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Abstract
The study assesses the predictability of rainfall patterns in India through 3-day precipitation forecasts from a regional cli-
mate model ensemble framework operating at convection-permitting (CP) scales. Initially, 149 experiments are conducted 
across four events representing different rainfall mechanisms. The performance of a larger set of 55 ensemble members 
within the multi-physics ensemble framework is evaluated using quantitative metrics such as composite scaled scores and 
cross-correlation analyses. This evaluation led to the development of an optimally designed smaller member ensemble 
framework, WRF-CP7, which reduces turnaround time while maintaining the spatial and temporal performance of simulated 
precipitation fields. The study further assesses the reliability of this framework over an extended period, utilizing insights 
from 5544 simulations (792 days × 7 ensemble members running for a 90-h lead time) conducted between September 2015 
and December 2017. Comparisons between WRF-CP7 and a global climate model forecasts available at coarser resolution 
highlight the need of parameterization and ensemble framework at convection-permitting scale. WRF-CP7 demonstrates 
skill in capturing spatiotemporal variability of rainfall occurrences, evidenced by a higher spread–error correlation (0.9 vs. 
0.6 in the global model) among ensemble members. The correlation remains consistent even at higher lead-times, in contrast 
to the reducing skill of the global model with increasing lead-time. WRF-CP7 also shows reduction in spatial and temporal 
errors within simulated diurnal precipitation patterns, notably during Indian Summer Monsoon, Pre-Monsoon Thunder-
storm activities and North-East Monsoon. A notable 30% increase in predictability for moderate to heavy rain intensities is 
observed across all seasons, accompanied by a 10% decrease in false alarms compared to global model ensemble forecasts. 
The spatial skill of WRF-CP7 for moderate-heavy intensity events remains high (50–80%) even with a longer lead time of 
72-h on an intra-seasonal timescale. With a substantial sample size, the results underscore the effectiveness of using the 
multi-physics ensemble framework at convective scales for operational forecasting and dynamic downscaling of climatology 
across the Indian subcontinent.

Keywords Multi-physics ensembles · Convective-Permitting scales · Weather Research and Forecasting (WRF) model · 
North-East Monsoon (NEM) · Global Ensemble Forecast System (GEFS) · IMDAA Reanalysis Data

1 Introduction

Forecasting the amount and distribution of precipitation 
realistically over time and space poses a significant chal-
lenge in Numerical Weather Prediction (NWP). This chal-
lenge arises from the complex interactions among various 
weather processes, with precipitation exhibiting more rapid 
and nonlinear error growth compared to other weather vari-
ables (Fritsch et al. 1998; Mullen and Buizza 2001; Ebert 
et al. 2003; Bei and Zhang 2007; Huang and Luo 2017). 
High-resolution numerical weather models, known as Con-
vection-Permitting scale models (CPMs), have emerged 
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as a solution to address the limitations of traditional NWP 
models, particularly for predicting Quantitative Precipitation 
Forecasts (QPFs). At a higher resolution, CPMs are expected 
to more effectively capture localized weather phenomena, 
including mesoscale convective systems, land–ocean con-
trasts, and orographic lifting. These features can contribute 
diverse feedback to larger-scale phenomena. Consequently, 
CPMs have demonstrated better skill compared to the NWP 
models at coarser scales (Weisman et al. 2008; Clark et al. 
2009; Prein et al. 2015; Clark et al. 2016; Li et al. 2018; 
Woodhams et al. 2018; Hanley et al. 2021; Kirthiga et al. 
2021; Risanto et al. 2022).

However, uncertainties increase at finer scales (Lor-
enz 1969; Walser and Schär 2004; Bei and Zhang 2007; 
Melhauser and Zhang 2012; Zhang et al. 2019), rendering 
deterministic forecasts with a single realization of the given 
atmospheric state obsolete, especially for longer lead-times 
(Fritsch et al. 1998; Mullen and Buizza 2001; Bei and Zhang 
2007; Prakash et al. 2016; Kirthiga et al. 2021). To tackle 
this issue, ensemble approaches that incorporate input and 
model-based errors have gained popularity (Surcel et al. 
2015; Frogner et al. 2019; Risanto et al. 2022) and are oper-
ational in forecasting centers worldwide (Gebhardt et al. 
2011; Bouttier et al. 2012; Tang et al. 2013; Schwartz et al. 
2015, 2019; Wastl et al. 2021).

Despite their advantages, CPM ensembles tend to be 
under-dispersive, overconfident, and computationally 
demanding without significantly enhancing the quality of 
weather forecasts (Weisman et al. 2008; Melhauser and 
Zhang 2012; Clark 2019). Therefore, there is a need to 
develop effective ensemble designs tailored explicitly 
for convection-permitting scales. While early research 
focused on sampling uncertainties in the input space (ini-
tial and lateral boundary condition) due to the abundance 
of research happening in the mid-latitude (extra-tropical) 
regions where baroclinic perturbations primarily charac-
terized the major atmospheric disturbances (Walser and 
Schär 2004). Many processes seem to be under-resolved 
even with finer-scale ensembles, particularly in the trop-
ics characterized mainly by warm-season weather sys-
tems (Mullen and Buizza 2001; Bei and Zhang 2007; 
Woodhams et al. 2018; Hanley et al. 2021). More recent 
studies have emphasized the importance of incorporat-
ing model uncertainty into CPM ensembles to capture the 
nonlinear error growth of convective events (Berner et al. 
2011, 2015; Romine et al. 2014; Wang et al. 2020). Vari-
ous approaches, including multi-model (Melhauser et al. 
2017), multi-physics (Berner et al. 2011; Clark et al. 2010; 
Gebhardt et al. 2011; Kirthiga et al. 2021), multi-parame-
ter perturbations (Yussouf and Stensrud 2012; Wang et al. 
2020), and stochastic physics schemes (Berner et al. 2011; 

Romine et al. 2014), have been explored. However, their 
applicability to convection-permitting regional climate 
models is not well-established (Baker et al. 2014; Wang 
et al. 2020).

In the context of the Indian sub-continent, CPMs 
have shown promise in improving the predictability of 
major rainfall periods, such as the South-west monsoon 
(Prakash et al. 2016; Hazra et al. 2020; Samanta et al. 
2020), North-east monsoon (Srinivas et al. 2013; Mad-
hulatha and Rajeevan 2018; Singh et al. 2018), and Pre-
monsoon thunderstorms (Madala et al. 2014; Das et al. 
2015; Halder and Mukhopadhyay 2016). The uncertainty 
surrounding the representation of microphysical cloud 
processes of major rainfall mechanisms in Indian clima-
tology by major climate models (Madhulatha and Rajee-
van 2018; Kirthiga et al. 2021; Samanta et al. 2023) has 
led to non-overlapping findings from earlier studies. As 
a result, there exists a significant gap in understanding 
the most suitable model configurations for convection-
permitting scales. Furthermore, previous studies have 
focused on performance evaluations for extreme events 
rather than examining CPM ensembles' error growth and 
skill in capturing the spatiotemporal variability of all 
rainfall categories significant to allied sectors like agri-
culture and water resources management. Therefore, it 
remains unclear how these conclusions can be applied to 
an operational framework that spans both intra-seasonal 
and inter-annual variability. It is essential to systemati-
cally investigate and quantify the ensemble properties of 
the multi-physics model at the convective level (Risanto 
et al. 2022).

In a prior study, Kirthiga et al. (2021) emphasized the sig-
nificance of a multiphysics ensemble in capturing spatiotem-
poral variability in QPFs from diverse rainfall mechanisms at 
a high 4 km spatial resolution. Building on this, the primary 
goal of the current research is to establish an operationally 
feasible convective-scale ensemble, comprising: 1) Building 
a larger member multi-physics ensemble framework using 
a Regional Climate Model (RCM)—Weather Research and 
Forecasting (WRF) model. Devise strategies for designing 
effective ensemble framework with a limited number of 
members – WRF-CP7 (Convection Permitting 7-member 
ensemble from WRF, termed as WRF-CP7 in the manu-
script), while maintaining spatio-temporal quality of the 
precipitation forecasts. The choice of a 7-member ensemble 
is determined through comprehensive assessments cover-
ing deterministic and probabilistic aspects across seasons, 
ensuring operational feasibility. 2) Quantifying the statistical 
significance of the suggested smaller-member framework 
for predicting rainy days, no-rain days and various classes 
of rainfall intensities over 28 months (September 2015 to 
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December 2017), and 3) Investigative the added value by 
the multiphysics ensembles at convective-permitting scales 
against the coarser-scale Global Ensemble Forecast System 
(NCEP-GEFS20). This study aims to assess the uncertainty 
in the convection-permitting model and its representation of 
physical processes in the Indian domain during the impor-
tant monsoon period (Indian Summer Monsoon and North-
East Monsoon/ Retreating Monsoon). The results will con-
tribute to improving the representation of physical processes 
in the Indian subcontinent, enhancing short to medium-range 
precipitation forecasts at finer scales. The structure of the 
manuscript includes Section 2 detailing the data and meth-
ods used, Section 3 presenting results and discussions on the 
benefits of the CPM multiphysics ensemble framework, and 
Section 4 summarizing key conclusions.

2  Methodology

The methodology is structured into two main sections: Sec-
tion 2.1 "Formulation of Multiphysics ensemble framework" 
elaborates on the experimental design used to establish the 
optimal size of multi-physics ensembles, leading to the for-
mulation of the WRF-CP7 ensemble framework. Section 2.2 
"Added value by proposed limited member convective-
permitting Multiphysics ensemble framework" provides 
an in-depth overview of the data and materials utilized to 
understand the consistency of the performance of the model 
and assess the added value of the proposed multi-physics 
ensemble across diverse temporal and spatial dimensions.

2.1  Formulation of multiphysics ensemble 
framework

2.1.1  Design of experiments

The study builds upon previous research conducted by 
Kirthiga et al. in 2021 (P1 hereafter). In the present study, 
we utilized the non-hydrostatic Weather Research and Fore-
casting (WRF) model version 4.0 developed by Skamarock 
et al. (2019). The model setup closely resembled that of 
P1, and any modifications will be elaborated further in the 
study. The lateral boundary conditions were obtained from 
the Global Forecast System (GFS) control run in forecast 
mode (ftp:// ftp. ncep. noaa. gov/ pub/ data/ nccf/ com/ gfs/ prod). 
The Global Data Assimilation System (GDAS), employing 
a 4D hybrid ensemble-variational data assimilation scheme, 
generated initial conditions for the GFS forecast and was uti-
lized in this study. The data was introduced into the model at 
3-h intervals at a spatial resolution of 0.25 degrees (National 
Centers for Environmental Prediction/National Weather Ser-
vice/NOAA/U.S. Department of Commerce 2015).

For the model configuration, two domains were used 
based on the conclusions drawn from P1. The parent 
domain – Domain 1, covered South peninsular India and 
encompassed 148 × 148 grid points at a resolution of 12 km 
(extent: 69.57E-85.63E; 0.83N-16.64N). The nested inner 
domain – Domain 2, used for performance assessment, was 
set up at a resolution of 4 km with 166 × 169 grid points 
(extent: 74.596E-80.604E, 5.732N-11.775N) (Fig. 1a). The 
model integration involved an adaptive time-step, 40 vertical 

Fig. 1  (a) Model domains and (b) Analysis Domain (represented 
by  Domain 2 red  shaded in (a)), showcasing a detailed topography 
map with selected evaluation zones. Western Coasts (WC) regions 

are termed as DOM1, Western Ghats (WG) as DOM2, Eastern Coasts 
(EC) as DOM3 and Central TamilNadu (CTN) as DOM4. Refer to 
Table 1 in supplementary material for further details

ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod
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levels, and a model top set at 50 hPa. The NWP models often 
require a user-selected constant time-step, posing a chal-
lenge as a long time-step can cause model instability for high 
resolution forecasts, and a shorter time-step demands exces-
sive computing power. The optimal temporal granularity of 
the time-step depends on the dynamic physical processes 
resolved by the model at a given spatial resolution, varying 
daily between different rainfall and weather mechanisms. 
Employing an adaptive time-step dynamically adjusts to the 
optimal time-step supporting underlying motions, ensuring 
model stability and reducing total run-time compared to a 
static time-step. This approach was implemented in the study 
to improve the operational feasibility of the resulting model 
framework. The numerical implementation of the adaptive 
time-step within WRF model can be found in Hutchinson 
(2007).

Four specific moderate-extreme rainfall events were con-
sidered, consistent with P1, namely Ochki (OCH) event (00 
UTC 28 Nov 2017 – 06 UTC 02 Dec 2017), the Gaja (GAJ) 
event (00 UTC 16 Nov 2018 – 06 UTC 20 Nov 2018), the 
Indian Summer Monsoon/South-West Monsoon (SWM) 
event (00 UTC 12 Aug 2018 – 06 UTC 16 Aug 2018), and 
a thunderstorm event from the Pre-monsoon (SUM) time 
period (00 UTC 13 Apr 2018 – 06 UTC 17 Apr 2018). The 
OCH and GAJ events correspond to episodes of tropical 
cyclones during the North-East Monsoon (NEM) or retreat-
ing monsoon period (October-December). These cyclonic 
events, intensified by synoptic conditions in the Bay of Ben-
gal (BOB), resulted in heavy rainfall and strong winds, lead-
ing to significant damage in Tamilnadu and Kerala. On the 
other hand, the SWM event occurred during the significant 
Indian Summer Monsoon (ISM) period (July–September) 
and was driven by pressure differences between the Arabian 
Sea and BOB, resulting in extensive rainfall and subsequent 
flooding in Kerala. The SUM event represented a convec-
tive event characterized by evening thundercloud clusters 
across Tamilnadu, causing localized moderate to heavy rain-
fall. These events were selected to understand and measure 
the ability of the model to perform under different rainfall 
mechanisms covering different spatial scales and varying 
rainfall intensities. Detailed discussions and justification 
regarding the selected four events can be found in P1, not 
included here for brevity.

Apart from the physics schemes discussed in Sect. 2.1.2, 
the remaining physics schemes were maintained the same 
across all experiments. The radiation physics component 
included the RRTM Longwave Scheme by Mlawer et al. 
1997, which accounted for longwave radiation processes, 
and the Dudhia shortwave radiation scheme developed by 
Dudhia 1989, which represented the shortwave compo-
nent. The planetary boundary layer was represented using 
the Yonsei University Scheme (YSU) of Hong et al. 2006, 
while the surface layer formulation was used on the Revised 

MM5 Scheme of Jiménez et al. 2012. The model setup used 
the Noah Land Surface Model (LSM) (Tewari et al. 2016), 
which uses a four-layer soil representation to simulate the 
land surface processes.

2.1.2  Selection of physics schemes

In the previous study (P1), the impact of input data quality, 
model domain setup, and physics schemes on the model's 
performance was investigated. The spatiotemporal rainfall 
variability in the four selected events was better represented 
by employing multiphysics ensembles, including variants 
from representation of cumulus and microphysics schemes. 
However, it is worth noting that P1 only explored a limited 
range of physics combinations and did not fully examine 
the interaction effects between different cumulus and micro-
physics schemes. The present study is focused on evaluating 
the performance of a diverse set of physics suites, includ-
ing both established and recently introduced cumulus and 
microphysics schemes in the WRF model. The assessment 
also considered their combined efficacy.

Seven cumulus schemes were considered viz. The 
Kain–Fritsch (KF) scheme, a slightly modified ver-
sion of KF, the Kain–Fritsch cumulus potential scheme 
(MKF), Betts–Miller–Janjic (BMJ) scheme, Simplified 
Arakawa–Schubert scheme (SAS), Grell-Freitas (GF) 
ensemble cumulus scheme, New Tiedtke (NT) cumulus 
scheme and Multi–scale Kain–Fritsch (MsKF) cumulus 
scheme. In addition, two trigger functions for KF scheme 
that use moisture advection and relative humidity-based 
trigger were also tested. All the cumulus schemes are mass-
flux schemes, except for BMJ which is an adjustment type 
static scheme. Detailed information about the specifications 
of each of the cumulus schemes can be found in the supple-
mentary material, Section 5.2.

The primary finding of P1 was that simulations with-
out cumulus schemes in the 4 km domain were unable to 
adequately represent the full range of precipitation features, 
especially within the Indian climatological context. Conse-
quently, experiments were conducted in this study to evalu-
ate the performance of major schemes with (referred to as 
the CUM cluster) and without implementation in domain 
2 (referred to as the No-CUM cluster). The scale-aware 
mass-flux cumulus schemes, including Grell-Freitas (GF) 
ensemble cumulus scheme, New-Tiedtke cumulus scheme 
and Multi–scale Kain–Fritsch (MsKF), were also tested 
for CUM and No-CUM variants. However, only minimal 
differences in simulation output were observed with these 
schemes, attributed to their scale-aware nature. Conse-
quently, the study presents results only from implementing 
the schemes in both domains (the CUM variant).
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Additionally, based on the insights gained from P1, we 
acknowledge the role of microphysics schemes in accu-
rately representing peak rainfall intensities by realistically 
representing the distribution of raindrops. The interactive 
behavior between each cumulus scheme and the microphys-
ics schemes requires careful evaluation, as certain combi-
nations have exhibited notable spatial and temporal errors 
(Jeworrek et al. 2019). We have considered four microphys-
ics schemes, including two double-moment schemes (Mor-
rison and WDM6) and two single-moment schemes (Lin and 
Goddard). These schemes offer a comprehensive range of 
options for simulating hydrometeors, encompassing water 
vapor, graupel, rain, cloud, cloud ice, and snow. Although 
they differ in their approach to simulating the number con-
centrations and mixing ratios of these hydrometeors, all four 
schemes have proven effective in the context of the Indian 
subcontinent. Thus, these four schemes were selected for 
analysis in the manuscript based on the conclusions from 
P1 and previous studies (Duda et al. 2014; Halder and Muk-
hopadhyay 2016; Pithani et al. 2019; Musaid et al. 2023).

Thus, a total of 55 combinations (mentioned as WRF-
CP55 hereafters in the manuscript) were formulated and are 
presented in Table 1. Cases C0, C6, C8, C14, C16, C22, 
C24, C30, C32, C34, C36, C38, C40, C42, C44, C46, C48, 
C50, C52, and C54 represent explicit simulations without 
cumulus schemes in domain 2 which are referred to as No-
CUM cluster (cases marked with * in Table 1).

2.1.3  Final set of experiments

A run-time limit of 7 h was set (based on the resource con-
straints elaborated in Section 5.1 of supplementary material) 
to enable the practical feasibility of applying the multiphys-
ics ensemble for real-time weather forecasting. Thus, due 
to the dynamics of the selected events, 39 combinations 
practically converged for OCH, 36 combinations for GAJ, 
40 combinations for SWM, and 36 combinations for SUM. 
The details of the individual case numbers for each event 
are given in Table 1. Overall, 149 experiments for the four 
events were evaluated, and the results are presented.

2.1.4  Methods for a comprehensive ensemble framework 
design

The study employed data from the Integrated Multi-satellitE 
Retrievals for Global Precipitation Mission (GPM-IMERG) 
at a spatial resolution of 10 km (referred to as GPM), as 
described by Huffman et al. (2014). GPM data served as a 
benchmark for relative comparison to evaluate the perfor-
mance of the simulations. Gupta et al. (2020) highlighted 
the superior skill of GPM data to represent the spatial 
and temporal distribution of the extreme events in India. 
Subsequently, Kirthiga et al. (2021), in previous research, 

employed GPM data for the same events examined in this 
study. Hence, this study utilized GPM for preliminary 
analysis to ensure consistent evaluation across both inves-
tigations. Grid-based statistics are commonly employed for 
weather modeling performance assessment. While grid-to-
grid comparisons offer straightforward evaluations, they 
can penalize model simulations that accurately represent 
precipitation intensity and organization but exhibit slight 
spatial or temporal displacement—a phenomenon known as 
the double penalty effect (Rossa et al. 2008). This issue is 
particularly pronounced in high-resolution convective-scale 
precipitation forecasting, necessitating the inclusion of addi-
tional statistics. Therefore, this study explores verification 
metrics ranging from grid-based continuous and categori-
cal metrics to spatial performance and probabilistic skill 
metrics, as listed in Table 2. Rainfall intensity classification 
followed the India Meteorological Department (IMD) clas-
sification for hourly and daily rainfall amounts, including no 
rain (< 1 mm/6 h, < 2.5 mm/day), light rain (1– 10 mm/6 h; 
2.5–15.5  mm/day), moderate rain (10.1–20  mm/6  h; 
15.6–64.4 mm/day), and heavy to extremely heavy rain-
fall (> 20.1 mm/6 h; > 64.5 mm/day) (India Meteorological 
Department, https:// mausam. imd. gov. in/ imd_ latest/ conte nts/ 
pdf/ pubbr ochur es/ Heavy% 20Rai nfall% 20War ning% 20Ser 
vices. pdf).

2.2  Added value by proposed limited member 
convective‑permitting Multiphysics ensemble 
framework

2.2.1  Design of experiments

The model configuration detailed in Section 2.1.1 was 
applied, with the exception of adjustments made to the 
cumulus and microphysics schemes from results from Sec-
tion 3.2. The lateral boundary conditions and initial bound-
ary conditions were same as those detailed in Section 2.1.1 
(ftp:// ftp. ncep. noaa. gov/ pub/ data/ nccf/ com/ gfs/ prod). An 
assessment of the proposed limited member ensemble frame-
work, denoted as WRF-CP7 and comprising 7 ensemble 
members (see Section 3.2 for clarity on the selection of the 
members), was conducted over an extended period to assess 
the operational feasibility of the framework. The simulations 
spanned from September 2015 to December 2017, covering 
a total of 792 days (28 months), with a lead time of 90 h. A 
total of 5544 simulations (792 days × 7 ensemble members 
running for a 90-h lead time) were executed, and this study 
provides an assessment of the performance of the proposed 
framework in simulating precipitation. The evaluations 
focused on the prediction of various rainfall intensities dur-
ing specific seasons, also considering performance across 
lead times (Refer to Table 2 for clarity).

https://mausam.imd.gov.in/imd_latest/contents/pdf/pubbrochures/Heavy%20Rainfall%20Warning%20Services.pdf
https://mausam.imd.gov.in/imd_latest/contents/pdf/pubbrochures/Heavy%20Rainfall%20Warning%20Services.pdf
https://mausam.imd.gov.in/imd_latest/contents/pdf/pubbrochures/Heavy%20Rainfall%20Warning%20Services.pdf
ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod
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Table 1  List of physics combinations investigated in the study

Cumulus Schemes Microphysics schemes Cases ID Events Selected 
ensembles 
and ID

Kain–Fritsch (KF) cumulus scheme (Kain 2004) in D1 
termed as KF0

Lin (Chen and Sun 2002) C0* OCH, GAJ, SWM, SUM

KF in D1, D2 termed as KF1 Lin C1 OCH, GAJ, SWM, SUM
Moisture–advection-based Trigger for KF cumulus 

scheme (Ma and Tan 2009) – in D1, D2 termed as 
KF1_1

Lin C2

Relative humidity-dependent Additional Perturbation 
for the KF cumulus scheme –in D1 and D2 termed as 
KF1_2

Lin C3 OCH, GAJ, SWM, SUM ENS5

Grell-Freitas (GF) ensemble cumulus scheme (Grell and 
Freitas 2014) in D1, D2 termed as GF1

Lin C4 OCH, GAJ, SWM, SUM

Betts–Miller–Janjic (BMJ) cumulus scheme (Janjić 
1994) in D1, D2 termed as BMJ1

Lin C5 OCH, GAJ, SWM, SUM

BMJ in D1 termed as BMJ0 Lin C6* OCH, GAJ, SWM, SUM
New Tiedtke (NT) cumulus scheme (Zhang and Wang 

2017) in D1, D2 termed as NT1
Lin C7 OCH, GAJ, SWM, SUM ENS4

KF0 in D1 Morrison (Morrison et al. 2009) C8* OCH, GAJ, SWM, SUM ENS1
KF1 in D1, D2 Morrison C9 OCH, GAJ, SWM, SUM ENS2
KF1_1 in D1, D2 Morrison C10 OCH, GAJ, SWM, SUM ENS6
KF1_2 in D1, D2 Morrison C11 OCH, GAJ, SWM, SUM
GF1 in D1, D2 Morrison C12
BMJ1 in D1, D2 Morrison C13 OCH, GAJ, SWM, SUM
BMJ0 in D1 Morrison C14* OCH, GAJ, SWM, SUM
NT1 in D1, D2 Morrison C15 OCH, GAJ, SWM, SUM
KF0 in D1 WDM6 (Lim and Hong 2010) C16*
KF1 in D1, D2 WDM6 C17 OCH, GAJ, SWM, SUM
KF1_1 in D1, D2 WDM6 C18
KF1_2 in D1, D2 WDM6 C19 OCH, GAJ, SWM, SUM
GF1 in D1, D2 WDM6 C20 OCH, GAJ, SWM, SUM
BMJ1 in D1, D2 WDM6 C21 OCH, GAJ, SWM, SUM
BMJ0 in D1 WDM6 C22* OCH, GAJ, SWM, SUM ENS3
NT1 in D1, D2 WDM6 C23 OCH, GAJ, SWM, SUM ENS7
KF0 in D1 Goddard Scheme (Tao et al. 2016) C24*
KF1 in D1, D2 Goddard Scheme C25 OCH, GAJ, SWM, SUM
KF1_1 in D1, D2 Goddard Scheme C26
KF1_2 in D1, D2 Goddard Scheme C27
GF1 in D1, D2 Goddard Scheme C28
BMJ1 in D1, D2 Goddard Scheme C29
BMJ0 in D1 Goddard Scheme C30* OCH, GAJ, SWM, SUM
NT1 in D1, D2 Goddard Scheme C31 OCH, GAJ, SWM, SUM
Simplified Arakawa–Schubert Scheme (SAS) (Pan and 

Wu 1995) in D1 termed as SAS0
Lin C32* OCH, GAJ, SWM, SUM

SAS in D1, D2 termed as SAS1 Lin C33 OCH, GAJ, SWM, SUM
Modified Kain–Fritsch Cumulus Potential Scheme 

(MKF) (Berg et al. 2013) in D1 termed as MKF0
Lin C34* OCH, SWM, SUM

MKF in D1, D2 termed as MKF1 Lin C35 OCH, GAJ, SWM
Multi–scale Kain–Fritsch (MsKF) cumulus scheme 

(Zheng et al. 2016) in D1 termed as MsKF0
Lin C36* OCH, SUM

MsKF in D1, D2 termed as MsKF1 Lin C37 SWM, SUM
SAS0 in D1 Morrison C38* OCH, GAJ, SWM
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2.2.2  Evaluation zones

Selected evaluation zones (DOM1, DOM2, DOM3, and 
DOM4) in Tamil Nadu and Kerala (Fig. 1) were chosen 
to assess the consistency of simulated precipitation across 
different agro-climatic conditions (refer to Table 1 in the 
supplementary material). The demarcation of these zones 
was primarily based on major agro-ecological classes from 
the Food and Agriculture Organization (FAO), Global 
Agro Ecological Zones v4 (GAEZv4) classification (Fis-
cher et al. 2021), considering temperature regime, soil-
moisture regime, soil/terrain class, and land-cover classes. 
DOM1 is predominantly in the 'Tropics, lowland humid' 
zones (GAEZv4 class numbers 5, 6), DOM2 in 'highland, 
humid with dominantly steep terrain' zones (GAEZv4 class 
numbers 12, 49, 50), DOM3 in 'Tropics, lowland semi-arid' 
zones (GAEZv4 class numbers 1, 2), and DOM4 in 'Land 
with ample irrigated soils' zones (GAEZv4 class numbers 
51). These chosen classes are widely prevalent in the tropics 
and the evaluation of the predictability of precipitation in 
these zones allows for scaling up the findings from the study 
to the broader Indian and Asian context. In addition to the 
GAEZv4 classes, the delineation of the final four evaluation 
zones (Fig. 1a) also considered monsoonal patterns and local 

administrative boundaries (refer to the supplementary mate-
rial, Section 5.2 for more details).

2.2.3  Coarser‑resolution convection‑parameterizing 
ensembles

The assessment of added value from the convection-scale 
multiphysics ensemble framework utilized the Global 
Ensemble Forecast System (GEFS) version V11.0 from the 
National Centers for Environmental Prediction (NCEP). 
This system consists of 20-member ensembles at a resolu-
tion of 0.5 degrees (NCEP-GEFS20). Data was retrieved 
from the THORPEX Interactive Grand Global Ensemble 
project (TIGGE 2021). Selecting GEFS data to benchmark 
the performance of the proposed ensemble framework and 
quantify the added value by convective-scale ensembles was 
conducted thoughtfully, as it utilizes the same input as used by 
the regional WRF model. NCEP-GEFS ensembles primarily 
result from perturbations in initial and lateral boundary con-
ditions from the control member (NCEP-GFS), utilizing the 
Ensemble Kalman Filter (EnKF) technique. Additionally, they 
include recently introduced model uncertainty perturbations 
through the Stochastic Total Tendency Perturbation (STTP) 
method.

Table 1  (continued)

Cumulus Schemes Microphysics schemes Cases ID Events Selected 
ensembles 
and ID

SAS1 in D1, D2 Morrison C39 OCH, SWM
MKF0 in D1 Morrison C40* OCH, SWM, SUM
MKF1 in D1, D2 Morrison C41 OCH, GAJ, SWM, SUM
MsKF0 in D1 Morrison C42* GAJ, SWM, SUM
MsKF0 in D1, D2 Morrison C43 OCH, SWM
SAS0 in D1 WDM6 C44* OCH, GAJ, SWM, SUM
SAS1 in D1, D2 WDM6 C45 OCH, GAJ, SWM, SUM
MKF0 in D1 WDM6 C46* OCH, SWM, SUM
MKF1 in D1, D2 WDM6 C47 OCH, GAJ, SWM
MsKF0 in D1 WDM6 C48*
MsKF1 in D1, D2 WDM6 C49
SAS0 in D1 Goddard Scheme C50*
SAS1 in D1, D2 Goddard Scheme C51
MKF0 in D1 Goddard Scheme C52* OCH, GAJ, SWM, SUM
MKF1 in D1, D2 Goddard Scheme C53 OCH, GAJ, SWM, SUM
MsKF0 in D1 Goddard Scheme C54*
MsKF1 in D1, D2 Goddard Scheme C55

In the study, D1 and D2 refer to Domain 1 and Domain 2, respectively. An asterisk (*) denotes cases where cumulus schemes were implemented 
only in Domain 1, and these cases, where convection is explicitly resolved by the microphysics schemes, termed as No-CUM cases in the manu-
script. The third column, labeled "Events," specifies the combinations that converged for each event. Empty rows or missing event in any row 
indicate that the particular combination did not converge within the runtime limit set by resource constraints. The last column, "Selected ensem-
bles and ID," highlights members from the larger group that were eventually chosen for the limited member ensemble framework—WRF-CP7
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Table 2  Performance metrics and verification strategies employed to evaluate the model simulations

Metrics Limited Member Ensemble Framework Long-term assessment and quantifying added value

Continous metrics * • Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Bias
Categorical metrics * Category based metrics aid in assessing the performance of binary forecasts for specific rainfall thresholds. 

The following were some of the categorical metrics used in the study
• Probability of Detection (POD), False Alarm Ratio (FAR), False Positive Rate, True Positive Rate, False 

Positve Rate (detailed explanation found in https:// www. cawcr. gov. au/ proje cts/ verifi cati on/ and Kirthiga 
et al. 2021)

• Probability of detection (POD) also termed a predictability or True Positive Rate (TPR) – POD = Hits

Hits+Misses
 , 

where Hits: The number of events correctly predicted by the model. Misses: The number of events observed 
but not predicted by the model. POD quantifies the ability of the model to correctly identify the occurrence 
of an event (e.g., precipitation) when it actually occurs. Higher values of POD indicate better performance 
in detecting the events of interest

• The False Alarm Ratio (FAR) = FalseAlarms

FalseAlarms+Hits
 where False Alarms: The number of events predicted by the 

model but not observed. Hits: The number of events correctly predicted by the model as occurring. The 
FAR indicates the proportion of predicted events that did not actually happen. Lower values of FAR suggest 
better accuracy in forecasting

• The False Positive Rate (FPR) = FalseAlarms

FalseAlarms+TrueNegatives
 , where False Alarms: The number of events predicted 

by the model but not observed. True Negatives represents the number of true negative predictions (instances 
where the model correctly predicts the negative class). The False Positive Rate measures the proportion of 
negative instances that are incorrectly classified as positive by the model, providing insight into the tendency 
if the model to generate false alarms

• The Extreme Event Score (EES), adapted from Sofokleous et al. 2021, which combines hit rate/POD and 
frequency bias using the contingency table/error matrix was also used. Frequency Bias (FB) = Hits+FalseAlarms

Hits+Misses
 . 

When the FB ≤ 1, then EES = H x FB, when FB > 1, then EES = H/FB. The EES penalizes underestimation 
or overestimation of events, providing a comprehensive score that combines the characteristics of categori-
cal indices. EES values range from 0 (no skill) to 1 (perfect skill)

Selecting ensemble members * • A composite scaled score (CSS) (Sofokleous et al. 2021) was used to combine scores from categorical 
metrics (POD, 1-FAR, EES) and continuous metrics (RMSE, mean bias, mean absolute error). A total of six 
metrics were used. The Composite scale score for a member i is given by  CSSi = 1

Ns

∑N

s=1

xs,i−xs,worst

xs,best−xs,worst
 , where i 

is the index identifying the member, s is the index of the statistical measure out of a number of  Ns (here six) 
measures, xs,i is the value of measure s obtained by member i, and xs,worst and xs,best are the worst and the best 
values for measure s among all the ensemble members. Calculated individually for each ensemble member 
across various rainfall intensities and events, CSS values range from 0 to 1. Higher CSS values indicate 
superior performance across all six evaluation metrics (POD, 1-FAR, EES, RMSE, mean bias, and MAE)

Additionally, Pearson’s correlation coefficient (ranging from 0 to 1) was employed to analyze the inter-
correlation among ensemble members. This metric is strategically utilized to minimize redundancy among 
ensemble members at an intra-seasonal timescale

Spatial performance metrics Fractional Skill Score (FSS) (Roberts and Lean 2008) was 
utilized to evaluate the performance of the ensemble 
framework across various spatial scales and daily 
rainfall categories. In general, the FSS is derived for 
different rainfall thresholds and neighborhood sizes. 
In this study, 5 × 5 pixels was selected as neighbor-
hood size (neighborhood scale of 50 km) after test-
ing neighborhood scales of 20 km, 30 km, 50 km 
and 70 km. The binary map (if the value of a pixel in 
the raster is above the selected rainfall threshold, the 
value 1 will be assigned to the pixel and vice versa) 
was derived for both observed and simulated average 
rainfall rate raster. Later a non-overlapping 5 × 5 size 
window (50 km neighborhood scale) was moved across 
the raster and the fractions within the window was 
calculated. The FSS for every member was computed as SS = 1 −

1

N

∑N

1
(Pf−Po)

2

1

N

�

∑N

1
P2

f
+
∑N

1
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�

 , where Pf  is forecast fraction, 
Po is observed fraction, N is the number of spatial win-
dows in the evaluation domain

Relying solely on grid-based statistics may not 
enable a seamless comparison due to variations 
in spatial resolutions. Thus, in addition to FSS, 
the following spatial statistics were also explored 
primarily to quantify the added value at the 
convective scale

• Seasonal averages of simulated precipitation 
were computed to assess the spatial accuracy in 
simulating long-term climate patterns

• Rain object analysis—Determination of the count 
and area coverage of the simulated rain objects 
based on specific thresholds and spatial shifts in 
both the north–south and east–west directions

https://www.cawcr.gov.au/projects/verification/
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Table 2  (continued)

Metrics Limited Member Ensemble Framework Long-term assessment and quantifying added value

Probabilistic methods to com-
pare ensemble frameworks

• The rank histogram, continuous ranking probability 
score (CRPS) (Baker et al. 2014), outlier statistics 
(Kirthiga et al. 2021), ensemble spread, and Area Under 
the Receiver Operating Characteristic Curve (AUC-
ROC) (Measures the discrimination ability of binary 
forecasts) (Bouallègue and Richardson 2022), to gain 
insights into the probabilistic behavior of the ensembles

• The Continuous Ranking Probability Score measures 
the discrepancy between the cumulative distribution 
function (CDF) of the observation dataset and the simu-
lated CDF. Lower CRPS values indicate more skillful 
forecasts. CRPS = ∫ ∞

−∞
[Fforecast(y) − Fobserved(y)] 2 dy, 

where Fforecast(y) is the forecast cumulative distribu-
tion function at value y and Fobserved(y) is the observed 
cumulative distribution function at value y. The CRPS 
integrates the squared differences between the forecast 
and observed CDFs over all possible values, providing a 
measure of the overall accuracy of the forecast distribu-
tion. Lower CRPS values indicate better forecast perfor-
mance, with a perfect forecast having a CRPS of zero

• The rank histogram, CRPS, Probability Density 
Function and spread among the ensembles were 
utilized to understand the value on the probalistic 
nature of the forecasts

• Additionally, the correlation plots between the 
ensemble variance and the mean squared error 
(MSE) of the ensemble mean precipitation was 
used, following the approach outlined by Clark 
et al. 2010

*  Statistics calculated through grid-to-grid comparisons

2.2.4  Verification data and methods

IMDAA reanalysis data (Indirarani et al. 2021) was used to assess 
the long-term performance. The reanalysis data has a horizontal 
resolution of 12 km (equivalent to 0.12-degree) at 3-h intervals. 
A resampling procedure was followed to bring other datasets to 
the same resolution as IMDAA. IMDAA data was chosen for its 
integration of a larger network of observation data from the India 
Meteorological Department (IMD) into the reanalysis dataset 
(Indirarani et al. 2021). Notably, IMDAA data has demonstrated 
superior performance in capturing precipitation extremes and 
spatio-temporal weather patterns across the Indian subcontinent 
compared to other reanalysis datasets (Singh et al. 2021).

An assessment was carried out across evaluation zones (Sec-
tion 2.2.2) to comprehend the behavior of the model simulations 
across various seasons, topography, and climatology. Evaluation 
metrics employed for the long-term assessment are detailed in 
Table 2. For practical applications, determining the most useful 
deterministic value from the ensemble members involved utilizing 
both the ensemble mean (EM) and the value derived using the prob-
ability matching method (PMM) proposed by Ebert et al. (2003).

cumulus schemes in domain 2, while the No-CUM cases 
represented explicit convection using microphysics schemes 
without a cumulus scheme in domain 2 (Table 1). Analy-
sis of the domain-averaged temporal precipitation rates 
(mm/6  h) (Supplementary material Fig.  S1) revealed a 
significant spread in the range of 1 mm/6 h to 5.5 mm/6 h 
across lead-times and events, largely evident when varying 
cumulus physics schemes in both domains (CUM cases). 
The cases within the CUM cluster (dashed lines in sup-
plementary material Fig. S1) displayed earlier initiation of 
events and closely matched the intensities of peak events, 
aligning well with the temporal profile of GPM-IMERG 
data. Conversely, the No-CUM cases (C0, C6, C8, C14, C16, 
C22, and C24) showed a narrower spread of < 2 mm/6 h on 
average, suggesting lower internal variability among these 
cases. This indicates that the different cumulus schemes 
in the parent domain demonstrated minimal impact on the 
precipitation simulated in domain 2 for the selected events. 
Furthermore, No-CUM cases simulated delayed precipi-
tation and lower peak intensities across extreme rainfall 
events. However, it was observed that No-CUM cases bet-
ter represented weak convective activities (light rainfall 
of < 5 mm/6 h) with a higher success ratio exceeding 0.6. 
Research findings suggest that microphysics schemes are 
more effective in resolving stratiform clouds associated with 
low to moderate intensity rains (Samanta et al. 2021, 2023). 
The CUM clusters consistently overestimated light rainfall 
events, leading to a lower success ratio (< 0.5) for that cat-
egory. Fractional Skill Scores (FSS) (Fig. 2) illustrate that 

3  Results and discussion

3.1  Simulation of precipitation by multi‑physics 
combinations across four extreme events

3.1.1  Model behavior across the different physics schemes

In this study, we classified the combinations of multiphys-
ics simulations into two primary clusters: the CUM cluster 
and the No-CUM cluster. The CUM cluster incorporated 
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CUM cases outperformed No-CUM cases (first 7 rows in 
Fig. 2) in simulating spatio-temporal patterns of moderate 
to higher rain thresholds across all events. The No-CUM 
cases exhibited low skill for higher rain thresholds with FSS 
ranging between 0 – 0.28.

The KF schemes, both the default version (cases C0, C1, 
C8, C9, C16, C17, C24, and C25) and those with modi-
fied triggers (cases C2, C3, C10, C11, C18, C19, C26, and 
C27), effectively captured the variability observed across 
events with FSS exceeding 0.8 for rainfall occurrences. The 
cases in this group demonstrated the highest skill scores of 

FSS > 0.65 across all rainfall categories (Fig. 2), indicat-
ing higher sensitivity and specificity in the predicted events 
with CSS > 0.6 across all the event and rainfall thresholds 
(Table 3). However, the cases that incorporated relative 
humidity-dependent additional perturbation for the KF 
scheme (cases C3, C11, C19, and C27) overestimated rain-
fall (positive bias of 2.5 mm/6 h) for low-moderate con-
vective events during the GAJ and SUM episodes, with 
the magnitude of positive bias increasing as the lead-time 
increased (≥ 36 h, supplementary Table 3). It is worth not-
ing that there was an observable difference in performance 

Fig. 2  Fractional Skill Score (FSS) at 50  km radius (5 × 5 grids) 
across different rain thresholds. The x-axis represents the events 
arranged in the sequence of OCH, GAJ, SWM, and SUM. These 
events are reiterated for each rain threshold, namely > 1 mm/6 h, > 5
.1  mm/6  h, > 10.1  mm/6  h, and 20.1  mm/6  h (indicated on the sec-
ondary x-axis located at the top). The y-axis represents case numbers 
arranged to depict the order of cumulus schemes, viz. KF0*, BMJ0*, 
MKJ0*, KF1, KF1_1, KF1_2, BMJ1, GF1, NT1, MKF1 (mapped in 
the secondary y-axis). Cases with no cumulus schemes used in the 
innermost domain D2 (No-CUM) are marked with *. Within each 

cumulus scheme class, microphysics schemes are sorted, and differ-
ent colors on the case numbers indicate the microphysics schemes: 
black – Lin scheme; grey – Morrison scheme; brown – WDM6 
scheme; purple – Goddard scheme. For a clearer understanding of the 
case numbers and various physics combinations, refer to Table 1. The 
lower x-axis denotes the events and y-axis denotes the case numbers. 
The black lines and corresponding secondary x-axis represent group-
ing based on the cumulus schemes. The event SUM corresponds to 
a moderate rainfall event, where values do not exceed 20.1 mm/6 h. 
Therefore, in the figure, it is represented as NA (Not Available)
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between the CUM and No-CUM variants of KF scheme, 
i.e. when comparing the utilization of the KF scheme in 
both domains (FSS of 0.6 and bias of -2 mm/6 h) versus 
using KF only in the parent domain (FSS of 0.35 and bias 
of -5 mm/6 h). The CUM cases employing the KF scheme 
in the 4-km domain demonstrated improved performance 
during the Southwest Monsoon (SWM), achieving an FSS 
of > 0.5 across the rainfall intensities. In contrast, the No-
CUM cases showed no skill (FSS ~ 0) for rainfall intensi-
ties exceeding 20.1 mm/6 h for the SWM event (Fig. 2). 
Furthermore, for the OCH and SWM event, the KF-based 
No-CUM cases depicted a narrower spatial distribution 
of rainfall compared to the KF-based CUM cluster results 
(not shown here). An interesting finding is that during the 
SUM event, the CUM variant of KF schemes consistently 
achieved an FSS above 0.4 for rainfall intensities exceeding 
5.1 mm/6 h, while the No-CUM cases recorded lower FSS 
values (< 0.15).

The BMJ cases (cases C5, C6, C13, C14, C21, C22, 
C29, and C30) significantly under-predicted rainfall (bias of 
-10 mm/6 h) compared to other cumulus schemes for the four 
rain episodes considered, resulting in poor performance with 
FSS < 0.25 for higher rain thresholds (Fig. 3). The difference 
between the BMJ0 and BMJ1 cases were found to be very 
minimal, following similar spatial and temporal patterns 
while simulating rainfall. The MKF cumulus scheme (cases 
C52, C35, C47, and C53) slightly overestimated the spatial 
spread of rainfall during the initial periods of the SWM epi-
sode but better captured the peak event (54–90 h) during the 
episode (Fig. S1). Among all the events analyzed, the MKF 
scheme demonstrated superior performance in predicting 
extremes (particularly when used in domain 2), with an EES 
exceeding 0.45, compared to the KF schemes (EES—0.35) 
and other schemes (EES—0.2). The NT scheme consistently 
demonstrated high POD values (> 0.5) and low FAR values 
(< 0.3) for occurrences of low to moderate rainfall across all 

Table 3  Performance of each 
physics combination considered 
in the study across the selected 
events

Detailed RMSE and mean bias values across the lead times can be found in the supplementary material 
Table 3. The table showcases only representative cases (with results available across all four events, as 
outlined in Section 2.3) for each cumulus and microphysics scheme to maintain brevity

Cumulus cluster Cases Extreme Event Score (EES) Composite Scaled Score (CSS)
Averaged across thresholds Combining RMSE, MAE, MB, 

Hit Score, Success Ratio & EES

KF0 C0 0.18 0.51
C8 0.23 0.54

BMJ0 C6 0.21 0.42
C14 0.24 0.44
C22 0.15 0.40
C30 0.22 0.44

MKF0 C52 0.18 0.56
KF1 C1 0.37 0.57

C9 0.41 0.55
C17 0.34 0.55
C25 0.32 0.58

KF1_1 C10 0.36 0.48
KF1_2 C3 0.40 0.64

C11 0.39 0.63
C19 0.37 0.60

BMJ1 C5 0.16 0.52
C13 0.22 0.58
C21 0.15 0.53

GF1 C4 0.22 0.49
C20 0.17 0.53

NT1 C7 0.23 0.59
C15 0.26 0.57
C23 0.20 0.54
C31 0.20 0.57

MKF1 C35 0.50 0.44
C47 0.49 0.47
C53 0.47 0.53
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analyzed events. Cases involving MsKF and SAS schemes 
did not fully converge within the given run-time constraint 
(Section 2.1.3) for the four events discussed here and were 
therefore excluded from further discussions.

The plots of domain-averaged temporal precipitation 
(mm/6 h) for different microphysics schemes (averaged 
across the cumulus schemes) (Fig. S2) revealed notice-
able variations in the intensity of peak events and the spa-
tial extent of rain clusters when the microphysics (MPS) 
schemes were modified. Particularly, for the SWM and SUM 
events, a deviation of ± 5 mm/6 h was noticed between the 
selected microphysics schemes, with Goddard (FSS – 0.35) 
and Morrison schemes (FSS – 0.3) recording superior per-
formance. However, there was no significant difference in 
the initiation time and timing to peak of rainfall among the 
microphysics cases for the simulated events.

3.1.2  Spatio‑Temporal attributes of rainfall events 
and influences on model performance

The OCH and GAJ events are tropical cyclones driven 
by large-scale dynamics, but the microphysical processes 
associated with tropical cyclones become highly complex 
during landfall and post-landfall as they move over the 
land. Tropical cyclones typically originate as clusters of 
thunderstorms over warm ocean waters. As these clusters 
intensify, warm, moist air converges toward the center of 
the disturbance at low levels. Further intensification leads 
to the formation of a deep layer of towering cumulonim-
bus clouds known as the Central Dense Overcast (CDO), 
characterized by intense convective activity and heavy 
rainfall consisting of numerous isolated convective ele-
ments. Tropical cyclone intensity is closely linked with 
Latent Heat Release (LHR), which is influenced by the 

distribution of hydrometeors above and below the melting 
layers (Nekkali et al. 2022). Studies have demonstrated 
that the choice of cumulus and microphysics schemes sig-
nificantly impacts the track and rainfall intensities of tropi-
cal cyclones (Mahala et al. 2015; Kirthiga et al. 2021). The 
cyclonic storm Ockhi (OCH) is considered a rare event 
characterized by rapid intensification from a depression to 
a cyclone within a span of 9 h, further developing to a very 
severe cyclone within next 24 h (Singh et al. 2020). The 
pronounced increase in CAPE within the low to mid-level 
atmosphere during this event is largely linked to oceanic 
interactions under the influence of a prominent large-scale 
upper-level trough. Thus, KF, MKF and NT, which utilizes 
CAPE for closure assumptions was observed to perform 
better than other schemes. The rapid intensification was 
picked well by the simulations 48 h ahead of the event. 
Previous studies have indicated that the BMJ scheme was 
skillful at accurately representing the track and intensity 
of tropical cyclones. The scheme was reported to have 
simulated the typical warm core structure and wind pattern 
associated with these weather systems better than the other 
schemes (Kanase et al. 2020). However, in this study, the 
BMJ case, recorded late initiation for the OCH cyclone 
event forecasting a low intensity event. The BMJ scheme 
adjusts the current profile to a pre-determined convective 
sounding. However, as this event is a rare event which 
deviates from the average climatology of cyclone storms 
in India, resulted in lower skill of using a pre-defined ref-
erence profile in the scheme. The atmospheric sounding 
profiles revealed lower moisture levels and inadequately 
represented low-level vorticity, resulting in a slow and 
weaker development of the weather system. Cases that 
relied solely on microphysics schemes to resolve cloud 
processes in domain 2 (No-CUM cluster) failed to capture 

Fig. 3  Receiver Operating 
Characteristic (ROC) curves for 
various rainfall thresholds with 
False Positive Rate (FPR) in the 
x-axis and True Positive Rate 
(TPR) in the y-axis. The blue 
dashed line represents the 1:1 
line. A point at the top-left cor-
ner of the ROC plot represents 
perfect classification (TPR = 1, 
FPR = 0), while a random clas-
sifier would produce a diagonal 
line from the bottom-left to 
the top-right (AUC = 0.5). The 
closer the ROC curve is to 
the top-left corner, the better 
the model's discrimination 
ability. Scatter points represent 
individual case skill, and black 
circles highlight cases with 
similar performance
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the full spectrum of precipitation features for OCH event 
(Fig. 2). This limitation may be attributed to issues with 
available microphysics schemes in adequately resolving 
isolated convective elements present in the core of the 
cyclone (Samanta et al. 2023). The Lin and Morrisons 
scheme along with KF schemes (C1, C2, C3, C9, C10 and 
C11) performed better in capturing the spatio-temporal 
pattern of the rainfall features for the event (CSS—0.6 on 
average; Table 3).

The conclusions drawn from the OCH event were not 
evidently applicable to the Gaja cyclonic event (GAJ). The 
GAJ event presented unique challenges, as the initial and 
lateral boundary conditions themselves were poorly repre-
sented from the input data system (Kirthiga et al. 2021), 
and the multiphysics combinations attempted here were not 
able to improve the simulations significantly for the major 
cyclonic event during the first 18 h of the simulation (Sup-
plementary material Fig. S1). Previous studies have also 
highlighted the importance of near-perfect boundary forcing 
for accurate predictions of tropical cyclones driven mainly 
by synoptic-scale processes (Bucci et al. 2018). However, a 
significant variability of ± 7.5 mm/6 h was observed in the 
rainfall occurrences linked to the pull effect as the cyclone 
advanced westward over land during the 78–96 h lead-time.

The SWM event was part of South-West Monsoonal cir-
culations of 2018, enhanced by presence of a low-pressure 
zone in Bay of Bengal. The off-shore monsoon trough was 
intensified by mid-tropospheric cyclonic circulation over 
peninsular India causing the high intensity events (Kirthiga 
et al. 2021). The rainfall occurred over larger spatial extent 
covering Kerala, Tamilnadu and parts of Karnataka, also 
recording highly variable rainfall intensities. Higher vari-
ability of hydrometeor distributions was noticed during the 
event causing huge spatio-temporal variability in the rain-
fall intensities (Sumesh et al. 2022). The No-CUM cases 
simulated high intensity events but the rainfall clusters were 
isolated to specific regions in the domain, thus hugely under-
estimating the spatial spread of the rainfall occurrence (the 
spatial distribution of the event simulations can be found in 
Kirthiga et al. 2021, not shown here for brevity). The CUM 
cluster was able to represent the intensification and temporal 
pattern of the rainfall progression, however, the areal distri-
bution was still underestimated. The MKF1 scheme captured 
the accumulated rainfall for event, comparatively well when 
compared to GPM. However, the case simulated the event as 
a weak rainfall event existent for a longer duration deviating 
from the characteristics of the real episode.

Across the simulations, cumulus schemes influenced 
the spatial distribution of moderate rainfall and initiation 
of events, while changes to microphysics schemes intro-
duced variability in both the intensity and spatial patterns 
of high-intensity rainfall occurrences within the simulated 
environment. Lower Convective Inhibition (CIN) and higher 

Convective Available Potential Energy (CAPE) values were 
prevalent, leading to higher skill of the CUM variant of KF 
schemes (implemented in two domains), with a Fractional 
Skill Score (FSS) exceeding 0.5 across all events consid-
ered. Cases utilizing relative humidity-based triggers with 
the KF scheme (C3, C11, and C19) recorded higher overall 
skill scores, with CSS exceeding 0.6. The Goddard, Lin, 
and Morrison schemes consistently demonstrated higher 
skill scores compared to others. For events dominated by 
warm rain processes like OCH and GAJ, single-moment 
microphysics schemes like Lin and Goddard performed well. 
However, for events (SWM and SUM) dominated by hydro-
meteors from ice and graupel categories, combinations with 
double-moment schemes Morrison and WDM6 schemes 
showed superior performance. No-CUM cases resolved pre-
cipitation intensities for events driven by large-scale dynam-
ics and stratiform cloud processes. The ratio of simulated 
convective precipitation to total simulated precipitation in 
domain 2 consistently exceeded 0.6 across all simulated 
events, with contributions varying from isolated convective 
elements to well-structured convective processes. When 
microphysics schemes were used in domain 2 to explicitly 
resolve processes without cumulus scheme, narrow bands 
of precipitation, as compared to GPM, and delays in event 
initiation were noticed. It is noteworthy that the CUM cluster 
simulated a large spatial spread but weak rainfall activity, 
extending slightly longer than the actual duration for some 
events (SWM and SUM).

3.2  Reducing the number of ensemble members 
from an operational point of view

Figure 3 illustrates the Area Under the Receiver Operating 
Characteristic Curve (AUC-ROC) for precipitation across 
various thresholds. This metric is commonly utilized to 
assess the discrimination capability of forecasts for both rare 
and common events (Bouallègue and Richardson 2022). The 
KF schemes (cases C9, C10) showed higher TPR (> 0.55) 
and low FPR (< 0.05), particularly when paired with the 
Morrison microphysics scheme (Fig. 3), thus showing a 
superior performance for the simulated events. Case C8, a 
No-CUM variant, also exhibited good performance with a 
Critical Success Index (CSS) of 0.54. Case C11, which uti-
lized a relative humidity perturbation with the KF scheme in 
both domains along with the double-moment mixed-phase 
Morrison scheme, exhibited a higher False Alarm Rate 
(FAR) exceeding 0.4 (not shown here). Conversely, case C3, 
employing a relative humidity trigger with the KF scheme 
but with a single-moment scheme (Lin) in both domains, 
recorded a higher True Positive Rate (TPR) exceeding 0.6 
and a False Positive Rate (FPR) of less than 0.05. The NT 
schemes, which were scale-aware, demonstrated consist-
ent performance across cases C7, C15, C23, and C31 with 
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moderate CSS exceeding 0.55. The BMJ0 cluster, along with 
complex microphysics schemes such as cases C14 and C22, 
exhibited a moderate True Positive Rate (TPR ~ 0.4) across 
rainfall thresholds, accompanied by a slightly higher False 
Positive Rate (FPR ~ 0.1) with False Alarm Rate (FAR) 
exceeding 0.3. These cases also recorded an Extreme Event 
Score (EES) value not exceeding 0.2. Cases with the GF 
scheme (C12, C20) demonstrated a TPR not exceeding 0.3, 
along with FAR > 0.3, showing a lower skill when compared 
to other cases. The performance of the cases was largely 
found to be dependent on the specific event characteristics, 
as elaborated in Section 3.1.2.

Run-time constraints in the study were established due to 
resource limitations determined by the implemented clus-
ter (supplementary material Section 5.1), aiming to ensure 
operational feasibility. A maximum allotted time of 3 h was 
set for each ensemble member to converge. The runtime of 
each case was influenced by the dynamics and complex-
ity of the selected event, as well as the formulations of the 
physics schemes utilized. Instability in the grid sometimes 
led to longer runtimes for the CUM cluster due to frequent 
calls to the cumulus schemes at each time step. Events with 
mixed hydrometeors and complex cloud processes resulted 
in slightly longer runtime for the No-CUM variant com-
pared to the CUM cluster. This aspect was not extensively 
investigated in previous studies, as most of them utilized a 
constant time step, except for a few studies (Jeworrek et al. 
2019, 2021). To ensure operational feasibility, dynamic 
time steps were preferred to manage this complexity and 
decrease the overall turnaround time for various cases on a 
daily basis. The KF schemes with default trigger consistently 
exhibited the longest runtime among both CUM and No-
CUM clusters. However, they consistently converged within 
the allocated 2-h runtime for all events. The KF schemes 
with perturbations (KF1_1 and KF1_2) recorded a runtime 
10–20% shorter than KF0 and KF1 variants. Scale-aware 
NT schemes consistently demonstrated shorter turnaround 
times (18–32%) compared to other schemes. BMJ0 variants 
with different microphysics schemes demonstrated enhanced 
performance and reduced turnaround time (10–15%) com-
pared to other schemes. However, when implemented in 
both domains as part of the CUM cluster, the BMJ scheme 
exhibited longer runtime, equivalent to the KF cluster. Fur-
thermore, when combined with the Goddard microphysics 
scheme, it failed to converge for any of the event within the 
given time limit (Case C29). Certain combinations, such 
as MsKF with complex microphysics schemes, often failed 
to converge within the given time limit. Hence, selecting 
compatible cumulus and microphysics schemes for specific 
rain events is crucial, especially when explicitly resolving 
precipitation in finer domains (Yano et al. 2018). Combining 
KF cumulus schemes in domain 1 with the Morrison micro-
physics scheme in domain 2 resulted in the best performance 

(CSS and required less integration time than other combina-
tions with KF scheme. However, the MKF cumulus scheme 
in domain 1 performed well when paired with the Goddard 
microphysics scheme (case C53) in domain 2 (CSS – 0.53). 
The WDM6 microphysics scheme showed improved perfor-
mance (CSS – 0.6) when combined with the KF scheme uti-
lizing the relative humidity-based trigger (case C19). While 
the Goddard scheme performed well during the SWM epi-
sode combined with the MKF (C53 – CSS of 0.53) and NT 
(C31 – CSS of 0.57) cumulus schemes, combinations involv-
ing the Goddard scheme failed to converge within the given 
time when combined with other cumulus scheme combina-
tions across events. The MKF scheme required more runt-
ime (20–30% more than other schemes) for implementation 
and occasionally failed to converge in cases with complex 
microphysics schemes and system dynamics (also observed 
by Berg et al. 2013).

The Pearson’s correlation values presented in Fig. 4 pro-
vide insights into the inter-correlation among the different 
members of the multiphysics approach. The degree of cor-
relation between these members depended on the theory 
behind each physics scheme formulation and the underlying 
mechanisms driving the event. Previous studies (Charron 
et al. 2010; Leutbecher et al. 2017) noted that the clustering 
of ensemble members is a common issue associated with the 
multi-model or multiphysics approach, leading to multimo-
dality in the outputs. From the results, it was observed that 
increasing the number of multiphysics members did not nec-
essarily enhance the predictability of the event. The study 
also underscored the importance of addressing the clustering 
phenomenon observed among highly correlated ensembles. 
The highest inter-correlation was found among the cases 
for the GAJ event, which is more influenced by large-scale 
depression. Imperfect boundary conditions led to low vari-
ability between the multiphysics combinations, resulting 
in the highest intercorrelation exceeding 0.8 between the 
different cases analyzed (Fig. 4b). Moreover, a significant 
occurrence of high intercorrelation (> 0.7) was observed 
among different microphysics schemes within a given 
cumulus scheme cluster, as discussed in Section 3.1.1. For 
other events, particularly the OCH and SWM events (Fig. 4a 
and Fig. 4c), the KF1 variant with default trigger showed 
correlation (> 0.6) with KF1, NT1, and MKF1 schemes. 
Conversely, the BMJ0 cluster exhibited the least correlation 
(< 0.3) with other schemes. It is interesting to note that for 
SUM event there was least correlation (< 0.35) between the 
multi-physics members (Fig. 4d).

Based on the performance assessment outlined above, 
including runtime analysis, correlation evaluation, and 
CSS scores (Fig. 3, Fig. 4 and Table 3), seven members 
have been selected for inclusion in the convection-allow-
ing multiphysics ensemble of smaller size, denoted as 
WRF-CP7. These members, labeled as ENS1 to ENS7, 
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correspond to case numbers C8, C9, C22, C7, C3, C10, 
and C23, respectively, as indicated in Table 1, 5th column 
(Selected ensembles and ID). The time plots presented 
in Fig. 5 illustrate the spread of ensembles as the lead 
times progress. Comparing the precipitation forecasts 
from WRF-CP55 with the WRF-CP7 (shaded in green), 
we observed that the spread was highly comparable. Fur-
thermore, the CRPS, MAE, and RMSE values reported 
in Table 4 indicate that the proposed WRF-CP7 recorded 
similar error statistics and overall performance compared 
to the larger multiphysics ensembles WRF-CP55. Addi-
tionally, the outlier statistics in Table 5 demonstrate that 
the difference between the actual outlier base rate and the 
expected outlier rate for the WRF-CP7 was equivalent or 
even smaller when compared to the outlier statistics of 
WRF-CP55. Reducing the number of ensemble members 

did not significantly affect the distribution of the rank 
histogram for the four heavy rainfall events analyzed 
in this study (Fig. S3). However, the rank histogram, 
highlights skewness in both multiphysics frameworks 
(WRF-CP55 and WRF-CP7), indicating a tendency for 
the multi-physics model to slightly underestimate.

It is important to note that the maximum achievable 
True Positive Rate (predictability), indicative of the sen-
sitivity of the framework, consistently remains below 0.65. 
This suggests that the multiphysics ensemble framework 
accounted for a limited amount of predictability in simu-
lated rainfall for the selected events. Addressing input and 
model uncertainties is imperative for enhancing the per-
formance of ensemble frameworks, particularly in tropi-
cal regions (Prakash et al. 2016; Huang and Luo 2017). 

Fig. 4  Inter-correlation plots between cases for different events (a) 
OCH, (b) GAJ, (c) SWM, and (d) SUM, with light–dark shades of 
blue to indicate low inter-correlation (value of 0) to higher inter-cor-
relation (value of 1). The first column presents the correlation with 
reference dataset GPM. The y-axis and x-axis depict correlation val-

ues, with GPM as first element, followed by the ensemble members 
(case numbers) of WRF-CP55. The alignment of case numbers on the 
y-axis corresponds to the order of cumulus schemes (labeled on the 
secondary y-axis, with '*' denoting No-CUM cases), and the color on 
the case numbers signifies the microphysics schemes similar to Fig. 2
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However, much of the bias in the multiphysics ensemble 
may stem from over-compensation of unsampled input 
errors.

3.3  Performance of the WRF‑CP7 Framework – more 
extended period analysis

To assess the reliability across different seasons, rain mech-
anisms, and rainfall intensities, we validated 72-h ahead 

precipitation forecasts from WRF-CP7 for an extended 
period (September 2015 to December 2017). Two ensemble 
members from the No-CUM cluster were considered: ENS1 
representing the KF0-Morrison configuration (case C8), and 
ENS3 representing the BMJ0-WDM6 configuration (case 
C22). Three members from the CUM cluster of KF schemes 
with different triggers were included: ENS2 representing 
KF1-Morrison (case C9), ENS5 representing KF1_2 (Rela-
tive humidity-dependent Additional Perturbation)-Lin (case 

Fig. 5  Temporal plots (domain-averaged) illustrating the ensemble 
frameworks' spread across events, (a) OCH, (b) GAJ, (c) SWM, and 
(d) SUM. The x-axis of the first row represents the forecast lead time 
(6-hourly), while the second row displays values indicating the ratio 

(spread of WRF-CP7/spread of WRF-CP55) * 100. A higher ratio 
signifies that the spread generated by WRF-CP7 (7-member ensem-
ble) is nearly identical to that of WRF-CP55, whereas lower values 
indicate a reduced spread by the WRF-CP7 model

Table 4  Performance analysis of ensemble properties across two versions of CP ensembles- WRF-CP55 and WRF-CP7 models

The expected base rate for outlier statistics is given within the brackets, i.e. 7% ((2/(N + 1))*100) for 27 member ensemble and 25% for the small 
7-member ensemble

Statistics CRPS (mm/6 h) MAE (mm/6 h) RMSE (mm/12 h) Outlier Statistics (%)

Lead-Time (hrs) WRF-CP55 WRF-CP7 WRF-CP55 WRF-CP7 WRF-CP55 WRF-CP7 WRF-CP55 WRF-CP7

12 2.75 2.76 4.10 4.09 7.57 7.58 34 (7) 42 (25)
24 3.65 3.77 5.64 5.56 9.21 9.31 25 (7) 38 (25)
36 2.45 2.75 5.29 5.34 9.00 9.49 16 (7) 27 (25)
48 10.42 10.59 15.85 16.01 36.15 35.85 14 (7) 30 (25)
60 14.26 14.26 19.89 19.93 43.76 43.73 23 (7) 36 (25)
72 14.36 14.81 18.71 18.72 36.43 36.51 29 (7) 44 (25)
84 7.75 8.20 10.25 10.25 15.50 15.93 25 (7) 39 (25)
96 6.31 6.63 8.16 8.06 15.06 15.74 30 (7) 44 (25)



Additional insights from convection‑permitting scale ensembles in simulating spatiotemporal…

C3), and ENS6 representing KF1_1 (Moisture–advection-
based Trigger)-Morrison (case C10). Two ensemble mem-
bers from the CUM cluster of NT scheme were also selected: 
ENS4 representing NT1-Lin (case C7) and ENS7 represent-
ing NT1-WDM6 (case C23).

As discussed in earlier sections, there was a clear distinc-
tion in the performance of individual ensemble members 
based on the major cumulus and microphysics schemes con-
sidered. The various categorical statistics of the performance 
of individual members are listed in Table 5 as a function of 
rainfall thresholds, and continuous statistics as a function of 
lead-time are available in supplementary material Table 3. 
The members with the NT scheme (ENS4, ENS7) recorded 
the lowest RMSE (3–4 mm/6 h) across the lead-times. Nota-
bly, the error progression as lead-time increases was not very 
prominent (< 4% increasing trend) with the NT scheme 
(refer to Table 3 in supplementary material). These mem-
bers exhibited a slight negative bias (underestimation) with 
an average of -0.25 mm/6 h. However, the NT scheme with 
the double-moment microphysics scheme WDM6 reduced 
the negative bias to -0.15 mm/6 h. Highest Success Ratio 
(0.45) was noticed for the ENS4 across the rainfall thresh-
olds (Table 5). The NT scheme simulations demonstrated a 
closer match to the observed cumulative distribution func-
tion of forecasted rainfall compared to IMDAA data across 
various lead-times (Fig. S4 in supplementary material). This 
scheme, being scale-aware exhibited faster convergence, tak-
ing 25–40% less time than the longest runtime taken by the 
ensemble framework. Consequently, it consistently provided 
reliable forecasts throughout the year. The incorporation of 
mid-level cumulus parameterizations, cumulus downdrafts, 
and cumulus momentum transports, proved highly relevant 
for tropical setups by earlier studies (Zhang and Wang 2017; 
Wang 2022; Zhou et al. 2024) and thus suggested in ‘NCAR 
tropical suite’(https:// www2. mmm. ucar. edu/ wrf/ users/ physi 
cs/ ncar_ tropi cal_ suite. php). However, the NT scheme faces 

challenges in accurately simulating low clouds and shallow 
convection (also reported by Zhang and Wang 2018), par-
ticularly evident during the pre-monsoon (SUM) and winter 
(WIN) seasons. The underestimation of moderate to heavy 
rainfall during the onset of SWM, SUM and WIN season 
was widely noticed. Additionally, coastal regions, prone to 
onshore flow and the formation of low clouds that contribute 
to localized rainfall, displayed lower skill among members 
using the NT1 scheme.

For the No-CUM members, the KF0 and BMJ0 con-
figurations (ENS1 and ENS3), a very similar RMSE of 
5.1 mm/6 h and 5.7 mm/6 h, respectively, was recorded. 
The diurnal variability was adequately represented by the 
No-CUM members, although they failed to capture peak 
intensities across seasons. Research indicates that the con-
vective precipitation to total precipitation ratio exceeds 0.5, 
particularly in peninsular India during the major monsoon 
seasons (Romatschke and Houze 2011; Sreenath et al. 2022). 
The explicit resolution of convective elements posed chal-
lenges within the current microphysics schemes (Samanta 
et al. 2023). Previous studies have suggested that utiliz-
ing cumulus parameterization at a 4-km scale performed 
better for certain events (Kirthiga et al. 2021; Wang et al. 
2021). However, ENS1 displayed higher skill during the 
North-East Monsoon (NEM) season (POD – 0.7) and Win-
ter (WIN) season (POD – 0.4), particularly for DOM3, the 
eastern coasts. The NEM season is mainly driven by large-
scale dynamics. Initially, as easterly winds move inland 
from the ocean, there is minimal contribution from convec-
tive precipitation elements when precipitation happens in 
the coasts. However, increased convective interactions are 
observed as they interact with the land and penetrate further 
inland, resulting in a drastic reduction in the skill of ENS1 
for DOM4 (POD < 0.45). The increase in RMSE values as 
lead-time increases was notably higher with the KF scheme, 
with an increasing error trend rate reaching about 30% in 

Table 5  Categorical error statistics across individual ensemble members during the long-term (Sep 2015 – Dec 2017) forecast simulations

ENS1 to ENS7, correspond to case numbers C8, C9, C22, C7, C3, C10, and C23, respectively, as indicated in Table 1. Continuous error metrics 
viz. RMSE, mean bias, and Pearson's correlation coefficient values across the lead times can be found in the supplementary material Table 3

Statistics Rain intensities ENS1 (KF0-
Morrison)

ENS2 (KF1-
Morrison)

ENS3 (BMJ0-
WDM6)

ENS4 
(NT1_Lin)

ENS5 
(KF1_2-Lin)

ENS6 (KF1_1-
Morrison)

ENS7 
(NT1-
WDM6)

POD  > 1 mm/6 h 0.31 0.69 0.36 0.63 0.73 0.70 0.65
 > 10.1 mm/6 h 0.25 0.53 0.24 0.30 0.60 0.44 0.35
 > 20.1 mm/6 h 0.26 0.43 0.18 0.28 0.52 0.35 0.32

Success Ratio 
(1-FAR)

 > 1 mm/6 h 0.56 0.55 0.53 0.66 0.57 0.56 0.59
 > 10.1 mm/6 h 0.21 0.22 0.18 0.38 0.24 0.24 0.27
 > 20.1 mm/6 h 0.12 0.09 0.07 0.34 0.10 0.13 0.15

EES  > 1 mm/6 h 0.14 0.60 0.22 0.53 0.65 0.62 0.62
 > 10.1 mm/6 h 0.21 0.22 0.18 0.25 0.24 0.24 0.21
 > 20.1 mm/6 h 0.12 0.09 0.07 0.23 0.10 0.13 0.15

https://www2.mmm.ucar.edu/wrf/users/physics/ncar_tropical_suite.php
https://www2.mmm.ucar.edu/wrf/users/physics/ncar_tropical_suite.php
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ENS1. It is important to highlight that that despite the 
BMJ0 scheme not exhibiting a linear trend (< 4% increase) 
in RMSE values as lead-time increases, it recorded the high-
est error (RMSE—6.5 mm/6 h) during the late night-early 
morning time. However, the BMJ scheme exhibited lower 
bias in simulated temperatures (< 0.5 ℃) and relative humid-
ity, and it was noted to effectively capture rainfall from weak 
convective systems (also reported by Kanase et al. 2020). 
Specifically, the performance of ENS3 was higher (POD 
– 0.45) during the North-East Monsoon (NEM) season, par-
ticularly for events influenced by easterly winds and low-
level convergence.

The CUM cluster with KF schemes (ENS2, ENS5, ENS6) 
increased rain occurrence predictability (> 1 mm/6 h) from 
the No-CUM variant of the KF scheme (ENS1) by about 
129%, with the POD improving from 0.31 to 0.71 (Table 5). 
Similarly, a 35% increase in the POD of > 10.1 mm/6 h rain-
fall and 29% increase in the POD of > 20.1 mm/6 h rainfall 
was recorded. It is evident that this increase in predictability 
occurred without a rise in false alarms, as the false alarm 
ratio remained below 0.45 across the members, similar to 
ENS1 (Table 5). The relative humidity dependent additional 
perturbation (KF1_2) demonstrated higher POD, particu-
larly for higher rainfall thresholds (POD—0.65, across sea-
sons). However, a significant false alarm ratio (0.6) and wide 
overestimation (mean bias – 0.5 mm/6 h) for low-moderate 
rains was also noticed with this member, ENS5.

The probability distribution function (wet rain intensi-
ties > 1 mm/6 h) of the forecasts followed a similar pattern to 
that of IMDAA (Fig. S4). The differences in the cumulative 
distribution function (CDF) between the ensemble members 
increased with lead time. However, most ensemble members 
overestimated extreme events (right tail), particularly as the 
lead time increased. Notably, ENS3 (utilizing the BMJ cumulus 
scheme and WDM6 microphysics scheme) and ENS4 (employ-
ing the NT cumulus scheme and Lin microphysics scheme) 
outperformed in simulating low to moderate rain intensities 
(< 10.1 mm/6 h), even with a lead time of 72 h.

In summary, the analysis of error metrics and distribution 
graphs revealed that the ensemble framework slightly overesti-
mated moderate to heavy events (> 10.1 mm/6 h) and exhibited 
higher uncertainty in those simulations as lead time increased. 
Interestingly, the findings suggest that the ensemble members 
exhibited similar performance during the initial forecast hours 
(6–24 h), but afterward, their error growth rates diverged.

3.4  Investigating the added value 
by the multiphysics ensembles 
at an intra‑seasonal scale across Southern India

The added value of the proposed convection-allowing reso-
lution multiphysics framework (WRF-CP7) was assessed by 
comparing the ensemble mean and spatiotemporal spread to 

those from NCEP-GEFS20 (refer Table 2 for more details). 
Figure 6 presents domain-wise averaged 6-hourly precipita-
tion plots across different seasons. During the Southwest 
Monsoon/Indian Summer Monsoon (SWM) season, which 
exhibits higher rainfall occurrences between 6–18 UTC 
(11.30 AM—11.30 PM IST) in DOM1 and DOM2 (core 
SWM regions), the WRF-CP7 ensembles accurately repre-
sented the diurnal variability (correlation coefficient – 0.75). 
As mentioned earlier, the spread becomes more pronounced 
with increased lead time. However, the NCEP-GEFS20 per-
formed poorly in capturing diurnal variability (correlation 
coefficient – 0.56), rainfall intensities, and spread among 
ensemble members during the SWM season. In the North-
east Monsoon (NEM) season, major rainfall occurs between 
0–6 UTC (5.30 AM—12 PM Indian Standard Time (IST)) in 
the core monsoon domain, specifically the DOM3-Eastern 
Coast region. DOM3 is the first inland convergence zone, 
as the easterlies and associated depressions bring moisture 
from the Bay of Bengal. The system then moves with less 
intensity to Central TN (DOM4), where significant rainfall 
occurs between 12–18 UTC (5.30 PM—11.30 PM IST). 
Regarding rainfall initiation, the NCEP-GEFS20 and WRF-
CP7 ensemble mean showed a slight difference, with the 
WRF-CP7 capturing the initiation time accurately in DOM3 
but not accurately representing the peak rainfall occurrences 
in DOM4. Interestingly, although the NCEP-GEFS20 exhib-
ited less spread (± 1 mm/6 h) among ensemble members, 
it closely followed the diurnal pattern and rain intensities 
observed by IMDAA for the core NEM monsoon regions 
(DOM3 and DOM4). NCEP-GEFS20 also captured the pat-
terns in DOM1 and DOM2 well during the NEM period, 
while the WRF-CP7 slightly overestimated the peak rainfall 
occurrences.

Both models, WRF-CP7 and NCEP-GEFS20, capture the 
initiation of pre-monsoon summer (SUM) convective-type 
rainfall (12 UTC, 2.30 PM—5.30 PM IST) well across the 
domains, with slight over-prediction by the WRF-CP7 mean 
and slight underestimation by the NCEP-GEFS20 mean. 
In the DOM4 region (Central Tamilnadu—Cauvery river 
basin), the inland heating and local moisture fluxes enhance 
SUM activity, and the WRF-CP7 ensemble framework well 
captured this pattern. The POD for SUM events showed 
a 3% increase in the rain/no rain category, with the WRF 
simulated SUM events demonstrating a POD 30% higher 
than that of GEFS. However, on average, the POD of WRF 
ensemble mean for rain/no rain occurrences stands at 0.6. 
This indicates a significant opportunity exists for improving 
predictions in this season due to its substantial uncertainty, 
which arises from its shorter time-scales and greater flux 
transfer at low-levels. Studies have suggested that improv-
ing parameterizations of land surface processes can enhance 
skills at convective scales (Osuri et al. 2017).
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Both models perform well in capturing the characteris-
tics of winter precipitation (WIN). Interestingly, the NCEP-
GEFS20 ensemble mean tends to be higher than the WRF-
CP7 ensemble mean and more comparable to IMDAA rain 
rates for the WIN season. The multiphysics WRF-CP7 
framework showed good performance for warm-rain type 
processes, while the cold-rain processes and associated mes-
oscale forcing during winter are slightly better represented 
by the NCEP-GEFS20 ensembles, including perturbed initial 
conditions.

The spatial maps displaying averaged daily precipitation 
in Fig. 7 reveal that the multiphysics ensemble mean gen-
erated by WRF-CP7 provides more detailed spatial infor-
mation regarding daily precipitation distributions across 

seasons and domains. The NCEP-GEFS20 ensemble mean 
exhibits a significant dry bias for DOM2 and DOM3 in all 
seasons (SWM, SUM, and WIN), except for NEM. The 
NCEP-GEFS20 simulations failed to adequately represent 
the inland rainfall zone in DOM1 during the SWM sea-
son, shifting the critical rainfall zone towards the coast and 
ocean. Studies have also shown the lower skill of NCEP-
GEFS over core monsoon regions (DOM1 and DOM2) 
of South-West Monsoon season with a larger dry bias 
(Dube et al. 2017; Saminathan et al. 2021). This dry bias 
was reduced in WRF-CP7 simulations, showing a 25–30% 
reduction in average RMSE to 6.6 mm/day across evaluation 
zones. The improved representation of Western Ghats ter-
rain characteristics and better simulation of diurnal patterns 

Fig. 6  Diurnal variations in 6-hourly rain intensities across lead 
times. The observed rainfall intensities from IMDAA are represented 
by black lines and circle markers. Model-simulated precipitation is 
displayed for the ensemble mean of WRF-CP7_EM (maroon) and 
NCEP-GEFS20_EM (darkcyan) ensemble framework. Additionally, 
the results of the Probability Matching technique Mean (PMM) for 
WRF-CP7_PMM (maroon with + markers) and NCEP-GEFS20_
PMM (darkcyan with + markers) are presented. The individual mem-

bers from WRF-CP7 and NCEP-GEFS20 are depicted in shades 
lighter than their respective models. The rows correspond to different 
seasons (SWM, NEM, Pre-Monsoon, and Winter), and the columns 
represent various domains (DOM1: Western Coast, DOM2: West-
ern Ghats, DOM3: Eastern Ghats, and DOM4: Central Tamilnadu). 
The x-axis reflects lead times at 6-h intervals, aligning with 00 UTC 
(5:30 AM IST), while the y-axis indicates the averaged rain intensi-
ties (mm/6 h)
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of temperature and humidity profiles by the WRF-CP7 led 
to the improvement over NCEP-GEFS20 (not shown here). 
Studies have also recorded the superior performance of 
regional scale models in resolving the complex orographic 
related rainfall mechanisms (Kirthiga and Patel 2018). Inter-
estingly, while NCEP-GEFS20 accurately simulated the spa-
tial variability of NEM in eastern coastal zones (DOM3), the 
WRF-CP7 ensemble mean slightly underpredicted coastal 
rainfall. During the North-East monsoon season, which is 
characterized by tropical cyclones driven by large-scale 
dynamics and easterly trough-related activities, the synop-
tic to mesoscale processes were well represented by GEFS 

ensembles. Despite being driven by the control member 
of this system, WRF-CP7 showed minimal influence on 
RMSE (10–15% reduction compared to GEFS) in precipi-
tation simulations during the NEM season for the DOM3. 
However, as NEM systems moved over land, microphysical 
processes became highly complex, with more localized con-
vective elements, which was not well represented by coarser 
resolution NCEP-simulations. This resulted in a dry bias in 
the inland region of central Tamil Nadu (DOM4), which 
was better resolved by the WRF-CP7 ensemble mean at the 
convective scale, reducing spatial shift errors by 20–30%. 
During pre-monsoon convective thunderstorms, WRF-CP7 

Fig. 7  Spatial averaged precipitation across seasons (unit – mm/day). 
The rows denote the seasons viz. SWM (a-c), NEM (d-f), SUM (g-i), 
and WIN (j-l). a, d, g, j denotes the IMDAA averaged precipitation 

climatology, b, e, h, k denotes the NCEP-GEFS20 simulated ensem-
ble mean precipitation, and c, f, I, l denotes the WRF-CP7 multi-
physics framework ensemble mean precipitation
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outperformed NCEP-GEFS, reducing RMSE by 20–25% in 
the Western Ghats regions, with an average improvement of 
10–15% across other domains. However, WRF-CP7 simu-
lations showed limitations in capturing the complexity of 
fluxes, with a 60% probability of detection and a 60% False 
Alarm Ratio. It is to be noted that the pre-summer monsoon 
rainfall is characterized by thunderstorm activity with huge 
spatial variability of mixed-phase hydrometeors. Addressing 
this, increasing spatial resolution to 1 km or less and improv-
ing parameterization of local fluxes through better represen-
tation of surface processes can help reduce uncertainty for 
this season (Kirthiga and Patel 2018; Sati and Mohan 2021; 
Prasad et al. 2024).

The Fractional Skill Score (FSS) plots (Fig. 8) displayed a 
clear superiority of the WRF-CP7 forecasts over the NCEP-
GEFS20 forecasts in representing the intra-seasonal spatial 
variability. When a target FSS score of 0.5 was considered 
satisfactory, as Woodhams et al. 2018 mentioned, the FSS 
values for the NCEP-GEFS20 simulations only exceeded 
0.5 for the threshold > 2.5 mm/day (rain/no rain event). On 
the other hand, the FSS values for the WRF-CP7 ensem-
bles exceeded 0.5 even for higher thresholds (> 10 mm/
day). Analyzing the count of rain objects in Figure S5, 
the NCEP-GEFS20 ensembles showed significant under-
prediction of the count and exhibited low spatial spread. 
In contrast, the WRF-CP7 members realistically simulated 
the count of rain objects, matching the estimated objects 
by IMDAA. Interestingly, the most significant deviation 
among the WRF-CP7 ensembles occurs in DOM3, the east-
ern coastal region, regarding the count of simulated rain 
objects. Figure S6 showcases displacement plots showing 
the direction and number of grids displaced for the simulated 
rain objects > 10.1 mm/day (moderate-very heavy rainfall 
category). The negative values in Figure S6a represent a 
northward shift in the simulated rain objects, while the posi-
tive values denote a southward shift in the objects. An ideal 

value of zero represents the simulated rain object centroid 
is near the ones from IMDAA centroids. Similarly, figure 
S6b represents eastward (negative) and westward (positive) 
direction shifts. The WRF-CP7 reduced the shifts in rain 
object centroids in the overall shift in the simulated rain 
objects, and in addition, the uncertainty with the misplaced 
centroid was also limited. In the SWM season, the NCEP-
GEFS20 mean displayed a westward (+ ve) shift in DOM1, 
while the WRF-CP7 multiphysics mean reduced the spatial 
bias.

Table 6 lists the RMSE, POD, and FAR values for differ-
ent years, seasons, and forecast lead times (until 3 days). The 
WRF-CP7 ensemble mean showed a higher error growth 
rate than the NCEP-GEFS20 mean across lead times. Con-
sequently, the POD was higher for the WRF-CP7 simula-
tions, especially for higher thresholds. Additionally, the FAR 
was smaller for the WRF-CP7 ensemble mean throughout 
the seasons and years. Notably, the POD and FAR for rain 
occurrences (> 2.5 mm/day threshold) were higher for the 
NCEP-GEFS20 ensembles, particularly for NEM 2015. 
However, the POD and FAR for > 10 mm/day were notice-
ably enhanced by the WRF multi-physics ensemble simula-
tions. Therefore, while the NCEP-GEFS20 ensembles were 
able to capture rain events, they significantly under-predicted 
moderate or higher intensity events throughout all years and 
seasons. A 30% increase in POD by WRF-CP7 was observed 
across all seasons for moderate to heavy rain intensities, 
accompanied by a 10% decrease in FAR against GEFS fore-
casts. The higher lead times of WRF-CP7 forecasts recorded 
higher spread and error growth rate for precipitation simula-
tions in the coastal domains, particularly DOM1 and DOM3, 
during SWM and NEM seasons, respectively. The bias could 
be attributed either to the error in the input data (as reflected 
by GEFS performance) or lesser distance from the outflow 
boundary (Lavin-Gullon et al. 2021), or inherent issues with 
WRF in simulating coastline interactions (Hock et al. 2022).

Fig. 8  Fractional Skill Scores 
(FSS) plots at different spatial 
scales and rain intensity thresh-
olds for ensemble mean from 
WRF-CP7 and NCEP-GEFS20
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Figure 9 depicted the variance and MSE for day 1 fore-
casts of WRF-CP7, closely aligned with the 1:1 line and fall-
ing within the lower quadrant for most days across seasons. 
The NCEP-GEFS20 forecasts did not account for the error 
in simulated precipitation. The correlation plots for day 2 
and day 3 multiphysics WRF forecasts also aligned with the 

1:1 line. The correlation plots of NCEP-GEFS20 for longer 
lead times degraded compared to day 1 forecasts, deviating 
from the 1:1 line (not shown in the manuscript for brevity). 
The rank histogram (inset in correlation plots of Fig. 9) for 
NCEP-GEFS20 ensembles values displayed a U-shaped dis-
tribution, indicating a highly uncertain ensemble framework 

Fig. 9  Correlation plots for ensemble variance (X-axis) versus the 
mean squared error of ensemble mean (Y-axis). The rows represent 
the seasons viz. SWM (a-b), NEM (c-d), SUM (e–f), and WIN (g-h). 
The column represents the WRF-CP7 multi-physics ensemble frame-

work (a, c, e, g) and NCEP-GEFS20 ensemble framework (b, d, f, h). 
The inset shows corresponding rank histograms with reference value 
in horizontal dashed line. The values in the gray box denotes the 
Pearson’s correlation coefficient
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with both under-prediction and over-prediction. The rank 
histograms for WRF ensembles showed a slightly over-pre-
dicting model, with an increasing tendency to overestimate 
as the lead time increased. Though not discussed in detail 
(for brevity), it is worth noting that the Probability Match-
ing technique Mean (PMM) did not demonstrate superior 
performance for either of the ensemble framework (Table 6).

4  Summary and conclusions

The primary focus of the study was to quantify the use-
fulness of convection-permitting resolution multiphysics 
ensemble for the simulation of year-long medium-range 
precipitation forecasts. The study involved three major 
objectives.

(i) Quantifying the predictability of precipitation across 
peninsular India at convection-permitting (CP) scales. The 
initial multi-physics members (WRF-CP55) were generated 
using a larger spectrum of the cumulus and microphysics 
parameterization combinations available with a Regional 
Climate Model (RCM) – Weather Research and Forecasting 
(WRF) model. Even though the 4 km is generally consid-
ered a convection-permitting resolution, the results from the 
analysis approve of the fuzziness in the usage of the cumulus 
scheme in the innermost domain (4 km resolution). In the 
present study, certain events with strong large-scale forc-
ing, complex microphysics schemes resolved the precipita-
tion explicitly at 4-km resolution (in agreement with studies 
Mukhopadhyay et al. 2010; Guo et al. 2022; Ou et al. 2020). 
The ratio of simulated convective precipitation to total simu-
lated precipitation in domain 2 consistently exceeded 0.6 
across all simulated events, with contributions varying from 
isolated convective elements to well-structured convective 
processes. When microphysics schemes were employed in 
domain 2 to explicitly resolve processes without a cumu-
lus scheme, narrow bands of precipitation were simulated, 
in contrast to GPM observations, and delays in event ini-
tiation were observed. Consequently, it was observed that 
the simulation of intensely local or mesoscale convective 
events improved significantly when appropriate combina-
tions of cumulus parameterization schemes and microphys-
ics schemes were utilized within the 4 km domain. Stud-
ies have highlighted the challenges that current versions of 
microphysics schemes face in accurately capturing isolated 
convective elements, a common feature of significant rain-
fall events in subtropical climatology (Srinivas et al. 2013; 
Madala et al. 2014; Hazra et al. 2020; Samanta et al. 2023).

(ii) Designing a computationally efficient multiphysics 
ensemble framework, practically feasible from an opera-
tional point of view. Investigating the physics combinations, 
the resulting simulations indicated that selecting compat-
ible schemes were essential to designing a time-efficient 

ensemble framework. When the convection was explicitly 
resolved, complex microphysics schemes were more relevant 
(as reported by Kirthiga et al. 2021). Some of the phys-
ics combinations were found to be highly inter-correlated. 
Thus, we proposed a smaller 7-member ensemble frame-
work, WRF-CP7, based on the performances across rainfall 
mechanisms. A composite scaled score (CSS) that combines 
multiple evaluation metrics and inter-correlation analysis 
was used to arrive at the final seven-member ensemble. 
The suggested WRF-CP7 framework with smaller ensem-
bles reduces the turnaround time without compromising 
the spread of the simulated precipitation fields. The study 
demonstrated the higher skill of No-CUM cases in simu-
lating low-moderate rain categories (stratiform clouds and 
precipitation from weak convective storms). These results 
are comparable to previous studies with similar configura-
tions and study regions (Mukhopadhyay et al. 2010; Srinivas 
et al. 2013; Das et al. 2015).

(iii) Evaluating the intra-seasonal predictability and reli-
ability of WRF-CP7, 3-day forecasts for each day from Sep 
2015 to Dec 2017. A total of 5544 simulations (792 days × 7 
ensembles) were made with approximately 130–180 min 
of run-time for each simulation. The quantitative analy-
sis suggested that the WRF-CP7 members represented 
the spatiotemporal variability of rainfall occurrences with 
varying thresholds and were dispersive. Higher confidence 
was recorded in the occurrence of a rain event with the 
WRF-CP7, and reduced false alarm ratios were reported. 
The diurnal variability was adequately represented by the 
No-CUM members, although they failed to capture peak 
intensities across seasons. Research indicates that the con-
vective precipitation to total precipitation ratio exceeds 0.5, 
particularly in peninsular India during the major monsoon 
seasons (Romatschke and Houze 2011; Sreenath et al. 2022). 
The explicit resolution of convective elements posed chal-
lenges within the current microphysics schemes (Samanta 
et al. 2023). Previous studies have suggested that utilizing 
cumulus parameterization at a 4-km scale performed better 
for certain events (Kirthiga et al. 2021; Wang et al. 2021). 
The CUM cluster with KF schemes (ENS2, ENS5, ENS6) 
increased rain occurrence predictability (> 1 mm/6 h) from 
the No-CUM variant of the KF scheme (ENS1) by about 
129%, with the POD improving from 0.31 to 0.71. Similarly, 
a 35% increase in the POD of 10.1 mm/6 h rainfall and 29% 
increase in the POD of 20.1 mm/6 h rainfall was recorded. It 
is evident that this increase in predictability occurred with-
out a rise in false alarms, as the false alarm ratio remained 
below 0.45 across the members. The NT scheme recorded 
higher success ratio (0.45) across the rainfall intensities 
and lead-times. Notably, the error progression as lead-time 
increases was not very prominent (< 4% increasing trend) 
with the NT scheme. This scheme, being scale-aware exhib-
ited faster convergence, taking 25–40% less time than the 
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longest runtime taken by the ensemble framework. The error 
growth (4–44% increasing trend) of the overall ensemble 
framework helped in sampling the uncertainty of future 
atmospheric states and, thus, increasing the predictability of 
the extreme events. These results align with previous stud-
ies investigating precipitation simulations with multiphysics 
ensembles at convection-permitting resolutions (Clark et al. 
2010; Duda et al. 2014; Berner et al. 2015; Francis et al. 
2020). However, the overall performance of the ensemble 
mean suggested that the multiphysics ensemble resulted in 
an overpredicting model with overestimation for low-mod-
erate rain intensities while slightly under-predicting in the 
heavy-very heavy rain category.

(iv) The added value of the proposed framework was 
assessed through the comparisons against the coarser-scale 
publicly-available Global Ensemble Forecast System fore-
casts (NCEP-GEFS20). A 30% increase in POD by WRF-
CP7 was observed across all seasons for moderate to heavy 
rain intensities, accompanied by a 10% decrease in FAR 
when compared to GEFS forecasts. The NCEP-GEFS20 
ensembles were less dispersive (spatially and temporally) 
and thus resulted in an over-confident deterministic mean 
which did not capture the higher intensity rains across all 
the seasons and years for the study domain. The spread of 
the simulated precipitation between the ensemble members 
was also not sensitive to the lead times. The mean from the 
WRF-CP7 simulation reduced the biases, particularly in 
the land regions and for heavy rain thresholds, compared 
to the NCEP-GEFS20 ensembles. The spatial shift from the 
observed rain objects was reduced with a high-resolution 
WRF-CP7 ensemble mean, improving the spatial accuracy 
of the simulated precipitation. The suggested ensemble 
framework gave a superior performance for SWM and SUM 
seasons. However, for some of the NEM events and WIN 
season, NCEP-GEFS20 simulation with perturbed initial 
conditions showed significant performance.

Physics schemes in regional/global climate models face 
challenges to accurately represent major rain mechanisms 
in the Indian subcontinent (Samanta et al. 2021, 2023), 
necessitating a better understanding of rain system simula-
tions at convection-allowing scales. Intensive campaigns 
like CAIPEEX (Prabha et al., 2011) and INCOMPASS 
(Hazra et al. 2020) aid in incorporating observed features 
into numerical model formulations. The present study 
addresses model uncertainty in forecasting precipitation 
for a longer lead time, particularly in the convective per-
mitting scales across India. The study uniquely evaluates 
the ensemble members for simulating different precipita-
tion thresholds. Therefore, the methods employed in this 
study are particularly relevant for supporting vulnerability 
impact assessment studies (VIA), especially in agriculture 
and water resources. However, in the present ensemble 

configuration, the deterministic ensemble mean over-
predicted the low-moderate rainfall, particularly the bias 
becoming dominant with an increase in lead time. Some 
studies like Thornes and Stephenson 2001 have argued that 
missing a heavy rainfall event was more damaging than 
anticipated. Since the resulting model has a systematic 
wet bias, post-processing techniques like bias correction 
can effectively be explored to improve the precipitation 
forecasts for a longer lead time (Clark et al. 2016). Increas-
ing the spatial resolution to 1 km or less can also help 
reduce the uncertainty induced by parameterizing convec-
tion (Schwartz et al. 2017; Frogner et al. 2019; Sofokleous 
et al. 2021). Techniques to address the input and model 
uncertainties are necessary for the ensemble framework, 
particularly in the tropics (Prakash et al. 2016; Huang and 
Luo 2017). The results from the study strongly advocate 
for extensive sampling within the model uncertainty space, 
coupled with input uncertainty, to capture better the entire 
spectrum of rainfall mechanisms occurring in the tropics.
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