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Abstract We examine the internal climate variability of
a 1000 year long integration of the third version of the
Hadley Centre coupled model (HadCM3). The model
requires no flux adjustment, needs no spin up procedure
prior to coupling and has a stable climate in the global
mean. The principal aims are (1) to validate the internal
climate variability against observed climate variability,
(2) to examine the model for any periodic modes of
variability, (3) to use the model estimate of internal
climate variability to asses the probability of occurrence
of observed trends in climate variables, and (4) to
compare HadCM3 with the previous version of the
Hadley Centre model, HadCM2. The magnitude and
frequency characteristics of the variability of the global
mean surface temperature of HadCM3 on annual to
decadal time scales is in good agreement with the ob-
servations. Observed upward trends in temperature over
the last 20 years and longer are inconsistent with the
internal variability of the model. The simulated spatial
pattern of surface temperature variability is qualitatively
similar to that observed, although there is an overesti-
mation of the land temperature variability and regional
errors in ocean temperature variability. The model
simulates an El Nino Southern Oscillation with an ir-
regular 3—4 year cycle, and with a teleconnection pattern
which is much more like the observations than was
found in HadCM2. The interdecadal variability of the
model ocean in the tropical Pacific, North Pacific and
North Atlantic is broadly similar to that in the real
world with none of the simulated patterns having any
periodic behaviour. HadCM3 simulates an Arctic Os-
cillation/North Atlantic Oscillation (NAO) in Northern
Hemisphere winter which has a spatial pattern consis-
tent with the observations in the Atlantic region, but has
too much teleconnection with the North Pacific. The
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recent observed upward trend in the NAO index is
inconsistent with the model internal variability. The
variability of the simulated zonal mean atmospheric
temperature shows some marked differences to the
observed zonal mean temperature variability, although
the comparison is confounded by the sparse observa-
tional network and its possible contamination by a
climate change signal.

1 Introduction

Many coupled ocean-atmosphere models have had a
tendency to drift when simulating the climate of the
present day. Such climate drifts are usually reduced
by the use of flux adjustment (e.g. Sausen et al. 1988;
Manabe et al. 1991), whereby often large fluxes of heat
and salinity are introduced at the interface between the
ocean and the atmosphere components of the model.
Such adjustments are clearly unphysical and, to this end,
there have been considerable efforts to build coupled
ocean atmosphere GCMs that do not require these
corrections. Such a model has been built at the Hadley
Centre at the UK Meteorological Office. HadCM3, the
third version of the Hadley Centre coupled model,
requires no such flux adjustment and has a stable and
realistic present day mean climate (see Gordon et al.
2000 for more details).

We focus on the “internal” variability of a 1000 year
simulation of HadCM3 in which all “external” factors,
such as increases in greenhouse gases or variations in
solar output, are kept fixed. Thus we define internal
variability as that which is consequence of the internal
dynamics of the coupled ocean-atmosphere system.
Climate variability that is forced by anthropogenic
emissions of greenhouse gases, solar variability etc. will
be dealt with elsewhere. A successful simulation of in-
ternal variability in a coupled model can be of impor-
tance for several reasons. Variability on interannual to
decadal time scales (e.g. the El-Nifio Southern Oscilla-
tion, ENSO) has a significant impact on society, and the
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ability to predict such changes is reliant on a successful
simulation of the phenomenon in question. Also the
detection and attribution of anthropogenic and natural
climate change is crucially reliant on a realistic simula-
tion of the internal unforced variability (e.g. Hassel-
mann 1993). The prediction of future climate change is
now being extended to include not only predictions of
changes in the mean climate but also changes in vari-
ability, for example, ENSO (e.g. Timmermann et al.
1999; Collins 2000). Such predictions rely on the ability
of models to reproduce present day climate variations.
Multi-century simulations of internal variability
allow us to answer many questions about the climate
system. For example, can we identify any periodic phe-
nomena in the coupled ocean-atmosphere system? We
define a periodic phenomena as having a peak in its
power spectra which is significantly different from the
spectra of an autoregressive process of order 1 (AR(1)).
An AR(1) process is defined by the following equation:

(1)

where x is a measure of the phenomenon under test (e.g.
global mean surface temperature), the subscripts refer
to discrete time intervals (e.g. years) and z is random
variable (white noise) with unit variance. The coefficient
a; is the autocorrelation of x. AR(1) processes have
more power at low frequencies than at high frequencies
(i.e. they have a red spectra) and are a good statistical
model for many geophysical systems. Hasselmann
(1976) describes a conceptual model of the coupled
ocean-atmosphere system in terms of an AR(1) process
in which the ocean gives the “memory” of the system
and the atmosphere provides the random forcing.
Identification of periodic phenomena may lead to pos-
sible predictability of weather and climate beyond the
usual predictability horizon associated with sensitive
dependence on initial conditions. Also we can ask, are
recent observed trends or climate variations outside the
range of internal climate variability? This detection of
climate change then leads on to questions of attribution
of climate change to factors such as anthropogenic
increases in greenhouse gases (e.g. Tett et al. 1999).

A necessary pre-requisite for answering these, and
other, questions about the climate system is the verifi-
cation of the internal variability of the coupled model.
Hence a large part of this work is devoted to the com-
parison of the model variability with observed variabil-
ity. Uncovering the mechanisms for variability in the
coupled model requires much more detailed analysis
than we have space to include here, as well as further
sensitivity experiments with the model. It is hoped that
mechanisms will be dealt with in more detail in future
publications. We focus our attention on the variability
on interannual to decadal and longer time scales and to
global and large-scale variations in HadCM3. Also, we
mainly focus on the surface temperature because of its
relevance to the climate change question, and because of
the extensive observational records that exist for this
variable. However we also briefly examine other vari-

Xp+1 = A1Xy + Aoz

Collins et al.: The internal climate variability of HadCM3

ables where it is appropriate to do so. Where observa-
tional data exists, we perform the same analysis on both
the model and the observations to reduce uncertainties
in the comparison. Also we compare the variability of
HadCM3 with the previous flux adjusted version of the
model, HadCM2 (Johns et al. 1997; Tett et al. 1997),
and note any improvements or reductions in skill.

The study is organised as follows. The next section
gives a description of the formulation of HadCM3. This
is followed by Sect. 3 which includes an assessment of
the magnitude and spectral characteristics of the global
mean surface temperature, as well as an analysis of
linear trends in the model and in the observations. In
Sect. 4, the spatial pattern of surface temperature vari-
ability is validated against observations and is examined
for any periodic phenomena. The variability over the
Northern Hemisphere land masses is next examined in
Sect. 5, to see if there is any improvement in this over
HadCM2, which simulated too much variability in these
regions (Tett et al. 1997). In Sect. 6 we examine the
ENSO-like variability in HadCM3 and in Sect. 7, the
decadal variability of Equatorial Pacific, North Pacific
and North Atlantic sea surface temperatures (SSTs)
are examined and compared with the observations. In
Sects. 8 and 9 the variability of the atmosphere is ex-
amined in terms of the Arctic Oscillation/North Atlantic
Oscillation and in terms of the variability of the zonal
mean atmosphere. Finally the results are summarised in
Sect. 10.

2 Model formulation

The atmospheric component of HadCM3 is a version of the UK
Meteorological Office Unified Model (Cullen 1993). The model
dynamics and physics are solved on a 3.75° x 2.5° longitude-lati-
tude grid with 19 hybrid vertical levels. Significant changes with
respect to the previous version (HadCM2, Johns et al. 1997) are the
introduction of a new radiation scheme (Edwards and Slingo 1996;
Cusack et al. 1998), the representation of convective momentum
transport (Gregory et al. 1997), the introduction of a new surface
scheme (Cox et al. 1999), better representation of the effects of sub-
grid scale orography (Milton and Wilson 1996; Gregory et al.
1998), a reformulation of the treatment of clouds in the model (see
Gordon et al. 2000 for more details) and a revision of the boundary
layer scheme (Smith 1993). More details of the formulation and
climate of the atmospheric component of the model can be found in
Pope et al. 2000.

The oceanic component of the model is an updated version of
that used in HadCM2 (Johns et al. 1997) which is version of
the Cox (1984) model. The horizontal resolution is increased to
1.25° x 1.25° in comparison to HadCM2 which used a 3.75° x 2.5°
longitude-latitude grid. HadCM3 employs the Gent and McWil-
liams (1990) scheme for adiabatic diffusion of tracers with variable
coefficients (Wright 1997; Visbeck et al. 1997), vertical mixing is
parametrised using Kraus-Turner scheme (see Gordon et al. 2000
for more details) and salinity conservation is achieved using a
representation of river runoff and by assuming a balance between
iceburg calving and accumulation of snow on the ice-sheets.

The model is initialised in September using a previously derived
model atmospheric state and the September ocean observations of
Levitus and Boyer (1994) with zero ocean currents. The atmosphere
and ocean are coupled once a day. We analyse the full 1000 years
of a control simulation in which all concentrations of greenhouse
gases and aerosols etc. are set as constants representative of the pre-
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industrial era. There is a small drift in the model such that the
global mean temperature cools by approximately one tenth of a
degree in the entire 1000 year period. The spatial pattern of this
drift is uniform over much of the globe, although there are positive
and negative drifts of order one degree in the Southern Ocean
and North Atlantic. These drifts are removed prior to the analysis
presented later. Gordon et al. (2000) discuss the stability of the
mean climate of the model in considerable detail.

3 Global mean surface temperature variability

Firstly we examine the global mean surface temperature
variability of HadCM3 and compare this with the ob-
served variability. The observational data we use is the
monthly mean Jones (1994) gridded land surface station
temperature data blended with the gridded sea surface
temperature observations of Parker et al. (1995) (each
data set has been updated to 1998 by colleagues at the
Hadley Centre). This we denote this the HadCRUT data
set (Fig. 1). The data is binned into a 5° by 5° longitude-
latitude grid and has variable coverage in both space and
time. Jones et al. (1997b) showed that the standard
error, due to incomplete sampling, on interannual time
scales for the global and annual mean of the HadCRUT
data is £0.12 K for the later part of the record, rising to
+0.18 K for the earlier part.

In order to asses the effect of these uncertainties
which result from variable data coverage in the obser-
vations, it is important to process the model data in a
similar way to the observations i.e. to interpolate the
model data onto the HadCRUT grid and to mask areas
where HadCRUT has no observations. First we take the
monthly average 1.5 m temperatures from the model
and remove the mean annual cycle. Then, we split
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Fig. 1 The global and annual mean 1.5m temperature from
1000 years of the HadCM3 control experiment (left curve) and the
global and annual mean historical observed HadCRUT surface
temperature from 1851 to 1998 (right curve). The time scale marked on
the abscissa for the model curve is essentially arbitrary although the
nominal model start year is 1991. The model time series has had a
long term trend of —0.010 K/century removed from it (see Sect. 2)
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the first 1000 years of the HadCM3 control into ten
100 year segments, and re-grid them from the
3.75° x 2.5° longitude-latitude model grid to the 5° x 5°
HadCRUT grid using bilinear interpolation. We then
remove grid boxes which have missing data in HadC-
RUT, in order to have the same changing data coverage
in both space and time. Thus we are left with 10 inde-
pendent realisations of the HadCM3 control global
temperatures on the same space-time grid as the
HadCRUT data. We denote these realisations as ““pro-
cessed model data” and we compare these with 1898—
1998 HadCRUT data and also with the unprocessed
model data where appropriate.

A simple measure of the amplitude of the global
temperature variability is the standard deviation. The
standard deviation of the HadCM3 annual and global
mean 1.5 m temperature shown in Fig. 1 is 0.12 K for
the unprocessed data and 0.11 K for the square root
of the average of the variance of the 10 sections of the
1000 years processed on the HadCRUT grid. There is
poor observational data coverage in the northern high
latitudes and in the southern middle to high latitudes
and these are regions where the model variability is
generally large compared to the rest of the globe (see
Sect. 4). Thus their exclusion from the calculation of
global mean temperature variability reduces the stan-
dard deviation, although this effect is tempered by the
small area covered by the missing data regions.

A strict comparison with the standard deviation of
the observed temperatures is complicated by the removal
of the obvious trend from the observations (see Fig. 1).
The standard deviation computed from the observations
with a linear trend removed is 0.14 K and that computed
from the observations with a quadratic trend removed is
0.13 K. Hence, subject to uncertainties in the removal of
the trend from the observations, HadCM3 has a good
simulation of the magnitude of the global mean surface
temperature variability.

The standard deviation of global mean temperature
from HadCM2 was 0.13 K, hence there is very little
difference in the absolute magnitude of the global mean
temperature variability between the two models. We
might have expected HadCM3 to have greater global
mean temperature variability than HadCM2 because of
the increased ocean resolution, and the removal of the
flux adjustment term, but this is not the case. Also, the
ratio of the variance of global mean land and global
mean ocean temperature has the same value (~3) for
both models, so there are no compensating factors due
to changes in ocean resolution and the land surface
scheme. Thus the use of flux adjustment seems to have
little impact on the magnitude of global surface tem-
perature variability between HadCM3 and HadCM2.

In comparison with other coupled modes (Covey
et al. 2000), both HadCM?2 and HadCM3 seem to be at
the upper end of the distribution, having larger global
temperature variability than other models. While the
agreement in the standard deviations of the models and
the observations is good, this agreement might not be so
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good when we include the effects of external factors such
as changes in solar output or volcanic eruptions which
may increase the model variability. Also we reiterate the
uncertainty due to the removal of the anthropogenic
trend from the observations. Hence it may be too soon
to conclude that HadCM3 has an adequate simulation
of global temperature variability. Work is underway
however, to address some of the uncertainties high-
lighted by including all the major external factors in one
simulation.

We next examine the power spectra of global mean
temperature, firstly to verify of the model has a similar
spectral shape to the observations, and secondly to see if
there are is periodic behaviour. To calculate the power
spectrum of global mean temperature we first take the
Fourier Transform of the autocovariance function of the
time series and then apply the Tukey—Hanning window
to get a consistent and unbiased estimate of the power
spectrum (e.g. Chatfield 1984). We chose a relatively
large window width of 25 years in order to retain part of
the low frequency component of the variability (up to a
period of 50 years). However, there is little change in the
results, apart from the loss of the low frequencies, when
we take smaller window widths.

The power spectra of 1898-1998 HadCRUT global
temperatures (Fig. 2) is red in character, that is there is
more power at low frequencies than at high frequencies.
A linear trend was first removed from the time series to
crudely remove the climate change signal, although it
is possible that some residual signal remains after this
is done and this residual signal aliases into the lowest
frequency of the power spectra which is therefore un-
reliable. Tett et al. (1999) discuss the non-uniformity of
the twentieth century warming in detail. Testing the
power spectra of observed temperatures against a null
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Fig. 2 Power spectra of the global mean surface temperatures from
the HadCM3 control run (solid line) and from the HadCRUT
observations (dashed line). The shading indicates the maximum and
minimum power computed from ten 100 year sections of the model
control interpolated to the HadCRUT grid. The solid line is the
average of the power spectra of these ten sections
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hypothesis of an AR(1) process gives no significant
spectral peaks, indicating that there are no periodic
modes of the observed global mean surface temperature.

The power spectra of the HadCM3 global mean
temperatures, computed as an average of the 10 power
spectra of the 100 year segments processed on the
HadCRUT grid (Fig. 2) is also red in character and has
a similar slope and magnitude to the observed spectra.
Also shown in Fig. 2 is the range of variability of the
model power spectra computed as the maximum and
minimum of the 10 power spectra of the 100 year seg-
ments. This represents a median estimate of the 93%
interval (Gillett et al. 2000) and if the power spectra of
the observed HadCRUT global temperatures lies out-
side this range we may conclude that there is a statisti-
cally significant difference (at the 93% level) between the
model and the observations. Such deviations occur at
periods of 1 year, which is an artifact of the removal of
the annual cycle from HadCRUT (calculated over the
period 1961-1990 only), and at around the 8 year period
which may be put down to chance. There is also some
difference at the lowest frequency, which may be due to
the aliasing of the residual variability (i.e. that left after
the linear trend is removed) into the observed spectra. It
may also be the case however, that there may be some
multi-decadal to centenial period fluctuation of the
climate system (e.g. Schlesinger and Ramankutty 1994)
which the model does not simulate. Validation of the
model variability on time scales of centuries and greater
is limited by shortness of the observed climate record.
However we may be able to use proxy indicators of
climate, for example tree-rings (e.g. Jones et al. 1998),
for such a validation. Nevertheless we conclude that, on
time scales of less than a century, HadCM3 reproduces
well the observed spectral characteristics of global mean
temperature variability.

As was the case for the observations, the model shows
no peaks in the spectra which are significantly different
from an AR(1) process, indicating that the are no peri-
odic modes of variability in the models’ global mean
temperature. This however, does not preclude the exis-
tence of regional periodic modes of variability, which we
look for in the next section.

Having established that HadCM3 global tempera-
tures have similar variability to the observations in terms
of both the absolute magnitude (standard deviation) and
in terms of the spectral characteristics, it is pertinent to
use the model estimate of internal variability to asses
how unusual, or not, recent trends in global temperature
are. The global and annual mean HadCRUT tempera-
tures show a clear upward trend over the 148 year
period (18501998, Fig. 1) and linear trends computed
over the most recent 20, 50, 100 and 148 year periods
are 1.9, 0.9, 0.6 and 0.4 K/century respectively. We
can compute the probability of occurrence of observed
trends from the 1000 year control run to asses how
unusual such trends are. Following Stouffer et al. (1994)
we first find the linear trend of the 5 years (1993-1998)
of the HadCRUT temperature series. Next we compute
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the trends of 995 overlapping segments of the HadCM3
series. We count the occasions on which the trend of
the 5 year HadCM3 segment is greater than that of the
observed 5 year segment and divide that number by
the total number of model segments (995 in this case).
This gives a relative occurrence rate for the 5-year trend
which is a number between 0 (no model trends are
greater than the observed trend) and 1 (all model trends
are greater than the observed trend). We then repeat this
analysis for the observed and modelled 6 year trends, for
7 year trends etc. up to 148 year trends.

A selection of different length observed global mean
temperature trends and their occurrence in the 1000 year
HadCM3 control are shown in Table 1. On examination
of the trends for all time periods, we find that the ob-
served trends of length 9—12 years have a greater than
10% chance of occurring in the control simulation, and
thus we may conclude that they can be easily explained
by internally generated variability. Observed trends of
length 13—-16 years occur less frequently and are there-
fore less likely to be due to internal variability. Trends of
17-20 years length occur very infrequently (less than 1%
chance) in the control simulation and there is only 1
occurrence of a 20 year trend of 1.9 K/century in the
entire 1000 years of the model simulation. Such trends
are very unlikely to be generated by the internal vari-
ability of the climate system. There are no occurrences of
any trends of length greater that 20 years in the control,
thus, we conclude that it is highly unlikely that observed
trends in global temperature from before 1978 to 1998
are a consequence of the internal variability of the
climate system. This leaves the question of attributing
these temperature trends to various possible external
forcing mechanisms such as increases in greenhouse
gases. Tett et al. (1999) examine this question in detail,
although they focus on periods of 50 years in length.
Given the results of the trend analysis, it may now be
possible to examine the attribution question over shorter
time periods where, e.g., tropospheric temperatures
may be better constrained by satellite observations and
forcing mechanims, such as variations in solar output,
have been observed more quantitatively.

Table 1 Trends in the observed global temperature and corre-
sponding occurrences of trends greater than the observed trends
computed from the 1000 year HadCM3 control run. Occurrences
are quoted in both actual and relative terms (see text for more
details)

Years Length of Trend Occurrence Relative
(inclusive)  trend (years) (K/century) occurrence
1994-98 5 7.0 32 0.03
1989-98 10 2.9 64 0.06
1984-98 15 2.8 2 0.002
1979-98 20 1.9 1 0.001
1974-98 25 2.2 0 0

1949-98 50 0.9 0 0

1899-98 100 0.6 0 0

1850-98 148 0.4 0 0
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4 The spatial pattern of surface temperature variability

In this section we examine the spatial pattern of surface
temperature variability in the observations and in the
model. The standard deviation of monthly mean
HadCRUT temperatures calculated from 18981998 are
shown in Fig. 3a. A linear trend plus annual cycle was
removed from each grid-box of the HadCRUT data
prior to the calculation of the standard deviation. Also, a
requirement of having at least 10 years of data in each
grid-box in order to estimate the standard deviation was
imposed. The general pattern of variability in Fig. 3a is
one of greater variability over land areas than over ocean
areas. This can be understood by recalling that land has a
lower “‘thermal inertia” than the ocean so its temperature
can respond more rapidly to variations in the surface
energy balance. The northern high latitudes are the most
variable region in terms of temperature because of vari-
ations in albedo caused by changes in snow cover. In the
ocean there is an area of enhanced temperature vari-
ability in the tropical East Pacific associated with ENSO.

The model surface 1.5 m temperatures were pro-
cessed in the same way as the observations (with the
same missing data regions etc., Sect. 3) for the ten
100 year sections. The variance in each grid-box was
then averaged over these 10 sections and the square-root
taken to find the model average spatial pattern of
standard deviation (Fig. 3b). There is broad agreement
between the model and the observations with the model
having more variability over the land than over the
ocean and with the maximum standard deviations in the
model occurring over land in the northern high latitudes.
Notable differences between model and the observed
variability are in the North Atlantic region, where the
model overestimates variability and in the Southern
Ocean, south of Africa, where the model underestimates
variability. Errors in the North Atlantic region are likely
to be due to sea ice in the model which moves too far
south during winter effecting the baroclinic zone of the
storm track. The reasons for errors in the Southern
Ocean are less obvious.

In terms of the ratio of model to observed variance
(figure not shown), the model tends to overestimate
variability over land in the sub-tropics and over Central
Europe and underestimate it in the tropics and in polar
regions. Over the ocean there is no systematic pattern of
variability errors with some regions where the model
overestimates variability (the North Atlantic, the sub-
tropical North and South Pacific) and other regions
where the model underestimates variability (the North
Pacific and the tropical and South Atlantic). As was the
case for global mean temperatures, the comparison of
variance in this way is confounded by the removal of the
climate change signal from the observations, so it is
difficult to accurately quantify errors in model surface
temperature variability.

We have examined the AR(1) coefficients (Eq. 1) of
the model and observed temperature in order to assess if
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Fig. 3a, b The standard
deviation (K) of a HadCRUT
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temperatures and b HadCM3
surface temperatures (processed
on the HadCRUT grid). A non-
linear contour interval is used
to emphasise the variability
over the oceans. Light shading
indicates standard deviations
between 1 K and 2 K and dark
shading indicates standard
deviations greater than 2 K

errors in the spatial pattern of variability are due to
errors in the magnitude of the g, coefficient, which can
be interpreted as errors in the atmospheric forcing, or
the a; coefficient, which can be interpreted as errors in
the oceanic memory. Examination of the ratios of the
model to observed coefficients shows that where the
model overestimates the variance, it is the random
component which is largely responsible, and where
the model underestimates variability, it is the memory
component which is largely responsible. Thus areas of
the model where the variability is overestimated are
likely to be due to errors in the atmosphere model
variability (due, for example, to errors in the strength or
location of the storm tracks) and areas of the model
where the variability is underestimated are likely to be
due to low ocean model “memory” (due, for example, to
poor representation of the propagation of Rossby waves
due to low resolution). Again however, this comparison
is confounded by the removal of the climate change
signal from the observations, as any residual climate
change signal would be likely to lead to an overestima-
tion of the true a; coefficient in the case of the obser-
vations. Hence we conclude that HadCM3 simulates
at least the broad scale features of surface temperature
variability.

We next examine the frequency characteristics of the
variability to asses the spectral shape (or colour) of the

variability and to see if there are any periodic modes
of surface temperature. Maps of model grid-box spectra
power averaged into different frequency bands (figures
not shown) generally show the same features as the maps
of standard deviation Fig. 3b, i.e. less variability over
the ocean in comparison with the land, with the maxi-
mum variability in northern high latitudes. We illustrate
the dependence of spectral power on frequency by
plotting the log;o of the ratio of the 20-50 year vari-
ability to the 2-8 year variability (Fig. 4). Where the
ratio is large the spectral signature is one of a red noise
process with more power at lower frequencies than at
higher frequencies. Where the ratio is around unity the
spectral signal is one of a white noise process with sim-
ilar power at all frequencies. Where the ratio is small the
spectral signature is one of a blue noise process or is
indicative of a spectral peak which may be statistically
distinct from the null hypothesis of an AR(1) process.
The demarcation of the land and ocean regions is
clearly evident in Fig. 4. The ocean areas in HadCM3
are consistent with a red noise process and the land areas
are consistent with a white noise process. The only no-
table exception is in the tropical Pacific which has a
maximum at interannual time scales associated with the
models’ representation of ENSO (see Sect. 6). Plots of
the ratios of the other frequency bands show similar
features, land areas have similar power at all frequen-
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Fig. 4 The logarithm of the
ratio of 20-50 year temperature
variability to 2-8 year temper-
ature variability (contour inter-
val 0.2). Dark regions indicate
log ratios greater than 0.2 and
light shading indicates log ratios
less than —0.2
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cies, ocean areas have greater power at low frequencies
and the tropical Pacific region is the only region in the
model that shows enhanced variability at shorter time
scales relative to longer time scales.

Because of this fundamental difference between the
land and ocean we next analyse the variability of the two
components separately.

5 Variability of land surface temperatures

We have seen that surface temperatures over land in
HadCM3 are consistent with a white noise process and
that the model overestimates this land variability. In
HadCM2 Tett et al. (1997) found the variability over
the Western European region and over the continental
United States was overestimated in comparison with
the observations. They speculated that the most likely
explanation for this overestimation was excessive dry-
ness of the soil in the model (except during the winter
over the Western European region) so that too much of
the variation in the net radiation entering the ground
resulted in changes in ground temperature rather than
changes in the evaporation of soil moisture. In this
section we compare the variability of HadCM2 and
HadCM3 in these regions to see if modifications to the
model, in particular the introduction of the new surface
scheme of Cox et al. (1999), have made any beneficial
impact on this problem.

The ratio of the standard deviation of 1.5 m summer
land temperature of HadCM3 to HadCM2 is shown
in Fig. 5 for the Western European and continental
United States regions. In both regions the interiors of
the continents have less variability in HadCM3 than in
HadCM2 (light shading). Cox et al. (1999) show that
inclusion of soil water phase changes and the increased
root depths in MOSES tends to alleviate the problems of
excessive drying in summer and cooling in winter, and
this seems to have a small, but beneficial, impact on the
variability of HadCM3 compared to HadCM2. How-
ever, there remains a tendency for HadCM3 to overes-
timate the land variability. The global mean standard

deviation of the observed land variability is 1.38 K,
while it is 1.84 K and 1.81 K for HadCM2 and Had-
CM3 respectively. Examination of global maps of land
variability (not shown) reveal that while there is some
improvement in the northern mid-latitude regions and in
the tropics, there are other land areas, notably the sub-
topical belts, in which the overestimation of variability
in HadCM3 is increased in comparison with HadCM2.

6 The El-Niiio Southern Oscillation

ENSO is the largest mode of interannual variability of
global climate system. Coupling between the ocean and
atmosphere is crucial in the formation of ENSO (see e.g.
Neelin et al. 1998) so a successful simulation of the
phenomena is an important test of a coupled model. As
was seen in Fig. 3a there is an observed region of en-
hanced temperature variability to the east of the dateline
in the tropical Pacific corresponding to the oceanic
component of ENSO. In HadCM3 (Fig. 3b), there is also
a region of enhanced temperature variability of a similar
magnitude. However, this variability extends west of the
dateline into the West Pacific warm pool which is a
rather quiescent region in the observations. The exten-
sion of the model ENSO variability into the warm pool is
a likely consequence of errors in the mean climate of the
model in this region which has a cold tongue, and as-
sociated shallow thermocline, which extends too far into
the west. The ocean surface temperature in this region
can thus respond more rapidly to changes in surface heat
flux and wind stress anomalies in comparison with the
warm deep layer which exists in reality. In the observa-
tions there is also a region of variability to the south of
the equator along the Pacific coast of South America.
This is well simulated by the model and is a consequence
of the reasonably high oceanic resolution which can re-
solve equatorial Kelvin waves which turn into coastally
trapped Kelvin waves on reaching the coast.

ENSO has a well-known quasi-periodic nature cor-
responding to a peak in the power spectra around the
2-8 year frequency band. As was seen in Fig. 4 there is



68

enhancement of model variability at 2-8 year time scales
in comparison with the 20-50 year time scales indicating
a peak in the spectra. We take the NINO3 anomalies,
which are temperatures averaged in the region 150°W—
90°W, 5°S-5°N, as a simple measure of ENSO from the
model and the observations. For the observed NINO3
anomalies we also use the reconstruction of sea surface
temperatures of Rayner et al. (1996) (the Global Ice and
Sea Surface Temperature data version 3, GISST3) as
this provides a longer, and more complete, record of
ENSO. The standard deviations of NINO3 indices
are shown in Table 2. The model standard deviation is

HADCM3-CTL /

70N

60N |

40N

30N _
0 15E

0.8

HADCM3-CTL / HADCM2-CTL

T |

BON -

50N =

40N

30N

20N

120W

105w

0.8 1 1.2

Fig. 5 The ratio of the standard deviation of 1.5 m temperature of
HadCM3 to that of HadCM2 over the Western European region and
over the continental United States region. Lighter shading shows
where HadCM3 is less variable than HadCM?2 and darker shading
shows where HadCM3 is more variable than HadCM2
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larger than the GISST3 estimate, but smaller than the
estimate from the HadCRUT data. Hence the amplitude
of ENSO, as measured by the standard deviation of
NINO3 anomalies, is within the range of uncertainty of
the observations. Power spectra of the model and ob-
served NINO3 index are shown in Fig. 6. The spectra of
the observed GISST3 NINO3 anomaly has a broad peak
at 2-8 year time scales which is distinguishable from an
AR(1) process at the 95% level. The broadness of the
peak indicates an cycle of rather irregular period. The
model also simulates a broad spectral peak, which is
again significantly different from AR(1) but at a slightly
higher frequency. Hence HadCM3 captures the periodic
nature of ENSO with about the right frequency. How-
ever the model does simulate too much variability on
interannual time scales and too little variability on time
scales of less than a year, a feature which is masked by
analysing the amplitude of ENSO by simply looking at
the standard deviation of NINO3 anomalies.

In comparison with HadCM2 (see Collins 2000),
HadCM3 has a similar representation of the amplitude,
time scale and phase locking to the annual cycle (figures
not shown). One of the main problems with HadCM?2
was that SST anomalies associated with the models
ENSO in the Tropical Pacific produced tropic wide at-
mospheric response which was much stronger and more

Table 2 The standard deviations of NINO3 temperature anomalies
from HadCM3 and from two observational data sets, HaddCRUT
(Parker et al. 1995) and GISST3 (Rayner et al. 1996)

Data Standard deviation
of NINO3 anomalies

GISST3 0.77

HadCRUT 0.94

HadCM3 0.89

HadCM3 on HadCRUT grid 0.87
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Fig. 6 Power spectra of the NINO3 anomalies from HadCM3 (solid
line) and from the GISST3 observations (dashed line). The shading
indicates the maximum and minimum power computed from ten 100
year sections of the model control NINO3 anomaly. The solid line is
the average of the power spectra of these ten sections
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wide-spread than is seen in the observations (see Fig. 10
of Tett et al. 1997). This teleconnection pattern domi-
nated the variability of the model in the tropics.

To display the teleconnection patterns we follow Tett
et al. (1997) and perform a regression analysis between
the annually averaged surface temperatures and the
temperature anomalies averaged in the NINO3 region.
The regression coefficients (f) and the amount of vari-
ance explained (R?) are shown in Fig. 7 for the HadC-
RUT temperatures regressed onto the GISST3 NINO3
anomalies. There are large regression coefficients in the
tropical regions over the Pacific, over the Indian Ocean,
and to a lesser extent over the tropical Atlantic. There
are also positive coefficients to the north and south of
the tropical Pacific showing the main mid-latitude re-
sponse to ENSO. The R* diagram gives some indication
of the significance of these regression coefficients.

The pattern of regression coefficients for HadCM3
(Fig. 8) is broadly similar to the observations though
there is too strong a response to ENSO in the West
Pacific warm pool region. This is linked to the enhanced
variability in this region in comparison with the obser-
vations (see discussion and Fig. 3). The R* diagram for
HadCM3 is much more like the observations than that
for HadCM2 (see Tett et al. 1997, Fig. 10) which was
too extensive in its response. Hence the tropic wide

Fig. 7 a Regression coefficients a
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mode of variability, which was a feature of HadCM2,
is much reduced. The reason for this improvement in
ENSO teleconnections is difficult to asses because of the
many changes to the physical parametrization schemes
between HadCM?2 and HadCM3 (see Sect. 2). However,
a comparison of the climate change response of the two
models (Mitchell et al. 1998) shows that HadCM?2 has
an enhanced warming in the tropics in comparison with
HadCM3 with a tropic-wide pattern which is much the
same as that seen during a HadCM2 El-Nifio event. The
enhanced HadCM2 warming in comparison with Had-
CM3 is a consequence of subtle changes in the boundary
layer scheme and in the specification of the critical
relative humidity for cloud formation (Williams et al.
2000), and it appears that these changes lead to an im-
provement in the response of HadCM3 to ENSO SST
anomalies.

7 Interdecadal variability of ocean surface
temperatures

In this section we examine variability in three oceanic
regions, the tropical Pacific, the North Pacific and the
North Atlantic. We focus on decadal to interdecadal
time scales because of the possibility that variations on
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Fig. 8 a Regression coeflicients a
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(contour interval 0.2, positive
contours solid, negative
contours dashed, zero contour
dotted, values greater that 0.4
shaded) and b the percentage of
variance explained (contour
interval 10%, values between
10% and 60% light shading,
values between 60% and 100%
dark shading) in a regression
analysis of annually averaged
HadCM3 temperatures and
NINO3 anomalies
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these time scales may be predictable and thus may lead
to enhanced atmospheric predictability. Our principal
aim is to validate the variability of HadCM3 but we also
examine the 1000 year control run of the model to see
if there are any periodic modes (aside from ENSO
described in the previous section) which may lead to
enhanced predictability.

To focus on decadal to interdecadal time scales
we first average the SSTs from the model ocean
1.25° x 1.25°  longitude-latitude  grid onto the
3.75° x 2.5° atmosphere grid and then low-pass filter
using a Butterworth filter of order 2 and half width of
8 years to remove time scales of less than 10 years. We
then perform an EOF analysis of temperatures in the
Tropical Pacific, the North Pacific and the North At-
lantic. For comparison with observed decadal variability
we compute the EOFs of the low-passed GISST3
(Rayner et al. 1996) data. We choose this over the
HadCRUT data (Parker et al. 1995) because of its
uniform space-time coverage when compared to the

20 40 60 80

HadCRUT data which has variability coverage in both
space and time. However, because of the nature of
the in-filling algorithm used in the production of the
GISST3 data, it is unlikely that the EOF analysis will
produce different results. Folland et al. (1998) have
performed an EOF analysis of the HadCRUT data
and find very similar patterns to those found here. We
average the SSTs onto the coarser atmosphere grid
in order to make a comparison with the GISST3
observations which are more representative of variabil-
ity on this scale because of the algorithm used in the in-
filling and to insure that there are more time points than
space points in EOF algorithm which leads to a more
stable estimate of the covariance matrix. We scale each
EOF by the standard deviation of its principal compo-
nent (PC) which gives an estimate of the magnitude of
SST variability associated with the EOF.

Studies of decadal and longer time scales variability
in the tropical Pacific highlight a pattern of variability
(sometimes called the Pacific Decadal Oscillation, PDO)
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which is similar to the ENSO pattern, but with a broader
meridional extent (see e.g. Zhang et al. 1997, Knutson
and Manabe 1998). The first EOF of the low pass
filtered GISST3 data in the region 120°E to 60°W and
30°S to 25°N (Fig. 9a) explains 49% of the low-passed
variance and is similar to that found by Zhang et al.
(1997) and Knutson and Manabe (1998) who use dif-
ferent analysis techniques and different observational
data. The corresponding first EOF of the 1000 years
of the HadCM3 control (Fig. 9b) explains 43% of the
variance. The familiar triangular shape pointed out by
Knutson and Manabe (1998) is evident in the model
EOF, but there are considerable differences in the detail.
The model has more positive loading in the West Pacific
on the equator compared to the observed EOF. A sim-
ilar feature was seen in the models interannual ENSO
variability and is likely to be due to errors in the mean
climate which has a cold tongue which extends too far
into the west. There is also an anomalous maxima to
the north off the equator in the model EOF and the
model East Pacific maxima is displaced to the south in
comparison with the observed East Pacific maxima.
Nevertheless it appears that the model simulates a
form of PDO.

The 1000-year long simulation of HadCM3 allows us
to assess if there is any cyclic or periodic behaviour of
the PDO. We first form a time series by projecting the
model EOF onto the unfiltered model SST fields and
then compute the power spectra and compare this with
an AR(1) process. This power spectra has a significant
peak at interannual time scales, corresponding to the
projection of ENSO onto the PDO, but no significant
peaks at any other time scales. Thus the models PDO is
consistent with an AR(1) process at the 95% level and is
not an interdecadal periodic phenomena.

Fig. 9 a The first EOF of the
low-pass filtered GISST3 data
in the Tropical Pacific region
and b the first EOF of the low-
pass filtered HadCM3 control
run. The contour interval is 0.05
and solid lines indicate positive
values, dashed lines indicate
negative values and the zero
contour is shown as the dotted
lines. Values greater than 0.2
are shaded
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We next examine decadal variability in the North
Pacific region defined as 120°E to 120°W and 25°N
to 60°N. Latif and Barnett (1996) found a pattern of
interdecadal variability in the North Pacific both in
observations, and in a coupled model, which could be
described by the two highest ranking EOFs. These are
shown for the GISST3 data in Figs. 11a and 10a. In
combination these EOFs explain 73% of the low-passed
variance and are similar to those found by Latif and
Barnett (1996). The leading two model EOFs (Figs. 11b
and 10b) have their order swapped in comparison to the
observations, a feature which was also found by Latif
and Barnett (1996) with their model patterns. The model
EOFs explain 55% of the low-pass filtered variance,
somewhat less than the observations. The model EOF1
and observed EOF2 (Fig. 10) are very similar in pattern
but with the maximum loading in the model displaced
slightly to the west in comparison with the observations.
The model EOF2 and observed EOF1 (Fig. 11) are less
similar though there is a general pattern of positive
loading throughout the North Pacific. The model EOF2
has only small negative loading in the sub-tropical
western region.

Latif and Barnett (1996) described their model
decadal variability in terms of a cyclic mode with a
period of approximately 20 years. Power spectra (not
shown) of the time coefficients formed by projecting the
leading two North Pacific EOFs from HadCM3 onto
the unfiltered model fields show no peaks in the spectra
that are significantly different from an AR(1) process at
the 95% level. This indicates that, although HadCM3
has a similar spatial structure of variability in compar-
ison with other models and with the observations,
there is no indication of a periodic or cyclic mode of
variability.

~ HADCM3—CTL DECADAL EOF 1: 43% VARIANCE
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Fig. 10 a The second EOF of a
the low-pass filtered GISST3
data in the North Pacific region
and b the first EOF of the low-
pass filtered HadCM3 control
run. The contour interval is 0.05
and solid lines indicate positive
values, dashed lines indicate
negative values and the zero
contour is shown as the dotted
lines. Dark shading is used for
values greater than 0.2 and light
shading is used for values less
than -0.2

Fig. 11 a The first EOF of the
low-pass filtered GISST3 data
in the North Pacific region and
b the second EOF of the low-
pass filtered HadCM3 control
run. The contour interval is 0.05
and solid lines indicate positive
values, dashed lines indicate
negative values and the zero
contour is shown as the dotted
lines. Values greater than 0.2
are shaded

Latif and Barnett (1996) suggested that the decadal
North Pacific mode of variability was decoupled from
the tropical regions in both the model and in the ob-
servations. Other authors (e.g. Trenberth and Hurrell
1994) have suggested though that there may be some
link between North Pacific and tropical Pacific decadal
variability. To assess this we simply calculate the cor-
relation coefficients of the time coefficients of the leading
EOFs from the tropical Pacific (Fig. 9) and from the
North Pacific (Figs. 11 and 10). Large correlations are
found between the tropical Pacific PC1 and the North
Pacific PC2 (0.75) for the observations and between the
corresponding tropical Pacific PC1 and the North
Pacific PC1 (0.62) for the model (recall the order of

HADCM3—CTL DECADAL EOF 1: 36% VARIANCE
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the North Pacific EOFs are swapped with respect to the
observed EOFs). Instantaneous correlations between
other principal components are much less and there are
no large correlations at lags of up to 20 years that
would indicate propagating structures. This suggests
that, for the model and for the observations, there is
one pattern of variability, with a spatial structure like
Fig. 11 that exists independently in the North Pacific
and another pattern, with a spatial structure like Fig. 10
which is coupled to the tropical Pacific. A EOF analysis
of the Pacific Ocean basin from 30°S to 60°N (not
shown) confirms this, giving a leading EOF pattern that
is very similar to the combined tropical Pacific EOF1
(Fig. 9a) and North Pacific EOF2 (Fig. 10a) for the
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observations and the combined tropical Pacific EOF1
(Fig. 9b) and North Pacific EOF1 (Fig. 10b) for the
model.

Groétzner et al. (1998) use a canonical correlation
analysis (CCA, see Barnett and Preisendorfer 1987) of
winter season SST and surface pressure to identify pat-
terns of possible coupled variability in the North At-
lantic region in observations and in a coupled model.
CCA finds the spatial patterns from two data sets such
that the correlations between the time coefficients of the
patterns is maximised. CCA patterns do not necessarily
correspond to EOF patterns so rather than using the
EOF method to investigate low-frequency variability of
the North Atlantic, we adopt the CCA approach. The
leading CCA patterns of unfiltered December—February

30w 0

Fig. 12 a The leading CCA pattern HadCM3 SSTs and b MSLP. The
contour interval is 1 and solid lines indicate positive values, dashed
lines indicate negative values and the zero contour is shown as the
dotted lines. Dark shading is used for values greater than 5 and /ight
shading is used for values less than 5
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mean SSTs and mean sea level pressure (MSLP) in the
North Atlantic region (90°W-0°W, 10°N-80°N) are
shown in Fig. 12. The SST pattern explains 11% of the
SST variance and the MSLP pattern explains 40% of the
MSLP variance. The correlation between the CCA mode
time coefficients is 0.64 which is similar to that found by
Grotzner et al. (1998). The SST pattern is a “tripole”
and the MSLP pattern is the models representation of
the North Atlantic Oscillation (NAO) which we examine
in detail in the next section. Both patterns are very
similar to those found by Groétzner et al. (1998) for the
observations (see their Fig. 3) although we find no pre-
ferred time scale for the patterns, the time coefficients
being consistent with an AR(1) process i.e. there are no
significant spectra peaks.

The existence, or not, of a coupled “mode” of vari-
ability in the North Atlantic has been a subject of much
recent debate (see e.g. Rodwell et al. 1999; Bretherton
and Battisti 2000). The CCA analysis suggests that there
may be some ocean-atmosphere interaction in the model
but we cannot be definite about the existence of a cou-
pled mode (in the sense of ENSO being a coupled mode)
without further analysis and possible experiments with
the model (e.g. decoupling the components). We simply
state the fact here that the model reproduces the main
CCA patterns of the observations but there is no pre-
ferred time scale for those patterns. In the next section
we examine the atmospheric component of the CCA
pattern, the NAO.

8 The North Atlantic Oscillation

The dominant atmospheric modes of interannual to
decadal variability in the Northern Hemisphere winter
are the North Atlantic Oscillation (NAO, e.g. Hurrell
1995) and the related hemispheric wide Arctic Oscilla-
tion (AO, e.g. Thompson and Wallace 1998). Signatures
of the NAO and AO can be found in the leading EOFs
of, for example, surface pressure and 500 hPa geopo-
tential height as well as in various indices computed
from station data, and the two modes seem to be inti-
mately linked. The pattern of variability associated with
both involves an alternation of relatively low and high
pressure between the mid-latitudes and polar regions.
Associated with these changes in pressure there are
changes in storminess, precipitation and surface tem-
perature (Hurrel 1995). It has been suggested that the
AO and NAO may be coupled to SSTs and that they
may predictable on seasonal to decadal time scales (e.g.
Rodwell et al. 1999). In this section we examine the
variability of Northern Hemisphere winter in HadCM3
to see if it simulates AO and NAO behaviour and to see
if this variability is in anyway periodic (i.e. statistically
distinguishable from ARI1) suggesting possible predict-
ability. Also the observed NAO index shows a marked
increase from the mid 1960s to the mid 1990s and it has
been suggested (e.g. Shindell et al. 1999) that this may be
a signature of climate change, hence we look at trends in
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the observed and modelled NAO to see if this increase in
NAO index can be explained by natural internal climate
variability.

We first examine the variability of 500 hPa geo-
potential height which characterises the large-scale
tropospheric circulation. The standard deviation of
Northern Hemisphere (20°N-90°N) DJF 500 hPa
height simulated by HadCM3 is shown in Fig. 13a. For
comparison the standard deviation of the DJF 500 hPa
height from NCEP reanalysis (Kalnay et al. 1996) for
1958-1996 is shown in Fig. 13b. Both show maxima
over the North Atlantic and North Pacific coincident
with the two major Northern Hemisphere storm-tracks.
Overall the model captures the observed pattern of
variability well but the amplitude is slightly underesti-
mated.

We next examine the leading EOFs of the model
and NCEP reanalysed 500 hPa geopotential height. We
scale the EOFs by the standard deviation of their cor-
responding principal components to give some idea of
the typical magnitude of anomaly associated with the
EOF. The model and reanalysis EOFs (Fig. 13¢c, d
respectively) both show an anti-correlation between the

Fig. 13 a Simulated standard a
deviation of DJF 500 hPa -
height anomalies (contour
interval is 10 m with shading
above 40 m); b As a but for the
NCEP reanalysis data. ¢ Lead-
ing EOF of simulated 500 hPa
height (contour interval is 10 m
with dark shading above 20 m
and light shading below —20 m).
d As ¢ but for NCEP reanalysis

¢ Simulated EOF #1 23%
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Atlantic and the Arctic regions, although the model
does not show the positive loadings in the Atlantic
extending over western Europe found in the reanalysis.
This model error is likely to be a consequence of
the underestimation of blocking events at the end of
the Atlantic storm tracks (Pope et al. 2000). A more
striking difference is the enhanced correlation seen over
the North Pacific in the simulation in comparison to the
reanalysis. The leading mode of DJF 500 hPa height
has a more AO than NAO pattern with greater tele-
connection between the Pacific and the Atlantic. A
similar pattern was also found by Osborn et al. (1999)
in HadCM2. As was the case for the MSLP component
of the CCA mode in the North Atlantic (see previous
section), the PC of leading EOF has a power spectra
which is consistent, at the 95% level, with an AR(1)
process so there is no preferred time scale or periodic
behaviour in the model AO.

We also examine correlations of the PC of the leading
EOFs with DJF near-surface temperatures (Fig. 14). In
both the model and the reanalysis there are no signifi-
cant correlations with the tropical Pacific region, sug-
gesting that ENSO plays little role in the leading mode

-

b Observed (NCEP)

d Observed (EF;JCEP} EOF #1 23

B




Collins et al.: The internal climate variability of HadCM3

Fig. 14 a Simulated correlation g
of DJF 1.5 m temperature with
leading simulated PC of

500 hPa height. b As a but for
observed data. ¢ Simulated
correlation of DJF mean sea
level pressure leading simulated
PC of 500 hPa height. d As ¢
but for observed data. The
contour interval is 0.2 with dark
shading for values greater than
0.4 and light shading for values
less than —0.4
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of both simulated and observed 500 hPa height (a sim-
ilar result was found for HadCM?2, see Osborn et al.
1999). The correlation structure does appear to be sim-
ilar in both the model and the observations with positive
correlations in the southwest USA, Western Europe and
East Asia with negative correlations apparent over the
Labrador Sea and Africa/Arabia. However the model
does not show a region of positive correlations
throughout northern Eurasia which is clearly evident in
the observations (correlating the time series found by
projecting the model fields onto the observed EOF with
the model surface temperature gives slightly higher
correlations in this region, but the model still falls short
of the observed correlations). Correlations of the PC of
the leading EOFs with DJF mean sea level pressure
(MSLP, Fig. 14c, d) show similar patterns to the leading
EOFs (Fig. 13c, d), with negative correlations over the
polar regions and positive correlations to the south. As
was the case for the EOFs, the model has a positive
correlation in the Pacific regions which is absent in the
observations indicating an enhanced Atlantic-Pacific
teleconnection in the model.

A index of the NAO was defined by Jones et al.
(1997a) in terms of the absolute pressure difference be-
tween stations in Gibraltar and southwest Iceland for
the December—March season. This index is highly cor-
related (coefficients around 0.9) with the leading prin-
cipal component of the NAO mode and with other
station based indices (Osborn et al. 1999) and, because
of the long observational records, allows the recon-
struction of the NAO from the present-day back to
1824. The index is shown Fig. 15 (right hand curve). The
dotted line is the winter index and the thick black line is
the index filtered with the 10 year low pass filter de-
scribed in Sect. 7. The rapid rise in the NAO index from
the mid 1960s to the mid 1990s which, in HadCM2,
could not be explained by natural variability alone
(Osborn et al. 1999), is of considerable interest and it
has been suggested (e.g. Shindell et al. 1999) that it may
be a signal of climate change.

The standard deviations of the HadCM3 and ob-
served NAO series compare well being 6.1 and 6.4 hPa
respectively for the annual indices and 2.5 and 2.6 hPa
for the low-pass filtered data. The power spectra of the
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Fig. 15 North Atlantic Oscillation index (Gibraltar minus southwest
Iceland pressure anomaly for the December—March season) from the
HadCM3 control (left curve) and from the observations of Jones et al.
(1997a) (right curve). The winter indices are shown as the grey lines and
the 10 year low-pass filtered indices are shown as the thick black line

model and the observations (not shown) are both
consistent with a white noise process and have no
significant spectral peaks. The power spectra of the
observed NAO is also consistent with the model power
spectra using the test described in Sect. 3. This suggests
that the observed NAO is consistent with the model
and that the recent trend in the NAO index can be
explained by natural variability alone. Indeed it seems,
from Fig. 15, that the recent large values of NAO index
are within the range of variability of the model. How-
ever, the key aspect is not the absolute magnitude of the
NAO, but the rate of change of NAO with time. An
analysis of the trends in the observed and modelled
NAO indices (using the method described in Sect. 3)
shows that the recent observed rapid rise in NAO is
highly unusual in comparison with the 1000 years of
HadCM3 NAO index. Observed trends of 10 to 70
years in length occur very infrequently in the control
(less than 1% chance), with trends of 30, 50 and 60
years having only one occurrence in the 1000 year
control and trends of 40 years have no occurrence
(Table 3). Hence we can conclude that, while the
absolute value of the observed NAO is within the range
of variability of HadCM3, the rate of change of NAO
in recent years is inconsistent with the internal
variability in the model.

9 Variability of zonal mean atmospheric temperatures

We next turn our attention to variations in zonal mean
temperatures in the atmosphere. Various studies have
proposed that observed changes in the temperature of
the zonal mean atmosphere indicate a strong likelihood
of an anthropogenic influence on climate (Santer et al.
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Table 3 10-80 year trends in the observed NAO and correspond-
ing occurrences of trends greater than the observed trends com-
puted from the 1000 year HadCM3 control run NAO. Occurrences
are quoted in both actual and relative terms (see text for more
details)

Years Length of Trend Occurrence  Relative
(inclusive) trend (years) (hPa/year) occurrence
1989-98 10 1.3 58 0.06
1979-98 20 0.7 4 0.004
1969-98 30 0.4 1 0.001
1959-98 40 0.3 0 0

1949-98 50 0.2 1 0.001
1939-98 60 0.1 1 0.001
1929-98 70 0.07 12 0.01
1919-98 80 0.04 219 0.2

1995; Tett et al. 1996; Allen and Tett 1999). Such claims
rely heaviliy on a good model simulation of the internal
climate variability of the free atmosphere and are
furthermore confounded by the sparse observational
radiosonde network. Here we compare the simulated
zonal mean atmospheric variability from HadCM3 with
the observed variability from the HadRT2.1 gridded
radiosonde dataset, an updated version of that described
in Parker et al. (1997). The radiosonde profiles are bin-
ned into monthly means on a 10° longitude by 5° lati-
tude grid with eight levels in the vertical from 850 hPa to
50 hPa and are for the 40-year period 1958 to 1997.
Annual data was computed from the gridded (lati-
tude, longitude, pressure) radiosonde temperatures by
averaging the monthly data in each grid box with the
requirement that there be eight months with data in the
year. Grid boxes without eight months of data were
flagged as “missing”’. Non-overlapping 40-year segments
of annual mean data were taken from the control sim-
ulation, tri-linearly (pressure, longitude and latitude)
interpolated to the observational grid and where the
observations were missing the simulated values were also
set to missing. The equivalent 20-year average was re-
moved from each 40-year segment to be consistent with
observations which have the 1971-1990 average re-
moved. Both simulated and observed data were then
zonally averaged using the criterion that if there was at
least one point in each latitude band then a zonal value
was computed. Each 40-year segment then had the
40-year average removed with the further requirement
that at each longitude-pressure point there be 20 values
otherwise the resultant value was again flagged as
missing. Standard deviations from the observations
and the model data were then computed from these
processed datasets. Following Gillett et al. (2000) the
maximum and minimum standard deviation from the 19
40-year segments of simulated data were retained. These
values correspond to approximately the 5% levels for
the control to be consistent with the observations i.e. at
any point, we can say, with 95% confidence, that the
model has too much variability if the minimum standard
deviation is greater than that observed, and too little
variability if the maximum is less than that observed.
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For comparison the standard deviation of the zonal-
mean temperatures were also computed from the full
model grid with no interpolation or masking of missing
data.

The unprocessed model fields (Fig. 16a) show a
maximum in variability in the polar stratosphere
regions and at the tropical tropopause, and minimas
in the mid-latitude troposphere in both hemispheres.
Masking the simulated data by the observational mask
has some effect on the magnitude of the variability
although the overall pattern remains the same. The
model has too little variability in the stratosphere and
throughout most of the extra-tropical atmosphere.
This is confirmed by computing the ratio of the
model to observed standard deviations and shading
the regions of statistical significance as defined already
(Fig. 16d). There are a few regions where the model
has too much variability (25°N and 25°S at approxi-
mately 300 hPa) but the model has too little variability
in the entire stratosphere (standard deviations are
40-80% of those observed) and in the extra-tropical
troposphere (standard deviations are 60-80% of those
observed).

The poor simulation of stratospheric variability in
HadCM3 is likely to be due to the lack of quasi-biennial
oscillation (e.g. Andrews et al. 1987) in the model, and

Fig. 16 a Standard deviation of a
annual zonal mean temperature of
from the control simulation of |
HadCM3. A contour interval of
0.1 K is used with dark shading
for values less than 0.3 K and
light shading for values greater
than 0.5 K. b As a but for
masked model. ¢ As b but for
observations (HadRT2.1).

d Ratio between the model
standard deviation and the ob-
served standard deviation. A
contour interval of 0.2 is used.
Dark (light) shading shows
where the observed standard
deviations are significantly
smaller (larger) the model value

Pressure (hPa)

Pressure (hPa)
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to the poor simulation of major sudden warmings (e.g.
Swinbank et al. 1998). The lack of mid-latitude tropo-
spheric variability is of more concern, although it is
consistent with the findings of the previous section that
the 500 hPa height variability in the Northern Hemi-
sphere region is somewhat underestimated in HadCM3
(see Fig. 13a, b). Other candiates such as anthropogenic
or natural climate variations not simulated in the control
climate are also possible.

Earlier work (Gillett et al. 2000) has shown that the
control simulation of HadCM2 seemed to show too
much coherence between changes in the surface and in
the free atmosphere. Several authors (e.g. Hurrell and
Trenberth 1997) have claimed that there are differ-
ences in the observed trends of surface temperature
and of temperature in the free troposphere. We in-
vestigate this by computing the correlation between
the zonal mean temperatures and the global averaged
surface temperature for both the model and the ob-
servations, taking into account the missing data mask
(Fig. 17). Significance is assessed by comparing the
maximum and minimum value from the non-overlap-
ping 40-year segments of the control with the obser-
vations.

The observations (Fig. 17a) show large positive cor-
relations with the surface throughout most of the tro-
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posphere and negative correlations in the stratosphere.
The model (Fig. 17b) shows large positive correlations
only in the equatorial troposphere with only a small
region of large negative correlations in the equatorial
stratosphere. There are large regions of significant
differences between the model and observations: The
model has correlations that are too large in the equa-
torial upper troposphere and throughout most of the
stratosphere (where the observations show large nega-
tive correlations and the simulation does not). The
difference between the model and observations in the
Northern Hemisphere, where the observations show
large positive correlations and the model does not, are
also significant.

Part of the explanation for these differences between
the model and observed correlation structures may be
due to external forcings acting on the climate system
such as changes on greenhouse gases, stratospheric
ozone or explosive volcanic eruptions, though this does
not rule out the possibility of model error.

10 Summary

We have examined the internal climate variability of a
1000 year long integration of the third Hadley Centre
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coupled model, HadCM3. Our aims were to validate the
internal climate variability of the model, to examine
the model for any periodic modes of variability, to assess
the probability of recent observed trends in climate
variables, and to compare the model with the previous
version of the Hadley Centre model, HadCM2.

The standard deviation of global mean 1.5 m tem-
perature from HadCM3 is in good agreement with the
standard deviation of the detrended observed surface
temperature record of Jones (1994) and Parker et al.
(1995), and with the standard deviation of the global
mean 1.5 m temperature of HadCM2. Also, the power
spectrum of the global mean surface temperature of
the model is consistent with the power spectrum of the
observed temperature on interannual to decadal time
scales, and the model has no periodic modes of global
temperature. Linear trends computed from the obser-
vations over the most recent 20 years and longer,
are highly unlikely in the context of the variability of
HadCM3, indicating that the observed changes in
mean climate are inconsistent with internally generated
climate variability.

The spatial pattern of surface temperature variability
in HadCM3 is qualitatively similar to that of the ob-
servations, with there being greater variability over the
land than over the ocean areas and with the greatest
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Fig. 17 a Observed correlations a
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variability over the Northern Hemisphere continents.
However, there are some regional differences between
the model and the observations and there is a tendency
for the model to overestimate the variability over land.
In comparison with HadCM2, the introduction of the
MOSES surface scheme (Cox et al. 1999) alleviates the
variability bias over land in Western Europe and North
America to a certain extent, but HadCM3 still seems to
overestimate the variability in these, and other regions.
Decomposing the variability into spectral bands shows
that the land areas generally have similar levels of
variability on different time scales (white noise) and that
ocean areas generally have more variability at longer
time scales (red noise).

The only notable exception to this rule is in the
tropical Pacific ocean of the model which has a spectral
peak at interannual time scales associated with the
ENSO. HadCM3 has a reasonable simulation of ENSO
having an amplitude that is within the range of uncer-
tainty of the observations, and a broad spectral peak
centred on a period of 3—4 years which is significantly
different from the spectra of an AR(1) process at the
95% level. There is too much ENSO related variability
in the Western Pacific warm pool where the mean cli-
mate of the model is too cold and the thermocline too

Latitude

shallow. Hence the model can respond more rapidly to
changes in surface fluxes and wind stress than in reality.
The excessive teleconnection of ENSO to the rest of the
globe, that was a feature of HadCM2, is much improved
in HadCM3.

The interdecadal variability of the ocean surface
temperatures was examined in three regions, the tropical
Pacific, the North Pacific and the North Atlantic. The
dominant pattern of interdecadal tropical Pacific vari-
ability resembles the observed PDO but with too much
variability in the west associated with errors in the mean
climate in the region. The model PDO shows no peri-
odic behaviour in contrast to the model ENSO which
has a quasi-regular oscillation with a period of 3-4
years. The two leading patterns of North Pacific inter-
decadal variability in the model are similar to those
computed from the observations, but with some differ-
ences in the region of the Kuroshiro current. As was the
case for the tropical Pacific, there was is no preferred
time scale for the variability but there is some indication
of a link between the tropical Pacific and the North
Pacific variability in the model. Joint analysis of SST
and MSLP in the North Atlantic region of the model
shows a similar pattern to that seen in the observations
indicating the possible importance of ocean-atmosphere
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coupling in this region. Again though, there are no
significant spectral peaks in the time coefficients of the
patterns.

HadCM3 simulates AO/NAO variability in Northern
Hemisphere winter. The leading EOF of 500 hPa height
in the model was found to be in reasonable agreement
with the observed leading EOF showing an anti-corre-
lation between high latitudes and mid-latitudes. How-
ever, the model shows excessive teleconnection between
the North Atlantic and the North Pacific (which was
also the case for HadCM?2). An index of the NAO
computed from the model shows good agreement with
the observations in terms of the magnitude of the stan-
dard deviation and the spectral characteristics. Howev-
er, the observed upward trends in the NAO index are
highly unusual when compared to the model NAO
trends.

The variability of the zonal mean temperature of the
atmosphere is generally underestimated in HadCM3,
particularly in the stratosphere and in both the northern
and southern mid-latitude tropospheres. Also the cor-
relations between the global surface temperature and the
zonal mean atmosphere are poorly simulated by the
model. Although some of these errors may be due to
external forcing (e.g. stratospheric ozone depletion) not
represented by in the control, this is an area where the
model simulation could be improved. We note recent
success in an atmosphere only version of HadCM3, with
enhanced vertical resolution in the stratosphere and
a parametrisation of non-orographic gravity waves, in
simulating a QBO (Scaife et al. 2000). Hence it seems
that corrections to the models simulation of zonal mean
temperature variability are possible.

The removal of flux adjustment has been one of the
major goals of climate modelling in recent times. We
have shown that internal climate variability can be rea-
sonably well simulated by a coupled model without flux
adjustments, although we note that there are several
improvements which can, and should, be made. If one
assumes that the internal climate variability of HadCM3
can be used as a surrogate for the internal variability of
the real climate system, then we may draw the following
conclusions:

1. Observed trends in global annual mean surface tem-
perature from all years prior to 1979 to 1998 cannot
be adequately explained by internal climate variabil-
ity and thus must be forced by external factors.

2. Observed trends in the NAO index over the past 20—
70 years cannot be adequately explained by internal
climate variability and thus must also be forced by
external factors.

3. ENSO is the only periodic mode of climate variabil-
ity, where periodic is defined as having a spectral
peak which is statistically distinguishable from an
AR(1) process.
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