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monsoon that produces much of the urgently needed pre-
cipitation for the Asian continent (Fu et al. 2020; Xu et 
al. 2019). Although it is well acknowledged that the tem-
perature increasing rate in the TP is higher than that in the 
Northern Hemisphere and the same latitudinal zone over 
the second half of the twentieth century (Liu and Chen 
2000), its long-term variations, especially on decadal to 
multi-decadal scales, are still not well understood mainly 
due to two reasons. One is that the meteorological data are 
too short because most of the stations were built after 1958 
(Wei et al. 2003). The other is that high quality temperature 
reconstructions based on paleoclimate proxy records are 
still limited for this extensive plateau.

Tree rings have characteristics of annual resolution and 
precise dating (Hughes 2002), and have been widely used 
for temperature reconstructions worldwide (Cook et al. 
2000; Esper et al. 2002; Shi et al. 2017a). Many tree-ring 
based temperature reconstructions have been conducted in 
the southeastern TP (Bi et al. 2020; Bräuning and Mantwill 
2004; Duan et al. 2019; Huang et al. 2019; Shao and Fan 
1999; Shi et al. 2015, 2017b; Wang et al. 2015), and fewer 
in the northeastern TP (Gou et al. 2007, 2008; Liu et al. 
2009). The southeastern TP is influenced by the Indian sum-
mer monsoon that brings a lot of moisture from the Indian 

1  Introduction

Global land-surface air temperature has risen rapidly since 
the late nineteenth century, and this warming has been par-
ticularly marked since the 1970s (Hartmann et al. 2013). 
The Tibetan Plateau (TP) is one of the most sensitive areas 
to global climate change (Liu and Chen 2000; Yao et al. 
2019), and meanwhile it plays an important role in modu-
lating large-scale atmospheric circulations and climate over 
Asia (Broccoli and Manabe 1992; Li and Yanai 1996; Wu 
et al. 2012). For example, the thermal conditions on the TP 
have a strong influence on the strength of the Asian summer 
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Abstract
The Tibetan Plateau is a fast-warming region in China, whereby the rapid temperature increase affects regional ecosys-
tems and mountain glaciers significantly. Long-term high-quality temperature data are urgently needed to understand how 
temperature has changed in the past several centuries and the underlying driving forces. In this study, we developed two 
tree-ring width chronologies that are more than 300 years. The two chronologies are highly consistent, indicating that 
the two sites were seldom disturbed by human activities. A robust tree-ring width chronology was developed using all 
the samples of the two sites, which represents June-July mean temperature according to statistical correlation analysis. 
The recent two decades are the warmest over the past three centuries, showing a regional temperature response to global 
warming largely contributed by human influence on climate system. Multi-decadal temperature variations in the study area 
have been closely linked with the Atlantic Multidecadal Oscillation in the past three centuries, highlighting the Atlantic 
influence on regional climate change on the central eastern Tibetan Plateau in warm seasons.
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ocean. It also features a low temperature due to high eleva-
tions. High precipitation and low temperature make trees 
growing there sensitive to temperature. On the other hand, 
the northeastern TP is located in inner continent with less 
precipitation, and as a result trees there are sensitive to pre-
cipitation other than temperature (Liu et al. 2006; Shao et 
al. 2010; Yang et al. 2021; Zhang et al. 2015). Understand-
ing climate change on the eastern TP is complicated due to 
its large spatial extent and complex climate and orography. 
The transitional zone between the northeastern and south-
eastern TP, i.e., central eastern TP, is critical to understand 
the climate on the eastern TP. Previous studies suggest that 
tree growth in the central eastern TP is generally stressed 
by warm-season temperatures (Liang et al. 2008; Xiao et al. 
2015; Zhu et al. 2016), which shows the potential for warm-
season temperature reconstructions.

Our aims in this study are to (1) build a long, well-rep-
licated tree-ring width chronology using the samples from 
two independent sites on the central eastern TP, (2) iden-
tify and reconstruct the most critical climate limiting fac-
tor on tree growth, (3) explore its spatial representativeness 
and validate its reliability by comparing with other nearby 

temperature reconstructions, and (4) explore its major 
features and teleconnections with large-scale oceanic and 
atmospheric circulation modes.

2  Data and methods

2.1  Meteorological data

The study area is located in the eastern border of the TP, 
where the average elevation is higher than 3,000 m above 
sea level (a.s.l.). Influenced by alternations of the westerlies 
in winter and the Indian summer monsoon in summer, dis-
tinct dry and wet seasons can be found in this area. Meteo-
rological data from three meteorological stations (Songpan, 
Hongyuan and Ruo’ergai) close to the sampling sites were 
used in this study (Fig.  1; Table  1). Climate parameters 
include monthly mean, maximum, and minimum tempera-
tures, and monthly total precipitation. The common period 
of climate data from the three stations is from 1961 to 2015. 
Songpan station was relocated to a new site in 2013 that is 
a few kilometers away from the original one. Therefore, we 

Fig. 1  Map showing the two tree-ring sampling sites and the three meteorological stations. The red line of the inset delineates the boundary of the 
TP
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adjusted Songpan temperature data from 2013 to 2015 by 
comparing the monthly differences between Songpan and 
the average of Ruo’ergai and Hongyuan over the periods 
2013–2015 and 1961–2012. We did not adjust precipitation 
because it varies locally and is not the focus of this study. 
Meteorological data from the three stations were averaged 
to represent the regional situation (Fig. S1). The hottest 
month is July with a temperature of 12.3 oC, and the cold-
est is -7.8 oC in January. April-October is the rainy season, 
with a precipitation of 653 mm, accounting for 92.2% of the 
annual total precipitation.

2.2  Tree-ring data

Tree cores were collected from two sites, SP01 (32.87°N, 
103.36°E, 3680  m a.s.l.) and SP02 (32.85°N, 103.36°E, 
3650–3666 m a.s.l.). The two sites are 1.5 km away from 
each other in a straight distance. The dominant tree species 
is Picea purpurea, with a very small percentage of Abies 
faxoniana. Most of the trees from which we took cores are 
P. purpurea, with a few A. faxoniana trees collected as well. 
Only one core per tree was collected at SP01, and two cores 
per tree at SP02. All samples were mounted and sanded fol-
lowing standard procedures of Dendrochronology (Stokes 
and Smiley 1996). Each ring width was measured to a 
precision of 0.001  mm using a LINTAB 5.0 system after 
being visually cross-dated under a microscope. The quality 
of cross-dating was checked with the COFECHA program 
(Holmes 1983). Eventually, 53 cores from 53 trees at SP01 
and 58 cores from 34 trees at SP02 were used in the follow-
ing analyses.

The raw series of ring-width measurements were 
detrended using the program RCSigFree (http://www.
ldeo.columbia.edu/tree-ring-laboratory/resources/soft-
ware). Age-dependent spline was applied to detrend each 
raw series. Ring-width index was calculated as the ratio of 
actual ring-width and the estimated value, and the robust 
biweight mean was used to assemble the chronology (Cook 
1985). The “signal-free” approach was applied to reduce 
potential trend distortion in tree-ring chronologies (Melvin 
and Briffa 2008). The mean inter-series correlation (Rbar) 
and the expressed population signal (EPS) were calculated 
for 51-year moving window (Wigley et al. 1984). The EPS 
threshold value of 0.85 was used to assess the most reliable 
period of the chronology.

2.3  Methods

Correlation and response functions (Fritts et al. 1970) were 
used to analyze the relationship between tree growth and 
climate. The response functions were calculated using the 
program DENDROCLIM2002 (Biondi and Waikul 2004). 
A linear regression function was applied to reconstruct 
June-July mean temperature, the main limiting factor on 
tree growth. A split sample calibration and verification 
method was used to assess the reliability of the reconstruc-
tion model. Spatial representativeness was explored using 
the KNMI (http://climexp.knmi.nl). Multi-taper method 
(MTM) spectral analysis (Mann and Lees 1996) was used to 
examine the frequency characteristics of the reconstruction.

3  Results

3.1  Characteristics of the tree-ring chronologies

Two site chronologies were built using the signal-free 
method (Fig. 2). The correlation coefficient between them 
is 0.75 over their common period 1701–2015, and 0.84 
over their common reliable period 1748–2015 based on the 
EPS value higher than 0.85, both significant at 0.001 level. 
The correlation coefficient is 0.88 between their first dif-
ferenced series over the period 1749–2015, significant at 
0.001 level. Further considering that the straight distance 
between the two sites is only 1.5 km and that they have a 
similar elevation, we pooled all the samples from these two 
sites together to build a robust chronology, named SP0102 
(Fig.  3). COFECHA results showed that for all raw mea-
surements in SP0102, the mean segment length is 240 years, 
with a series intercorrelation of 0.62 and a mean average 
sensitivity of 0.14. The absent rings account for 0.04% of 
the total rings. The same method as used for site chronolo-
gies was used to develop the robust regional chronology, 
with a reliable period of 1730–2015 based on EPS higher 
than 0.85 (Fig. 3c). Only the robust chronology was used in 
the following analyses.

Table 1  Characteristics of the meteorological stations
Station Latitude

(N)
Longitude
(E)

Altitude
(m a.s.l.)

Time span
(CE)

Annual mean temperature (℃) Annual total precipitation (mm)

Songpan 32°39′ 103°34′ 2850.7 1951–2015 6.1 719
Hongyuan 32°48′ 102°33′ 3491.6 1961–2015 1.6 752
Ruo’ergai 33°35′ 102°58′ 3439.6 1957–2015 1.3 653
Region 1961–2015 3.0 708
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September to current October over the period 1961–2015. 
As shown in Fig. 4, there are quite similar patterns for Song-
pan, Ruo’ergai, Hongyuan, and their average. Therefore, we 
focus on the results of their average. Generally, tree growth 
correlates positively with monthly mean, maximum, and 
minimum temperatures. The correlations are the highest for 

3.2  Relationships between tree growth and climate

Correlation analyses were conducted between the SP0102 
chronology and monthly mean, maximum, minimum tem-
peratures and monthly total precipitation in Songpan, Hon-
gyuan, Ruo’ergai and the regional average from previous 

Fig. 3  a The tree-ring width chro-
nology (thin black line) covering 
the past 318 years (AD 1698–
2015) with a 10-year FFT filter 
(thick red line). b Rbar statistics 
calculated over 51-year window. 
c EPS statistics calculated over 
51-year window. The dotted line 
denotes the 0.85 threshold value. 
d The sample size

 

Fig. 2  a The tree-ring width chro-
nology from SP01 (red) and SP02 
(blue) sites. b Low-frequency 
ring width series with a 10-year 
fast Fourier transform (FFT) 
filter. c The sample size
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1730 to 2015 (Fig. 5b). The mean and standard deviation 
(SD) of the reconstruction are adjusted to match those of the 
instrumental data over their common period.

The mean value of the reconstructed June-July tempera-
ture series over 1730–2015 is 10.7 °C, and the SD is 0.8 °C. 
Warm intervals are 1735–1809, 1932–1967 and 1984–2015, 
while relatively cold conditions prevail in 1810–1931. 
Extremely warm early summers (> mean + 1.5SD) are 
1739, 1776, 1785, 1805, 1997, 1998, 2000, 2001, 2005–
2007 and 2009–2015, while extremely cold early summers 
(< mean − 1.5SD) include 1779, 1837, 1841–1844, 1852, 
1864, 1869–1877, 1916 and 1918. A general warming trend 
can be observed since the 1870s. The most recent warming 
period starting from the 1980s reached an unprecedented 
level since the late 1990s. The last two decades (1996–2015) 
are the warmest in the context of the past 286 years, with 14 
out of the 20 years being extremely warm years.

4  Discussion

4.1  Spatial representativeness and characteristics 
of the reconstructed June-July mean temperature

The reconstructed temperature series can represent the 
whole eastern Tibetan Plateau and a large part of central 
western China in terms of both raw and first-differenced 
data (Fig. 6). The first-differenced series excludes long-term 

monthly mean temperature (Fig. 4a, b, and c). The two high-
est correlations occur in June and July. On the other hand, 
precipitation shows weak correlations with radial growth, 
with only a marginally significant correlation in current 
May (Fig.  4d). When seasons are considered, the highest 
correlation was found between the chronology and June-
July mean temperature (r = 0.81, p < 0.001). Furthermore, 
response functions were calculated between the chronology 
and regional monthly mean temperature and monthly total 
precipitation. The results show that June and July tempera-
tures and June precipitation are significant. Since June pre-
cipitation is non-significantly correlated with tree growth 
in terms of correlation analysis, we choose June-July mean 
temperature as the reconstruction target.

3.3  Reconstruction of June-July mean temperature

We reconstructed June-July mean temperature for the period 
1730–2015 using a simple linear regression model (Fig. 5a). 
The reconstruction accounted for 65.6% of the actual tem-
perature variance during the calibration period 1961–2015. 
In order to evaluate the reliability of the relationship between 
tree growth and June-July temperature, we applied the split 
sample calibration and verification method. As shown in 
Table 2, the correlation coefficients are all significant at the 
99% confidence level, and the reduction of error (RE) and 
the coefficient efficiency (CE) are all positive, even for the 
first-order difference series. The final reconstruction is from 

Fig. 4  Correlation coefficients 
(bar) and response functions 
(circle) between the chronology 
and a monthly mean tempera-
ture, b maximum temperature, 
c minimum temperature, and d 
precipitation based on Songpan, 
Hongyuan, Ruo’ergai meteo-
rological data and the regional 
average over the period 1962–
2015. The horizontal dashed lines 
denotes 99% confidence level for 
correlation coefficient. Response 
functions were only calculated 
for a regional monthly mean 
temperature and d monthly total 
precipitation. The black solid 
circle denotes significant value 
at 0.05 level. “p” means previous 
year
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Fig. 6  Spatial correlations of 
instrumental a, b and recon-
structed c, d June-July mean 
temperature series with the CRU 
TS4.03 land temperature over 
1961–2015 for raw a, c and first 
differenced b, d data. Non-sig-
nificant correlations (p ≥ 0.1) are 
masked out. The green squares 
denote the sampling sites of this 
study. The yellow, blue, white 
and orange triangles denote the 
sampling sites of Liang et al. 
(2008), Yu et al. (2012), Xiao et 
al. (2015), and Zhu et al. (2016), 
respectively

 

Calibration period r R2 Verification 
period

RE CE

Full period (1961–2015) 0.810/0.678 0.656/0.459 - -
Early half
(1961–1987)

0.745/0.767 0.556/0.588 Late half
(1988–2015)

0.733/0.289 0.201/0.289

Late half
(1988–2015)

0.662/0.576 0.438/0.332 Early half
(1961–1987)

0.824/0.508 0.396/0.508

Table 2  Calibration and verifica-
tion statistics for the common 
period 1961–2015. The values 
before and after the slash (“/”) 
denote results for raw and first-
differenced data, respectively

 

Fig. 5  a Comparison of the 
observed (solid line) and recon-
structed (dotted line) June-July 
mean temperature during 1961–
2015. b Reconstructed June-July 
mean temperature over the period 
1730–2015 (thin line), its 10-year 
FFT smoothing (thick line), the 
mean value (solid horizontal 
line) and ± 1.5 standard deviation 
(dotted horizontal line) of the 
reconstructed temperature series
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As shown, they matched well in most periods, such as the 
relatively cold periods of 1813–1825, 1840–1850 1864–
1880, 1910–1930 and 1965–1985, and the warm periods of 
1880–1900, 1930–1965, and 1985-present. The reconstruc-
tion of this study is significantly correlated with all other 
reconstructions at 0.01 level, and the correlations between 
first-differenced series are considerably higher than those 
between raw series (Fig. 7), indicating that these tree-ring 
based reconstructions are more consistent on high-fre-
quency variability. Since the reconstructions are based on 
tree rings from different locations, climatic homogeneity 
must be responsible for their consistency.

As for the unstable consistency at low frequency, there 
are several possible reasons, such as ecological disturbance, 
local microenvironment, different limiting climatic factors 
on tree growth, and even human disturbance. In order to 
evaluate whether there are ecological and/or human distur-
bances on tree growth, one feasible way is to develop two 
or more independent site chronologies that have the same 
limiting climatic factors, and then the consistency of these 
chronologies can be carefully checked to assess the qual-
ity of the chronology in reflecting climatic change. Two site 
chronologies that meet the above criteria were developed in 
our study (Fig. 2). The correlations between them are very 
high, 0.84 for the original series and 0.88 for the first dif-
ferenced series over the period 1748–2015. Furthermore, 
the series matched very well visually. The high consistency 
indicates that it is unlikely that ecological or human distur-
bances affect the quality of the SP0102 chronology used for 
our June-July temperature reconstruction.

The reconstructed June-July temperature series can be 
divided into three major periods, i.e., 1730-1800  s, 1810-
1930  s, and 1940s-present (Fig.  5b). The first period fea-
tures warm temperature with major interannual variability. 
The second period is cold with large decadal variability. The 
third period features warm temperature with large decadal 
variability and a recent rapid warming that reached an 
unprecedented level in the past two decades. Cloud-radia-
tion feedback may plan an important role in modulating the 
recent warming (Duan and Xiao 2015) which is also likely 
a response to the increasing greenhouse gases emissions 
suggested by two coupled global climate models (Duan et 
al. 2006). The unprecedented warming caused some mixed 
environmental changes, such as accelerated glacier retreat, 
early snowmelt, permafrost degradation, increased net 
primary production, extended agricultural land area, and 
increased river runoff contributed by mountain glacier melt 
(Chen et al. 2015; Kang et al. 2010; Yao et al. 2012).

trends and low-frequency signals and represents high-fre-
quency signals. Using the first-differenced series to make 
a spatial correlation analysis could avoid information infla-
tion which may be caused by low-frequency signals and 
trends. In terms of the first-difference analysis results, the 
reconstructed temperature can represent at least the TP to 
a relatively reliable level (Fig. 6d). Another feature is that 
there is a distinct temperature difference between the west-
ern and eastern China, which is also evidently shown in 
April-July mean temperature from the southeastern China 
(Shi et al. 2017a). The topography and temperature differ-
ences between the western and eastern China of the same 
latitude may make atmospheric circulation (i.e., the East 
Asian monsoon and South Asian monsoon) more complex.

We compared our reconstructed series with other warm-
season temperature reconstructions (Fig.  7), including 
June-August minimum temperature of Liang et al. (2008), 
June-July minimum temperature of Yu et al. (2012), July-
September mean temperature of Xiao et al. (2015), and 
July-August maximum temperature of Zhu et al. (2016). 
These reconstructed temperature series have close seasonal 
windows and similar climate characteristics with ours and 
represent the best series that could be used for comparison. 

Fig. 7  Comparison of the reconstructed June-July mean temperature 
(red line) with tree-ring based warm-season temperature reconstruc-
tions in the nearby regions (black line). a June-August minimum tem-
perature of Liang et al. (2008), b June-July minimum temperature of 
Yu et al. (2012), c July-September mean temperature of Xiao et al. 
(2015), and d July-August maximum temperature of Zhu et al. (2016). 
All series were standardized over their common period 1787–2002, 
and the bold lines denote the 10-year FFT smoothing. Gray bars denote 
cold periods in the reconstructions
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records to reconstruct global patterns of surface temperature 
changes over the past 1,500 years, with a decadal-resolution. 
The decadal-scale AMO series was produced by averaging 
the spatial temperatures of the corresponding region. Wang 
et al. (2017) used 46 annually resolved terrestrial proxy 
records including tree-ring, ice core, and document from 
the circum-North Atlantic-Arctic region to reconstruct the 
extended summer (May-September) Atlantic Multidecadal 
Variability index since 800 CE. Li et al. (2013) used 2,222 
tree-ring chronologies from both the tropics and mid-lati-
tudes in both hemispheres to reconstruct a seven-century-
long ENSO series. The reconstructed temperature series is 
significantly correlated with both AMO series at 0.01 level, 
and the correlation coefficients are 0.37 and 0.42 respec-
tively (Fig. 9). However, the correlation between the tem-
perature reconstruction and ENSO series is not significant.

The relationship between the reconstructed temperature 
and the Pacific Decadal Oscillation (PDO) was also inves-
tigated in this study. The PDO is a long-lived El Niño-like 
pattern of Pacific climate variability. The PDO series is 
based on observations (Mantua et al. 1997; Zhang et al. 
1997), and is defined as the leading principal component of 
North Pacific sea surface temperature variability. The cor-
relation coefficient is only − 0.12, not significant at the 0.05 
level (Fig. S2). Therefore, the impact of the PDO on June-
July temperature in the eastern TP is very low, which was 
also found using a spatial correlation analysis by Wang et 
al. (2014).

AMO has modulated temperature variations of the 
Tibetan Plateau and its surroundings over the past several 
centuries, i.e., February-July mean temperature in southwest 
China (Fang et al. 2019), winter, summer, and annual mean 

4.2  Periodicity and teleconnections of June-July 
mean temperature

MTM analysis revealed that the reconstructed temperature 
series has periodicities of 63.7–51.0, 26.2, 4.5, 3.0, 2.6 and 
2.2-2.0 years at 95% confidence level (Fig. 8). The multi-
decadal scale cycles fall in the typical periodical range of 
the Atlantic Multidecadal Oscillation (AMO), and the inter-
annual scale cycles correspond to those of El Niño-Southern 
Oscillation (ENSO). Therefore, the reconstructed tempera-
ture series was compared with the AMO and ENSO series 
to explore their relationship. Mann et al. (2009) employed 
a diverse multiproxy network comprising more than a thou-
sand tree-ring, ice core, coral, sediment, and other assorted 

Fig. 9  Comparison between 
the temperature reconstruction 
and two AMO series. The black 
curves are the reconstructed 
temperature series. Thin line 
is original with annual resolu-
tion. Thick line is the 10-year 
FFT smoothing of the original 
series. a The annual-resolution 
AMO series (thin red line) and 
its 10-year FFT smoothing (thick 
red line) from Wang et al. (2017). 
b The decadal-resolution AMO 
series (thick red line) from Mann 
et al. (2009)

 

Fig. 8  Results of multi-taper method spectrum analysis of the recon-
structed temperature. The solid, dashed and dotted lines indicate the 
99%, 95% and 90% confidence levels, respectively
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level pressure across the Atlantic-Eurasia region, with nega-
tive surface air pressure anomalies over the North Atlantic 
(Knight et al. 2006), and high surface air pressure anoma-
lies and corresponding downward atmospheric motion over 
the TP, causing negative rainfall and positive temperature 
anomalies over the TP (Shi et al. 2019). The AMO was in 
a warm phase over the past two decades, which may have 
contributed to the unprecedented warming to some extent. 
The warming was also caused by the increasing greenhouse 
gases and modulated by cloud-radiation feedback. How-
ever, the relative contributions of different driving factors 
are still uncertain, which is worth of further studies.

5  Conclusion

A robust 286-year chronology was developed from tree-
rings collected from two sites on the central eastern Tibetan 
Plateau. Based on the chronology, June-July mean tem-
perature was reconstructed using a linear regression func-
tion that passes all commonly used test parameters, with an 
explained variance of 65.6%. The recent two decades are 
the warmest in the past 286 years, with 14 out of 20 years 
being extremely warm, which clearly shows the unprec-
edented warming conditions of the last two decades on 
the central eastern TP. The unprecedented warming will 
inevitably exert its influence on both mountain glaciers and 
ecosystems, and further affect the Asian monsoon system, 
to which enough attention should be paid by the policy-
makers. Although the contribution of the AMO to June-July 
temperature changes was emphasized, the driving forces 
of temperature changes on the TP are undetermined partly 
because of its complex topography, spatial heterogeneities 
and data quality. Therefore, more high-quality and highly 
replicable temperature reconstructions, like the one in this 
study, should be produced in different climatic regions of 
the TP, in order to have an in-depth understanding of the 
driving forces.
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