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Abstract
The regional sea level variability and its projection amidst the global sea level rise is one of the major concerns for coastal 
communities. The dynamic sea level plays a major role in the observed spatial deviations in regional sea level rise from the 
global mean. The present study evaluates 27 climate model simulations from the sixth phase of the Coupled Model Inter-
comparison Project (CMIP6) for their representation of the historical mean states, variability and future projections for the 
Indian Ocean. Most models reproduce the observed mean state of the dynamic sea level realistically; however, consistent 
positive bias is evident across the latitudinal range of the Indian Ocean. The strongest sea level bias is seen along the Antarctic 
Circumpolar Current (ACC) regime owing to the stronger than observed south Indian Ocean westerlies and its equatorward 
bias. This equatorward shift of the wind field also results in a stronger positive windstress curl across the southeasterly trade 
wind regime in the southern tropical basin and an easterly wind bias along the equatorial waveguide. Owing to the anomalous 
easterly equatorial winds, the thermocline in the eastern tropical basin is shallower in the models than observed, resulting in 
enhanced variability there. Such spurious variability in the eastern part of the basin causes models to become biased towards 
the dipole zonal mode or Indian Ocean dipole patterns in the tropics. In the north Indian Ocean, the summer monsoon winds 
are weak in the model leading to weaker coastal upwelling and positive sea level bias along the western Arabian Sea. Further, 
it is noted that the high-resolution models compare better in simulating the sea level variability, particularly in the eddy-
dominated regions like the ACC regime in interannual timescale. However, these improved variabilities do not necessarily 
produce a better mean state likely due to the spurious enhanced mixing driven by parametrizations set in these high-resolution 
models. Finally, the overall pattern of the projected dynamic sea level rise is similar for the mid (SSP2-4.5) and high-end 
(SSP5-8.5) scenarios, except that the magnitude is higher under the high emission situation. Notably, the projected dynamic 
sea level change is milder when only the best-performing models are used compared to the complete ensemble.
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1 Introduction

The ongoing global warming owing to the increase in the 
concentration of anthropogenic greenhouse gasses is causing 
a devastating irreversible impact on the global climate sys-
tems (IPCC AR6 2021). About 93% of the extra heat stored 
in the climate system is absorbed by the ocean, leading to 
a rapid sea level rise in the recent decade and therefore, 

posing a great threat to the densely populated low-lying 
coastal areas across the globe (Oppenheimer et al. 2019). As 
per the latest report of the IPCC (Intergovernmental Panel 
on Climate Change; IPCC AR6 2021), the global mean sea 
level has been increasing at a steady rate of 1.3 mm/year dur-
ing 1901–1971, 1.9 mm/year during the period 1971–2006 
to a much rapid rise of 3.7 mm/year in the recent decades 
(2006–2018). Similar observations were echoed by others 
(Bindoff et al. 2007; Han et al. 2010; Church and White 
2011; Church et al. 2013; Unnikrishnan et al. 2015). This 
rising sea level is expected to increase further at a rapid pace 
unless a deep reduction in  CO2 emission becomes a reality 
across the globe (Perrette et al. 2013; Oppenheimer et al. 
2019). Moreover, this higher sea level and a warmer climate 
are expected to exacerbate extreme weather events such as 
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storm surges, cyclones, high waves and greater erosion. This 
will put human lives along the coastal communities at risk of 
oceanogenic calamities around the globe, particularly in the 
heavily populated south Asian countries where these effects 
will be devastating.

More importantly, the regional sea level change differs 
significantly from the global mean driven by ocean dynam-
ics, differential heating and gravitational and solid earth 
processes (Lowe and Gregory 2006; Christensen and Chris-
tensen 2007; Milne et al. 2009; Yin et al. 2010; Tamisiea and 
Mitrovica 2011; Yin 2012; Meyssignac and Cazenave 2012; 
McGregor et al. 2012; Landerer et al. 2007, 2014). Thus, 
the aim of this paper is to identify the fidelity of the CMIP6 
models in simulating the mean and variability of the sea 
level in the Indian Ocean and relate the identified bias with 
possible anomalous physical processes. Recently, Harrison 
et al. (2021) argued that while stereodynamic processes are 
the leading contributors to the future sea-level change in 
the Indian ocean, mass changes due to the terrestrial water 
storage also play a key role in the spatial variations of sea 
level. Moreover, this non-uniform sea level change is also 
the manifestation of both internal variability and anthropo-
genic forcing (Han et al. 2010). While the contribution of 
natural internal variability associated with coupled climate 
modes such as El Niño Southern Oscillation (ENSO), Indian 
Ocean dipole (IOD), Pacific Decadal Oscillation (PDO), 
Southern Annular Mode (SAM), etc. (Phillips et al. 2021 
and the references therein) is one of the dominating forc-
ings in the interannual/decadal timescale, the contribution of 
the anthropogenic component is also expected to grow over 
time owing to future climate change (Stammer et al. 2013). 
Hence, at a local level, the global mean assessments are of 
little use to policymakers.

Phase six of the Coupled Model Inter-comparison Pro-
ject (CMIP6), like its predecessors, brings standardized 
model outputs of the historical simulations as well as the 
future projections from various participating institutes in the 
project (Eyring et al. 2016), allowing a detailed regional 
specific investigation of the sea level change and associ-
ated processes. The model simulated dynamic sea level 
(DSL) represents the change in sea level due to the ther-
mal and halosteric changes along with dynamic processes 
associated with wind forcings (Stammer et al. 2013). Since 
the Indian Ocean has been subjected to rapid warming in 
the last few decades (Alory et al. 2007; Alory and Mey-
ers 2009; Roxy et al. 2014; Li et al. 2017; Chatterjee et al. 
2020, preprint) it is important to understand the signature 
of the dynamic sea-level rise and its projections over the 
region. Earlier global mean state simulation of sea level from 
CMIP3 to CMIP5 has shown a marked improvement (Lan-
derer et al. 2014). Note, however, that in the CMIP5, the 
future projections were driven by different climate scenarios 
based on the representative concentration pathways (RCPs) 

associated with varied radiative forcing ranging from 2.6 
to 8.5  Wm−2 (Van Vuuren et al. 2011). In contrast, CMIP6 
models adopted a new set of future climate scenarios based 
on the Shared Socioeconomic Pathway (SSP) to additionally 
consider land use, urbanization, economy, population, etc. 
(O’Neill et al. 2014; Riahi et al. 2017). Therefore, the nar-
rative of the projected changes under the CMIP6 scenarios 
are similar to the CMIP5, but not the same. We expect that 
the projected regional change in sea level may differ under 
these new SSP considerations compared to the previous 
estimates. Lyu et al. (2020a, b) argued that CMIP6 lacks a 
similar improvement over CMIP5 despite its better repre-
sentation of the zonal wind stress, especially the position 
of the southern hemisphere westerlies which improve DSL 
estimates in the Southern Ocean. CMIP6 models also report 
increased DSL projections compared to the CMIP5 models 
likely linked to the inclusion of models with higher climate 
sensitivity (Andrews et al. 2012; Lyu et al. 2020a, b; Brun-
ner et al. 2020; Nijsse et al. 2020; Tokarska et al. 2020). In 
fact, Hermans et al. (2021) noted that while the increased 
effective climate sensitivity of CMIP6 models relative to 
CMIP5 models translates into substantially higher projection 
of twenty-first century global surface temperature (GSAT), 
the difference in projected global mean sea level (GMSL) 
is relatively modest when methods from fifth assessment 
report (AR5) is used.

Notably, proper mean state representation is an important 
requisite for models simulating future projections (Richter 
et al. 2017). Along with mean state simulations, an accu-
rate representation of internal variability is also imperative 
for better projections. However, the ensemble spread of the 
climate models increases the uncertainty of the projected 
change. However, it is to be noted that the noise does not 
vary much with the choice of emission scenarios; hence, the 
uncertainty associated with internal variability is independ-
ent of the choice of the emission scenarios (Ferrero et al. 
2021). To reduce this uncertainty, many previous studies 
have explored the performance-backed weightage or exclu-
sion of models (Greene et al. 2006; Yin et al. 2010; Watter-
son and Whetton 2011). Most of these assessment studies 
for different variables and regions employed subjective rank-
ing of models based on their ability to simulate largescale 
climate patterns and skill score metrics (McSweeny et al. 
2015; Halder et al. 2021; Krishnan and Bhaskaran 2019). 
McSweeney et al. (2015) provided a rationale that the inabil-
ity of the model to simulate key large-scale processes may 
reflect the model’s deficiency in simulating climate signals 
induced by global warming. Nevertheless, finding a selection 
rationale that best suits the proposed purpose is challenging. 
Note, however, that while such exclusion of non-performing 
models for the ensemble projection reduces the uncertainty 
and narrows down the projected spread, it also increases the 
risk of mal-adaptation (McSweeney et al. 2015). However, 
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as the cost of implementing mitigation policies to safeguard 
a coast from rising sea levels is expected to increase expo-
nentially with the projected future sea level rise, lowering 
the uncertainty is likely to provide a sustainable solution. 
Further, as the oceanographic operational centres across the 
globe are more interested in downscaling the global sea level 
rise using dynamical and statistical approaches (Liu et al. 
2016; Hermans et al. 2020; Jackson et al. 2022), the need to 
select the best-performing models for the region of interest 
is growing for such analysis.

In this study, we analyze historical sea level simula-
tions from 27 CMIP6 models to identify their fidelity in 
simulating the observed mean state and variability of the 
Indian Ocean. Further, we select a subset of models based 
on their performance for various climatic features of the 
Indian Ocean. We expect that the exclusion of such least-
performing models from the ensemble may likely provide 
policy-relevant projections over the Indian ocean domain. 
Further, considering the different driving dynamical mech-
anisms responsible for mean sea level and its variability, 
we discuss the model biases and their underlying mecha-
nisms separately for the north Indian Ocean (NIO; 0°–30° 
N, 20°–120° E), south tropical Indian Ocean (STIO; 0°–30° 
S, 20°–120° E) and Southern Indian Ocean (SIO; 30°–60° 
S, 20°–120° E). Note here that the regions west of 120° 
E meridian, but outside the Indian Ocean such as parts 
of South China Sea, Java Sea, etc. are excluded from the 
study. The rest of the paper is organized as follows: Sect. 2 
describes the observation and models we use in this study, 
assessments of each model in simulating mean, variability 
and process-specific Indian Ocean features are discussed in 
Sect. 3, the projected changes are discussed in Sect. 4, and 
finally, Sect. 5 concludes our results.

2  Data and methodology

This study uses monthly outputs from 27 CMIP6 models 
(Eyring et al. 2016; Table 1). To assess the fidelity of each 
model in reproducing the Indian Ocean mean state and 
its variability, the 'historical' simulation (available from 
1850 to 2014) of sea surface height above geoid (zos), the 
global mean thermosteric sea level change (zostoga), zonal 
and meridional windstress at the surface (tauu, tauv), and 
derived curl of the wind stress are analyzed. For future pro-
jections, we examine two Shared Socioeconomic Pathways 
(SSP) scenarios from Scenario Model Intercomparison Pro-
ject (ScenarioMIP; O’Neill et al. 2014) for a possible mid-
emission (SSP2-4.5) and high-emission (SSP5-8.5) radiative 
forcing at the end of 2100. To give equal weightage to all the 
models, only the first realization ‘r1i1p1f1’ is used for both 
historical and future scenarios. The dynamic sea level (DSL) 
is defined as the local height of the sea level above the geoid. 

The DSL is supposed to have a global zero mean. Some 
models provide a non-zero time-dependent global mean for 
the variable zos, which we remove for consistency in analysis 
(Gregory et al. 2019; Griffies et al. 2016). Outputs from cer-
tain models need barometric correction to convert them into 
effective sea level to make inter-model comparison as well 
as model to observation comparison feasible (Griffies et al. 
2016). We do this correction by converting the mass per area 
occupied by the sea ice into the height it would occupy as 
water and subsequently adding it to the modelled sea surface 
height for the specific models. Furthermore, these model 
simulations also suffer from a model drift caused by a rela-
tively short spin-up of the subsurface water column (Gupta 
et al. 2013). The historical simulations are branched from 
a specific point in time from the pre-industrial control run. 
We identify this branching point in time and find out the 

Table 1  List of 27 CMIP6 models used in this study

a The high resolution models

No Model Grid info Projection Selected models 
(RMSE index)

1 ACCESS-CM2 360 ×  300 ✔
2 ACCESS-ESM1-5 360 ×  300 ✔
3 BCC-CSM2-MR 360 ×  232 ✔ ✔ 8.65
4 BCC-ESM1 360 ×  232
5 CMCC-CM2-HR4a 1051 ×  1442 ✔ 8.31
6 CMCC-CM2-SR5 292 ×  362 ✔ ✔ 5.99
7 CNRM-CM6-1 362 ×  294 ✔ ✔ 8.05
8 CNRM-CM6-1-

HRa
1442 ×  1050 ✔

9 CNRM-ESM2-1 362 ×  294 ✔ ✔ 8.41
10 CanESM5 360 ×  291 ✔
11 CanESM5-CanOE 360 ×  291 ✔
12 EC-Earth3 362 ×  292 ✔ ✔ 8.77
13 EC-Earth3-Veg 362 ×  292 ✔
14 EC-Earth3-Veg-LR 362 ×  292 ✔
15 GISS-E2-1-G 288 ×  180 ✔
16 HadGEM3-GC31-

LL
360 ×  330 ✔ ✔ 7.22

17 HadGEM3-GC31-
MMa

1440 ×  1205 ✔

18 INM-CM5-0 360 ×  180 ✔
19 IPSL-CM6A-LR 362 ×  332 ✔ 7.88
20 MIROC6 360 ×  256 ✔
21 MPI-ESM-1-2-

HAM
256 ×  220

22 MPI-ESM 1-2-HRa 802 ×  404 ✔
23 MPI-ESM1-2-LR 256 ×  220 ✔
24 MRI-ESM2-0 360 ×  363 ✔
25 NorESM2-LM 360 ×  385 ✔ ✔ 8.80
26 NorESM2-MM 360 ×  385 ✔ ✔ 7.36
27 UKESM1-0-LL 360 ×  330 ✔
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segment of the pre-industrial run that runs parallel to the 
historical simulations and the projections. The model drift 
is calculated as the quadratic fit of the time series at each 
point which is removed from the historical simulations and 
projections. Finally, all the model variables are re-gridded 
onto a uniform 1° ×  1° grid for ease of comparison and to 
compute the multi-model mean (MMM).

The altimeter-derived multi-mission gridded product for 
1993–2014 is used to compare the simulated model DSL. 
As the altimeter-derived sea level is found to have a correla-
tion greater than 0.95 (not shown) with the mean dynamic 
topography obtained from Maximenko et al. (2009), the use 
of altimeter sea level anomaly does not affect our analysis. 
Since the altimetry record contains the global mean ther-
mosteric component (Stammer et al. 2013), we remove the 
global mean sea level at each time step from the observa-
tion to make the observation-model comparison feasible. 
Noticeably though, as the altimeter sea level observation is 
available only for a shorter duration, the observed variability 
may be biased by the unresolved decadal climate variability.

The interannual variability of DSL is calculated after 
removing the monthly climatology signal from the total 
detrended DSL. The climatological DSL is used to study 
the annual variability. Moreover, since the models have no 
real state initialization, the phase of the model simulations is 
expected to differ from that of the altimeter. To address this 
issue, we use a 20-year sliding window on the entire histori-
cal simulation record and compare each of these windows 
with the observational data of the same length to see whether 
the choice of the observational period influences the results.

Since the DSL is driven by dynamical forcing, we also 
analyze the wind stress of each of the CMIP6 models. Wind 
stress curl is derived from the historical and future scenario 
simulations of the models as it is one of the primary driv-
ers of the mean dynamic sea level and its variability. To 
compare the wind field and its anomaly European Centre 
for Medium Range Weather Forecasts (ECMWF) Reanaly-
sis (ERA5) from 1993 to 2014 is also used (Hersbach et al. 
2020).

In order to assess the performance of each model, basic 
statistical metrics such as pattern correlation, root mean 
square error (RMSE), Empirical Orthogonal Function 
(EOF), etc., are used. The pattern correlation is used to 
assess the fidelity of a model in simulating the spatial pattern 
of mean sea level and variability (standard deviation) over a 
specified 20-year sliding window compared to the observa-
tions. Similarly, RMSE is also calculated between spatial 
maps of model and observation for the field of mean or vari-
ability of DSL. In contrast, for EOF calculations, detrended 
monthly field anomalies (by removing the seasonal cycle) 
are used.Note here that standard deviation of the MMM is 
calculated by averaging standard deviation of each model. 

A similar approach is applied for the MMM EOF calcula-
tions as well.

We also use a skill score metric defined by Taylor (2001) 
as given below:

where �̂f  is the ratio of the spatial standard deviation of the 
model ( �m ) and observation ( �o ). R is the observed pattern 
correlation. Ro is the maximum attainable pattern correla-
tion and is set to 1. Spatial standard deviations are calculated 
using a 2-D array of the spatial map using the following 
formula:

where �xy is the spatial standard deviation for a 2-d array (for 
example, mean DSL over a time window), �i,j is the value of 
the variable (say, DSL) at each grid point and � is the aver-
age over the domain. n and m are the numbers of grids in the 
longitude and latitude axis.

3  Results

3.1  Mean dynamic sea level

The mean DSL represents the geostrophic circulation driven 
by the overlying windstress, windstress curl, and the ocean 
density (Gregory et al. 2019) of the basin and therefore, 
plays a key role in the redistribution of heat and mass across 
the basin. While in the SIO, the DSL is primarily driven by 
the semi-permanent mid-latitude Southern Ocean westerlies, 
in the STIO it is driven by the southeasterly trade winds. On 
the other hand, DSL in the NIO is driven by the seasonally 
reversing monsoon winds which reverse from southwesterly 
in the boreal summer to northeasterly in the boreal winter 
(Schott and McCreary 2001; Schott et al. 2009). Hence, in 
the NIO, the sign of the DSL also reverses with the season. 
However, as the winds are much stronger during the boreal 
summer, the annual mean DSL and winds are biased towards 
the summer monsoon season of the NIO (Fig. 1). Remote 
influences from the Pacific Ocean and forcings associated 
with climate modes like ENSO, IOD and SAM also influ-
ence the sea-level in the Indian Ocean through both oceanic 
pathways and atmospheric teleconnections (Trenary and Han 
2012; Phillips et al. 2021; Schott et al. 2009; Sprintall and 
Révelard 2014; Duan et al. 2021).

All the CMIP6 models could reproduce the mean DSL 
and wind field reasonably well across the basin. Notably, 
while the MMM could capture the mean sea level patterns 

(1)S =
4(1 + R)
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very well, there is a consistent positive bias across the basin 
for most of the models (Figs. 1c and 2a). The strongest posi-
tive sea level bias is evident across the Antarctic Circumpo-
lar Current (ACC) regime in the SIO (Fig. 1c). This region 
is driven by strong westerlies, causing a marked shift in the 
sign of the windstress curl across the wind field maxima 
(Fig. 2b, c). In response to the winds, the sign of DSL across 
the ACC regime also shifts from negative in the south to 

positive in the north of its axis. However, note here that the 
latitude of zero windstress curl does not coincide with the 
latitude of zero DSL (see Sect. 3.4). Most climate models 
tend to simulate an equatorward bias in the westerly wind 
field, causing an equatorward shift in the ACC regime rela-
tive to the observation (Fyfe and Saenko 2006; Russell et al. 
2006; Lyu et al. 2020a, b). While this equatorward westerly 
wind bias across the Southern Ocean is reduced considerably 

Fig. 1  Comparison of mean dynamic sea level (top) and windstress curl (bottom; shaded) overlayed by the mean winds (vectors) from observa-
tion (left), MMM (middle) and bias (right)

Fig. 2  Zonally averaged dynamic sea level (left), zonal windstress (middle) and windstress curl (right) from observation (dotted black) and 
MMM (blue,green and purple solid lines respectively) model. The shaded area represents model spread



2234 C. K. Sajidh, A. Chatterjee 

1 3

in the 6th phase of the CMIP models compared to its pre-
decessors (~ 2°; Lyu et al. 2020a), the latitude of maximum 
zonal windstress is still off by more than 1° in the MMM in 
the Indian Ocean sector of the mid-latitude Southern Ocean 
basin. Furthermore, the westerly winds also show a strong 
positive bias across the Southern Ocean with a maximum 
positive bias of ~ 0.1  Nm−2 along its core (Fig. 2b). This 
strong wind bias also causes a very strong negative (posi-
tive) windstress curl bias in the south (north) of the zero 
windstress curl region (Fig. 2c). A detailed analysis of the 
Southern Ocean sea level bias and its association with the 
wind field is discussed in Sect. 3.4.

In the STIO, particularly in the western part, the model 
simulated sea level is slightly higher compared to the obser-
vation, mainly linked to the stronger southeasterly trade 
winds in the model. However, in the NIO, weaker model-
simulated summer monsoon winds (Figs. 1 and S1) produce 
weak upwelling along the coast of Somalia and Arabia, caus-
ing a positive bias in the model-simulated mean sea level in 
the western Arabian Sea (Fig. 1c). In most models, this also 
led to a contrasting east–west bias in the sea level across 
the NIO.

The performance of the individual models differs con-
siderably in the various latitude bands. Figure 3 shows the 
spread of the sea level bias of the individual CMIP6 mod-
els for the NIO, STIO and SIO. Overall, bias is larger in 
the western part of the basin across all latitudes and gener-
ally increases from north to south. While in the NIO, most 
models show RMSE (with respect to altimeter) less than 

0.15 m except for the model INM-CM5-0, MRI-ESM2-0 
and GISS-E2-1-G; in the SIO, the RMSE is predominantly 
more than 0.15 m and reaches close to 0.3 m for the GISS-
E2-1-G. The RMSE for the MMM in the NIO, STIO and 
SIO are 0.09 m, 0.12 m and 0.16 m, respectively, and the 
corresponding ratio of bias to the observation (ratio of the 
RMSE to the observation) are 0.19 (0.23), 0.28 (0.30), and 
− 0.26 (− 0.38), respectively.

3.2  Variability

In this section, we analyze the ability of the CMIP6 models 
to simulate the key variability features in the Indian ocean 
domain. The sea level over the Indian Ocean shows strong 
variability (standard deviations) in a large spectrum of time-
scales. While the variability in the seasonal timescale is most 
prominent due to the dominance of the seasonally revers-
ing monsoon winds in the north Indian Ocean (Chatterjee 
et al. 2012), the variability in the interannual and decadal 
timescale is of key importance for the Indian Ocean climate 
variability and its impact on the global climate (Schott et al. 
2009; Phillips et al. 2021).

Observed variability of the Indian Ocean shows maxima 
along the front of the ACC in the SIO (Fig. 4a) owing to 
the interannual meridional movement of the ACC current 
regime (Fig. 4g) driven by ENSO and SAM climate modes 
(Kim and Orsi 2014). The thermocline ridge region in the 
northern part of the STIO also exhibits stronger variability, 
primarily influenced by the South Equatorial Current (SEC), 

Fig. 3  Top panels show spread of the model simulated sea level bias 
for NIO(0°–30° N, 20°–120° E) (left), STIO (0°–30° S, 20°–120° E) 
(middle) and SIO (30°–60° S, 20°–120° E) (right). The thick blue 
line and thin blue lines indicate the MMM and individual models 

respectively in each panel, The shaded area represents model spread. 
Bottom panels show RMSE for individual models for each latitude 
bands. RMSE of the MMM is marked in red
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overlying wind fields and the associated embedded eddies 
in seasonal and interannual timescale (Wang et al. 2021; 
Deepa et al. 2021). The region off the west coast of Aus-
tralia in the latitude band of 15°–35° S also shows strong 
interannual variability (Fig. 4g) driven by western Pacific 
winds (Trenary and Han 2012) and the eddies generated due 
to the baroclinic instabilities between the surface eastward 
flowing South Indian Counter Current (SICC) and subsur-
face westward flowing SEC (Jia et al. 2011; Menezes et al. 
2014; Zhang et al. 2020). In the NIO, the western boundary 
of the Arabian Sea along the coast of Somalia and Arabia 
shows strong variability in seasonal and interannual time-
scale driven by the summer monsoon winds and its climate 
variability (Beal and Donohue 2013; Chatterjee et al. 2019; 

Lakshmi et al. 2020; Vinayachandran et al. 2021). Also, the 
coastal waveguide along the perimeter of the Bay of Ben-
gal exhibits significant variability driven by coastal propa-
gation of planetary waves forced by the equatorial winds 
(Vialard et al. 2009; Suresh et al. 2013; Chatterjee et al. 
2017; Mukherjee et al. 2018; Phillips et al. 2021).

The historical simulations of CMIP6 models are evalu-
ated for the Indian Ocean variability for the common period 
of data availability from altimeter and CMIP6 models, i.e. 
during 1993–2014 (Figs. 4b, e, h and S2). Notably, the phase 
and magnitude of the internal variability in the model may 
differ with observation due to freely evolving internal vari-
ability in the system. Therefore, one can expect the model-
simulated variability to differ considerably during a given 

Fig. 4  Sea level variability (standard deviation in time) for the period 1993–2014 from a altimeter observation b MMM and c model bias. Panels 
(d–f) and (g–i) are for the annual and interannual signals, respectively
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period (Richter et al. 2017). In order to account for the 
contribution of internal variability, pattern correlation and 
RMSE of the model simulated sea level for a 20-year sliding 
window are also analyzed for each model, for all frequency 
bands, to see if choosing a specific period affects the models’ 
skill in simulating the sea level variability.

Most of the CMIP6 models and, therefore, the MMM 
underestimate the Indian Ocean variability (Fig. 4b). Nev-
ertheless, models perform relatively well for the seasonal 
scale with an almost accurate representation of the sea level 
variability in the western Arabian Sea associated with the 
Great Whirl fronts, its extension along the summer mon-
soon currents and along the perimeter of the Bay of Bengal 
(Fig. 4e). However, all the models tend to produce much 
stronger variability in the eastern equatorial Indian Ocean 
and along the coast of Java, likely due to the anomalously 
shallow thermocline (discussed in the next section) leading 
to stronger air-sea momentum exchange in the upper water 
column and hence, anomalously stronger excitation of lower-
order baroclinic modes.

In the interannual timescale, models severely underper-
form in simulating variability along the fronts of the ACC 
current regime. Similar weaker variability is noticed for the 
STIO along the band of the SICC regime as well. Nota-
bly, the high-resolution models like CMCC-CM2-HR4, 
CNRM-CM6-1-HR, HADGEM3-GC31-MM and MPI-
ESM1-2-HR performed relatively better in reproducing 
this observed variability, particularly along the ACC cur-
rent regime. This indicates that the eddy-dominated regions 
are simulated well by the high-resolution models compared 
to the coarser CMIP6 models. As this eddy-induced high-
frequency variability causes strong low-frequency rectifi-
cation through modifying the mean state and impacts the 
response of the internal variability, the natural variability of 
the Indian Ocean is likely underestimated in most CMIP6 
models. For the thermocline ridge region, the variability in 
MMM is more spread out compared to the observation with 
a decrease in the magnitude of the variability eastwards. The 
CMCC models capture the variability in the eastern basin 
but overestimate in the west. On the other hand, the high-
resolution CNRM model does capture the variability pattern, 
but the simulated magnitude of the variability is lower than 
the observation. The HadGEM3-GC31-MM model fares bet-
ter compared to others in simulating the observed location 
and magnitude of the variability in this region (Fig. S2).

Figure 5 shows the pattern correlation calculated between 
the standard deviation in time for each sliding window with 
the observed temporal standard deviation. Interestingly, the 
spread of the pattern correlation and RMSE across the slid-
ing windows are within the range of about 0.1 and 0.25 cm, 
respectively, indicating that the choice of a specific period 
(window) does not alter the conclusions. Notably, models 
with higher correlation tend to have smaller RMSE for total 

and interannual variability, which is not so evident for the 
annual signal.

3.3  Equatorial tilt and climate variability

Next, we compare the model simulated mean DSL for the 
equatorial belt. The east–west sea level gradient is an impor-
tant parameter as it is dynamically linked to the depth of the 
thermocline and therefore, modulates the air-sea interactions 
over the basin. This mean state particularly becomes impor-
tant for the initiation and progression of tropical climate 
modes such as El Niñ o, Indian Ocean Dipole, etc. (Ham and 
Kug 2015; Cai and Cowan 2013). Earlier, Lyu et al. (2020a) 
showed that the new generation CMIP6 models could not 
produce better results compared to the CMIP5 models in 
simulating the observed equatorial sea level gradient. Here, 
we try to assess individual models' mean state and relate 
that to the model performance pertaining to the simulated 
tropical climate variability. The mean DSL is averaged over 
2° N–2° S, and the zonal mean is removed to compare with 
the observed sea level slope (low in the west and increasing 
eastward). As the equatorial westerlies primarily drive east-
ward equatorial upsloping of mean sea level (Wyrtki 1973), 
zonal windstress averaged over the equatorial band is also 
analyzed in Fig. 6.

The equatorward bias of the SIO westerlies and STIO 
trade winds leads to unrealistic anomalous equatorial east-
erlies in most models (Fig. S1) and thus, in the MMM wind 
field (Fig. 1), causing underestimation in the strength of 
the westerlies along the equator. The simulated bias in the 
equatorial sea level is consistent with the bias in the zonal 
wind field. The MMM sea level is primarily flat along the 
equator and completely failed to produce the observed east-
ward upsloping of the sea level. In fact, 9 models show a 
negative correlation in producing mean sea level relative to 
the observation with RMSE of more than 0.5 m. In general, 
the models with higher correlation show lower RMSE in 
equatorial sea level. But, in contrast to the variability, the 
high-resolution models do not exhibit any superiority over 
the coarser models in simulating the sea level slope. The bias 
in the zonal windstress corroborates well with the sea level 
bias (Fig. 6b). However, for winds, unlike sea level, a higher 
positive correlation does not correspond to a lower RMSE.

Notably, the anomalous equatorial easterlies in CMIP6 
models cause an IOD like pattern with cooler SST in the east 
and warmer in the west (Figure not shown). In most models, 
these anomalously weaker westerlies cause the thermocline 
to remain too deep in the western equatorial IO and unreal-
istically shallow in the eastern side. In the western Indian 
Ocean, a similar warm SST bias in the CMIP5 models was 
noted by Fathrio et al. (2017). On the other hand, the shallow 
thermocline depth in the east leads to anomalously strong 
air-sea interactions (Cai and Cowan 2013).
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Fig. 5  Pattern correlation and RMSE of sea level variability for a, b total, c, d annual and e, f interannual signals. The whiskers represent the 
spread of corresponding metric across the 20-year sliding windows
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To understand how this underestimation of equatorial 
slopes affects the simulation of internal climate modes, 
we perform EOF on the detrended model simulations after 
removing the annual cycle and compare it with observations 
(Fig. 7). The patterns of the first and second modes of EOF 
are captured reasonably well by the CMIP6 models. While 
the MMM could capture the observed spatial patterns of 
the first and second modes of EOF, there is a considerable 
departure in explaining the spatial magnitude and variability. 
The first mode of EOF, which represents the dipole mode 
of the tropical Indian Ocean, explains about 30% of the 
MMM variability compared to the 16% in the observation. 
As noted above, the warm SST bias in the west and over-
sensitive air-sea interactions in the east are the likely reason 
for the CMIP6 models' overestimation of IOD zonal mode 
relative to the model simulated total variability in the tropi-
cal Indian Ocean. The variability explained by the second 
EOF is also high in the MMM compared to the observation. 
However, note here that the spatial amplitude of both modes 
are considerably weaker than the observation. This weak 
amplitude is particularly noticeable in the thermocline ridge 
region, explaining the weaker model-simulated variability 
noted in Sect. 3.2.

As expected, the pattern correlation for the first EOF for 
all the models is above 0.7 (Fig. 8). Interestingly, the cor-
relation varies significantly for the second EOF across the 

models, with a maximum correlation of 0.8 for CanESM5-
CanOE and close to zero correlation for EC-Earth3 and 
EC-Earth3-Veg. In the case of explaining variance CNRM-
CM6-1-HR and HadGEM3-GC31-MM show weaker vari-
ability than observed for both the EOF modes, indicating 
a possible inadequate climate response in these models. In 
contrast, NorESM2-MM, GISS-E2-1-G and the models from 
the EC-Earth3 family show almost three times the observed 
variability for the first mode suggesting a strong bias towards 
the IOD mode in these models.

3.4  Remote and local forced response

The interannual and decadal variability in the Indian Ocean 
is majorly forced by local wind regimes and the Pacific tel-
econnections (Trenary and Han 2012, 2013; Volkov et al. 
2020; Phillips et al. 2021; Li et al. 2022). The variability 
in the Indian Ocean is largely affected by climatic forcings 
associated with climate modes like ENSO, IOD and SAM 
through both oceanic and atmospheric pathways (Schott 
et al. 2009). Sea level signals forced in the western Pacific 
transmit to the Indian Ocean via the Indonesian throughflow 
(ITF) and cause the sea level variability in the STIO (God-
frey and Golding 1981; Godfrey 1996; Wijffels and Meyers 
2004; Lee et al. 2002) . On the other hand, the local atmos-
pheric forcing in the basin contributes to the variability 

Fig. 6  a Equatorial mean dynamic sea level averaged over 2°  N–2° 
S from observation (dashed black), MMM (dashed blue) and all the 
CMIP6 models (solid thin blue). b Same as (a) but for zonal wind-
stress. c pattern correlation equatorial MMM dynamic sea level 

relative to the altimeter observations (blue bars) and the correspond-
ing RMSE (green squares). d Same as (c) but for zonal windstress. 
RMSE of the MMM is marked in red
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through local Ekman pumping and via the propagation of 
Rossby waves forced by eastern boundary processes and 
open ocean windstress forcing (Morrow and Birol 1998; 
Menezes and Vianna 2019) . Trenary and Han (2012) ana-
lyzed the relative importance of local versus remote forc-
ing in the STIO using a suite of model experiments. They 
showed that in the interannual and seasonal time scale the 
variability over the thermocline ridge is forced by local 
winds, and the influence of Pacific forcing is confined 
mainly to the southeastern Indian Ocean (SEIO). Nagura 
and McPhaden (2021) extended the analysis to the midlati-
tudes using a simpler 1-D linear, long Rossby wave model 
and argued that the northern half of the STIO (10°S-18°S; 
an overlapping region with thermocline ridge) is mainly 
driven by the local winds in agreement with Trenary and 
Han (2012) and the southern latitudes (20°–35° S) is domi-
nated by the long Rossby waves propagation radiated from 
the west coast of Australia. They further added that this vari-
ability along the Australian west coast is, in fact, driven by 
the SSH variability forced in the tropical Pacific.

Hence, next we analyze the fidelity of each model in sim-
ulating the local and remotely forced sea level variability in 
the thermocline ridge of the Indian Ocean (TRIO) and SEIO 
regions, respectively. Additionally, we also look at the wind 
stress biases over the Southern Ocean on a global scale to 
see the relative biases across the ocean basins.

Thermocline ridge of the Indian Ocean (TRIO) Here we 
look into the sea level variability over the TRIO character-
ized by a relatively shallow thermocline compared to the rest 
of the basin. Note here that, for our analysis, the latitudinal 
and longitudinal extent of TRIO is defined as 5°–12° S and 
50°–80° E following Trenary and Han (2012). It has been 
well documented that the Ekman pumping associated with 
prevailing negative windstress curl in the trade wind regime 
is the primary forcing for the shoaling of the thermocline in 
TRIO (McCreary et al. 1993; Tozuka et al. 2010; Trenary 
and Han 2012). Moreover, remotely forced Rossby waves in 
the eastern part of the basin also contribute to its variability 
(Han et al. 2014; Mukhopadhyay et al. 2022). The impact 
of Pacific influence through the Indonesian throughflow is, 
however, minimal in this TRIO latitudinal band (Han et al. 
2007; Yokoi et al. 2008; Nagura and McPhaden 2021; Ker-
salé et al. 2022). A lead-lag correlation analysis between 
the observed windstress curl and sea level averaged over 
the TRIO box indicates about a 4 months lag in sea level 
from the windstress curl yields a maximum correlation of 
0.5 (Fig. 9a). MMM simulates windstress curl, the associ-
ated sea level signal and the time lag reasonably well across 
the sliding windows with a minimum correlation of 0.34 
and a maximum of 0.57. Note, however, that the individual 
models show a large spread across the sliding windows and 
from the other models (Fig. 9b). The models with higher 
correlation tend to show less spread compared to the models 

Fig. 7  Comparison of the first (top) and second (bottom) EOF modes of detrended interannual dynamic sea level from observation (left) and 
MMM (right)
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with weaker median correlation. Moreover, the lag corre-
sponding to the maximum correlation for the respective 
model is around 4 months or in general longer (Fig. 9c). 
Among all the models, CMCC, CNRM and EC-Earth group 
of models perform reasonably well in simulating the correla-
tion and the lag between the TRIO windstress curl and sea 
level. Interestingly, the variability in TRIO in the interannual 
timescale is increasingly linked to the westward propagat-
ing Rossby waves radiated by the anomalous winds over the 
eastern tropical Indian Ocean (Trenary and Han 2012; Zhang 
et al. 2019; Mukhopadhyay et al. 2022). Therefore, the large 
spread in correlation across the different sliding windows in 
a few models might be linked to the simulated interannual 
variability in the winds in the eastern tropical Indian Ocean 
and the variability in the ITF influx into the Indian Ocean.

Southeastern Indian Ocean (SEIO) The SSH variability 
in the western equatorial Pacific propagates through the ITF 
into the Indian Ocean and along the west coast of Australia 
(Clarke 1991; Feng et al. 2010, 2011; Furue et al. 2017; 

Menezes and Vianna 2019). These signals then propagate 
westward to influence the interior basin of the south tropi-
cal Indian Ocean (Nagura and McPhaden 2021). Further, 
using sensitivity model experiments, Nagura and McPhaden 
(2021) demonstrated that the zonal wind filed in the west-
ern Pacific associated with ENSO drives the interannual sea 
level signals in the SEIO region.

In this section, we have evaluated CMIP6 models in 
simulating this remote forcing by the winds from the 
western equatorial Pacific (5° S–5° N, 160° E–170° W) 
in the sea level variability in the SEIO. For consistency, 
we define the SEIO as the region between 20°–35° S and 
105–115° E, following Nagura and McPhaden (2021). 
Lead-lag correlation analysis of the observed western 
Pacific zonal winds and SEIO sea level shows a maxi-
mum negative correlation of ~ 0.9 when the Pacific zonal 
winds lead the sea level by 5  months (Fig.  10a). The 
CMIP6 models simulate the time lead between the Pacific 
winds and SEIO sea level reasonably well for the observed 

Fig. 8  a Pattern correlation and b explained variance percentage for 
the first and second EOF modes of the detrended interannual dynamic 
sea level from CMIP6 models relative to the altimeter observations. 

The blue and green dashed lines represent the explained variance per-
centage for the first and second mode relative to the observed DSL, 
respectively
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period, but the simulated correlation remains much weaker 
and attains a maximum negative correlation of ~ 0.7 for the 
MMM across the sliding windows. This weaker correlation 
between the Pacific winds and the SEIO sea level is con-
sistent across most of the models. Only a few models, such 
as CMCC models, GISS-E2-1-G, MIROC6, MPI-ESM and 
NorESM2-MM, show a similar or larger correlation than 
the observed (Fig. 10b). Further, most of the CMIP6 mod-
els show a longer lag than the observed value (Fig. 10c), 
resulting in the MMM attaining the maximum negative 
correlation for a lag of ~ 7 months, i.e. ~ 2 months delayed 
than the observed (Fig. 10a). This indicates that the inter-
basin connection between the Pacific and the Indian Ocean 

though the ITF channels is not well represented in most 
of the CMIP6 models and hence, underestimates the ITF 
influence on the Indian Ocean sea level variability.

Southern Ocean The DSL over the Southern Ocean is a 
manifestation of the eastward geostrophic flow associated 
with the ACC and primarily driven by the westerly zonal 
winds and its meridional gradient (Nowlin and Klinck 
1986; Olbers et al. 2004; Bouttes et al. 2012). As noted in 
Sect. 3.1, the mean DSL of the MMM show the maximum 
positive bias in the ACC current regime in the 35°–55° S 
(Fig. 11). In fact, this positive sea level bias is most strong-
est in the Indian Ocean sector of the Southern Ocean com-
pared to the other basin. The midlatitude westerlies and the 

Fig. 9  a Lead-lag correlation 
between DSL and windstress 
curl averaged over TRIO 
(5°–12° S and 50°–80° E) 
region. Shaded curve represents 
the spread of the correlation for 
MMM for 20-year windows. b 
Box plot depicting maximum 
correlation for each model 
across the sliding windows and 
the black dashed line represents 
the observed maximum correla-
tion. c Box plot showing the lag 
corresponding to the maximum 
correlation, the black line is the 
observed lag corresponding to 
the maximum correlation
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Fig. 10  a Lead-lag correlation 
between DSL in the SEIO and 
zonal windstress from the west-
ern equatorial Pacific (5° S–5° 
N, 160° E–170° W). Shaded 
region represents the spread of 
the correlation for MMM for 
20-year sliding windows. b box 
plot depicting maximum cor-
relation for each model across 
the sliding windows and the 
black dashed line represents the 
observed maximum correla-
tion. c Box plot showing the lag 
corresponding to the maximum 
correlation and the black line 
is the lag of the maximum 
observed correlation

Fig. 11  a Bias in the DSL for 
the MMM. Dashed black and 
dark green lines represent the 
latitude of zero crossing for 
the observed DSL and wind 
stress curl, respectively and 
the grey and the light green 
line represent the zero crossing 
for DSL and wind stress curl, 
respectively for the MMM. b 
Same as (a) but for zonal wind 
stress. c Same as (a) but for 
wind stress curl
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associated windstress curl also show the strongest bias in 
this part of the Southern Ocean. In fact, the equatorward 
shift of the maximum zonal windstress is more pronounced 
in the Indian ocean compared to the Atlantic and Pacific 
(Fig. 12). More than 20 models (~ 75%) in the ensemble 
show an equatorward shift of ~ 2°, resulting in a large patch 
of positively biased winds centered between 45° S and 50° 
S (Fig. 11b). Among them, CNRM-CM6-1-HR shows the 
largest equatorward bias of ~ 5° across the entire basin. This 
equatorward disposition of the maximum zonal windstress 
in the Indian Ocean suggests that the DSL biases present in 
the models are predominantly a local response. 

Note that the change in the sign of the DSL (also referred 
to as the subtropical fronts (STF) or the southern boundary 
of the subtropical gyre) observed at 45° S and, therefore, 
does not coincide to the latitude of the observed zero wind-
stress curl (WSC) located at ~ 52° S. In other words, STF 
lies ~ 7° north of the zero WSC (Figs. 2 and 11a). The MMM 
show a poleward bias of the STF in the Southern Ocean 
sectors of the Indian Ocean and the Atlantic Ocean, but, 
exhibits an equatorward bias for the western Pacific. This 
observed latitudinal difference between the latitude of STF 
and the zero WSC was earlier discussed by de Boer et al. 
(2013). They showed that the bottom pressure torque driven 

by the topographic gradient determines the flow in the ACC 
regime. Considering that the bottom pressure torque is a 
product of the gradient of bottom pressure and topography, 
the anomalous geostrophic sea level driven by westerly wind 
bias is the likely source in the model simulated bottom pres-
sure torque and the corresponding bias in the ACC regime. 
Further, the strong positive bias in the windstress curl north 
of the zero WSC (Fig. 2c) also favours positive DSL in this 
region and thus contributes to its positive bias.

3.5  Skill score

Most of the models produce a very high skill score of more 
than 0.98 in simulating the mean DSL for the entire Indian 
Ocean basin (Fig. 13a). In fact, the minimum score is 0.95 
which is associated with the INM-CM5-0 model. The skill 
scores for the mean windstress curl don't fare as good as the 
sea level and lie between 0.6 and 0.8, with a few outliers. 
Even though the models show a good spatial correlation for 
windstress curl, the larger and varying normalized standard 
deviations cause the inter-model spread in the skill scores. 
Note, however, that the skill score is dependent on the choice 
of the reference dataset as well. For example, the model 
windstress is more correlated to QuikSCAT scatterometer 

Fig. 12  latitudinal shift of maximum zonal windstress of the Southern Ocean westerlies relative to the observation over a global ocean, b Indian 
Ocean, c Pacific Ocean and d Atlantic Ocean
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winds than the ERA-5 and produces a marginally higher 
skill score (Figure not shown). Nevertheless, while the 
choice of reference dataset yields marginally different skill 
scores, the outlying behaviour of most models remains the 
same. Since ERA-5 is available for a longer record cover-
ing our study period (1993–2014) compared to QuikSCAT 
(1999–2009), we prefer ERA-5 for this skill score analysis.

Notably, the skill scores differ significantly across the dif-
ferent latitude belts. For example, the skill score in simulat-
ing mean DSL is generally relatively low for the NIO rang-
ing from 0.75 to 0.98 with only three models scoring more 
than 0.95. This lower skills of the models in NIO, despite 
relatively lower bias compared to the southern latitudes, is 
owing to the weaker pattern correlation and spatial standard 
deviation compared to the observation. In the STIO, most 
models score higher in simulating sea level, suggesting 
that most models simulate the subtropical gyre reasonably 
well in the Indian Ocean. Skill scores remain high in the 
SIO, with scores of more than 0.85 except for a few outli-
ers. Interestingly, here the model skill in simulating wind-
stress curl is the maximum with a usual score of more than 
0.85 despite models producing predominantly anomalously 

strong westerlies. This discrepancy is due to the fact that the 
skill score depends only on correlation and its variability and 
not the magnitude of the variable. Hence, while skill score 
can provide a picture of the overall performance of each 
model, it should be considered along with other statistical/
physical characteristics of model simulations.

3.6  Projection

Most CMIP6 models conserve volume rather than mass and 
therefore, any change in the temperature of the water col-
umn does not necessarily reflect in the sea level change. 
In order to account for this effect, we followed the method 
adopted in Richter et al. (2017). The global mean ther-
mosteric sea level (zostoga) de-drifted and referenced to 
the period 1993 to 2014 is added to the DSL change. This 
allows the regional dynamical change to reflects the changes 
due to winds, regional thermal expansion and the global 
mean steric height. Note here that the global mean thermos-
teric sea level change (zostoga) is defined as the change in 
global ocean volume due to temperature change divided by 

Fig. 13  Scatter diagram of the skill score for the model simulated sea level and windstress curl for the entire Indian Ocean (top left), NIO (top 
right), STIO (bottom left) and SIO (bottom right)
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the ocean surface area (Gregory et al. 2019). MRI-ESM2-0 
could not be considered for the analysis due to inconsist-
ency in zostoga (MRI-ESM2-0 shows a discontinuity in the 
zostoga time-series, Figure S3) and for a few models future 
projections of DSL are not available at the time of this analy-
sis (Table 1).

From the skill score analysis of the mean sea level and 
the mean windstress curl, we select the best 15 models by 
calculating the resultant magnitude of the skill score of 
both the mean sea level and wind stress curl. The square 
root of the squared sum of the skill score is calculated and 
the 15 best models from the ensemble are then selected 
for further analysis. These models are CMCC-CM2-SR5, 
HadGEM3-GC31-LL, IPSL-CM6A-LR, CNRM-CM6-1, 
CNRM-ESM2-1, NorESM2-MM, CMCC-CM2-HR4, BCC-
CSM2-MR, CNRM-CM6-1-HR, EC-Earth3, NorESM2-LM, 
BCC-ESM1, EC-Earth3-Veg, EC-Earth3-Veg-LR and GISS-
E2-1-G. After this initial selection of models, we move on to 
an objective ranking based on the simulated equatorial sea 
level slope and the total mean sea level. The RMSE of both 
equatorial sea level slope and basin-wide mean sea level is 
normalized by dividing them with the respective standard 
deviations of the selected models for both parameters. These 

are added together for the respective models to produce an 
RMSE index which we use to further rank the selected 
models (see Table 1). We use this index to discard models 
with RMSE values that fall in the top 25 percentile. As a 
result, BCC-ESM1, EC-Earth3-Veg, EC-Earth3-Veg-LR and 
GISS-E2-1-G were removed from the final selected models. 
Further, since the position of the Southern Hemisphere west-
erlies is an important climatic parameter, we look at the sim-
ulated position of the westerlies in the models to see whether 
any of the selected models is an outlier in this parameter. It 
is found that CNRM-CM6-1-HR shows an equatorward shift 
of ~ 5°, which is the highest among the ensembles, and there-
fore removed from the final list. After the exclusion of mod-
els based on the above-mentioned criteria, we are left with 
10 best-performing models out of the 27 model ensemble, 
and they are CMCC-CM2-SR5, HadGEM-GC31-LL, IPSL-
CM6A-LR, CNRM-CM6-1, CNRM-ESM2-1, NorESM2-
MM, CMCC-CM2-HR4, BCCCSM2-MR, NorESM2-LM 
and EC-Earth3.

In order to calculate the projected changes over the Indian 
ocean for mid-emission (SSP2-4.5) and high-emission 
(SSP5-8.5) radiative forcing scenario, the averaged departure 
of projected variable for 2080–2100 relative to the historical 

Fig. 14  Projected change in the MMM DSL (left), magnitude of the 
windstress with windstress vectors (centre) and windstress curl (right) 
for all models for the SSP2-4.5 scenario (top panels) and the SSP5-

8.5 scenario (bottom panels). The stippling indicates the regions 
where the DSL (without the global thermosteric effect) is negative
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period of 1994–2014 is considered. Both scenarios show 
similar projected patterns and differ primarily in magnitudes 
(Fig. 14). Interestingly, the ensemble of the best-performing 
models shows a weaker sea level rise in the IO compared 
to the full MMM solution (Fig. 15). In NIO, the Arabian 
Sea shows a stronger rise in sea level compared to the Bay 
of Bengal. The best model estimate shows a sea level rise 
of ~ 22–25 cm under the SSP2-4.5 scenario and ~ 35 cm rise 
for the SSP5-8.5 scenario. The western Bay of Bengal also 
shows a similar rising trend as in the Arabian Sea, but indi-
cates a much weaker rise of DSL in the eastern part. While 
this increase in sea level is primarily driven by the rise in 
the global mean thermosteric change (~ 25 cm, ~ 85%, Fig. 
S3), ~ 12–15% is contributed by the weakening of the sum-
mer monsoon wind field (Fig. 14b, e). The SIO also shows 
a strong sea level rise along the ACC current regime. There 
is a poleward shift of the Southern Ocean westerlies consist-
ent with other studies (Kidston and Gerber 2010; Lyu et al. 
2020a, b) due to the warming of the Southern Ocean driven 
by anthropogenic forcing. This drives the increase in sea 
level in this region. The warming of the Southern Ocean 
also has links to the weakening of the Atlantic meridional 

overturning circulation forced by aerosol changes under 
future emission scenarios (Shi et al. 2018). Under the SSP5-
8.5 scenario, the maximum sea level rise in this region is 
expected to be ~ 35–40 cm. In contrast, the STIO latitude 
band show the minimum sea level rise driven by the weaken-
ing of the trade winds. Note that the projected DSL changes 
(without the global thermosteric effect) are negative in the 
southern tropical Indian Ocean (20°S– 40°S) and the eastern 
equatorial Indian ocean near the Sumatran coast (Fig. 14a, 
d). Note, however, that recently Jevrejeva et al. (2020) ana-
lysed zostoga from CMIP5 and CMIP6 models and found 
out that CMIP6 models only show half of the observed rate 
of change during the period 1940–2005 and hence caution 
should be exercised in the interpretation of results. 

Like the mean field, the sea level variability also shows a 
similar pattern in the projected change under the SSP2-4.5 
and SSP5-8.5 scenarios (Fig. 16a, c). However, note that, in 
contrast to the mean field, the best estimate of the ensemble 
mean variability is generally higher in the entire basin com-
pared to the mean field (Fig. 16b, d). The western Arabian 
sea shows the strongest increase in the sea level variability 
with an increase of ~ 30% from the base period under the 

Fig. 15  Difference between the ensemble mean of the best perform-
ing models and the MMM (top panel) of the projected changes for 
mean DSL (left), magnitude of the windstress with windstress vectors 

(centre) and windstress curl (right) for the SSP2-4.5 scenarios (top 
panel) and the SSP5-8.5 scenarios (bottom panel)
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high emission scenario. This is a significant increase over 
the CMIP5 model estimates on the projected variability of 
this region (see Fig. 8e of Deepa et al. 2021). The ACC cur-
rent regime of the SIO and the west coast of Australia also 
show a considerable increase in the sea level variability. The 
thermocline ridge region, however, shows a marked decrease 
in variability, which is in agreement with the CMIP5 models 
(Deepa et al. 2021). Note, however, that the thermocline 
ridge region is shown to be one of the internal variability 
dominated regions (Han et al. 2014). Hence, considering 
that the CMIP6 models underestimate the variability of 
this region (Fig. 7), the projected decreasing variability of 
this region should be treated cautiously. On the other hand, 
unlike the CMIP5 model, CMIP6 models project a stronger 
increase in sea level variability in the eastern equatorial 
Indian Ocean and along the coast of Java, suggesting the 
influence of an increase in effective climate sensitivity of 
the CMIP6 models as reported earlier by Hermans et al. 
(2021). Further, the overestimation of the dipole strength 
in the CMIP6 modes is also likely to impact the long-term 
climate signatures of this tropical basin.

4  Conclusion

In this study, we evaluate the skill of models participat-
ing in the sixth phase of coupled model intercomparison 
project (CMIP6) in simulating the DSL and the associated 
wind field over the Indian Ocean. Subsequently, we select 
a subset of models by discarding grossly biased models 
from the ensemble to get the best-estimated projections 
over the Indian Ocean. Models' ability to reproduce the 
mean states, variability and climate modes for the obser-
vational period is used to assess the skills of each model. 
We use statistical tools such as pattern correlation, RMSE, 
and skill score metrics to assess the performance of mod-
els. Projections of sea level and wind field are analyzed 
for moderate (SSP2-4.5) and high (SSP5-8.5) radiation 
forcing future scenarios.

Most models could reproduce the mean DSL of the IO 
very well with a skill score of more than 0.95. However, the 
skill score varies considerably across the latitude band with 
the lowest scores exhibited in the NIO. All the models show 
consistent biases in sea level and winds in a few dynami-
cally dominated regions. Nevertheless, the zonally averaged 
DSL show consistent positive bias across all latitude with 
maximum bias in the ACC regime. Also, the equatorward 

Fig. 16  a Projected change in 
the variability of MMM DSL 
SSP2-4.5 scenerio. b Differ-
ence between the ensemble 
mean of variabilites from the 
best performing models and the 
MMM for SSP2-4.5 scenerio. 
c, d same as (a, b), but for the 
SSP5-8.5 scenerio
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shift of the Southern Ocean westerlies is found to be more 
in the Indian Ocean compared to the global averaged. In the 
NIO, the weaker summer monsoon winds in the model cause 
weak coastal upwelling along the western boundary of the 
Arabian Sea, resulting in a positive bias in the western IO.

The equatorward shift of the southeasterly trade winds 
causes anomalous easterly winds along the equator in most 
models. These wind biases shoal the thermocline of the east-
ern equatorial IO and reduce the west–east sea level (thermo-
cline) tilt which is otherwise found in the observations. This 
relatively flat equatorial thermocline in the east enhances 
the air-sea feedback and causes a dipole pattern in SST and 
sea level in the tropical basin. This IOD like bias is also 
reflected in the EOF analysis with stronger than observed 
variability in the first EOF mode. Some of the models such 
as NorESM2-MM, GISS-E2-1-G and the models from the 
EC-Earth3 family exhibit almost three times of the observed 
variability, indicating a strong bias towards the IOD mode.

In the case of variability, model simulations generally 
underestimate relative to the observation across the entire 
basin except for the eastern equatorial IO and the Sumatran 
coast. The overestimated magnitude of variability along 
the Sumatran coast is likely due to the shallow thermocline 
driven by the easterly bias in the equatorial zonal winds. As 
expected, the high-resolution models reproduce the observed 
variability better compared to the coarser models, particu-
larly in the high eddy-dominated regions like ACC current 
regime.

We assess the fidelity of the model simulations in repro-
ducing the local and remotely forced sea level variability in 
the Indian Ocean. A large inter-model spread is observed in 
the correlation values between the forcing and the sea level 
variability over the TRIO region. This large spread might 
be caused by the deficiencies in simulating the inter-annual 
winds over the eastern equatorial Indian ocean and the ITF 
influx, both of which remotely influences the sea level over 
TRIO region. The simulated influence of the Pacific Ocean 
over the SEIO is weaker than observed with a lower cor-
relation between the western equatorial pacific winds and 
the sea level over SEIO. Longer lag than the observation 
corresponding to maximum correlations indicates that the 
Pacific Ocean influence is not properly simulated in most 
models. In the Southern Ocean, DSL biases are more pro-
nounced over the Indian ocean due to the equatorward shift 
of the Southern Hemisphere westerlies compared to other 
ocean basins. The strong bias in the windstress curl and the 
bottom pressure torque also contribute to the DSL bias in 
the Southern Ocean.

The projected sea-level change towards the end of the 
century is calculated as the difference between the sea 
level averaged over the last two decades of the projection 
(2080–2100) and historical simulations (1994–2014). Both 
scenarios show a similar spatial pattern of sea-level change 

with differences in magnitude. The spatial pattern of the sea 
level change shows a west-to-east gradient in the northern 
Indian Ocean with a significant rise in the Arabian Sea and 
along the east coast of India. This projected sea level rise in 
the Arabian Sea is primarily due to the warming of the water 
column and weakened summer monsoon winds. The STIO, 
in contrast, shows an overall dip in the projected sea level. 
In terms of variability, the western Arabian Sea show a 30% 
increase in projected sea level variability. In the SIO, the 
ACC current regime also shows a marked projected increase 
but shifted poleward as the westerly winds are also projected 
to move poleward owing to the anthropogenic warming of 
the Southern Ocean.

Finally, the best estimate of sea level projection based on 
an ensemble of 10 best-performing climate models indicates 
a slightly weaker rise in projected sea level compared to the 
MMM ensemble but shows higher projected variability in 
the entire basin.
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