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have surpassed the preindustrial levels by approximately 
1.5  °C, marking it as the highest global monthly average 
temperature in recorded human history (Climate Change 
Service 2023). Globally, human activities have resulted in 
an increased frequency and intensity of extreme weather 
events and climate incidents (Dong et al. 2020, 2022; Eng-
daw et al. 2023; Jiang et al. 2022; Lu et al. 2016; Mada-
kumbura et al. 2021; Xu et al. 2022; Yin et al. 2017). This 
has escalated the risks of heatwaves, droughts, and floods, 
with profound implications for ecosystems, human health, 
and socioeconomic well-being (Fu and Wen 2002; Williams 
et al. 2015). As the warming trend continues to intensify, 
extreme climate events will pose critical threats to food and 
water security. Moreover, extreme events such as severe 
heatwaves, floods, droughts, and wildfires have become 
increasingly common in China. Beyond the threshold of 
temperature rise, the intensity and scope of these extreme 
climate events are bound to escalate further, with far-reach-
ing consequences.

1  Introduction

In recent decades, the global temperature has been steadily 
rising. Between 2011 and 2020, the global average tem-
perature increased by 1.09  °C compared to the preindus-
trial period (1850–1900), primarily due to human activities 
(IPCC 2021). The IPCC AR6 Working Group I pointed out 
that, irrespective of emission scenarios, the temperature rise 
is inevitably poised to exceed the 1.5 °C threshold within 
2020 to 2040. In fact, as of July 2023, global temperatures 
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Abstract
This paper evaluates the NASA Earth Exchange Global Daily Downscaled Projections’ (NEX-GDDP) CMIP6 models’ 
performance in simulating extreme climate indices across China and its eight subregions for the period 2081–2100 under 
SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios. The models effectively reproduce the spatial patterns of extreme high tem-
peratures, especially in northern China. They show enhanced capabilities in accurately simulating the maximum daily 
maximum temperature (TXx) and the number of high temperature days (T35). They improve the cold bias of the TXx 
index in Northwest China and warm bias in South China. In terms of precipitation, the models demonstrate strong per-
formance, evidenced by significant spatial correlations in total wet day precipitation (PTOT) simulations. They reduce the 
biases of PTOT and simple daily intensity (SDII) compared to CMIP6 models. Regionally, they enhance PTOT accuracy 
along southern coasts and in Yunnan, better captures very heavy precipitation days (R20) in the Southwest region, max 
5-day precipitation (RX5D) in North China and Southwest region, and SDII in the Northeast region and Yunnan. Under 
SSP5-8.5 scenario, significant impacts include increased TXx in Northwest China, more heatwave days in Southwest 
China, and more T35 in South China. Extreme precipitation will become more frequent in South and East China, with 
the greatest intensity increases in Southwest China (SWC1). North China will see fewest consecutive dry days (CDD) 
indices, while consecutive wet days (CWD) will prominently rise in SWC1.
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China’s climate is significantly influenced by the East 
Asian monsoon and the Qinghai-Tibet Plateau, resulting in 
large variability and a wide range of extreme weather and 
climate events, often leading to frequent disasters (Chen 
et al. 2023; Cui et al. 2019; Duan and Wu 2005; Liu et 
al. 2023). In recent years, China has experienced multiple 
record-breaking extreme climate events. For instance, in 
the summer of 2023, a historically rare heavy precipitation 
event occurred in most parts of North China, with the maxi-
mum accumulated rainfall reaching 1003  mm in Licheng 
County, Xingtai, Hebei Province (National Climate Cen-
ter of China 2023). In the summer of 2022, an extremely 
prolonged heatwave event affected the central and eastern 
regions of China, with the overall intensity of the heatwave 
being the strongest since 1961 (Ma and Yuan 2023). In 
2021, Zhengzhou, Henan Province, experienced an unprec-
edented extreme rainfall event, with a maximum daily 
precipitation of 624 mm, close to the annual average precip-
itation of the station (641 mm), resulting in significant loss 
of life and extensive economic damage (Zhang et al. 2023). 
In the future, anthropogenic climate change will increase 
the occurrence of extreme weather and climate events in 
China, heightening the country’s exposure to climate risks 
and leading to a lock-in effect (IPCC 2022). Therefore, it is 
essential to conduct high-precision estimations of the future 
evolution of extreme climate events in China and take pro-
active measures in advance.

Climate system models not only have the capability to 
simulate historical changes in global climate but also pro-
vide estimations of future variations, serving as crucial 
research tools for climate change detection and attribution. 
The previous CMIP5 models have demonstrated the ability 
to replicate the increasing spatial distribution of precipita-
tion in China from northwest to southeast. However, they 
tend to underestimate precipitation in the coastal regions 
of southern China while overestimating precipitation in the 
northern part of the country and the Qinghai-Tibet Plateau 
(Chen et al. 2014). Additionally, they have shown good per-
formance in simulating the climatic means and trends of 
precipitation extremes in China (Chen and Sun 2015). The 
simulations of precipitation extremes in the CMIP5 mod-
els have revealed wet deviations in western and northern 
China, accompanied by dry biases in southeastern China, 
as reported by Jiang et al. (2015). The sixth phase of the 
International Coupled Model Intercomparison Project 
(CMIP6) has witnessed the largest participation of models 
among all previous phases, providing critical data support 
for the IPCC-AR6 report. Compared to the climate models 
used in the previous phase, CMIP6 models feature higher 
resolutions, more complex and refined physical processes, 
and utilize the latest shared socioeconomic pathways (SSPs) 
for future projections. Compared to the CMIP5 models, the 

CMIP6 models exhibit substantial improvements in simu-
lating the dry bias in southern China and show compelling 
enhancements in capturing the climatological characteris-
tics of extreme precipitation events (Chen et al. 2020; Xu 
et al. 2021; Zhu et al. 2021). CMIP6 models also perform 
better in simulating extreme temperature events in China 
than CMIP5 models (Yang et al. 2023). However, they still 
encounter difficulties in reproducing the spatial patterns of 
certain extreme temperature indices, such as TX90P (days 
with maximum temperature exceeding the 90th percentile) 
and heatwave events (Hirsch et al. 2021; Zhu et al. 2020). 
The differences in simulations between the two generations 
of models are mainly attributed to the upgraded physical 
schemes in the CMIP6 models (Zhu et al. 2020). Zhu et al. 
(2021) found that the spatial distributions of extreme indi-
ces in the 21st century projected by the CMIP5 and CMIP6 
models are generally consistent. The projected results of 
the CMIP6 models indicate a significant increase in the 
TXX index (annual maximum of the daily maximum tem-
perature) over northern China, while the southern region is 
expected to experience the most pronounced increases in 
TX90P and WSDI (warm spell duration index) (Zhang et 
al. 2021). In the future, apart from a decreasing trend in the 
CDD (consecutive dry days) index, various regions across 
China are expected to experience a significant increase in 
total precipitation, maximum consecutive 5-day precipita-
tion, and the number of heavy rainfall days. Moreover, the 
CMIP6 simulations also indicate a greater increase in total 
precipitation and extreme precipitation over the Yangtze 
River basin and areas near 40°N (Zhu et al. 2021).

Although the CMIP6 models have shown significant 
improvements in simulating performance compared to pre-
vious model generations, there is still considerable uncer-
tainty in the simulations and projections (Wei et al. 2023; 
Xu et al. 2021). This primarily stems from the models’ inad-
equate representation of large-scale atmospheric circulation 
fields, deficiencies in physical parameterization schemes, 
challenges in accurately reproducing aerosol-radiation 
interactions and anthropogenic aerosol-cloud interactions’ 
radiative forcing, and uncertainties in emission scenarios 
(Fan et al. 2022; Huang et al. 2013; Van Vuuren et al. 2011; 
Zhang et al. 2021; Zhou et al. 2014). In addition, the coarse 
resolution of the models poses challenges in capturing 
local-scale climate responses and hinders their application 
at the regional level. Therefore, it is imperative to apply 
correction and downscaling techniques to the model output 
before utilizing it. Both dynamic and statistical downscal-
ing techniques have been used extensively to refine the spa-
tial resolution of climate simulations and to bridge the gap 
between coarse global climate models (GCMs) and local-
scale climate information (Tang et al. 2016). However, the 
application of dynamical downscaling is often limited by 

1 3



Future changes in extremes across China based on NEX-GDDP-CMIP6 models

its significant computational requirements and the complex 
thermodynamic equations and computational processes 
needed to generate high-resolution climate outputs (Han 
and Wei 2010; Xu et al. 2018). In contrast, statistical down-
scaling methods provide an alternative approach by estab-
lishing empirical relationships between GCM outputs and 
local observations of climate variables, bypassing the need 
for complex physical equations. This simplicity and effec-
tiveness have made statistical downscaling a widely used 
technique in a variety of climate-related studies (Yao et al., 
2019; Yang and Tang 2023), providing valuable insights 
into regional adaptation strategies at finer scales.

In the context of China’s diverse topography and cli-
matic zones, coupled with its vast population, the nation 
exhibits a pronounced sensitivity and vulnerability to cli-
mate extremes, which can have significant socio-economic 
and environmental repercussions (Wang et al. 2020). So, 
the motivation for this study stems from the critical need 
to understand how future climate change may alter the 
occurrence and severity of extreme climate events across 
China. The National Aeronautics and Space Administra-
tion (NASA) has initiated a global daily data downscaling 
program, which has performed downscaling treatments on 
historical and projection experiments of 21 CMIP5 models. 
This program provides downscaled data at the global scale 
and high resolution while also correcting biases in both his-
torical and projection experiments. These downscaled data 
exhibit excellent modeling capabilities for extreme climate 
events in China’s region, offering more climate change 
information at the regional scale and reducing the uncer-
tainty range of extreme precipitation events (Chen et al. 
2017; Zhou et al. 2018). Recently, NASA released the latest 
version of these data (NEX-GDDP-CMIP6), which is based 
on the downscaling and correction of daily values using 
CMIP6 models (Thrasher et al. 2022). The NEX-GDDP-
CMIP6 models provide a valuable tool for assessing these 
changes. By evaluating the performance of these models in 
simulating historical extreme climate indices and projecting 
future changes, this research provides a robust basis for cli-
mate risk assessment and inform decision-making processes 
related to climate change adaptation and mitigation.

This paper is organized as follows: Sect. 2 describes the 
observations, NEX-GDDP-CMIP6 data, methods and study 
area used in this study. Section 3 evaluates the results based 
on the simulations of the 26 NEX-GDDP-CMIP6 models 
and multi-model ensemble (MME). The future changes in 
climate extremes projected by MME and climate model 
agreements are also explored in Sect. 3. The conclusion and 
discussion are given in Sect. 4.

2  Materials and methods

2.1  Datasets

The CN05.1 dataset is a comprehensive collection of daily 
observations that have been acquired since 1961 from more 
than 2,400 ground meteorological stations scattered across 
various regions within China. Employing the anomaly 
approach, distinct climate variables’ climatic and anomaly 
fields were independently interpolated and subsequently 
integrated to generate gridded data (Wu and Gao 2013). The 
spatial resolution of this dataset is precisely defined as 0.25° 
× 0.25°. The daily maximum temperature and precipitation 
of this dataset were used to evaluate the climate models’ 
simulation capabilities.

The model data utilized in this study incorporate daily 
maximum temperature and precipitation data under the his-
torical experiment of 26 CMIP6 models from the Global 
Daily Downscaled Projections dataset by the National 
Aeronautics and Space Administration (NASA), as well as 
the model projections under the SSP1-2.6, SSP2-4.5, and 
SSP5-8.5 emission scenarios (Thrasher et al. 2022). These 
scenarios represent a low-emissions “taking the green road” 
forcing, an intermediate “middle of the road” forcing and 
a high-emissions “fossil-fueled development” forcing, 
respectively. The spatial resolution of the dataset is 0.25° × 
0.25° (Table 1).

The BCSD method utilized in NEX-GDDP-CMIP6, 
which integrates bias correction and spatial disaggregation, 
was applied to refine the CMIP6 historical and future pro-
jections. The core algorithm of bias correction remains con-
sistent, but the model adapts scaling factors to the specific 
climatic characteristics of each region. This ensures that 
the model’s outputs align more closely with local climate 
records. Rather than using the same parameters statically 
for different regions, the model dynamically adjusts them 
based on local climatology and scaling factors derived from 
the bias-corrected GCM data and observational datasets. 
This dynamic adjustment allows the model to accurately 
represent the unique climatic conditions of each region in 
China. Capturing the complex topography and diverse cli-
mate systems across China is particularly important. This 
approach of resolution improvement and observational 
adjustment enhances the performance of the NEX-GDDP-
CMIP6 compared to raw CMIP6 models. The dataset can be 
downloaded from the following website: https://www.nccs.
nasa.gov/services/data-collections/land-based-products/
nex-gddp-cmip6.

In line with the PCC AR6 report, the reference period 
spanned from 1995 to 2014, while the projection period 
covered 2015 to 2100, with a specific focus on the long 
period of the 21st century (2081–2100).
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extremes, which are critical for understanding potential cli-
mate change impacts.

We selected a total of 13 extreme climate indices as the 
primary focus, comprising 5 extreme temperature indices 
and 8 extreme precipitation indices (Table 2). To facilitate 
a concise summary of the results, the chosen indices were 
classified as follows: PTOT (total wet day precipitation), 
SDII (simple daily intensity), RX1D (max 1 day precipita-
tion), RX5D (max 5 day precipitation), and TXX (maximum 
of daily maximum temperature) were categorized as abso-
lute indices; CDD (consecutive dry days) and CWD (con-
secutive wet days) were classified as duration indices; R20 
(very heavy precipitation days), R50 (extremely very heavy 
precipitation days), and T35 (number of high temperature 

2.2  Methods

In this study, we have employed a comprehensive evalua-
tion approach to assess the performance of the NEX-GDDP-
CMIP6 models. The models were evaluated using a set of 13 
extreme climate indices, which were chosen for their ability 
to capture both temperature and precipitation extremes. The 
Taylor diagram was used to visualize the models’ perfor-
mance in terms of spatial correlation and standard deviation 
ratios, while the Taylor skill score (TS) provided a quantita-
tive measure of how well the models simulated the climatol-
ogy of climate states. These metrics are particularly useful 
for evaluating the models’ ability to reproduce the climate 

Table 1  Information on the 26 climate models used in the study
NEX-GDDP-CMIP6

Model Total 26 models: ACCESS-
CM2 ACCESS-ESM1-5 
BCC-CSM2-MR CanESM5 
CMCC-CM2-SR5 CMCC-
ESM2 CNRM-CM6-1 
CNRM-ESM2-1 EC-Earth3 
EC-Earth3-Veg-LR GFDL-
CM4 GFDL-ESM4 GISS-
E2-1-G HadGEM3-GC31-LL 
INM-CM4-8 INM-CM5-0 
IPSL-CM6A-LR KACE-1-
0-G MIROC6 MIROC-ES2L 
MPI-ESM1-2-LR MRI-
ESM2-0 NESM3 NorESM2-
LM TaiESM1 UKESM1-0-LL

Simulation Historical (1961–2014)
SSP1-2.6 (2015–2100)
SSP2-4.5 (2015–2100)
SSP5-8.5 (2015–2100)

Variable Tasmax, Pr
Temporal Resolution Daily
Spatial Resolution 0.25°×0.25°
Under the SSP1-2.6 scenario, the CMCC-CM2-SR5 and GFDL-CM4 models do not have daily maximum temperature data, while the GFDL-
CM4 model also lacks daily precipitation data

Table 2  Extreme temperature and precipitation indices
Indices Definitions Units
TXx The annual maximum value of daily maximum temperature ℃
T35 Number of days with maximum temperature greater than and equal to 35 °C day
TX90P Percentage of days when Tmax larger than the 90th percentile %
HWF Annual count of heat waves (defined as 3 succeeding days with Tmax exceeding 90th percentile of the climatology) time
HWD Annual count of days for the heat waves day
CDD Maximum number of consecutive days with precipitation less than 1 mm day
CWD Maximum number of consecutive days with precipitation no less than 1 mm day
R20 Annual count of days with precipitation no less than 20 mm day
R50 Annual count of days with precipitation no less than 50 mm day
RX1d Annual maximum 1-day precipitation mm
RX5d Annual consecutive maximum 5-day precipitation mm
SDII Annual mean precipitation on days with precipitation more than1 mm mm/day
PTOT Annual total precipitation in wet days mm
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Central China (CC; 27°–36°N, 106°–116°E), Northwest 
China (NWC; 36°–46°N, 75°–111°E), the Tibetan Plateau 
(SWC1; 27°–36°N, 77°–106°E), Southwest China (SWC2; 
22°–27°N, 98°–106°E), and South China (SC; 20°–27°N, 
106°–120°E).

The Taylor diagram is a vital and concise tool used to 
assess the capabilities of models by examining the statis-
tics concerning pattern correlation coefficients and the 
ratios of standard deviations (RSD) obtained from model 
outputs and observational data. A comprehensive elucida-
tion of these statistics can be found in Taylor’s work (2001). 
A close proximity of both the correlation coefficient and 
RSD to 1 signifies a strong performance by the model. The 
Taylor skill score (TS) is a comprehensive index devised 
using pattern correlation coefficients and ratios of standard 
deviations (RSDs). The closer the TS score approaches 1, 
the stronger the simulation performance of the model. We 

days) were designated as threshold-based indices; and 
TX90P (warm days), HWF (heat wave frequencies), and 
HWD (heat wave days) were denoted as percentile indices. 
TXX, TX90P, CDD, CWD, R20, R50, RX1D, RX5D, SDII, 
and PTOT were established and defined by the Expert Team 
on Climate Change Detection and Indices (ETCCDI; http://
etccdi.pacificclimate.org/list_27_indices.shtml; Klein et al. 
2009), while T35, HWF, HWD, and R50 have also applied 
widespread application in climate change research (Wu et 
al. 2023b; Hirsch et al. 2021; Sun et al. 2011; Guo et al., 
2016).

For a comprehensive investigation of regional varia-
tions, we adopted the regional classification established 
by Zhou et al. (2014) to divide China into 8 subregions 
(Fig. 1). These subregions included Northeast China (NEC; 
39°–54°N, 119°–134°E), North China (NC; 36°–46°N, 
111°–119°E), East China (EC; 27°–36°N, 116°–122°E), 

Fig. 1  The distinct domains of China’s eight subregions (NEC: north-
east China; NC: north China; EC: east China; CC: central China; SC; 
south China; SWC1: southwest China, region 1; SWC2: southwest 

China, region 2; and NWC: northwest China; the shaded area rep-
resents the topographical height by using the ETOPO data, Unit: m; 
http://lijianping.cn/dct/attach/Y2xiOmNsYjpuYzoxMzY=)
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3  Results

3.1  Performance of NEX-GDDP-CMIP6 models

First, an evaluation of the downscaling models’ capability 
to simulate the climatology of extreme high-temperature 
events was conducted (Fig. 2). In the observations, the high 
value center of extreme high temperatures resided in the 
northwestern region of China, with values surpassing 40℃. 
Other high-value areas were in North China and the Yangtze 
River Basin, where temperatures exceeded 37℃. The low-
est values, below 15℃, could be found in the northwestern 
part of the Qinghai-Tibet Plateau. The NEX-GDDP-CMIP6 
ensemble average closely aligned with observations, exhib-
iting a spatial correlation coefficient of 0.98. However, the 
model overestimated values in the northeastern region. The 
regions with high T35 index values were likewise situated 
in the northwestern part of China, as well as in North China 
and the Yangtze River Basin, where values exceeded 16 
days. Low-value regions encompassed the southwest and 
northeastern parts of the country, with values below 0.5 
days. The model ensemble average effectively simulated 
the number of hot days, with a spatial correlation coefficient 
reaching 0.88. Nevertheless, it overestimated and underesti-
mated the number of hot days in the northeastern region and 
the area south of the Yangtze River, respectively. The high-
value regions for TX90P were predominantly concentrated 

calculated the Taylor skill scores (TS) for extreme climate 
indices simulated by individual models and the ensemble 
mean, as well as the TS scores for the eight subregions sim-
ulated by the multi-model ensemble (MME, represented as 
the multi-model average).

TS =
4(1 + R)2

(σsm
σto

+ σto
σsm

)2(1 + R0)
2 � (1)

In this equation, R represents the pattern correlation coef-
ficient, and R0equals 0.999, which is substituted into the 
formula as the maximum correlation coefficient among all 
models. σsm

and σso
denote the area-weighted ratios of stan-

dard deviations (RSDs) for the models and observations, 
respectively.

Simulated and projected changes in extreme climate 
indices in the long-term period (2081–2100) relative to the 
baseline period of 1995–2014 are calculated as follows:

When the indices’ units are mm and mm/day:

Relative Change =
Indexfuture − Indexbaseline

Indexbaseline
× 100%� (2)

When the indices’ units are %, ℃ and day:

Relative Change = Indexfuture − Indexbaseline � (3)

Fig. 2  Spatial distributions of TXX (a, b), T35 (c, d), TX90P (e, f), HWF (g, h) and HWD (i, j) from the observation (a, c, e, g, i) and multimodel 
ensemble (MME) mean of 26 NEX-GDDP-CMIP6 models (b, d, f, h, j) over China during 1995–2014
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with spatial correlation coefficients of approximately 0.5, 
although their standard deviation ratios were less than 1. 
The latter three models outperformed the MME and BCC-
CSM2-MR models. On the other hand, the ACCESS-
ESM1-5, CMCC-CM2-SR5, MIROC6, and MIROC-ES2L 
models exhibited the poorest performance and exhibited 
a negative correlation with observations. The models also 
showed limited ability to simulate the HWF index, with 
scattered results on the Taylor diagram. The BCC-CSM2-
MR model performed relatively well, with a spatial cor-
relation coefficient exceeding 0.5 and a standard deviation 
ratio close to 1. On the other hand, the ACCESS-ESM1-5, 
CMCC-CM2-SR5, MIROC6, and MIROC-ES2L models 
continued to demonstrate a negative correlation with obser-
vations. The models’ performance in simulating the HWD 
index was slightly better than that for TX90P and HWF. 
The MME, BCC-CSM2-MR, GISS-E2-1-G, and CNRM-
CM6-1 models performed the best, with spatial correlation 
coefficients all exceeding 0.6. The ratio of their standard 
deviation to that of the observations was close to 1 for the 
GISS-E2-1-G and CNRM-CM6-1 models. Conversely, the 
ACCESS-ESM1-5, MIROC6, and MIROC-ES2L models 
exhibited poorer performance. The analysis indicated that 
the NEX-GDDP-CMIP6 model performed well in simu-
lating TXX and T35, possibly due to the incorporation of 
observational data corrections. However, the corrected 
models had difficulties in simulating the TX90P, HWF, and 
HWD indices. These indices showed significant deviations 
from the observations, and there were considerable differ-
ences between the various models. Compared to the CMIP6 
models, the NEX-GDDP-CMIP6 model improved its per-
formance in representing TXX. The downscaled dataset 
exhibited a higher spatial correlation with observations and 
significantly enhanced the consistency among models. (Wei 
et al. 2023; Zhu et al. 2020). The spatial correlation coeffi-
cients of the T35 indices simulated by NEX-GDDP-CMIP6 
(0.88) are higher than those of the original CMIP6 model 
(0.7), and the intermodal variations are more consistent, but 
the ratios of the standard deviations are higher than those of 
the CMIP6 model (Guo et al. 2022).

The Taylor skill score provided a more intuitive evalua-
tion of the climate model’s ability to represent the climatol-
ogy of the climate state. Figure 4 presents a histogram of 
the Taylor skill scores, where a score closer to 1 indicated a 
stronger simulating skill. In Fig. 4, both individual models 
and MME demonstrated strong simulating capabilities for 
the TXX index, with an MME Taylor skill score of 0.98, 
followed by the T35 index with a score of 0.67. However, 
the models exhibited weaker performance in capturing the 
climatology of the TX90P index over the China region, 
with an MME score of only 0.49. Nine models had a Tay-
lor skill score exceeding 0.5, among which GISS-E2-1-G 

in western Yunnan Province, Guangdong Province, and 
other areas, with values exceeding 20%. Low-value regions 
were mainly observed in North China, with values below 
12%. The model struggled to reproduce this distribution 
pattern, generally underestimating the percentage of warm 
days, with a spatial correlation coefficient of 0.51. The 
high-value center of HWF was primarily found in Qinghai 
Province, western Tibet Autonomous Region, western Yun-
nan, Guangdong, and other places, with values exceeding 
9 times. The low-value center appeared in North China, 
with values below 5 times. The model ensemble average 
underestimated most regions of the nation, particularly the 
western areas, exhibiting a spatial correlation coefficient 
of only 0.46. It performed relatively well in simulating the 
North China region. Regarding HWD, the high-value center 
predominantly occurred in the western region of China and 
Guangdong Province, where values exceed 40 days. The 
low-value center was in North China and the northeastern 
region, with values below 24 days. The model ensemble 
average underestimated values in the eastern part of the 
NWC region, as well as the CC, EC, and SC regions, with a 
spatial correlation coefficient of 0.66, but it effectively sim-
ulated the remaining areas. In summary, the NEX-GDDP-
CMIP6 ensemble average successfully simulated the spatial 
patterns of TXX and T35 and reasonably simulated the 
TX90P, HWF, and HWD indices in North China. However, 
it generally underestimated extreme high-temperature indi-
ces in other regions. Compared with the original CMIP6 
model, NEX-GDDP-CMIP6 improves the warm bias of the 
TXx index in Northwest China and cold bias in South China 
(Wei et al. 2023). The distribution pattern of TX90P simu-
lated by NEX-GDDP-CMIP6 was more consistent with that 
of the raw CMIP6 models, and also fails to improve the 
simulation performance for the heat wave index (Zhu et al. 
2020; Hirsch et al. 2021).

Further evaluation of the spatial patterns of extreme high-
temperature events using Taylor diagram was conducted. 
Figure  3 illustrates the spatial correlation coefficients and 
standard deviation ratios between various model simula-
tions, multimodel ensemble average (MME) simulations, 
and observations for different extreme high-temperature 
indices. The results indicated that individual models and the 
ensemble average performed well in simulating the TXX 
index, with spatial correlation coefficients of approximately 
0.98 and standard deviation ratios close to 1. The simula-
tions for the T35 index were also relatively good, with spa-
tial correlation coefficients exceeding 0.85. However, the 
standard deviation ratios were above 1.5. The models exhib-
ited poor performance in simulating the TX90P index, with 
considerable discrepancies among different model results. 
The MME, BCC-CSM2-MR, INM-CM5-0, INM-CM4-8, 
and GISS-E2-1-G models demonstrated better performance, 
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Fig. 3  Taylor diagrams of the NEX-GDDP-CMIP6-simulated climatic 
means (1995–2014) for five extreme temperature indices over China. 
The azimuthal position represents the pattern spatial correlation, the 

radial distance from the origin represents the spatial variability, and 
radial axis shows the spatial root-mean-square deviation
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Fig. 4  Taylor skill scores of 26 CMIP6 models and their ensemble mean in simulating extreme temperature over China
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NEC and NC regions, where it obtained a score of 0.54 and 
0.48. The region with the largest deviation from observa-
tions was SWC1, with a value of -1.31 times. Regarding the 
HWD index, the MME demonstrated its weakest modeling 
capability for the CC region, with a Taylor skill score of 0.2, 
while performing best in simulating the NEC region, with a 
score of 0.69. The SC region showed the largest deviation 
in the simulations, underestimated by 6.26 days compared 
to observations. The MME performed best in simulating 
the NEC and NC regions, with most of the indices’ scores 
exceeding 0.4. On a national scale, the TXx index simu-
lated by NEX-GDDP-CMIP6 is 1.35 °C higher compared 
to observations, while the simulation results from CMIP6 
models are 0.45 °C lower. The TX90P index simulated by 
NEX-GDDP-CMIP6 is 1.18% lower compared to observa-
tions, while CMIP6 models only show a 0.43% underesti-
mation in the simulation results (Zhu et al. 2020).

Overall, the MME shows varied performance in simulat-
ing extreme heat events across different regions of China. 
MME simulated these events in NC and NEC regions very 
well. In EC, MME shows the weakest simulation of TXx. 
The MME struggles with simulating HWF and HWD in 
regions with complex terrains, such as the southwestern and 
northwestern areas. From a national perspective, the MME 
simulations tended to overestimate the TXX index and 
slightly overestimate the T35 index while underestimating 
the TX90P, HWF, and HWD indices. Aside from the inac-
curacies in the observational data used for model correction 
and shortcomings of the bias correction method, these biases 
may also arise from inherent limitations within the models 
themselves, including the uncertainties in capturing the fre-
quency and intensity of extreme high temperature events 

and INM-CM4-8 exhibited the highest capability for repre-
senting the TX90P climatology, with scores reaching 0.58. 
The models also showed limited skill in capturing the HWF 
index over the China region, with an MME score of 0.41. 
Five models had scores exceeding 0.5, and BCC-CSM2-
MR demonstrated the highest capability for this index, 
reaching a score of 0.56. On the other hand, the HWD index 
obtained a higher score than TX90P and HWF, with an 
MME score of 0.6. Thirteen models had scores exceeding 
0.5, with CNRM-CM6-1 performing the best and achieving 
a score of 0.68.

Table  3 presents the Taylor skill scores for different 
regions of China based on MME, along with the regional 
averages and anomalies. For the TXX index, MME exhib-
ited the weakest spatial modeling capabilities for the EC 
region, with a Taylor skill score of only 0.63, while the 
NWC region demonstrated the strongest performance, with 
a score of 0.95. For the regional averages, the MME showed 
significant deviations in the NC and NEC regions, overes-
timating them by 2.69℃ and 2.73℃, respectively. Regard-
ing the T35 index, the MME performed best in simulating 
the NWC region, achieving a score of 0.86. However, it 
exhibited limited modeling capabilities for the SWC2 and 
SWC1 regions, with scores close to 0. The MME showed 
the largest deviation in the EC region, exceeding 4.71 days. 
For the TX90P index, the MME demonstrated its strongest 
modeling capability for the NC region, with a Taylor skill 
score of 0.65, while it exhibited minimal performance for 
the NWC region, with a score of only 0.06. The largest devi-
ation of the MME occurred in the NC region, with a value 
of -2.14%. For the HWF index, the MME’s modeling capa-
bilities were generally poor for most regions, except for the 

Table 3  Taylor skill scores for extreme high temperature indices in different regions of China and regional averages of observations and MME 
simulations. The value inside the parentheses represents the difference between historical experiments and observations

NWC SWC2 SWC1 SC CC EC NC NEC China
TXX TS

OBS
Historical

0.95
32.02
33.49
(1.47)

0.66
30.28
31.32
(1.04)

0.79
20.10
20.61
(0.51)

0.89
35.28
35.79
(0.51)

0.89
35.35
36.35
(1.0)

0.63
36.30
36.69
(0.39)

0.92
33.35
36.04
(2.69)

0.69
32.33
35.06
(2.73)

0.98
30.12
31.47
(1.35)

T35 TS
OBS
Historical

0.86
10.81
12.02
(1.21)

0
0.04
0.62
(0.58)

0.07
0.44
0.20
(-0.24)

0.72
6.67
5.27
(-1.4)

0.74
8.82
7.45
(-1.37)

0.67
12.29
7.58
(-4.71)

0.81
2.84
5.16
(2.32)

0.6
0.71
2.11
(1.4)

0.67
5.45
5.73
(0.28)

TX90P TS
OBS
Historical

0.06
16.98
16.06
(-0.92)

0.26
17.93
16.07
(-1.86)

0.36
17.65
15.65
(-2.0)

0.32
15.78
14.33
(-1.45)

0.23
15.04
13.51
(-1.53)

0.35
14.81
13.57
(-1.24)

0.65
15.72
13.58
(-2.14)

0.39
14.65
15.05
(0.4)

0.49
16.34
15.16
(-1.18)

HWF TS
OBS
Historical

0.1
7.88
7.02
(-0.86)

0.17
8.08
7.40
(-0.68)

0.35
8.08
6.77
(-1.31)

0.2
7.50
6.67
(-0.83)

0.17
7.08
6.19
(-0.89)

0.22
6.94
5.97
(-0.97)

0.48
6.83
5.73
(-1.1)

0.54
6.27
6.34
(0.07)

0.41
7.46
6.63
(-0.83)

HWD TS
OBS
Historical

0.26
36.25
31.81
(-4.44)

0.36
29.27
23.89
(-5.38)

0.65
26.90
27.52
(0.62)

0.37
39.85
33.59
(-6.26)

0.2
31.14
28.13
(-3.01)

0.35
29.36
26.85
(-2.51)

0.39
39.83
36.68
(-3.15)

0.69
32.38
31.29
(-1.09)

0.6
34.21
30.59
(-3.62)
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passed the significance tests, emphasizing the difficulty of 
the MME in replicating the temporal characteristics of the 
TXX index. For the remaining four indices, the observa-
tional values exhibited an increasing trend over time, with 
trend coefficients of 0.3 days per decade, 1.8% per decade, 
0.9 times per decade, and 4.7 days per decade, respectively. 
The multimodel ensemble was generally successful in 
reproducing the trend changes for these indices, with trend 
coefficients of 0.5 days per decade, 1.6% per decade, 0.8 
times per decade, and 4.3 days per decade, respectively. The 
observed and simulated extreme high temperature trends 
have passed the significance test at the 5% level. These 
results aligned closely with the original CMIP6 models, as 
bias correction methods failed to alter the trend changes in 
extreme events. Although the NEX-GDDP-CMIP6 models 
effectively captured the long-term trend characteristics of 
the latter four indices, they still exhibited limited capability 
in simulating interannual variations and amplitudes associ-
ated with these indices.

The NEX-GDDP-CMIP6 models show a high level of 
accuracy in simulating the spatial distribution of extreme 
temperature events in China, with particularly good per-
formance in reproducing TXx and T35, especially in North 
China. However, there is an underestimation of percentile-
based indices like TX90P and challenges in regions with 
complex terrains. In terms of time-varying simulations, 
the models effectively capture long-term trends but exhibit 
difficulties in accurately representing interannual changes 
and amplitudes. Regional simulations reveal a diverse per-
formance, with the relatively high spatial correlation in the 
Northeast and North China. The models’ enhanced simulat-
ing capabilities stem from downscaling and bias correction, 
leading to more reliable simulation compared to original 
CMIP6 models (Chen et al. 2017). Ongoing refinements 
are needed to improve simulations further, particularly for 
percentile-based indices and regional nuances.

Figure 6 presents the spatial distribution of eight extreme 
precipitation indices, as observed and simulated by MME. 
The high-value center of the CDD index was in the north-
western region of China, ranging from 130 to 160 days. 
Conversely, low-value areas appeared in the southern parts 
of the country, ranging from 20 to 40 days. This pattern 
showed an increasing trend from the southeastern coastal 
areas toward the northwest inland. The MME could repli-
cate this distribution pattern fairly well, with a spatial cor-
relation coefficient of 0.82 compared to the observations. 
However, the MME noticeably overestimated the values in 
the northwestern region, with the center position being sig-
nificantly larger and the values exceeding 160 days. This 
discrepancy may have been related to inaccuracies in the 
“observed” data used for model calibration. Regarding the 
CWD index, the high-value center was in the eastern part of 

(Hirsch et al. 2021; Domeisen et al. 2023). According to 
previous research, extreme high temperatures in Northwest 
China are influenced not only by large-scale anticyclones 
but also significantly by terrain-induced subsidence flows 
(Chen and Lu 2015). Mesoscale atmospheric circulation 
processes and the affected land-atmosphere coupling pro-
cesses by the circulation have a crucial impact on heatwave 
events in Southwest China (Fu and Wang 2023). Extreme 
high-temperature events in Northeast China are influenced 
by the interdecadal variability of the geopotential height in 
the mid-to-upper troposphere over Mongolia during sum-
mer, showing significant interdecadal changes (Hong et 
al. 2020). Internal variability of the atmosphere, such as 
the Eurasian teleconnection (EAT) pattern and the Victoria 
mode (VM) teleconnection, significantly affects extreme 
high temperatures in Northern China (Xie et al. 2023; Deng 
et al. 2019). High-temperature heatwaves in Eastern China 
are doubly influenced by monsoons and topography (Chen 
and Lu 2015), with the heatwaves in the Yangtze River 
basin being notably affected by internal atmospheric vari-
ability, such as southeast-propagating wave trains from 
northern Russia and East Asia and quasi-biweekly oscilla-
tions (Gao et al. 2018). The sea surface temperatures of the 
Indian Ocean and the Northwest Pacific have a significant 
impact on heatwaves in Southern China (Deng et al. 2019). 
These physical mechanisms are challenging to reproduce in 
climate models, and model data corrected for biases simi-
larly struggle to replicate the characteristics of heatwaves in 
different regions of China. Further increases in the resolu-
tion of atmospheric models could improve weather system 
(e.g., blocking high pressure) that are critical for extreme 
heat events (Davini and D’Andrea 2020; Schiemann et al. 
2020), while improvements in the performance of land-sur-
face models (Ukkola et al. 2018; Sippel et al. 2017; Senevi-
ratne et al. 2010; Lorenz et al. 2016) can also enhance the 
ability to model extreme heat events. These findings high-
light the need for continued model refinement to more accu-
rately simulate extreme high-temperature events in different 
regions of China, which is critical for effective climate 
adaptation and mitigation strategies. A detailed discussion 
of the different bias correction methods will be shown in the 
conclusion section.

Figure 5 presents the time series of four extreme high-
temperature indices in China, averaged over the period 
1961–2014, based on observations and simulations relative 
to 1995–2014. The time series TXX indicated that prior to 
the year 2000, the observed index consistently exceeded the 
MME values. However, after the year 2000, the observed 
and simulated changes showed a greater level of agreement. 
The trend coefficient differences between the observed 
and MME values were distinct, with values of -0.2 °C per 
decade and 0.2 °C per decade, respectively. Both coefficients 
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1800 mm. The low-value center appeared in the northwest-
ern region, with values less than 200 mm. This distribution 
pattern also demonstrated an increase from the southeast to 
the northwest. The MME was generally capable of repro-
ducing the spatial distribution pattern observed in the data, 
with a spatial correlation coefficient of 0.95, which was the 
highest among all the extreme precipitation indices. How-
ever, compared to the original CMIP6 models, the MME still 
overestimated the precipitation over the southern part of the 
Qinghai-Tibet Plateau. The distribution pattern of the R20 
index aligned with that of PTOT, with the high-value center 
still located in the southeastern coastal areas, exceeding 25 

the Qinghai-Tibet Plateau and the western part of the Sich-
uan Basin, with values exceeding 80 days. The low-value 
center appeared in the northwestern region of China, with 
values less than 3 days. This distribution pattern exhibited 
a north-to-south gradient. The MME could simulate this 
distribution pattern, with a spatial correlation coefficient of 
0.6 compared to the observations. However, it struggled to 
reproduce the high-value center observed in the data, and 
it overestimated the values in the Yunnan region, as well 
as in the northeastern and northern parts of China. For the 
observed PTOT index, the high-value center was observed 
in the southeastern coastal areas, with values exceeding 

Fig. 5  Time series of five extreme temperature indices over China 
during 1961–2014 relative to the period 1995–2014. The black and 
red lines indicate the corresponding results from the observations 

and MME of 26 model simulations. The top and bottom bounds of 
the shaded area are the maximum and minimum values of 26 model 
simulations
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CMIP6 models, the NEX-GDDP-CMIP6 overestimates the 
CDD index in the Northwest region. However, it improves 
the simulation of the PTOT index along the southern coast 
of China and Yunnan province, the R20 index in the South-
west region, the RX5D index in North China and South-
west region, and the SDII index in the Northeast region 
and Yunnan (Wei et al. 2023). Compared to the old version 
(NEX-GDDP-CMIP5) simulations of the RX1D and RX5D 
indices, the new version models exhibit slightly higher spa-
tial correlation coefficients for these two indices (0.83 and 
0.89) than the previous version (0.82 and 0.86) (Chen et al. 
2017).

Figure  7 depicts the Taylor diagram for eight extreme 
precipitation indices. The NEX-GDDP-CMIP6 models per-
formed the best in simulating the PTOT index, followed by 
the RX5D and SDII indices. The spatial correlation coef-
ficients for all models were approximately 0.9, and the 
ratio of standard deviations was also close to 1. Regarding 
the CDD index, each model demonstrated good modeling 

days. The MME could simulate the distribution pattern of 
R20 as well, with a spatial correlation coefficient of 0.81 
compared to the observations. However, it overestimated 
the values on the southern side of the Qinghai-Tibet Plateau 
and underestimated the values in the southeastern coastal 
region, mostly concentrated around the Fujian, Jiangxi, and 
Anhui provinces. The distribution pattern of R50 was simi-
lar to that of R20, with the maximum value exceeding 5 
days. The spatial correlation coefficient between the MME 
and the observations for the R50 index was 0.51, which 
was the lowest among all the extreme precipitation indices. 
This indicated a clear underestimation of the R50 index in 
the southern region of China. The observed distributions 
of RX1D, RX5D, and SDII were consistent with PTOT, 
increasing from northwest to southeast. The MME exhib-
ited spatial correlation coefficients of 0.83, 0.89, and 0.86, 
respectively, compared to the observations. In the south-
eastern coastal region, the MME noticeably underestimated 
the values of these three indices. Compared to the original 

Fig. 6  As in Fig. 1 but for eight precipitation indices
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CanESM5 model performed the worst with a score of 0.37. 
In summary, the MME exhibited strong modeling capability 
for the PTOT, RX5D, and SDII indices but performed the 
poorest in simulating the R50 index.

Table  4 provides the Taylor skill scores of extreme 
precipitation simulated by the MME for different regions 
in China, as well as the observed and simulated regional 
averages. For the CDD index, the MME exhibited the 
weakest modeling capability in the SWC1 region, with a 
score of only 0.52, while showing the best performance in 
simulating the EC region, with a score of 0.92. The MME 
overestimated most regions nationwide, with the largest 
deviation observed in the NWC region, where it exceeded 
the observed values by 38.79 days. Regarding the CWD 
index, the MME demonstrated limited modeling capability 
for the NWC and NC regions, with scores of only 0.1 and 
0.19, respectively. The best simulation was observed in the 
EC region, with a score of 0.8. Overall, the MME tended 
to overestimate the CWD index, with the SWC2 region 
exhibiting the most significant overestimation, exceeding 
the observations by 16.59 days. For the PTOT index, the 
MME performed the worst in simulating the SWC1 region, 
with a TS score of 0.54, while achieving the highest score 
of 0.96 in the NC region. The MME simulation of the PTOT 
index generally fell short, particularly in the NWC region, 
where it was underestimated by 29.87%. Regarding the R20 
index, the modeling capability of the MME was weakest in 
the SWC1 region, with a TS score of 0.13, while demon-
strating the strongest capability in the NEC region, with a 
TS score of 0.86. The MME simulation of the R20 index 
had a tendency to underestimate, with the largest deviation 
observed in the SC region, falling short of observations by 
11.68 days. The MME exhibited limited modeling capabil-
ity for the R50 index in most regions, with the best perfor-
mance observed in the NEC region, achieving a TS score 
of 0.7. The MME tended to underestimate the R50 index 
in various subregions, particularly in the SC region, where 
it fell short of observations by 3.23 days. For the RX1D 
index, the MME demonstrated the poorest modeling capa-
bility in the CC, EC, and SWC2 regions, with TS scores 
below 0.2, while achieving its best performance in the NEC 
region with a TS score of 0.81. The MME simulation of the 
RX1D index generally fell short of observations, with the 
SC region exhibiting the most significant underestimation, 
being 55.73% lower than the observed values. The MME 
performed relatively well in simulating the RX5D index, 
with the EC region showing weaker modeling capability, 
indicated by a TS score of only 0.24, while the NEC region 
exhibited the best simulation, with a TS score of 0.88. How-
ever, the MME still underestimated most regions, with the 
NWC region displaying the largest deviation, falling short 
of observations by 39.65%. The MME underestimated the 

capability with spatial correlation coefficients exceeding 0.8 
and the ratio of standard deviations ranging from 1.0 to 1.5. 
However, the models exhibited weaker performance in sim-
ulating the CWD index, with spatial correlation coefficients 
of approximately 0.6 and a significant variation in the ratio 
of standard deviations, ranging from 0.5 to 1.6 among the 
different models. The simulation performance of the models 
for the R20 index was similar to that of the CDD index. The 
models exhibited the weakest capability in simulating the 
R50 index, with spatial correlation coefficients below 0.6 
and ratios of standard deviations ranging from 0.5 to 1.5. 
The models performed relatively well in reproducing the 
spatial pattern of the RX1D index, with spatial correlation 
coefficients ranging from 0.8 to 0.9. However, the ratio of 
standard deviations between the model results and obser-
vations was approximately 0.5, indicating an underestima-
tion of the RX1D values. The NEX-GDDP-CMIP6 model 
showed a weaker capability in simulating the CWD and R50 
indices but performed the best in simulating PTOT, RX5D, 
and SDII. Compared to the original CMIP6 model, the NEX-
GDDP-CMIP6 showed better performance in capturing the 
spatial patterns of indices such as CDD, PTOT, and RX5D. 
However, NEX-GDDP-CMIP6 failed to improve the simu-
lation of the R50 index, with the MME spatial correlation 
coefficient at 0.52. The original CMIP6 models achieved a 
spatial correlation coefficient with observations exceeding 
0.7, which likely relates to inaccuracies in the “observed” 
data used for model correction. Apart from the CWD index, 
the NEX-GDDP-CMIP6 model significantly reduced inter-
model discrepancies and demonstrated good modeling 
capabilities for extreme precipitation events. (Wang et al. 
2021; Wei et al. 2023; Xu et al. 2021; Zhu et al. 2020).

Figure 8 presents the Taylor skill scores for eight extreme 
precipitation indices. The models exhibited good perfor-
mance in simulating the PTOT index, with values above 
0.9. The RX5D and SDII indices ranked next, with most 
models achieving TS scores above 0.85. The modeling per-
formance for the R20 and CDD indices was similar, with 
scores of approximately 0.75. Regarding the RX1D index, 
the models demonstrated TS scores of approximately 0.6, 
with the BCC-CSM2-MR, CMCC-CM2-SR5, CMCC-
ESM2, GFDL-ESM4, and TaiESM1 models performing 
the best, achieving a TS score of 0.72. The MIROC-ES2L 
model performed the worst, with a TS score of 0.57. The 
modeling capability for the CWD index was comparable to 
that of the RX1D index, with TS scores of approximately 
0.6. The CNRM-ESM2-1 model performed the best with 
a TS score of 0.68, while the CanESM5 model performed 
the worst with a TS score of 0.51. The scores for the R50 
index were approximately 0.5, indicating the weakest mod-
eling capability among the indices. The CMCC-CM2-SR5 
model performed the best with a TS score of 0.62, while the 
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Fig. 7  As in Fig. 2 but for eight precipitation indices
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Fig. 8  As in Fig. 3 but for eight precipitation indices
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of China. In SWC1, the poor performance of the MME 
in modelling CDD and PTOT could affect the accuracy 
of drought and flood forecasts. In NWC, the pronounced 
deviation in CDD simulation indicates a potential over-
estimation of drought severity. MME shows very limited 
CWD simulations in NC. MME excels in simulating CDD 
in EC, but has deficiencies in simulating RX5D. In SWC2, 
MME shows a significant overestimation of CWD. In SC, 
there is an underestimation of R20. The R50 index is gener-
ally poorly simulated in most regions, with the exception 
of the NEC. MME exhibited more consistent performance 
in the NEC region, with TS scores mostly exceeding 0.5 
and smaller deviations from observations. The MME also 
performed reasonably well for the entire region of China, 
with TS scores surpassing 0.5. These regional differences in 
simulation accuracy highlight the need for specific improve-
ments in climate models to better anticipate and manage the 
impacts of extreme climate events.

In addition to deficiencies in the bias correction meth-
odology and inaccuracies in the observations of the cor-
rected model, the primary causes for the simulation biases 
in extreme precipitation events across different regions of 

SDII index in most regions. The largest deviation from 
observations occurs in the SC region, with an underestima-
tion of 23.64%. The poorest simulated region was SWC1, 
with a TS score of 0.26, while the best simulated region was 
NEC, with a score of 0.83. Nationwide, the PTOT index 
simulated by NEX-GDDP-CMIP6 shows a slight under-
estimation of 6.83% compared to observations, while the 
simulation results of the CMIP6 model significantly over-
estimate by 79%; the simulated CDD index shows a signifi-
cant overestimation of 21.25 days, with the largest deviation 
mainly in the northern regions of China, while the CMIP6 
model as a whole shows an underestimation; the R20 index 
and SDII index are underestimated by 2.62 days and 6.21%, 
respectively, compared to observations, while the results 
from the CMIP6 model are overestimated by 1.93 days and 
21%, respectively. In summary, NEX-GDDP-CMIP6 has 
improved the biases of PTOT and SDII indices nationwide. 
However, the simulated CDD index shows a significant 
overestimation, while the R20 index exhibits an underesti-
mation (Zhu et al. 2020).

In general, the MME shows different capabilities in 
simulating extreme precipitation indices in different regions 

Table 4  As in table 3 but for eight precipitation indices (the differences between historical experiments and observations for PTOT, RX1D, RX5D 
and SDII are calculated as a percentile)

NWC SWC2 SWC1 SC CC EC NC NEC China
CDD TS

OBS
Historical

0.67
88.36 127.15 (38.79)

0.84
40.20
35.25
(-4.95)

0.52
65.42
83.55 (18.13)

0.58
27.81
25.19
(-2.62)

0.75
30.18
34.59
(4.41)

0.92
27.66
28.73
(1.07)

0.55
62.42
84.93
(22.51)

0.69
53.57
78.39
(24.82)

0.74
61.25
82.5
(21.25)

CWD TS
OBS
Historical

0.1
5.53
4.22
(-1.31)

0.44
19.56
36.15 (16.59)

0.4
21.63
17.85
(-3.78)

0.55
15.54
24.53 (8.99)

0.63
9.43
15.73
(6.3)

0.8
10.35 16.69
(6.34)

0.19
5.99
9.33
(3.34)

0.5
8.23
10.55 (2.32)

0.64
11.39
12.8
(1.41)

PTOT TS
OBS
Historical

0.78
179.63
125.98
(-29.87)

0.75
1118.29
1103.55 (-1.32)

0.54
530.03
534.79 (0.9)

0.88
1616.55
1501.5
(-7.12)

0.93
1076.03
987.63
(-8.22)

0.93
1313.08
1215.3
(-7.45)

0.96
433.13
409.76
(-5.4)

0.9
535.23
512.38
(-4.27)

0.92
596.72
555.97
(-6.83)

R20 TSS
OBS
Historical

0.33
0.41
0.29
(-0.12)

0.48
11.54
2.36
(-9.18)

0.13
1.46
1.24
(-0.22)

0.69
21.97
10.29
(-11.68)

0.54
13.64
5.49
(-8.15)

0.61
17.89
10.7
(-7.19)

0.67
3.82
2.22
(-1.6)

0.86
3.78
2.14
(-1.64)

0.76
5.27
2.65
(-2.62)

R50 TS
OBS
Historical

0.02
0.02
0
(-0.02)

0
0.55
0.02
(-0.53)

0.21
0.12
0.18
(0.06)

0.06
3.45
0.22
(-3.23)

0
1.86
0.04
(-1.82)

0.02
2.91
0.25
(-2.66)

0.02
0.39
0.03
(-0.36)

0.7
0.27
0.13
(-0.14)

0.57
0.66
0.33
(-0.33)

RX1D TS
OBS
Historical

0.55
13.76
13.4
(-2.62)

0.19
47.46
25.94
(-45.34)

0.4
19.84
19.29
(-2.77)

0.44
82.26
36.42
(-55.73)

0.16
66.58
31.94
(-52.03)

0.18
81.16
41.31
(-49.1)

0.29
40.41
27.57
(-31.77)

0.81
38.03
28.35
(-25.45)

0.67
34.63
23.06
(-33.41)

RX5D TS
OBS
Historical

0.74
23.63
14.26
(-39.65)

0.63
101.62
75.97
(-25.24)

0.39
46.68
49.87
(6.83)

0.66
163.96
103.91
(-36.62)

0.37
124.20
81.36
(-34.49)

0.24
159.78
101.59
(-36.42)

0.76
67.40
60.28
(-10.56)

0.88
69.91
63.11
(-9.73)

0.89
66.96
54.76
(-18.22)

SDII TS
OBS
Historical

0.58
3.30
3.71
(12.42)

0.57
7.85
6.32
(-19.49)

0.26
4.05
4.61
(13.83)

0.8
10.49
8.01
(-23.64)

0.59
9.04
6.93
(-23.34)

0.48
10.69
8.28
(-22.54)

0.61
6.56
5.96
(-9.15)

0.83
6.09
5.9
(-3.12)

0.85
5.64
5.29
(-6.21)
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on observations and model simulations. Except the CDD 
index, the observed values of the other extreme precipita-
tion indices exhibited an increasing trend. The trend coef-
ficients of observed CDD, CWD, R20, R50, RX1D, RX5D, 
SDII, and PTOT were − 1.46 days/10 years, 0.1 days/10 
years, 0.03 days/10 years, 0.02 days/10 years, 0.87%/10 
years, 0.34%/10 years, 0.34%/10 years, and 0.6%/10 years, 
respectively. The corresponding trend coefficients from the 
MME simulations were − 0.13 days/10 years, 0.01 days/10 
years, 0.02 days/10 years, 0.01 days/10 years, 0.66%/10 
years, 0.5%/10 years, 0.23%/10 years, and 0.12%/10 years, 
indicating overall agreement between the model simulations 
and observations. The trend coefficients of CDD, R50, and 
RX1D from observations and simulations passed a signifi-
cance test at the 5% level, whereas CWD, R20, and PTOT 
did not pass the test. The trend coefficients of RX5D and 
SDII indices from MME simulations passed a significance 
test at the 5% level, whereas the observed values did not 
pass the test. Except for the CWD index, the MME strug-
gled to reproduce the interannual variability of the other 
extreme precipitation indices. This could be due to the small 
changes in the observed and simulated CWD, while the 
other indices exhibited significant variability. Regarding the 
CDD index, the MME values were obviously lower than 
the observed values before 1985, displaying a declining 
trend. After 1985, the trend stabilized, but the MME failed 
to capture this behavior. The observed CDD index dem-
onstrated significant interannual and decadal variability, 
which the MME struggled to reproduce. The MME simula-
tions approximated the values of the PTOT, R20, and R50 
indices compared to observations but struggled to simulate 
their interannual variability. The observed CDD, RX1D, 
RX5D, and SDII indices exhibited quasiperiodic variations 
with significant interannual variability, which were also 
challenging for the MME to replicate accurately. Discrep-
ancies in the simulation of these indices were evident, with 
the models generally underestimating the observed vari-
ability. This shortcoming is more pronounced in regions 
with complex topography and diverse climatic conditions, 
suggesting a need for enhanced physical parameterizations 
and improved representation of orographic and convective 
processes in the models.

The NEX-GDDP-CMIP6 models demonstrate different 
abilities in simulating different extreme precipitation indi-
ces in China. The models generally perform well in captur-
ing the spatial distribution of some indices, such as PTOT, 
with high spatial correlation coefficients and reasonable 
consistency among models. However, they face challenges 
in accurately simulating other indices like CWD and R50, 
with significant overestimations or underestimations across 
different regions. Regional variations in model performance 
were evident, with the Northeast region showing the best 

China are as follows: In Northwest China, extreme precipi-
tation is mainly influenced by the zonal wave pattern, char-
acterized by the deepening of the Siberian trough, and the 
Central Asian and Mongolian high pressures. In this circula-
tion configuration, the westerly and easterly airflows anom-
alously strengthen and converge at this location (Ning et al. 
2020). The soil temperature and moisture in different areas 
of this region also show a high correlation with extreme pre-
cipitation events (Wu et al. 2023a), and the extreme precipi-
tation events in this area are also accompanied by decadal 
changes (Guo et al. 2014; Lu et al. 2021). Extreme precipi-
tation in Northeast China is influenced not only by the East 
Asian summer monsoon but also the cold air and Northeast 
Cold Vortex (Hong et al. 2020). North China’s extreme pre-
cipitation is influenced by four different moisture transport 
patterns, each corresponding to different moisture sources 
(Zhang et al. 2024). Simultaneously, this region is affected 
by a multiscale system of planetary scale, synoptic scale, 
subsynoptic scale, and air-sea interactions (Zhou et al. 2023; 
Zhao et al. 2019). The extreme precipitation events in Cen-
tral China are related to anomalous local cyclonic circula-
tion, the orographic forcing of the Tibetan Plateau, and the 
non-adiabatic heating gradient between the Central region 
and its surrounding areas (Ke and Guan 2014). Addition-
ally, the interaction between the Western Pacific Subtropical 
High and the East Asian monsoon, as well as the terrain’s 
blocking effect, significantly influences extreme precipita-
tion in this region (Nie and Sun 2022; Yin et al. 2022; Zhao 
et al. 2022). Southwest China, located in the transition zone 
influenced by the East Asian summer monsoon, Indian mon-
soon, and thermal activities of the Tibetan Plateau, experi-
ences extreme precipitation events that are not only affected 
by the terrain (Xu et al. 2024a) but also influenced by two 
types of low-frequency oscillations (Nie and Sun 2023). 
The East Asian summer monsoon and landfalling tropical 
cyclones are the main weather systems affecting most of 
the extreme precipitation events in East China (Tang et al. 
2021), with the Northwest Pacific Subtropical High being 
one of the most crucial systems. This system significantly 
affects the precipitation in the Yangtze-Huai region in June 
and July, as well as the precipitation in South China regions 
like the Pearl River Basin in June. The westward extension 
of the subtropical high pushes tropical cyclones southward, 
thereby increasing the occurrence of extreme precipitation 
events in South China (Zhang et al. 2017). Climate models 
generally have difficulties simulating the physical mecha-
nisms that cause extreme precipitation events in different 
regions of China.

We assessed the temporal variability capability of the 
model regarding extreme precipitation indices in the Chi-
nese region, and Fig. 9 presents the temporal evolution of 
eight extreme precipitation indices from 1961 to 2014 based 
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2.14℃ (Table 5). The increase in the northern region was 
greater than that in the southern region. However, there 
was considerable inconsistency among models in the SC 
and NEC regions. Under the SSP1-2.6 scenario, the TXx 
index projected by NEX-GDDP-CMIP6 shows an increased 
consistency in the northwest region of China compared to 
the original CMIP6 models. In the northern part of China, 
it generally exhibits an increase of about 1  °C relative to 
the original CMIP6 models. Under the SSP2-4.5 and SSP5-
8.5 scenarios, the pattern of TXX index change remained 
consistent with the low-emission scenario, but the magni-
tude of increase became more significant. The TXX index 
increased by 3.2℃ and 5.57℃ nationwide under the SSP2-
4.5 and SSP5-8.5 scenarios, respectively, and the con-
sistency among models increased with higher emission 
scenarios. Under the SSP2-4.5 scenario, the NEX-GDDP-
CMIP6 models estimate values in the eastern part of the 
southwestern region of China that are approximately 1 °C 
higher than those of the original CMIP6 models. Similarly, 
under the SSP5-8.5 scenario, the estimated values for the 
northern region are also about 1 °C higher compared to the 
original CMIP6 models. The T35 index increased nation-
wide under the SSP1-2.6 scenario, with high-value cen-
ters appearing in the NWC and CC regions, exceeding 30 
days, and a national average increase of 12.2 days. Under 

agreement with observations for PTOT and moderate per-
formance for CWD. The models’ ability to simulate inter-
annual variability of precipitation extremes is also limited, 
particularly for indices like CDD, RX1D, RX5D and SDII, 
where there is a significant deviation from observed values. 
Overall, the NEX-GDDP-CMIP6 models provide a useful 
tool for assessing extreme precipitation patterns in China, 
but the results highlight the need for further model refine-
ment to improve simulations of specific precipitation indi-
ces and to better capture regional differences and temporal 
variations.

3.2  Future changes in extreme events

Given that multimodel ensembles (MMEs) generally out-
perform individual models in most cases, the projections 
of extreme temperature indices during 2081–2100 were 
obtained using the NEX-GDDP-CMIP6 MME under three 
scenarios: SSP1-2.6, ssp2-4.5, and SSP5-8.5. Figure  10 
illustrates the spatial variability of the TXX, T35, TX90P, 
HWF, and HWD indices estimated by the MME. The dots 
represent regions where 90% of the models exhibited con-
sistent signs with the multimodel ensemble average. Under 
the SSP1-2.6 scenario, the TXX index showed an increase 
nationwide (Fig. 10a), with a national average increase of 

Fig. 9  As in Fig. 4 but for eight precipitation indices
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Fig. 10  Spatial patterns of the projected changes in TXX, T35, TX90P, 
HWF and HWD for the NEX-GDDP-CMIP6 MME over China under 
the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios by the end of the 21st 

century (2081–2100) relative to the period from 1995 to 2014. The 
stippling is present in regions where more than 90% of the models are 
consistent with the signs of MME changes
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of the CMIP6 models. Regarding the HWF index, under the 
SSP1-2.6 scenario, the minimum value center appeared in 
the NEC region, with values below 6 times nationwide (7.88 
times). Under the SSP2-4.5 scenario, the HWF increased 
nationwide, reaching 10.69 times. In the SSP5-8.5 sce-
nario, the HWF index values were smaller in the SWC1 
and SWC2 regions compared to the previous two scenarios 
but increased in other regions with increasing emission sce-
narios, reaching 11.45 times nationwide. The model consis-
tency was lower in the SWC1 and SWC2 regions, while it 
remained high in other regions. The HWD index increased 
with higher emission scenarios, with the NEC region still 
exhibiting the minimum value center. The national val-
ues for the three scenarios were 70.13 days, 111.05 days, 
and 190.96 days, respectively. Overall, by the end of the 

the SSP2-4.5 and SSP5-8.5 scenarios, the T35 index further 
increased, with national average increases of 19.26 days and 
41.12 days, respectively. As emission scenarios increased, 
the range of high-value centers expanded. In the SSP5-8.5 
scenario, except for the SWC1, SWC2, and NEC regions, 
most of the country experienced T35 index values exceed-
ing 45 days, and the consistency among models remained 
high across all three emission scenarios. The TX90P index 
also increased with higher emission scenarios, exhibiting 
high consistency among models. Across the three scenarios, 
the national increases were 20.57%, 31.36%, and 51.18%, 
respectively. The NEC and NC regions showed relatively 
smaller increases compared to other regions. Under the 
three emission scenarios, the TX90P index projected by the 
NEX-GDDP-CMIP6 is generally about 5% higher than that 

Table 5  Projected changes in the 13 extreme climate indices for 2081–2100 compared to 1995–2014 in the 8 subregions and China under the three 
scenarios

Scenario NWC SWC2 SWC1 SC CC EC NC NEC China
TXX
(℃)

SSP1-2.6
SSP2-4.5
SSP5-8.5

2.29
3.45
6.01

2.02
2.90
5.01

2.19
3.26
5.46

1.73
2.55
4.65

2.23
3.29
5.51

2.16
2.96
5.13

2.37
3.45
5.59

2.22
3.28
5.68

2.14
3.20
5.57

T35
(day)

SSP1-2.6
SSP2-4.5
SSP5-8.5

13.47
21.72
42.58

7.24
11.40
27.28

3.89
5.86
12.31

16.72
30.46
74.07

17.77
28.04
56.35

18.35
28.63
59.32

11.07
17.51
37.59

5.00
8.43
21.45

12.20
19.26
41.12

TX90P
(%)

SSP1-2.6
SSP2-4.5
SSP5-8.5

19.09
29.87
49.43

27.89
40.97
59.73

27.33
42.11
64.91

24.91
37.18
56.39

21.38
30.68
48.81

23.84
33.82
52.88

15.52
23.67
40.52

15.36
23.31
42.49

20.57
31.36
51.18

HWF
(time)

SSP1-2.6
SSP2-4.5
SSP5-8.5

8.38
12.21
13.82

9.65
11.06
8.37

9.05
12.12
9.36

9.65
11.88
10.73

9.42
12.48
14.43

10.04
12.90
14.03

7.71
11.50
16.05

6.94
9.71
13.36

7.88
10.69
11.45

HWD
(day)

SSP1-2.6
SSP2-4.5
SSP5-8.5

64.32
105.22
185.25

99.09
150.22
226.29

93.88
150.88
245.93

85.92
133.73
211.89

70.42
105.75
178.04

79.05
117.41
194.74

48.01
77.33
143.75

49.63
78.28
154.01

70.13
111.05
190.96

CDD
(day)

SSP1-2.6
SSP2-4.5
SSP5-8.5

-1.68
-2.59
-3.11

-1.24
0.35
0.87

-1.74
-1.60
-3.35

0.23
1.37
3.49

-1.58
-0.92
-0.90

0.35
1.11
2.00

-2.00
-2.18
-3.57

-1.04
-1.61
-2.86

-1.41
-1.44
-2.00

CWD
(day)

SSP1-2.6
SSP2-4.5
SSP5-8.5

0.28
0.38
0.63

3.19
1.64
1.96

1.94
1.81
3.02

2.14
1.30
1.19

0.95
1.01
1.18

1.16
0.87
1.32

1.00
1.10
1.42

1.46
1.32
1.57

1.35
1.12
1.57

PTOT
(%)

SSP1-2.6
SSP2-4.5
SSP5-8.5

14.31
20.66
33.24

7.84
5.75
10.62

13.88
18.29
34.68

9.23
7.26
8.86

9.65
8.89
14.46

8.60
8.53
11.80

11.81
13.34
23.48

11.84
11.99
17.05

11.29
13.63
21.99

R20
(day)

SSP1-2.6
SSP2-4.5
SSP5-8.5

0.13
0.18
0.34

1.46
1.86
3.53

1.07
1.47
3.17

2.66
2.67
4.19

1.65
1.80
3.07

2.19
2.36
3.66

0.63
0.81
1.47

0.78
1.00
1.58

1.14
1.38
2.48

R50
(day)

SSP1-2.6
SSP2-4.5
SSP5-8.5

0.003
0.004
0.01

0.05
0.06
0.14

0.09
0.16
0.37

0.23
0.27
0.52

0.10
0.13
0.25

0.24
0.31
0.53

0.04
0.06
0.10

0.08
0.11
0.21

0.14
0.20
0.41

RX1D
(%)

SSP1-2.6
SSP2-4.5
SSP5-8.5

11.31
14.62
22.43

15.31
18.48
32.30

12.79
18.48
33.80

14.92
16.55
26.57

14.46
16.66
27.69

12.24
15.11
24.12

11.58
14.00
23.43

13.56
16.76
26.35

11.88
15.06
24.56

RX5D
(%)

SSP1-2.6
SSP2-4.5
SSP5-8.5

13.17
16.94
26.99

11.73
14.71
25.88

12.56
18.40
34.13

10.56
11.40
20.25

9.52
10.67
19.10

8.51
10.70
16.81

12.29
13.83
24.11

11.51
13.35
20.75

10.82
13.67
22.45

SDII
(%)

SSP1-2.6
SSP2-4.5
SSP5-8.5

6.15
7.90
12.93

5.15
6.10
10.93

7.85
10.93
20.47

5.69
6.27
10.15

5.51
6.64
11.29

5.98
7.05
11.01

5.98
7.26
13.11

6.25
7.42
11.48

5.75
7.42
12.59
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days. Correspondingly, in the SSP2-4.5 scenario, these 
indices exhibited increases of 2.87℃, 16.32 days, 32.98%, 
and 115.53 days, respectively. In the SSP5-8.5 scenario, the 
same indices underwent more substantial amplifications of 
6.37 °C, 48.22 days, 59.37%, and 225.52 days. Compared 
to the original CMIP6 models, under the low emission sce-
nario, the TXx index is 0.2 °C higher, it is relatively close 
under the medium emission scenario, and nearly 0.5  °C 
higher under the high emission scenario. The TX90P index 
is quite similar to the original model under low and medium 
emission scenarios, but it is approximately 2% higher under 
the high emission scenario (Wei et al. 2023). The HWF 

21st century, the consistency among models regarding the 
change in extreme high-temperature events was high, with 
increases observed in most regions nationwide.

Figure 11 depicts the temporal evolution of the national 
regional extreme high temperature indices estimated by 
MME under three emissions scenarios. The indices, namely, 
TXX, T35, TX90P, and HWD, all exhibited an increasing 
trend as time progressed. Moreover, as radiative forcing 
scenarios intensified, the magnitudes of these increases 
also escalated. By 2100, under the SSP1-2.6 scenario, the 
TXX, T35, TX90P, and HWD indices experienced respec-
tive augmentations of 1.83 °C, 9.3 days, 18.62%, and 62.07 

Fig. 11  Temporal evolution of the projected changes in (a) TXX, (b) 
T35, (c) TX90P, (d) HWF, and (e) HWD for the NEX-GDDP-CMIP6 
MME over China under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 sce-

narios for 2015–2100 relative to the reference period 1995–2014. The 
shading indicates the minimum and maximum values
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region. With increasing emission scenarios, the values in 
this region continuously increased, and the range expanded. 
The highest value exceeded 5 days. Additionally, under the 
SSP5-8.5 scenario, a high-value center appeared south of 
the Qinghai-Tibet Plateau. Except for the NWC region, the 
region of consistent sign deviation increased in the other 
areas. Under low and medium emission scenarios, compared 
to the CMIP6 models, inter-model consistency primarily 
occurs in parts of Southwest and South China. Under the 
three emission scenarios, the R20 index in Northeast China, 
North China, and the Yangtze River Basin is approximately 
one day less than in the original CMIP6 models. The R50 
index also increased with increasing emission scenarios, 
although the increase was relatively small. The high-value 
center appeared in the southeastern coastal region, while the 
change in other areas was minimal. The region of consistent 
sign deviation expanded with higher emission scenarios. 
The variations in the RX1D, RX5D, and SDII indices were 
relatively similar. These three indices consistently increased 
nationwide under the low and moderate emission scenarios. 
Under the moderate emission scenario, high-value centers 
appeared near the Kunlun Mountains and on the eastern 
side of the NWC region. Under the high emission scenario, 
the values further increased, and the high-value center 
expanded to the entire SWC1 region, while the region of 
consistent sign deviation also expanded. Under SSP1-2.6, 
the SDII index simulated by NEX-GDDP-CMIP6 aligns 
closely with the original CMIP6 models. Under SSP2-4.5, 
the SDII index in central and southern China is about 5% 
lower than the projections from the original CMIP6 mod-
els. Under SSP5-8.5, the SDII index in eastern China is 
approximately 5-10% lower than the projections from the 
original CMIP6 models. Under SSP1-2.6 and SSP2-4.5, the 
RX5D index projected by NEX-GDDP-CMIP6 is about 5% 
lower than the projections from the original CMIP6 models. 
Under high emission scenarios, the projected RX5D index 
in northern China and the Yangtze River basin are approxi-
mately 10% smaller than those of CMIP6. Overall, except 
for the projected CDD index, which showed a distribution 
of fewer occurrences in the north and more in the south, the 
other precipitation indices consistently increased. The R20 
and R50 indices showed significant increases in the south-
eastern coastal region, while the PTOT, RX1D, RX5D, and 
SDII indices primarily experienced significant increases in 
the western region. The CDD and CWD indices simulated 
by the MME exhibited significant inconsistencies among 
the models, whereas the PTOT index demonstrated high 
consistency in terms of sign only in the northern region of 
China, with substantial uncertainty persisting in the southern 
region. For the remaining indices, their consistency in terms 
of anomalies expanded continually as emission scenarios 
escalated. Compared to the original CMIP6 models, there 

index demonstrated a growth trajectory with time under the 
low and medium emissions scenarios, albeit with a slower 
pace after 2060. However, a declining trend became notice-
able beyond 2060 under the high emissions scenario, pos-
sibly attributable to an increase in the duration of individual 
heatwaves. Across these three scenarios, the HWF index 
experienced respective increments of 7.92 times, 11.9 times, 
and 11.43 times by the year 2100. From Fig. 11, it became 
apparent that most extreme high temperature indices con-
tinuously intensified with the amplification of emissions 
scenarios and the passage of time. Furthermore, higher 
emissions scenarios contributed to increased uncertainty 
among the models.

Figure 12 illustrates the spatial distribution characteris-
tics of extreme precipitation events in the late 21st century 
under three emission scenarios. The CDD index was gen-
erally consistent among the three scenarios. It increased in 
southeastern China but decreased in other regions. In the 
southern part of the northwest region, the low-value center 
expanded with increasing emission scenarios. Compared 
to the original CMIP6 models, there is considerable incon-
sistency among the models, and even under the high emis-
sion scenario, the declining trend of the CDD index in the 
North China region varies significantly among the models, 
which is different from the CMIP6 models. The distribution 
pattern of the CWD index was also similar under the three 
emission scenarios, showing an increasing trend nation-
wide. The high-value center around the southern side of 
the SWC1 region expanded with increasing emission sce-
narios. The simulation of these two indices by the model 
exhibited significant discrepancies, with scattered regions 
of only consistent signs in northern China. Under the low 
emission scenario, the PTOT index increased nationwide, 
with a high-value center appearing near the Kunlun Moun-
tains, exceeding 20%. Compared to the original CMIP6 
models’ distribution pattern of less precipitation in the west 
and more in the east, the annual total precipitation increase 
in the northern region of China is greater than in the south-
ern region, with consistency in the models’ projections 
observed in the southwestern and northeastern parts of the 
country. Under the medium emission scenario, the distribu-
tion pattern of the annual total precipitation is similar to that 
of the low emission scenario, with high-value center values 
exceeding 30%, which is higher than the original CMIP6 
models (20%), and model consistency continues to be con-
centrated in the southwestern and northeastern regions. 
Under the high emission scenario, the NEX-GDDP-CMIP6 
models estimate a smaller increase in precipitation for the 
North China region (20-25%) and the southern region (10-
15%) compared to the original CMIP6 models (greater 
than 30% and 15%-20%). In all three emission scenarios, 
the high-value center for the R20 index appeared in the SC 
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Fig. 12  As in Fig. 9 but for eight precipitation 
indices
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extreme climate events in the SWC1/2 are also prominent, 
especially in terms of extreme precipitation. The RX1D and 
RX5D indices are expected to rise across the board, poten-
tially related to changes in future precipitation patterns, 
increasing the risk of floods and landslides. The SWC1 
will see the most pronounced increase in HWD and TX90P. 
In SC, an upward trend in extreme temperature events is 
observed, particularly under SSP5-8.5. The increase in high 
temperature days could have significant impacts on human 
health and agricultural production. Furthermore, indices 
related to extreme precipitation, such as R20 and R50, show 
a significant upward trend in the southeastern coastal areas 
of the region. In the CC region, both the TXx and T35 are 
expected to undergo significant increases under high emis-
sion scenario, potentially exacerbating extreme heat events 
in the area. Moreover, intensity index for extreme precipi-
tation events, such as the RX1D, is also anticipated to rise 
significantly under high emission scenarios, potentially 
increasing the intensity of extreme precipitation events 
and thereby elevating the risk of floods. EC sees a moder-
ate increase in extreme temperature events, but a general 
rise in extreme precipitation indices, especially R50 and 
CDD. This may indicate more frequent extreme precipita-
tion and drought events in the future, posing challenges for 
urban waterlogging and water resource management. NC 
and NEC are also facing increased risks of extreme tem-
perature and precipitation events. Among all subregions, the 
SDII in NC region ranks 2nd and CDD index in this region 
has decreased significantly under SSP 5-8.5. The increase 
in precipitation intensity could exacerbate the pressure on 
urban drainage systems, increasing the risk of flooding.

In general, under high emission scenario, the NWC 
region will exhibit the most significant increase in the TXx, 
while the SC region will experience the most significant 
rise in the T35. The SWC1 will see the most pronounced 
increase in HWD and TX90P. Regarding the frequency of 
extreme precipitation events, the R20 index in SC and the 
R50 index in EC are expected to show the most significant 
increases. In terms of the intensity of extreme precipitation, 
the SWC1 region’s RX1D, RX5D, and SDII indices will see 
the most substantial increases. The CDD index is projected 
to decrease most significantly in the NC and to increase 
most significantly in SC, while the CWD index is projected 
to increase most significantly in the SWC1. Most regions 
of China are expected to face more frequent and severe 
extreme climate events in the future, especially under high 
emission scenarios. These changes not only pose threats to 
ecosystems but also challenge human societal economic 
activities and daily life. Therefore, implementing effective 
adaptation and mitigation measures to reduce greenhouse 
gas emissions and enhance societal resilience to climate 
change becomes particularly crucial.

are large differences between models in the bias-corrected 
estimates of the CDD index. Under high emission scenario, 
the projected increase in the PTOT index is somewhat 
smaller. The R20 index for northern regions and the Yang-
tze River basin is estimated to be about one day less than the 
CMIP6 models’ projections. The model projects the SDII 
index in eastern China are about 5-10% lower than those 
of the CMIP6 models. Additionally, the model projects the 
RX5D index in northern China and the Yangtze River basin 
are approximately 5% smaller than those of CMIP6.

Figure 13 illustrates the temporal variations in extreme 
precipitation indices in China estimated by the models. The 
CDD index exhibited a declining trend, with minimal dif-
ferences in their long-term trends among the three emission 
scenarios. By 2100, the CDDs were projected to decrease 
nationwide by 0.8 days, 1.84 days, and 2.86 days under 
the three emission scenarios, respectively. Conversely, the 
CWD index showed a weak upward trend, with similarly 
small long-term trends across different emission scenarios. 
The CWD was projected to increase by 1.13 days, 1.21 days, 
and 2.34 days under the three emission scenarios, respec-
tively. The R50 index also exhibited a minimal upward 
trend across the emission scenarios, although the long-term 
changes in the high emission scenario still surpassed those 
in the low and moderate emission scenarios. By 2100, the 
R50 index was projected to increase by 0.13 days, 0.22 days, 
and 0.58 days under the three scenarios, respectively. In the 
high emission scenario, starting from 2060, the values of the 
remaining extreme precipitation indices were significantly 
higher than those in the low and moderate emission sce-
narios. Under the high emission scenario, the PTOT, R20, 
RX1D, RX5D, and SDII indices increased by 24.93%, 3.21 
days, 32.85%, 30.2%, and 17.6%, respectively. The analysis 
above indicated that, except for the CDD and CWD indi-
ces, the other extreme precipitation indices exhibited clear 
increases under the high emission scenario, emphasizing 
the urgency of greenhouse gas mitigation. By the end of 
the 21st century, the NEX-GDDP-CMIP6 model estimates 
for the SDII index are slightly lower compared to the origi-
nal CMIP6 models. However, the projections of the RX5, 
PTOT and the R20 index are a little higher than those of the 
CMIP6. (Wei et al. 2023).

The changes in the regional mean values of extreme indi-
ces over the period 2081–2100, compared to 1995–2014, 
are presented in Table 5. In the future, different subregions 
of China are set to exhibit distinct regional characteristics 
in terms of extreme climate events. In the NWC, a particu-
larly remarkable increase in the TXx is expected, especially 
under SSP 5-8.5. Concurrently, a significant rise in the T35 
is also anticipated. However, the CDD index is expected to 
decrease, suggesting that the region may experience fewer 
consecutive drought days in the future. The changes in 
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Fig. 13  As in Fig. 10 but for eight precipitation indices
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for the entire country, the TXX, T35, TX90P, HWF, and 
HWD indices are projected to increase by 5.57 ℃, 41.12 
days, 51.18%, 11.45 times, and 190.96 days, respectively, 
under the SSP5-8.5 scenario. Compared to CMIP6 mod-
els, TXx is nearly 0.5℃ higher and TX90P is 2% higher 
under SSP 5-8.5 scenario. The projections of MME in north-
ern China are about 1 °C higher than those of the CMIP6 
models under SSP 5-8.5 scenario. In terms of precipitation 
extremes, there is a projected increase in indices such as 
CWD, PTOT, R20, R50, RX1D, RX5D, and SDII, while 
the CDD index is expected to decrease. On a national scale, 
during the long-term period of the 21st century, the CWD, 
PTOT, R20, R50, RX1D, RX5D, and SDII indices are pro-
jected to increase by 1.57 days, 21.99%, 2.48 days, 0.41 
days, 24.56%, 22.45%, and 12.59%, respectively, while the 
CDD index is projected to decrease by 2 days. Considerable 
inconsistencies are projected among different models for the 
CDD and CWD indices in China. Additionally, great incon-
sistencies are also found for the PTOT index in southern 
China. With increasing emission scenarios, the consistency 
among models improves for other precipitation indices as 
well. There are remarkable differences in the bias-corrected 
model projections of the CDD index compared to the origi-
nal CMIP6 models. Under a high emissions scenario, the 
projected increase in the PTOT index is somewhat smaller. 
The R20 index projections for the northern regions and the 
Yangtze River basin are about one day shorter than those 
projected by the CMIP6 models. Projections for the SDII 
index in eastern China are projected to be about 5–10% 
lower than those from the CMIP6 models. In addition, 
the projections for the RX5D index in northern China and 
the Yangtze basin are about 5% lower than those from the 
CMIP6 models.

3) Under high emission scenario, the NWC region will 
display the most significant rise in TXx, whereas the SC 
region will witness the most significant increase in T35. The 
SWC1 region will experience the most pronounced esca-
lation in HWD and TX90P. In terms of the frequency of 
extreme precipitation events, the R20 index in SC and the 
R50 index in EC are projected to see the most substantial 
increases. Regarding the intensity of extreme precipita-
tion, the SWC1 region will observe the largest increases 
in the RX1D, RX5D, and SDII indices. Conversely, the 
CDD index in NC is expected to see the most significant 
reduction, while the CWD index in SWC1 is anticipated to 
increase most prominently.

Bias correction facilitates the improvement of simula-
tions for extreme precipitation and temperature events, 
providing more accurate information for policy formula-
tion and adaptation measures. However, uncertainties exist 
in different bias correction methods. The quantile map-
ping method adopted by the NEX-GDDP-CMIP6 model 

4  Conclusion and discussion

In this paper, we examined the performance of 26 NEX-
GDDP-CMIP6 models in simulating climatologies and the 
interannual variability of extreme climate indices across 
China and its eight subregions. It also analyses the future 
projections of these indices and the associated uncertain-
ties for the period 2081–2100 under three Shared Socio-
economic Pathways (SSP1-2.6, SSP2-4.5, SSP5-8.5). The 
results are consistent with an increase in high temperature 
extremes and an intensification of extreme precipitation 
events in an increasingly warmer future. These findings are 
consistent with previous studies using CMIP5 and CMIP6 
models (e.g., Zhou et al. 2014; Zhu et al. 2020; Wei et al. 
2023). In addition, the more pronounced changes in extreme 
climate indices associated with increased radiative forcing 
confirm previous research. This study is providing a broader 
and more detailed examination of the expected variations 
in climate extremes across China and its 8 sub-regions. It 
incorporates multiple dimensions, new scenarios and the 
latest generation of downscaled climate models. The main 
conclusions are outlined below:

1) The MME of NEX-GDDP-CMIP6 models captures 
the spatial distribution of extreme high temperature events 
effectively, particularly in the northern regions of China. 
The models perform well in simulating TXx and T35 indi-
ces, but they still tend to underestimate TX90P, HWF, and 
HWD. The MME demonstrates higher spatial correlation 
coefficients and TS scores for the TXX indices compared 
to the original CMIP6 MME, but it exhibits slightly larger 
biases in simulating the index than the CMIP6 MME. 
Similarly, the MME shows strong performances in mod-
eling extreme precipitation events, with the highest spa-
tial correlation coefficients observed in simulations of the 
PTOT index. Relative to the CMIP6 models, NEX-GDDP-
CMIP6 has successfully improved the biases in the PTOT 
and SDII indices across the country. The simulated CDD 
index showed a significant overestimation, while the R20 
index shows an underestimation. In comparison to NEX-
GDDP-CMIP5 simulations, the newer version demonstrates 
slightly improved spatial correlation coefficients for the 
RX1D and RX5D indices. However, challenges remain 
in accurately modeling the CWD and R50 indices. From 
a regional perspective, the NEX-GDDP-CMIP6 tends to 
simulate a higher CDD index in the Northwest region. Nev-
ertheless, it enhances the accuracy of the PTOT simulations 
along China’s southern coast and in Yunnan province, and 
it better captures the R20 index in the Southwest area, the 
RX5D index in North China and Southwest region, as well 
as the SDII index in the Northeast and Yunnan.

2) Consistency among different models was found to be 
high for the projected temperature extremes. Specifically, 
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In addition to the uncertainties inherent in bias correction 
methods themselves, the internal variability of the climate 
system is a factor that cannot be overlooked. It should be 
noted that correction methods based solely on statistical 
relationships are insufficient to fully address the discrepan-
cies in internal climate variability between climate models 
and observational data, such as variations in large-scale 
circulation patterns. This may result in suboptimal correc-
tion outcomes in certain regions. Therefore, future research 
should delve deeper into the role of internal variability at 
local scales and explore how to obtain estimates of internal 
variability that are independent of specific climate models 
by integrating statistical techniques. Moreover, to deepen 
the understanding of the impact of internal climate vari-
ability on future projections of extreme events, detailed 
uncertainty analyses will be conducted using large Single 
Model Initial-condition Large Ensembles (SMILEs) simu-
lation data. Given the varying performance of different bias 
correction methods in different contexts, future studies may 
focus on how to combine multiple methods to achieve opti-
mal results when simulating different climate variables and 
extreme events (Lafferty and Sriver 2023).

In light of these limitations, our study’s conclusions 
should be interpreted with caution. While the NEX-GDDP-
CMIP6 models provide valuable insights into future climate 
extremes in China, the uncertainties highlighted neces-
sitate ongoing research. Lastly, as compound extreme cli-
mate events become increasingly prevalent across various 
regions in China, further exploration into the future changes 
of these compound extreme events is necessary. Although 
current downscaling methods can replicate the character-
istics of single-variable extreme climate events to some 
extent, they often overlook the multivariable nature of com-
pound extreme events (Park et al. 2023; Xu et al. 2024b; 
Yang and Tang 2023). Thus, future research will also con-
sider adopting multivariable bias correction and downscal-
ing approaches.
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effectively corrects the systematic biases of climate mod-
els; however, this method may also alter the trend of future 
projections to a certain extent. In this regard, Cannon et 
al. (2015) introduced the Quantile Delta Mapping (QDM) 
algorithm, designed to preserve the relative changes in pre-
cipitation quantiles. Comparing Detrending Quantile Map-
ping (DQM) and standard Quantile Mapping (QM), they 
found QDM and DQM to perform better in maintaining the 
original future trends projected by GCMs. Moreover, Tong 
et al. (2021), upon applying QM and QDM methods, dis-
covered that although both approaches efficiently eliminate 
the models’ systematic biases, bias correction could signifi-
cantly alter the estimated change magnitude. This effect, in 
fact, depends on the applied method, season, and analyzed 
variable. Similarly, Chen et al. (2022), by applying linear 
scaling, distribution-based QM, and empirical QM meth-
ods to correct simulated temperature and precipitation by 
the WRF model, significantly reduced model biases, with 
different methods having varied effects. Among these, the 
empirical QM method offered the most comprehensive 
correction effect, while the distribution-based QM method 
was more effective in handling extreme daily precipitation 
amounts, and linear scaling showed good performance in 
correcting seasonal cycles. Regarding the contribution of 
uncertainties on future projections, Iizumi et al. (2017) 
noted that, the impact of different bias correction methods 
and “observation” datasets on precipitation indices in the 
early and late 21st century actually exceeds the impact of 
different climate models and emissions scenarios. In the 
early 21st century, climate models themselves are the main 
source of uncertainty for temperature index estimates, while 
in the later periods, emission scenarios become the primary 
uncertainty factor. For the estimation of long-duration hot 
and dry events in China’s summer, model uncertainty is the 
main source of uncertainty throughout the century, although 
the contribution of downscaling methods is relatively small. 
However, it is noteworthy that the uncertainty of emission 
scenarios becomes more important in estimating the inten-
sity of hot and dry events in the mid to late 21st century and 
becomes the main factor by the end of the century (Yang and 
Tang 2023). As shown in the study by Lafferty and Sriver 
(2023), downscaling and bias correction introduce signifi-
cant uncertainty into local climate projection outcomes. Par-
ticularly in the early to mid-21st century, the main sources 
of uncertainty for precipitation forecasts, extreme climate 
event predictions, complex terrain areas, and regions with 
inconsistent historical observational data primarily stem 
from downscaling and bias correction. Therefore, overly 
relying on single downscaling methods and bias correc-
tion output data may lead to inaccuracies in future climate 
change projections.
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