal patterns.

For a multi-variate detection test we need to consider
the p-dimensional Gaussian probability distribution of
the natural-variability pattern amplitudes dI l or detection
variables dI l in the absence of a climate change signal,

p
d
(d3 )"(2n)~p@2DDD~1@2exp[!o8 2

d
/2], (36)

where

oJ 2
d
"DlkdI ldI k"DlkdI ldI k, (37)

and

DDD"DDlkD (38)

if Eq. (36) refers to the pattern amplitudes, or

DDD"DDlkD (39)

if the equation refers to the detection variables. The signif-
icance level for the detection of a given estimated
detection vector d in the p-dimensional guess-pattern de-
tection space (expressed, say, in terms of the detection
variables) is then given by

Po
d

":oJ È
d
:oÈ

d(d)
p
d
(d3 )ddI

1
2ddI

p
. (40)

As pointed out already, the detection of a multi-pattern
climate change signal becomes successively more difficult
as the number of patterns increases, so that the multi-
pattern detection approach is feasible only for a relatively
small number of candidate patterns of order two or three.

An application of the complete space—time dependent,
multi-pattern optimal fingerprint approach to climate
change detection as summarized above has not yet been
attempted. Santer et al. (1995a) and Hegerl et al. (1996)
applied a single-pattern analysis in which the time de-
pendence of the signal was represented as a linear trend.
An optimization of the fingerprint pattern in the time
domain through the application of an appropriate spec-
tral filter (see H), was not attempted, the optimization
being limited to a rotation in the time-independent pat-
tern space. Hegerl et al. (1997) have recently applied a two-
pattern analysis to distinguish between the effects of
greenhouse gas emissions, anthropogenic aerosols and
variations in solar insolation in a detection study based on
new CGCM global warming simulations including differ-
ent combinations of forcings. The time dependence of the
signal was represented as a running linear trend, the
optimization of the fingerprint pattern being limited again
to the spatial domain. However, a novelty of the analysis
was that the authors considered not only the detection
question, but also the attribution problem, which we now
consider.

3 The attribution problem

In the detection problem only a single hypothesis is tested,
the null hypothesis that the observed climate evolution
t in some pre-determined direction g can be attributed to
internal natural climate variability. For the attribution
problem we need to consider now further hypotheses
regarding the cause of a detected climate change. We
assume there exist generally several candidate mecha-
nisms l"1, 2, p, each of which is characterized by
a predicted climate change signal. In contrast to the detec-
tion problem, where we needed to know only the
normalized directions gl of the signal patterns, we specify
now also the predicted amplitudes al of the signals.

To decide whether the climate change signal to
(l) infer-

red from observations is consistent with a given signal
tm
(l) predicted from a model simulation, we must assign to

each predicted climate change signal an error covariance
matrix, in analogy with the natural variability covariance
matrix required for the detection test. We assume again
that the error distributions are Gaussian. The consistency
of the retrieved climate change signal with the predicted
signal is then tested by comparing the difference between
the two signals with the differences which could be ex-
pected from the estimated signal errors. We shall be
concerned only with the distinction between different sig-
nals in the space spanned by the p predicted signal
patterns. Thus, we need consider only the projection of the
signal pattern errors in this signal pattern space.

We assume that the p predicted signal patterns are
linearly independent and therefore do indeed span a p-
dimensional space. However, we can allow also additional
forcing mechanisms which generate climate change
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signals lying in this space (for example, by explicitly con-
sidering linear combinations of the p basic forcing
mechanisms, such as a combined greenhouse gas and
aerosol forcing, see Hegerl et al. 1997). If the pattern
amplitudes of such linearly combined climate change sig-
nals are prescribed, the attribution (or consistency) tests
can be applied in the same way to these signals as to the
p base signals. Formally, one of the original base signals
needs only to be replaced by the linear combination se-
lected for the consistency test (note that the signal patterns
gl are assumed to be normalized by Eq. (21), but are not
necessarily orthogonal).

The consistency test described in the following is carried
out for each forcing mechanism separately. The outcome
can be that one, none, or some sub-set of the forcings is
consistent with the inferred climate change. If the observa-
tions are found to be consistent with exactly one forcing
mechanism, and the null hypothesis that the retrieved
climate change signal is consistent with natural climate
variability is rejected, the retrieved climate change is at-
tributed to that mechanism.

3.1 Consistency and attribution tests

Having retrieved the observed climate change signal

to"dkgk, (41)

with pattern amplitudes dk given by the solutions of
Eq. (28), we investigate now for each proposed forcing
mechanism l whether the retrieved signal is consistent
with the predicted climate change signal

tm"a(l)g
(l) (42)

inferred from a model simulation (the summation conven-
tion does not apply to the index (l) , which appears here
and in the following in parentheses as a fixed parameter).

To this end we compare the difference

dt
(l)"tm

(l)!to"(dk
(l)a(l)!dk)gk (43)

between the predicted and retrieved climate change sig-
nals with the differences which can be expected from the
errors incurred in the model computation of tm

(l) and in
the estimation of to from observations. Thus for a given
process l we compare the difference

ek
(l)"dk

(l)a(l)!dk (44)

between the predicted and retrieved pattern amplitudes
with the p-dimensional probability distribution of the net
errors eJ k

(l) of the amplitude differences arising from statist-
ical and model errors (the fact that this is more convenient
than considering the error ellipsoids of the predicted and
retrieved climate signals separately was pointed out by
J. Waszkewitz, personal communication).

The natural variability sampling errors dI k incurred in
the determination of the retrieved pattern amplitudes
were considered in the previous section. They can be
characterized by a covariance matrix Dkj"SdI kdI jT"
Cijgkigjj Eq. (34).

The errors incurred in computing the predicted climate
change signals from models consist of two parts: sampling
errors due to the natural variability of the model, and
systematic errors of the model itself. The sampling errors
can be estimated from long control simulations (see He-
gerl et al. 1996, 1997) or Monte Carlo experiments
(Cubasch et al. 1994). They can be reduced by computing
the mean of two or more climate change simulations
(Cubasch et al. 1994; Hegerl et al. 1997). The errors due to
systematic model errors are more difficult to determine,
but can be estimated by intercomparing climate change
simulations of different models. We assume that the net
errors from both sources can be characterized by a model
amplitude error covariance matrix Mkj

(l).Since the modelled and retrieved signal errors are stat-
istically independent, the covariance matrix Ekj

(l) charac-
terizing the errors of the differences ek

(l) between the modelled
and retrieved pattern amplitudes is given by the sum

Ekj
(l)"Mkj

(l)#Dkj (45)

of the covariance matrices of the predicted and retrieved
pattern amplitude errors.

The probability distribution of the amplitude differ-
ences eJ k

(l) due to statistical sampling and model errors is
accordingly given by the Gaussian distribution

pe(eJ (l))"(2n)~p@2DE
(l)D~1@2exp[!oJ 2e /2], (46)

where DE
(l)D"DEkj

(l)D,

oJ 2e"E# (l)kjeJ k(l)eJ j(l), (47)

and E# (l)kj is the inverse of Ekj
(l),

Ekp
(l)E# (l)pj"dkj. (48)

For the consistency test we apply the same approach as
in the detection test. The null hypothesis is replaced now
by the consistency hypothesis, and the retrieved pattern
amplitude vector by the difference amplitude vector.
Apart from this change in terminology, the concepts are
identical to those introduced for the detection test. For
any given amplitude difference vector e

(l) there exists a
surface o2e"const which contains the vector. We consider
then the integral

PM oe":
o8 Èe'oÈe

pe (eJ (l))deJ 1
(l)2deJ p

(l) (49)

of the p-dimensional probability density pe over the region
oJ 2e (eJ (l))'o2e (e(l)) outside the surface oJ 2e (eJ (l))"o2e (e(l))"const.

If PM oe is small, 5%, say, the hypothesis that the retrieved
climate change signal is consistent with the forcing mecha-
nism l is said to be rejected with a risk of PM oe

, or at a
significance level of Poe"(1!PM oe) (95%).

We note that a positive outcome of the statistical detec-
tion test (i.e. the rejection of the null hypothesis) is
formally analagous to a negative outcome of the consist-
ency test (i.e. the rejection of the consistency hypothesis).
A positive outcome of the consistency test should there-
fore be expressed formally in the double negative form that
the retrieved climate change signal is not inconsistent with
the proposed forcing mechanism at a given significance
level P. However, if the chosen significance level P is high,
95%, say, this statement is rather weak (a high significance
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Fig. 1. Predicted (1, 2) and retrieved (a!e) climate change signals
in the (d1, d2) plane for two candidate forcing mechanisms (1) and (2).
Ellipse [n] indicates the significance region for detection, ellipses [1]
and [2] the consistency confidence regions for the two forcing
mechanisms. Retrieved signal a: successful detection, consistency
only with forcing (1); climate change is attributed to mechanism (1);
the vector ml indicates the estimated maximum likelihood signal.
Retrieved signal b: successful detection, signal consistent with both
forcing mechanisms; no attribution possible. Retrieved signal c: suc-
cessful detection, signal consistent with neither prediction; Retrieved
signal d: signal consistent with forcing 2, detection insignificant
(nullifying consistency); Retrieved signal e: detection insignificant,
signal consistent with neither prediction

level is normally chosen to yield a strong statement for the
converse case that the attribution test is rejected). To
avoid the cumbersome double negative wording, while at
the same time conveying more accurately the statistical
significance of a positive outcome of a consistency test, we
shall replace the statement that ‘a retrieved climate change
signal is not inconsistent with a given forcing mechanism
at a significance level of P (95%)’ by the simpler positive
statement that ‘a climate change signal is consistent with
the forcing mechanism within the P (95%)- confidence
region’ (in analogy with the terminology of power spectral
analysis) or ‘at a confidence level of PM (5%)’. Note that the
stringency of the consistency test increases with decreas-
ing P or increasing PM . For PP0, the confidence region
contracts to zero, requiring zero error between the re-
trieved and predicted pattern amplitudes for a positive
outcome of the consistency test, while the confidence level
PM for a consistent signal increases to 100%. For the
acceptance of a consistency test as positive, it will gener-
ally be advisable to select a consistency confidence level
somewhat higher than 5%, of the order of 10%—20%. Still
higher confidence levels, however, incur the risk of erron-
eously rejecting valid attributions.

As outcome of the combined multi-pattern detec-
tion/attribution exercise we can then assign a statistical
significance level, defined by Eq. (40), for the detection of
a climate change signal within the space spanned by the
p predicted signal patterns; and a consistency confidence
level for each proposed climate change mechanism l,
defined, in analogy with the risk associated with the null
hypothesis, by Eq. (49).

The result of the test will consist generally of one of the
following combinations (see Fig. 1):

1. A statistically significant climate change signal a con-
sisting of a superposition of predicted climate change
signals is detected in the observed data at a given signifi-
cance level. The retrieved climate change signal is
consistent with only one of the predicted signals at a pre-
scribed consistency confidence level. Thus the observed
climate change signal can be attributed to the single forc-
ing mechanism that passed the consistency test.
2. A statistically significant climate change signal b is

detected which is consistent with several or all of the
predicted climate change signals.
3. A statistically significant climate change signal c is

detected which is statistically consistent with none of the
predicted signals.
4. The retrieved climate change signal d is not statist-

ically significant, but the signal is statistically consistent
with at least one of the predicted signals. In this case the
positive consistency tests are nullified by the negative
outcome of the detection test: the retrieved signal cannot
be distinguished from the internal natural-variability
noise, even though it is consistent with some of the pre-
dicted externally forced signals.
5. The retrieved climate change signal e is not statist-

ically significant and the retrieved climate change signal is
not consistent with any of the predicted signals.

We note that the attribution of a detected climate
change signal to a particular forcing mechanism is suc-
cessful only in the first of these possible outcomes.

One can consider various modifications of the test pro-
cedure. Rather than determining the retrieved climate
change signal in the p-dimensional space of all proposed
signal patterns, the detection and attribution test can be
carried out as a single-pattern analysis separately for each
individual mechanism (yielding the same set of possible
test outcomes). This has the advantage of enhancing the
probability of detection of any given forcing signal. How-
ever, it provides less discrimination between competing
mechanisms when the signal patterns are not orthogonal.
The signal pattern a of Fig. 1, for example, fails the con-
sistency test for the forcing mechanism 2 in the full signal
pattern space, but would pass an individual pattern con-
sistency test for this process (as is apparent from a visual
projection of the retrieved signal vector onto the direction
of the signal pattern 2). Thus in contrast to the two-
pattern analysis, a unique attribution is no longer
achieved (see also the similar example discussed in Hegerl
et al. 1997).

Another modification is suggested if one of the pre-
dicted signals is consistent with a zero amplitude with
acceptable probability, and the detection/attribution test
also returns a small amplitude for that signal. One can
then repeat the test leaving out that forcing mechanism, in
the expectation that the significance and confidence levels
for the detection and attribution of the other signals are
thereby enhanced.

We note, however, that in our formulation of the attri-
bution problem we have not considered the possibility
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that a proposed forcing mechanism, once introduced,
simply does not exist. A proposed mechanism can only be
rejected as not consistent statistically with the observa-
tions, or the retrieved signal, although consistent
statistically with the predicted signal, can be so small that
it is nevertheless not distinguishable statistically from
zero.

To establish an optimal trade-off between a high detec-
tion significance level (requiring a small number of
patterns) and the ability to discriminate between different
competing climate forcing mechanisms (requiring a
larger number of patterns), a series of detection/attribu-
tion tests at different levels may be applied, each
successive level involving an increase in the number of
patterns. A similar optimal trade-off between statistical
significance and the number of predictors has been ap-
plied in the construction of a hierarchy of statistical linear
prediction models from a finite data set, see Barnett and
Hasselmann (1979).

3.2 Maximum likelihood estimate of the climate
change signal

If a detected climate change signal has been successfully
attributed to a particular forcing mechanism l, one may
ask whether the climate change signal retrieved from the
observations is necessarily the best estimate of the climate
change signal. The retrieved signal is determined by pro-
jection of the observed climate trajectory onto the p-
dimensional space spanned by the signal patterns of all
candidate forcing mechanisms, without regard to the pre-
dicted amplitude of the signal pattern to which the
retrieved climate change is subsequently attributed. An
improved estimate may be expected by an approach
which takes account of the information contained not
only in the observations but also in the predicted ampli-
tudes, allowing for the errors in both.

This consideration forms the basis of the maximum
likelihood method. Both information sources are included
together in a single optimization procedure. In contrast
to the detection problem, the pattern amplitudes dk

(l) in
the representation (41) are no longer determined solely
by the condition that the statistical mean square resi-
dual error should be minimized, but also by the require-
ment that the detected climate change should be
compatible, as far as possible, with the climate change
mechanism l (in anticipation of this requirement we have
included now the parameter index (l) in the pattern ampli-
tudes dk

(l)).To satisfy optimally both of these requirements, we
replace the previous statistical least square condition,
which yielded the solution (32) for the coefficients dk

(l), by
a maximum-likelihood condition which takes into ac-
count the probability distribution not only of the natural-
variability noise (which is equivalent to the statistical least
square condition) but also of the signal amplitudes. The
coefficients dk

(l) are chosen such that the joint probability
distribution p'"p' (tr, e

(l))"p(tr)pe(e(l)) of the residual
noise tr and the coefficient difference vector e

(l) is maxi-
mized for the given predicted climate change signal and
observed climate change realization. According to Eqs.

(3), (27), (46), we have

lnp'"lnp(tr)#lnpe(e(l))

"const!
Cij

2
(t

i
!dk

(l)gki) (tj
!dj

(l)gjj)

!

E# (l)kj
2

(dk
(l)a(l)!dk

(l)) (dj(l)a(l)!dj
(l)) (50)

Variation of (50) with respect to dk
(l) yields then the max-

imum-likelihood set of equations Llnp' /Ldk
(l)"0 for the

determination of the pattern amplitudes dk
(l):

(Dkj#E# (l)kj)dj(l)"dk#E# (l)k(l)a(l) (51)

Equation (51) differs from the previous determining equa-
tion (28) for the pattern amplitudes in the multi-pattern
optimal-detection case through the terms proportional to
the inverse E# (l)kj of the pattern amplitude error covariance
matrix Ekj

(l).If E# (l)kj is small compared with Dkj, i.e. if the errors in the
predicted signal pattern amplitudes are large compared
with the pattern amplitudes and amplitude errors derived
from the observations, one recovers the previous optimal
detection solution. Since nothing is known in effect
a priori about the magnitudes of the signals, no restriction
is placed on the optimal-detection solution. The pattern
coefficients dk are given in this case by the contravariant
counterparts of the covariant detection variables dk with
respect to the metric Dkj (the covariance matrix character-
izing the natural variablility of the detection variables,
Eq. (34)). A detected climate change signal is always triv-
ially consistent in this limit with the proposed forcing
mechanism, since the retrieved climate change signal will
always lie within the very large error bounds of the predic-
tion.

The opposite limit of large E# (l)kj compared with Dkj, i.e.
very accurately determined differences between the pre-
dicted and retrieved pattern coefficients relative to the
statistical errors in the retrieved optimal-detection pattern
coefficients, formally yields the solution

dk
(l)"dk

(l)a(l), (52)

i.e. the maximum likelihood signal is identical to the
predicted signal. However, this limit is unaccessable, since
the errors in the differences between the predicted and
retrieved pattern amplitudes are always larger, according
to Eq. (45), than the statistical errors in the retrieved
optimal-detection pattern coefficients. The largest values
of E# (l)kj are obtained when the model errors Mkj

(l) vanish, so
that Eq. (45) yields Ekj

(l)"Dkj. In this case Eq. (51) reduces
to

2Dkjdj(l)"dk#D# k(l)a(l). (53)

Multiplication from the left with Dpk yields the solution

dp
(l)"

1

2
(dp#dp

(l)a(l)), (54)

i.e. the maximum likelihood solution is given by the mean
of the predicted and original retrieved solution.
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In practice, neither limiting case will apply, and the
maximum likelihood solution will lie somewhere between
the original retrieved climate change signal and the limit-
ing, maximally modified solution (54) (Fig. 1, signal vector
ml).

4 Summary and conclusions

The general multi-pattern optimal fingerprint method for
the detection of a space—time dependent climate change
signal in the presence of natural climate variability can be
readily extended to the problem of attribution. A co- and
contra-variant tensor notation, based on a metric given by
the space—time dependent covariance matrix C

ij
of the

natural climate variability, simplifies the analysis and
clarifies the invariant structure of the theory. The optimal
fingerprint patterns f il for detection are identified as the
contravariant counterparts of the covariant signal pat-
terns, f il"Cijglj"gil. For the multi-pattern problem it is
useful to introduce a second metric Dlk, defined by the
scalar products Dlk"gligkjCij, in the p-dimensional space
of signal patterns gli. The covariant detection variables
dl"f ilti

represent then the simplest set of coefficients for
establishing the detection significance level, while the con-
travariant coefficients dl"Dlkdk, which require the
inversion of the metric Dlk, define the amplitudes of the
signal patterns gl estimated from the observed data. The
matrices Dlk and Dlk represent the covariance matrices of
the natural variability of the co- and contravariant detec-
tion coefficients, respectively.

In contrast to the detection of a climate change signal,
for which only the directions of the predicted signal pat-
terns need to be specified, attribution requires also
a specification of the predicted signal amplitudes and their
error statistics. The multi-pattern attribution analysis in-
volves three steps: (1) an estimate of the observed climate
change signal in the p-dimensional signal pattern space,
(2) a test of the null hypothesis that the retrieved climate
change signal can be explained by natural climate varia-
bility, and (3) tests of the statistical consistency of the
retrieved climate change signal with each of the proposed
forcing mechanisms.

The outcome of the analysis is an estimated overall
statistical significance level for the detection of a net cli-
mate change signal and a set of consistency confidence
levels characterizing the statistical consistency of the re-
trieved climate change signal with each of the proposed
climate forcing mechanisms. Positive and negative out-
comes of the different tests can occur in all combinations.
Attribution is achieved only if the detection test is positive
and the retrieved signal is consistent with only one of the
proposed forcing mechanisms. However, even in this case
the term attribution can still be interpreted only in the
limited sense of consistency, since the possibility cannot be
excluded that the retrieved signal can be explained by
other forcing mechanisms not considered in the analysis.

The highest significance levels for detection and confi-
dence levels in consistency tests can be achieved if only
a single forcing mechanism is considered. If several forcing
mechanisms are proposed, one could therefore consider
carrying out a detection/consistency analysis for each

individual mechanism separately. However, this approach
lacks discrimination: more mechanisms pass the consist-
ency test in a series of separate single-pattern analyses
than when the retrieved climate change signal is represent-
ed in a multi-pattern phase space. In general, the detection
power decreases while the discrimination power increases
with the number of patterns used in a multi-pattern detec-
tion/attribution analysis.

An effective strategy for arriving at an optimal trade-off
between detection and attribution could therefore be to
carry out a sequence of tests in which the number of
patterns is successively increased. The sequence is termin-
ated when the detection significance level falls below
a prescribed level. In practice, however, the exponential
dependence of the detection significance level on the num-
ber of signal patterns will limit multi-pattern tests to two
or three patterns.

The main difficulty in the practical application of these
theoretically rather straightforward concepts is the es-
timation of the space—time dependent covariance matrix
of natural climate variability, and also the errors of the
predicted climate change signals. Unfortunately, these dif-
ficulties cannot be circumvented and must therefore be
faced if one wishes to arrive at quantitative estimates of
statistical significance and consistency levels for climate
change detection and attribution. A first application of the
concepts presented in this study to real data is given in
Hegerl et al. (1997), who attempt a combined quantitative
assessment of our present ability to detect climate change
signals in observed data and to attribute the retrieved
signals to greenhouse gas warming with or without aero-
sol forcing.
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Appendix

Alternative matrix notation

All tensor relations derived in this paper can be expressed
in standard matrix notation. In most cases this simply
requires suppression of the indices, in some cases the
transpose of a matrix must be used and the order of
factors must be changed. The notational changes are ele-
mentary and are left to the reader who is more
comfortable with matrix notation. In the present multi-
pattern analysis, in which vectors and matrices are needed
for climate trajectory space (Latin indices), pattern space
(Greek indices), and the product of both spaces, the explicit
tensor index notation was found to be easier to work with
than matrix notation, in which these distinctions are lost.

The main advantage of the tensor notation, however, is
that it expresses the invariance of the problem with respect
to the choice of climate variables and patterns. Although
we considered here only linear transformations and no
derivatives, so that the full power of tensor calculus de-
veloped for differential geometry was not invoked, an
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invariant notation for linear transformations requires al-
ready a distinction between co- and contravariant tensors,
and the restriction of matrix multiplications to contrac-
tions over pairwise co- and contravariant indices. Once
the problem has been expressed in invariant form, all deri-
vations can be carried out in some convenient coordinate
system, for example in a system with unit covariance
matrix, for which the basic results are self-evident.

It is also possible to express the invariance of the theory
using a generalized matrix notation in which the product
A@B between two matrices A, B is defined with respect to
the metric C~1"inverse covariance matrix as

A@B,AC~1B, (55)

All matrix operations in the vector space of climate trajec-
tories space (Latin indices) can then be expressed in terms
of this generalized matrix product. Standard matrix multi-
plications arise only in pattern space (Greek indices).
Contravariant tensors no longer appear, the only con-
travariant tensor C~1 being absorbed in the definition
(55). There is then also no need to introduce contravariant
fingerprint patterns separately from the covariant signal
patterns, since the dual relation between the patterns is
absorbed in the application of the generalized matrix
product(55) in the projection of the climate trajectory into
the reduced pattern space.

Using this notation, the general multi-pattern repres-
entation (27) (retaining still the distinction between upper
and lower Greek indices and the summation convention
for the pattern space),

t"dlgl#tr, (56)

yields, on application of the statistical least square condi-
tion trT@tr"min, as determining Eq. (28) for the
pattern amplitudes:

Dlkdk"gTl@t (l"1, 2, p), (57)

where (Eq. 30)

Dlk"gTl@gk. (58)

The remaining relations may be similarly rewritten in this
generalized matrix notation.
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