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Abstract
The attractor radius (AR) and global attractor radius (GAR) accurately characterize the intrinsic properties of chaotic systems 
and can be used to quantitatively estimate the practical and potential predictability of such systems. However, the AR and 
GAR fail to determine the local predictability of extreme events. In this study, the AR and GAR are first used to develop 
a new method of quantifying the local predictability of extreme events; i.e., backward searching for the initial condition 
(BaSIC). The BaSIC method is then used to quantitatively study the local predictability of the 2020/21 cold extremes that 
occurred in East Asia (EA). The EA regions have heterogeneous spatial distributions of practical predictability limits (PrPLs) 
of surface air temperature (SAT). The average PrPLs in December 2020 and January 2021 were 10 and 8 days, respectively, 
and the average potential predictability limits (PoPLs) of SAT exceeded 15 days for both months. Using the BaSIC method, 
the local PrPLs of three extreme cold events (ECEs) were quantitatively estimated to be 6, 8, and 6 days. By analyzing the 
dynamical growth of forecast errors, the forecast errors associated with these three ECEs were shown to have different spa-
tial growth patterns. In addition, the northern regions of EA contributed significantly to the loss of local predictability for 
the three ECEs. Based on these results, the new method presented in this study (BaSIC) is a feasible and effective approach 
to investigating the local predictability of extreme events. It is expected to play a more important role in the fields of local 
predictability of extreme weather and climatic events in the future.

Keywords  Attractor radius and global attractor radius · Extreme cold events · Local predictability · Backward searching for 
the initial condition (BaSIC) method · Forecast errors

1  Introduction

Extreme cold events bring serious socioeconomic conse-
quences and can disrupt ecological systems and energy sup-
plies (Zhou et al. 2009; Barlow et al. 2015; Zhang et al. 
2022). Such events have occurred with increasing frequency 

over recent decades (Johnson et al. 2018; Cohen et al. 2020; 
Vihma et al. 2020), and this frequency is not expected to 
decrease under the long-term global warming trend because 
of the increase in climatic variability (Kodra et al. 2011; 
Gao et al. 2015). In the Northern Hemisphere, Europe and 
Asia have experienced frequent cold extremes. During the 
winters of 2009 and 2010, northern and western Europe 
experienced several intense cold extremes (Cattiaux et al. 
2010), and these successive cold outbreaks led to record 
snow cover. The severe cold spell “Alexa” hit the eastern 
Mediterranean in December 2013, leading to widespread 
snowfall and losses of approximately 100 million US dol-
lars (Hochman et al. 2020). East Asia (EA), including South 
Korea, Japan, and China, was struck by an extreme cold 
surge in January 2016, which caused nearly 100 deaths and 
great economic losses (Yamaguchi et al. 2019; Dai and Mu 
2020). The most recent cold extremes affecting EA occurred 
in December 2020 and January 2021 owing to three cold 
air outbreaks. Many cities in China set new records for low 
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temperatures (Zheng et al. 2021). Beijing station observed 
minimum temperatures of − 19.6 ℃ on 7 January, 2021, 
which was the third coldest day on record since 1951 (Zhou 
et al. 2022). In addition, North America experienced cold 
extremes in February 2021, resulting in power outages and 
151 deaths in Texas (Zhang et al. 2022).

It is widely recognized that a negative North Atlantic 
Oscillation (NAO) is closely associated with the occur-
rence of cold extremes in the Northern Hemisphere. Cat-
tiaux et al. (2010) pointed out that the persistent negative 
phase of the NAO was responsible for the occurrence of 
several cold spells during winter 2010 over northern and 
Western Europe. Kautz et al. (2020) studied the extended-
range predictability of 2018 Eurasian cold spells and found 
the amplitude of the cold spells was increased by a regime 
shift of the NAO to the negative phase. Li et al. (2021) inves-
tigated the impact of the winter NAO on the multidecadal 
variability of the surface air temperature (SAT) of EA and 
demonstrated that more cold winters would occur when the 
NAO is in the negative phase over multidecadal timescales. 
In addition, Zheng et al. (2021) pointed out that the nega-
tive NAO, Siberian High, and Ural High are direct reasons 
to the outbreaks of EA cold surges during 2020/2021. Fur-
thermore, the synergistic effects of the warm Arctic and 
cold tropical Pacific cannot be ignored. Zhang et al. (2022) 
also investigated extreme cold events (ECEs) across EA and 
North America during the winter of 2020/21. They pointed 
out that the concurrence of anomalous thermal conditions in 
the Arctic, North Atlantic, and Pacific oceans and the inter-
active Arctic–lower-latitude atmospheric circulation process 
resulted in these ECEs. Many researchers have investigated 
other factors that are conducive to the occurrence of cold 
extremes, such as winter Arctic sea ice, Eurasian snow 
cover, and the East Asian winter monsoon (Ding and Sikka 
2006; Wu et al. 2011; Yu et al. 2018).

The ability to accurately forecast extreme cold spells 
would bring many benefits, but serious challenges remain. 
On the one hand, the predictability of cold extremes is lim-
ited by the chaotic nature of the atmosphere (Lorenz 1963; 
Mu et al. 2003; He et al. 2006; Feng and He 2007; Duan 
and Mu 2009). On the other hand, the small sample size 
limits our knowledge of the physical mechanisms that gener-
ate them. Despite these challenges, much progress has been 
achieved in recent years. For example, the THORPEX Inter-
active Grand Global Ensemble (TIGGE) has been developed 
(Bougeault et al. 2010; Swinbank et al. 2016) to increase the 
forecast skill associated with high-impact weather events. 
There are 13 centers that can provide ensemble forecast data 
for scientific research. The TIGGE program was set up to 
study the predictability of high-impact weather events and 
improve their accuracy over periods of one day to two weeks. 
To study the predictability of high-impact weather events 
over longer timescales, the subseasonal-to-seasonal (S2S) 

program has also been established (Vitart et al. 2017). Both 
the TIGGE and S2S programs have accelerated our under-
standing of the predictability of high-impact weather events. 
Apart from the model advances, many theoretical research 
methods have emerged (e.g., Mu et al. 2003; Mohamad 
and Sapsis 2018). The Lyapunov exponent (LE) is a clas-
sic method used to study the error growth associated with 
the predictability of dynamical systems (Wolf et al. 1985; 
Fraedrich 1986). However, the LE measures the global error 
growth, whereas the predictability reflects the local proper-
ties of dynamical systems, thereby limiting its applications. 
Although the Local LE (LLE) approach addresses local 
predictability, it characterizes the dynamics of error growth 
in only the linear regime and fails to capture the dynamics 
of nonlinear error growth (Nese 1989; Yoden and Nomura 
1993). To overcome the above-mentioned limitations, Ding 
and Li (2007) proposed the nonlinear LLE (NLLE) method 
(Ding and Li 2007). To study the predictability of extreme 
events, Li et  al. (2019) proposed the backward NLLE 
method (BNLLE). Both the NLLE and BNLLE methods 
are effective means of studying atmospheric predictability 
(Li et al. 2020; He et al. 2021, Li et al. 2022). However, Li 
et al. (2017) highlighted that they might be susceptible to 
uncertainties within the forecast models. In addition, limited 
sizes of initial errors have larger fluctuations growing with 
forecast time, thereby influencing the saturation time of fore-
cast errors associated with the predictability. Li et al. (2017) 
introduced the attractor radius (AR) and global AR (GAR) 
to depict the geometric characteristics and average behavior 
of chaotic systems. From the geometric characteristics and 
average behavior of error growth, the predictability limits of 
chaotic systems can be quantified. In addition, the predict-
abilities quantified using the AR and GAR correspond to 
practical and potential predictabilities, respectively, and the 
AR is the GAR × 

√
2 . By applying the AR and GAR to the 

Lorenz-63 model and operational forecast data, the AR and 
GAR can be verified as effective and feasible approaches 
to predictability analysis. Feng et al. (2019) used these two 
statistics to study the relationship between deterministic and 
ensemble mean forecast errors in the Lorenz-96 model. Ma 
et al. (2021) investigated atmospheric predictability using 
multiple reanalysis datasets from different centers and the 
AR and GAR. Zhao et al. (2021) analyzed differences in the 
predictability limits associated with atmospheric models and 
coupled ocean–atmosphere systems using the AR and GAR, 
and they found that coupled systems have higher practical 
predictability in the lower troposphere, whereas uncoupled 
systems have higher practical predictability in the middle 
and upper atmosphere.

These studies have demonstrated that the AR and GAR 
are effective means of investigating the predictability of both 
theoretical models and operational forecast models. How-
ever, previous studies have failed to apply the AR and GAR 
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to the predictability of extreme weather or climate events, 
which attract considerable public attention. Quantifying the 
predictability limits of extreme events is challenging but 
worthwhile. Because of the effectiveness of the AR and 
GAR in the analysis of predictability, a new method, based 
on the AR and GAR, is presented in this study. This new 
method will be applied to quantitatively investigate the local 
predictability of the 2020/21 cold extremes over EA.

The remainder of this paper is organized as follows. In 
Sect. 2, we describe the AR and GAR methodology, the new 
method, and the data used in this study. The local predict-
ability of the cold extremes is studied in Sect. 3. Finally, a 
discussion and our conclusions are presented in Sect. 4.

2 � Methodology and data

2.1 � Attractor radius (AR) and global attractor radius 
(GAR)

The AR and GAR are two invariant statistics of an attractor. 
For a specific state xi on the compact attractor A , the dis-
tance between the specific state xi and all other states on the 
compact attractor A can be expressed as follows:

where E represents the expectation, and ∥ ∥ denotes the 
L2 norm of the vector. As RL measures the distance between 
the specific state xi and all other states on the compact attrac-
tor A , the distance RL is referred to as the local AR (LAR).

In particular, if xi is the mean state of A, that is xE = E(x) , 
the distance between the specific state xE and all other states 
on the compact attractor A can be expressed as follows:

where RE is the AR. Although xE represents the mean 
state of the attractor A , xE does not necessarily fall on the 
attractor. Actually, the AR has the same form as the standard 
deviation in statistics, which represents the variability of a 
variable (Li et al. 2017).

The GAR of the compact attractor A is defined as the 
average of all LARs of the states x on the compact attractor 
A . The GAR can be expressed as

Note that, from the form of Eq. (3), RG represents the 
average distance between any two states on the compact 
attractor A.

(1)R
L

(
x
i

)
=

√
E
(
∥ x

i
− x ∥2

)
, x

i
and x ∈ A,

(2)RE =

√
E
(
∥ xE − x ∥2

)
, andx ∈ A,

(3)R
G
=

√
E
(
R2

L

)
=

√
E
(
∥ x − y ∥2

)
, xandy ∈ A.

Li et al. (2017) proved a constant relationship between 
the AR and GAR. The relationship is

Considering this simple relationship, the computing 
cost of RG can be reduced significantly.

2.2 � Quantifying the global and local predictability

As the AR and GAR are two invariant statistics of the 
attractor confined in the chaotic system, they can be used 
to estimate the global and local predictability limits of 
both theoretical systems and real atmospheric systems (Li 
et al. 2017; Feng et al. 2019; Ma et al. 2021; Zhao et al. 
2021).

For an n-dimensional dynamical system, a perturbed state 
x̂0 can be obtained by superimposing the initial error �0 on 
the initial state x0 . That is

From the two local states x0 and x̂0 , the dynamical tra-
jectories of them varying time are denoted by x(t) and x̂(t) . 
Then, the evolution of the root-mean-square error (RMSE) 
as it also varies with time can be expressed by

The global ensemble average of the RMSEs over the sam-
ples can be denoted by.

where ⟨.⟩N denotes the ensemble mean of N samples. Li 
et al. (2017) pointed out that when e

(
�0, t

)
 exceeds the AR 

(GAR), further forecasts lose their accuracy. The global 
practical (potential) predictability limit Tpr(po)

gpl
 can be 

expressed by.

Here, t0 represents the initial time, and tar(gar) is the time 
when e

(
�0, t

)
 reaches the AR (GAR).

For the local predictability, if a large number of initial 
errors are superimposed on the initial state x0 , then the local 
ensemble average of the RMSEs is defined as:

where N is the number of initial errors, and ⟨.⟩
N

 denotes 
the ensemble mean of N samples. When e

(
x0, �0, t

)
 exceeds 

the AR (GAR), the local practical (potential) predictability 
of the state x0 is lost (Li et al. 2017). The local practical 

(4)RG =
√
2RE.

(5)x̂0 = x0 + �0.

(6)e
(
x0, �0, t

)
=∥ x̂(t) − x(t) ∥ .

(7)e
(
�0, t

)
=

√⟨
e2
(
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N
, x0 ∈ A,

(8)T
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= tar(gar) − t0.
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N
, x0 ∈ A,
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(potential) predictability limit Tpr(po)

lpl,x0
 of the state x0 can be 

expressed as

and tar(gar) is the time when e
(
x0, �0, t

)
 reaches the AR 

(GAR). Therefore, based on Eq. (10), the practical (poten-
tial) accurate forecast time starts from the state x0 , can be 
obtained.

2.3 � Backward searching for the initial condition 
(BaSIC) method

As extreme events have more impact on society than normal 
events, it is worth investigating how best to estimate the 
local predictability limits. Next, we will introduce a new 
method to quantify the local predictability limits of extreme 
events.

In a phase space, an arbitrary condition x0 on a dynamical 
trajectory has a local predictability limit. That is, the accu-
rate forecast period from the condition x0 has an upper limit. 
If the condition x1 is where the condition x0 loses its pre-
dictability, the timespan between the two conditions is the 
local predictability limit of the condition x0 . Conversely, a 
given condition x1 has a corresponding initial condition (IC) 
x0 that can predict the given condition x1 . In addition, two 
points should be noted. First, any condition on the trajectory 
between the two conditions x0 and x1 can predict the condi-
tion x1 . Second, any condition preceding the IC x0 cannot 
predict the condition x1 . Therefore, the maximum predic-
tion lead time (MPLT) of the condition x1 is the timespan 
between the two conditions. Based on this rationale, a given 
extreme condition has a corresponding IC, and the MPLT 
of the given extreme condition is the time period between 
the extreme condition and the corresponding IC. Thus, to 
obtain the MPLT of the extreme condition, a corresponding 
IC must first be determined.

Let xex be the extreme condition in a time series ([x1 , x2 , 
…, xex , …]). The IC precedes the extreme condition xex , 
and so we must backward search for the IC. From Eq. (10), 
for a given condition x0 , the local practical predictability 
of the condition x0 is lost when the e

(
x0, �0, t

)
 exceeds the 

AR. Therefore, to determine the IC, we need to find a con-
dition x∗

0
 whose e

(
x∗
0
, �0, t

)
 exceeds the AR at the extreme 

condition xex . The condition x∗
0
 is the corresponding IC. 

Therefore,

where

(10)T
pr(po)

lpl,x0
= tar(gar) − t0,

(11)J
(
x∗
0

)
= 0,

(12)J(x) =∥ e(x, �, t) − AR ∥,

the condition x precedes the extreme condition xex , and 
� is the error perturbed on the condition x . By solving Eqs. 
(11) and (12), the IC x∗

0
 of the extreme condition can be 

obtained, and the MPLT of the extreme condition xex is the 
time period between the IC x∗

0
 and the extreme condition xex . 

As the AR is the threshold in Eq. (12), the MPLT represents 
the local practical predictability of the extreme condition 
xex . To obtain the potential MPLT of the extreme condition 
xex , we replace AR with GAR in Eq. (12). Therefore, based 
on the above procedure, the practical and potential MPLTs 
of the extreme condition xex can be determined. In addition, 
it should be noted that the practical or potential MPLT is the 
upper limit of the local practical or potential predictability 
of extreme events. As the core of our new method is the 
procedure: Backward Searching for the Initial Condition, 
we have named it the BaSIC method.

2.4 � Data

The TIGGE project comprises 13 Numerical Weather Pre-
diction (NWP) centers, which can provide the ensemble 
forecast data for scientific research, such as ensemble fore-
casting or predictability (Bougeault et al. 2010; Swinbank 
et al. 2016). In this study, we used the SAT in the ensemble 
forecast daily data from the European Centre for Medium-
Range Weather Forecasts (ECMWF), because of its higher 
forecast skills in ensemble forecast. The SAT ensemble 
forecasts are initialized at 00Z and 1200Z every day, and 
the forecast range is up to 15 days. We selected the ensem-
ble forecasts starting at 00Z December 1 2020 to January 
31 2021 when the cold extremes occurred. There is 1 con-
trol member and 50 perturbed members, giving a total of 
51 members. The observed SAT data were from the fifth 
generation European Center for Medium Range Forecast-
ing Reanalysis (ERA5, Hersbach et al. 2020), and this also 
runs from December 1 2020 to January 31 2021. Both the 
ensemble data and the verified observed data have a resolu-
tion of 0.5°. The AR and GAR were calculated from the 
ERA-interim (ERAI) reanalysis dataset (Dee et al. 2011) 
with a 0.5° grid from 1 January 1979 to 31 December 2018 
every 6 h.

3 � Results

Figure 1 shows the spatial distribution of the AR calculated 
from the ERA-interim dataset. We also used the ERA5 and 
NCEP datasets to calculate the AR. Both the amplitudes and 
spatial distributions of the AR calculated using these two 
datasets were similar to that from the ERA-interim dataset, 
indicating that the dataset used has little influence on the AR 
(figures not shown). Therefore, we will use the AR calcu-
lated from the ERA-interim dataset for analysis in this study. 
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Figure 1 shows that the AR has a distinct spatial distribu-
tion, with the regions south of 40°N having a smaller AR, 
whereas regions north of 40°N have a larger AR. The AR 
values on the Tibetan Plateau and across northwest China 
are smaller than those from other regions of China. A small 
area in southern China has a larger AR than the surround-
ing areas. In addition, the AR over the land has a larger 

amplitude than that over the oceans at the same latitude. 
Zhao et al. (2021) pointed out that different dynamical insta-
bilities are responsible for the distinct spatial patterns of the 
AR. At low latitudes, barotropic and convective instabili-
ties are dominant, whereas baroclinic instability plays the 
leading role in the middle latitudes. Therefore, the higher 

Fig. 1   Spatial distribution of the 
AR of the SAT

Fig. 2   a Average time series of SAT and b–d SAT anomalies (rela-
tive to 1991–2020, units: °C) for the three extreme cold events that 
occurred in December 2020 and January 2021. Gray shading in a 
shows the periods of the three extreme cold events. Black boxes (b–

d) denote the East Asia study region. Black dots in (b–d) denote that 
anomalies are significant at the 90% confidence level (two-tailed Stu-
dent’s t test)
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variability in the middle latitudes leads to a larger AR, and 
the lower variability in the low latitudes results in a smaller 
AR.

Three ECEs affected EA (20°–50°N, 100°–120°E; 
denoted by the black box in Fig. 2b–d) over the winter of 
2020/21, and Fig. 2a shows the daily averaged SAT time 
series for EA. From Fig. 2a, we see that the first two ECEs 
occurred on 20,201,214 and 20,201,230, and the third ECE 
occurred on 20,210,107. For these three cold extremes, 
most regions of EA show large significantly negative SAT 
anomalies (Fig. 2b–d), and the third extreme cold event was 
stronger than the other two. In addition, the spatial distribu-
tions (Fig. 2b–d) show that the SAT on the Tibetan Plateau 
was always higher than normal, acting as the heat source for 
the EA region.

Before quantifying the local predictability of the three 
ECEs, we will first consider the global predictabilities of 
SATs in December 2020 (hereafter 202,012) and January 
2021 (hereafter 202,101). The ensemble forecasts from the 
ECMWF center are run at 00Z and 12Z every day, with out-
puts every 6 h, and the total output time is 360 h (15 days). 
We used the ensemble forecasts initialized at 00Z every day. 
Therefore, the average SAT forecasts with a lead time of 
15 days could be obtained for the two months during which 
the extreme cold events occurred. To quantify the global 
predictability of the SAT for these two months, we first cal-
culated the RMSE. Figure 3 shows the average daily RMSE 
for 202,012, with a lead time of 15 days, calculated using the 

ensemble forecast data and ERA5 reanalysis, and we see that 
the larger RMSEs are located mainly across northern EA 
during the first 5 days. In addition, a small part of western 
EA also has larger RMSE values, while other regions main-
tain smaller RMSEs. This indicates that the forecast skill 
for northern and western EA is lower than that for the other 
regions. From the 6th to the 10th day, the RMSE over the 
whole EA region shows an obvious increase compared with 
the first 5 days, and the larger RMSE extends to southern 
EA. The RMSE in some parts of northern EA increased to 
5 °C. For the next few days, the RMSE across northern EA 
remained large, and the RMSE in southern EA increased 
further, matching the values in some areas of northern EA.

Figure 4 shows the mean daily RMSE in 202,101 with a 
lead time of 15 days. Similar to 202,012, the RMSE in most 
regions was relatively small during the first 5 days. However, 
for northern EA, the RMSE values in 202,101 are generally 
less than those from 202,012. Between the 6th and the 10th 
days, the RMSE increased quickly, and from the 7th to the 
10th day, the RMSEs in northern EA are larger than those in 
202,012, especially on the 9th and 10th days (Fig. 4i and j). 
In addition, the RMSE extends further to the south. For the 
last 5 days, most EA regions have a larger RMSE, reaching 
or exceeding 5 °C.

The AR and GAR averaged over the EA regions were 
3.17 and 4.48, respectively. From the AR and GAR meth-
odology, the global practical and potential predictability 
limits are determined when the RMSE reaches the AR and 

Fig. 3   Spatial distributions of RMSE (shading: ℃) as a function of lead time (days) in December 2020
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GAR, respectively. Figure 5 shows that the average RMSEs 
of the two months vary with lead time. During the early 
period (the first 5 days), the RMSE in 202,012 is slightly 

larger than that in 202,101, which is consistent with the 
spatial distributions shown in Figs. 3 and 4. This is caused 
mainly by the larger RMSE in northern EA during 202,012. 
After the first 5 days, the RMSE in 202,101 exceeds that 
in 202,012. This is mainly because the RMSEs in 202,101 
show a sharper increase than those in 202,012, especially 
in northern EA. The RMSE in 202,101 reached the AR on 
the 8th day, whereas that in 202,012 reached the AR on 
the 10th day. Therefore, the global practical predictability 
limits (PrPLs) of SAT across EA for 202,012 and 202,101 
were 10 and 8 days, respectively. For 202,012, the RMSE 
continued to increase after exceeding the AR, but it did not 
reach the GAR within 15 days. For 202,101, the RMSE also 
did not reach the GAR within 15 days. Therefore, the global 
potential predictability limits (PoPLs) of SAT for these 
two months were both greater than 15 days. Lorenz (1969) 
pointed out that the upper limit of atmospheric predictability 
was less than two weeks. However, some studies have found 
that the upper limit of atmospheric predictability exceeds 
two weeks because of external forcing signals, such as the 
sea ice component and sea surface temperature (Kautz et al. 
2020; Xiang et al. 2020). In the TIGGE project, the ECMWF 
center couples the ocean and atmosphere. Therefore, the 
ensemble forecast data contain the external forcing signals, 
which help to extend to the upper limit of atmospheric pre-
dictability. Moreover, from Fig. 5, owing to the gap between 
the practical and potential predictability limits, the NWP 
model still has much room for improvement.

Fig. 4   As Fig. 3, but for January 2021

Fig. 5   RMSE averaged over East Asia as a function of lead time 
(days) for the two months. Blue and red solid lines represent Decem-
ber 2020 and January 2021, respectively. Lower and upper dotted 
lines denote AR and GAR values, respectively
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Although the average PrPLs for the whole EA region over 
202,012 and 202,101 were 10 and 8 days, respectively, some 
regions had PrPLs that exceeded 15 days. The PrPLs in these 
regions were not calculated because of the limited timespan 
of the ensemble forecast data. For the sake of analysis, the 
PrPLs in these regions were set to 15 days. Figure 6 shows 
the spatial distributions of the global PrPLs of the SAT for 
the two months. For 202,012, the northeastern and middle 
regions of EA had higher PrPLs, exceeding 12 days, and 
even 15 days for some of these regions. Some northern and 
northwestern regions had lower PrPLs of less than 4 days. 
Other than these regions, the remaining regions had PrPLs 
of approximately 8–12 days. The spatial distribution of 
the PrPLs appears to contradict the spatial distribution of 
the RMSE (Fig. 3) because the larger RMSEs are located 
mainly in the northern EA in these forecasts. However, the 
PrPLs are determined by both the RMSE and AR. Although 
the larger RMSE values are located mainly in the north-
ern EA, the ARs in these regions also have larger values. 
As a result, the PrPLs are high in these regions. Similarly, 
the northwest regions have relatively smaller RMSEs in 
the forecasts. However, the ARs in these regions are also 
smaller, leading to lower PrPLs. Figure 6b shows the spatial 
PrPLs for 202,101. Like 202,012, the northern and north-
western regions have lower PrPLs than the other regions. 
Overall, the EA regions have lower PrPLs than 202,012. 
In 202,101, except in some coastal zones where the PrPLs 
reached 15 days, most regions had PrPLs of approximately 
8–10 days. Therefore, the two months have different PrPLs, 
and the PrPLs for 202,012 were larger than those for 
202,101.

Having analyzed the global PrPLs for the two months, we 
will now consider the local PrPLs associated with the three 
periods of extreme cold. The three cold extremes occurred 
on 20,201,214, 20,201,230, and 20,210,107, and we will first 

consider the evolution of the forecast errors. Forecast errors 
from 3 days prior to each event are given. Figure 7a–c shows 
the evolution of the daily forecast errors for the first ECE 
from 20,201,212 to 20,201,214. The forecast SAT is greater 
than the observed SAT in the northern EA, but less than 
the observations in the southern EA. In addition, the differ-
ence between the ensemble forecast and the observed SAT 
increases as the day of the ECE approaches. Overall, the 
ensemble forecasts overestimated the SAT when compared 
with the observations, and the forecast errors in northern EA 
contribute a lot. For the second and third ECEs, as with the 
first ECE, the northern EA had SATs in the ensemble fore-
casts that exceeded the observed SAT, whereas the forecast 
SATs for southern EA were less than the observed values.

To quantify the local PrPLs of the three ECEs, we 
must first determine the three ICs of the extreme SATs on 
20,201,214, 20,201,230, and 20,210,107. After determining 
the three ICs, we can then obtain their local PrPLs. Figure 8 
shows that the RMSE averaged over the EA region varies 
with the lead time starting from different dates. For the three 
ECEs, the RMSE grows as the lead time increases, and it 
takes less time for the RMSE to reach a larger value if the 
start date is closer to the extreme SAT days (20,201,204; 
20,201,230; and 20,210,107). Moreover, for the third ECE, 
it takes less time for the RMSEs to reach a larger value when 
compared with the other two events. This is mainly because 
the third ECE is stronger than the other two.

We used Eqs. (11) and (12) to calculate the ICs of the 
three extreme cold events, and the dates of the three ICs 
were 20,201,208; 20,201,222; and 20,210,101. Figure 9 
shows the variations of the RMSEs starting from the three 
corresponding ICs for the three ECEs. For the first ECE, 
the RMSE first decreases, but from 20,201,209 it then 
increases monotonically with time. On the extreme cold 
day of 20,201,214, the RMSE is still smaller than the AR 

Fig. 6   Spatial distributions of global practical predictability limits for the two months, (shading indicates number of days)
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Fig. 7   Spatial distributions of forecast errors (shading: °C) for the three extreme cold events with a 3-day lead time before each event. Left, mid-
dle, and right panels are the first, second, and third events, respectively

Fig. 8   RMSE averaged over the EA region as a function of lead time (days) starting from different dates before the extreme cold days (shading, 
℃) for the three extreme cold events
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and GAR, demonstrating that the local predictability is not 
lost. That is, when the forecast runs from 20,201,208, the 
first ECE can be predicted. We also calculated the varia-
tions of the RMSE from 20,201,207. The RMSE exceeds 
the AR before the extreme cold day on 20,201,214, indicat-
ing a loss of local predictability for the ECE. Therefore, 
this further verifies that the SAT on 20,201,208 is the IC 
of the first ECE, and the MPLT of the first ECE was deter-
mined to be 6 days (20,201,214–20,201,208). Moreover, the 
RMSE exceeds the AR on approximately 20,201,217. Thus, 
the local PrPL of the IC on 20,201,208 was 9 days. As the 
RMSE does not exceed the GAR during the 15-day forecast 
period, the local PoPL of the IC on 20,201,208 is more than 
15 days. Figure 9b shows the variations in the RMSE start-
ing from 20,201,222 for the second ECE. The growth of the 
RMSE tends to increase with time. The RMSE reaches the 
AR on the extreme cold day of 20,201,230. For the other 
ICs preceding 20,201,222, the RMSE reaches the AR before 
the extreme cold day of 20,201,230. Hence, the MPLT of 
the second ECE was 8 days (20,201,230–20,201,222), and 
the local PrPL for 20,201,222 was also 8 days. In contrast 
to the first IC, the RMSE for the second IC reaches the 
GAR on 20,210,103; i.e., within 15 days. Consequently, 
the PrPL for 20,201,222 was 12 days. Figure 9c shows the 
variations in RMSE starting from 20,210,101 for the third 
ECE. The RMSE from 20,210,101 reaches the AR before the 
extreme cold day of 20,210,107. For the other ICs preceding 
20,210,101, the RMSE reaches the AR after the extreme 
cold day of 20,210,107. Therefore, the MPLT of the third 
ECE was 6 days (20,210,107–20,210,101), and the local 
PrPL and PoPL for 20,210,101 were approximately 9 and 
10 days, respectively. Therefore, based on the AR method, 
the MPLTs were 6, 8, and 6 days for the three extreme cold 
days of 20,201,214, 20,201,230, and 20,210,107, respec-
tively. To calculate the local PoPL of these three cold days, 

we simply replace the AR with the GAR in Eq. (12). The 
PoPLs of these three extreme cold events were longer but 
are not shown in the study.

Based on our analysis of the RMSE growth averaged 
over the EA region, the local PrPLs of the three cold days 
can be quantified. However, the average RMSE growth was 
obtained by calculating the spatial average and filtering out 
the regional dynamical information related to RMSE growth. 
In practice, the regional dynamical characteristics are also 
important to the local predictability. Therefore, we will now 
further investigate the regional dynamical information asso-
ciated with the RMSE growth.

Figure 10 shows the spatial variations in the RMSE asso-
ciated with the first ECE from its corresponding IC day. 
On the initial day (20,201,208), larger RMSEs are located 
mainly in the northern-central and some western regions. 
During the next 2 days, the RMSEs over most regions, espe-
cially the two regions mentioned above, tended to decrease, 
which is also seen in Fig. 9a. For the next 3 days, the RMSEs 
in the northern regions show an obvious increase. In addi-
tion, the areas with a large RMSE also extend compared 
with previous days. On the extreme SAT day (20,201,214), 
the RMSEs continue to increase, and some southern regions 
have larger RMSEs. For the next 2  days, most regions 
have larger RMSEs, and the local practical predictability 
of 20,201,208 is almost lost completely because the aver-
age RMSE tends to exceed the AR. During the forecast, 
the northern regions always maintain larger RMSEs, which 
serve as a source of error to limit the upper extent of the 
predictability.

Figure 11 shows the spatial variations of RMSEs for the 
second ECE. On the initial day (20,201,222), like the first 
ECE, the larger RMSEs are located mainly in the northern-
central and some western regions. During the following 
days, the rate of growth in the forecast errors differs among 

Fig. 9   RMSE averaged over EA as a function of lead time (days) starting from the corresponding initial conditions of the three extreme cold 
events. Lower and upper dotted lines denote AR and GAR, respectively
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the regions. The forecast errors for the southeastern regions 
are obviously larger than those from the middle regions. On 
the extreme SAT day (20,201,230), except for some north-
eastern regions, most regions had larger RMSEs and the 
RMSE reaches the AR, indicating the loss of the local pre-
dictability. From the growth tendency of the spatial forecast 
errors, the second ECE differs from the first with a forecast 
error growth tendency extending gradually from the north 
to the south. Therefore, the dynamical characteristics of 
the second ECE are also different from the first. Different 
regions, especially the northern, western, and southeastern 
regions, serve as sources of errors to limit the upper extent 
of predictability.

The spatial pattern of RMSE growth for the third ECE 
is shown in Fig. 12. During the first 3 days, the spatial 
forecast errors have similar distributions to those from the 
first ECE. That is, some western and northern regions have 

larger forecast errors. In contrast to the first ECE, during 
the next few days, the forecast errors did not extend from 
the north to the south, and most regions showed simul-
taneous growth. On the extreme SAT day (20,210,107), 
the forecast errors in most regions are larger than previ-
ous days. However, the local predictability was not lost, 
because the AR was not reached (see Fig. 9c). For the 
next 2 days, the forecast errors increased and the regions 
also extended. And the RMSE reaches the AR, indicating 
the loss of the local predictability. Therefore, from the 
growth of the spatial forecast errors, most regions (espe-
cially the northern regions) contributed to the loss of the 
local predictability. Our analysis demonstrates that the 
forecast errors for these three extreme cold days showed 
different spatial growth patterns, which reflect the differing 
dynamical characteristics associated with the three cold 
days. In addition, the northern regions of EA contribute 

Fig. 10   Spatial distributions of RMSE (shading: °C) as a function of lead time (days) starting from the corresponding initial conditions of the 
first extreme cold event
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significantly to the loss of local predictability for the three 
extreme cold days.

4 � Discussion and conclusions

Extreme cold events have major impacts on society, and 
accurate forecasts of such events are important to policy 
makers and the public. However, the accurate forecasting of 
extreme events poses great challenges. Since the pioneering 
work of Lorenz (1963), many researchers have been dedi-
cated to the field of atmospheric predictability, and many 
theoretical methods have emerged (He et al. 2016; Li et al. 
2019). The recently developed AR and GAR methods depict 
the dynamical characteristics of chaotic systems and can 
quantitatively estimate the atmospheric predictability effec-
tively (Li et al. 2017). However, the AR and GAR cannot 
quantify the predictability of extreme events. Given that the 

AR and GAR can characterize the dynamics of chaotic sys-
tems well, this study presents a new method, BaSIC, that can 
be used to quantitatively study the predictability of extreme 
events and is based on the AR and GAR. It should be noted 
that the AR and GAR were developed in the Lorenz model 
which contained the stationary and nonstationary dynamics. 
In addition, the AR and GAR have also studied the pre-
dictability of the real atmosphere, which also contains the 
stationary and nonstationary dynamics (Li et al. 2017; Ma 
et al. 2021; Zhao et al. 2021). It demonstrates that the BaSIC 
method can be used to study the predictability of extreme 
events which are more related to the nonstationary dynam-
ics. The BaSIC method takes the extreme condition and AR 
(GAR) as a target condition and the threshold, respectively. 
In practice, the extreme condition is on the nonstationary 
evolutionary trajectory. By backward searching for an IC 
on the nonstationary evolutionary trajectory, on which per-
turbed initial errors will grow to reach the threshold (AR or 

Fig. 11   As Fig. 10, but for the second extreme cold event
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GAR) at the time of the extreme condition, the local predict-
ability of the extreme condition can be determined.

To verify the feasibility of the BaSIC method, we applied 
it to the 2020/21 extreme cold events that occurred in EA. 
Two ECEs occurred in 202,012 and one in 202,101. Before 
studying the local predictability of the three events, we 
first quantitatively investigated the global predictability of 
the SATs in 202,012 and 202,101 using the AR and GAR 
method. The SAT RMSE calculated from the ensemble fore-
casts and the observed data in 202,012 reached the average 
AR of the EA regions within 10 days. Therefore, the global 
PrPL of SAT for 202,012 was 10 days. For 202,101, the 
global PrPL was 8 days. The difference in the global PrPLs 
between the two months was mainly the result of the dif-
ferent spatial growth patterns of the forecast errors. For the 
northern EA regions, the RMSE in 202,101 increased faster 
than that in 202,012 after the early period. The RMSEs in 
202,012 and 202,101 continued to increase after reaching 

the AR but failed to reach the GAR during the whole fore-
casts. This indicates that their global PoPLs were both longer 
than 15 days. Although Lorenz (1969) pointed out that the 
upper limit of atmospheric predictability is no more than 
two weeks, some studies have found that the upper limit of 
atmospheric predictability is longer than two weeks because 
of external forcing signals, such as the sea ice component 
and sea surface temperature. We used ensemble forecasts 
and observed data from the ECMWF model, which takes 
account of the external forcing signals and so leads to a 
potential predictability that exceeds two weeks. Apart from 
the average global predictability of the EA regions, we also 
studied the regional global predictability. Figure 6 shows 
that the global PrPLs of the SAT are distributed heteroge-
neously across the EA regions. For 202,012, higher global 
PrPLs are found mainly across the northeastern and middle 
regions of EA, and they exceed 12 or even 15 days in places. 
Lower global PrPLs of less than 4 days occur mainly in some 

Fig. 12   As Fig. 10, but for the third extreme cold event
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northern and southwestern regions of EA. Like 202,012, 
some northern and southwestern regions also had lower 
PrPLs than other regions of EA. However, on the whole, the 
global PrPLs in 202,101 were lower than those in 202,012. 
From Fig. 6, we see that the spatial distribution of PrPLs 
does not correspond to that of RMSE. That is, higher (lower) 
global PrPLs coincide with smaller (larger) RMSEs. This is 
because the global PrPLs are determined by both the RMSE 
and the AR. The RMSE is not the only factor to influence the 
global PrPLs. For the regions with larger RMSEs, such as 
northern EA, the ARs also have large values. This demon-
strates that the RMSE will need more time to reach the large 
AR, thereby leading to high predictability in these regions.

After studying the global predictability of SATs in 
202,012 and 202,101, we turned to the local predictability 
of the three extreme cold days that occurred over the two 
months. The ensemble forecasts have larger forecast errors 
for these three cold events and overall, northern EA had 
forecast SATs that were higher than the observed SATs, 
whereas southern EA had forecast SATs that were lower 
than the observed SATs. In addition, the RMSE tended to 
reach a larger size in less time if the start date is closer to the 
extreme SAT day. Using the BaSIC method, the correspond-
ing IC date of the first ECE was 20,201,208. The RMSE 
increased from 20,201,208 but did not reach the AR on the 
extreme day (20,201,214), indicating that the local predicta-
bility was still not lost. For other dates preceding 20,201,208, 
the RMSEs grew to exceed the AR before the extreme day 
(figure not shown). Hence, the local practical predictability 
of the first ECE was 6 days (20,201,214–20,201,208). For 
the second and third ECEs, the local practical predictabili-
ties were calculated to be 8 and 6 days, respectively, using 
the BaSIC method.

As the predictability is associated with the error growth, we 
further analyzed the growth of the forecast errors from the cor-
responding ICs for ECEs. For the first ECE, the larger forecast 
errors are distributed mainly across the northern-central and 
some western regions of EA, and the forecast errors extend 
to the southern regions as the forecast time increases. Dur-
ing the forecast, the northern regions always maintain larger 
RMSEs, which serve as a source of error to restrict the upper 
limit of the predictability. For the second ECE, the spatial fore-
cast errors differ from those of the first ECE. During the early 
period, larger forecast errors are distributed over different EA 
regions; i.e., they are not confined only to the northern regions, 
but also cover the western and southeastern regions. During 
the later period, the forecast errors have increased across most 
parts of EA, and grown to a larger size. The growth tendency 
of the spatial forecast errors associated with the second ECE 
differs from the first, with the RMSE growth tendency extend-
ing from the north to the south. Therefore, different regions, 

especially the northern, western, and southeastern regions, 
serve as sources of error to restrict the upper limit of the pre-
dictability. For the third ECE, during the early period, some 
western and northern regions had larger forecast error distri-
butions, similar to those of the first ECE. However, during 
the next few days, most regions showed simultaneous growth, 
which differs from the first event. Hence, from the growth of 
the spatial forecast errors, most regions (especially the north-
ern regions) contributed to the loss of the local predictability 
for the third ECE.

Therefore, the three extreme cold events showed differ-
ent spatial growth patterns in the forecast errors, even though 
they all occurred over a relatively short period of time. This 
demonstrates that these three events had different dynamical 
characteristics. In addition, our analysis shows that northern 
EA had larger forecast errors for the three cold events, which 
indicates that these northern regions are favorable for the 
growth of forecast errors and make a significant contribution 
to the loss of local predictability for these cold events. Adding 
more observation sites and reducing the initial errors in these 
northern regions may improve the forecast skill for extreme 
cold events like those studied here.

This paper demonstrates that our new BaSIC method 
was able to quantitatively analyze the local predictability of 
the three extreme cold events that occurred over the winter 
of 2020/21. In addition, the calculation of local predictabil-
ity using the BaSIC method requires fewer computational 
resources than other approaches. Therefore, it is expected that 
the BaSIC method will be an effective approach for future 
atmospheric predictability studies, especially with respect to 
extreme weather and climatic events.
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