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Abstract
This paper evaluates the predictability and skill of the models from the North American Multi-Model Ensemble project 
(NMME) in South America on seasonal timescales using analysis of variance (ANOVA). The results show that the tempera-
ture variance is dominated by the multi-model ensemble signal in the austral autumn and summer and by the inter-model 
biases in the austral spring and winter. The temperature predictability is higher at low latitudes, although moderate values 
are found in extratropical latitudes in the austral spring and summer. The predictability of precipitation is lower than that of 
temperature because noise dominates the variance. The highest levels of precipitation predictability are reached in tropical 
latitudes with large inter-seasonal variations. Southeastern South America and Patagonia present the highest predictability 
at midlatitudes. The NMME skill of temperature is better than that of precipitation, and it is better at low latitudes for both 
variables. At extratropical latitudes, the skill is moderate for temperature and low for precipitation, although precipitation 
reaches a local maximum in southeastern South America.

Keywords Climate prediction · Seasonal forecast skill · Multi-model Ensemble

1 Introduction

The development of regional climate services requires 
understanding the predictability and prediction skill of cli-
mate variability on different timescales. Nowadays, seasonal 
climate predictions are routinely produced by operational 
centers and internationally coordinated activities worldwide, 
using a multi-model ensemble (MME) of coupled general 
circulation models (CGCMs) to address the uncertainties 
associated with the chaotic nature of the atmosphere and 

the errors arising due to the initial conditions as well as 
numerical formulation of the dynamical models used. How-
ever, unlike other parts of the world, in South America not 
many works address the levels of predictability achieved by 
a MME of CGCMs on seasonal timescales.

Many previous studies on predictability in South America 
are limited by being performed with Atmospheric General 
Circulation Models (AGCMs) (e.g, Barreiro et al. 2002; Bar-
reiro 2010; Nobre et al. 2006; Taschetto and Wainer 2008) 
or with a single coupled model (e.g, Barreiro 2010; Bom-
bardi et al. 2018; Gubler et al. 2020). One of the few studies 
carried out in South America with an ensemble of CGCM 
was performed by Coelho et al. (2006) using three models 
from the Development of a European Multi-model Ensem-
ble system for seasonal to interannual prediction (DEM-
ETER) project. In this work they addressed the seasonal 
predictability of the precipitation in summer during El Niño 
Southern Oscillation (ENSO) events. The most predictable 
regions were found during ENSO events in Southern Brazil, 
Paraguay, Uruguay, and Northern Argentina. More recently, 
Osman and Vera (2017) analyzed the predictability in win-
ter and summer with the CGCMs of the Climate Histori-
cal Forecast Project (CHFP, Tompkins et al. 2017). They 
found that the temperature predictability is higher than the 
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precipitation predictability in both seasons, especially in the 
tropics. Precipitation predictability is higher in extratropical 
regions than temperature predictability, and the values are 
lower than in the tropics but still useful for potential applica-
tions. These regions are the Southern Andes in winter and 
summer, the extratropical Andes in winter, and Southeastern 
South America (SESA, 39 ◦S–17 ◦ S; 296 ◦E–315 ◦ E) in 
summer. However, these studies did not include the transi-
tional seasons, of which there is very little knowledge about 
predictability in South America. Transitional seasons, espe-
cially spring, are relevant because ENSO, the main regional 
climate driver on seasonal timescales, has a strong impact 
in South America during this season (Cai et al. 2020), and 
therefore predictability could be high.

The North American Multi-Model Ensemble project 
(NMME, Kirtman et al. 2014) is an operational multi-model 
forecast system consisting of CGCMs belonging to the USA 
and Canada modeling centers available to the community 
through the International Research Institute for Climate and 
Society (IRI) Data Library (IRIDL). The NMME has shown 
promising applications in various parts of the world (Cash 
et al. 2019; Rodrigues et al. 2019; Slater et al. 2019; Zhao 
et al. 2019), and is continuously being improved (Becker 
et al. 2020). Nevertheless, only a few studies and applica-
tions exist in South America (Osman et al. 2021), and the 
study of the climate predictability levels achieved there by 
the NMME has not yet been performed. The global predict-
ability of the NMME for temperature and precipitation has 
been assessed by Becker et al. (2014). This study shows that 
predictability in South America is generally high at low lati-
tudes throughout the year and for both variables (tempera-
ture and precipitation)). At middle and sub-polar latitudes, 
temperature predictability is higher in winter and summer, 
while precipitation has its maximum in SESA in spring and 
summer and in northern SESA (29 ◦S–17 ◦ S; 303 ◦E–315 
◦ E) during winter. The availability of the NMME reforecast 
allows the documentation of the predictability in spring and 
autumn, which were less explored in past studies.

The analysis of variance (ANOVA) technique is helpful 
to understand the different contributors and their interactions 
in the total variance of a variable’s field. ANOVA has been 
applied previously by Zwiers (1996) and Zwiers et al. (2000) 
to assess predictability. In both studies, the variance was 
decomposed into different components: signal, noise, and 
the differences between ensemble members. The predict-
ability was defined through the signal-to-noise ratio. More 
recently, this approach was also successfully applied by 
Hodson and Sutton (2008) in studying the predictability of 
sea level pressure simulated by an ensemble of Atmospheric 
Model Intercomparison Project (AMIP) simulations. Osman 
and Vera (2020) used this technique to assess the predict-
ability associated with the main modes of variability of the 
Southern Hemisphere circulation. The potential of ANOVA 

for identifying the sources of variability depicted by single 
and multi-model ensemble motivates its application to diag-
nose the predictability of temperature and precipitation by 
NMME models.

The main objective of this work is to quantify and 
describe the seasonal predictability of precipitation and tem-
perature for four seasons (austral fall, winter, spring, and 
summer) by the NMME forecast models in South America 
using the ANOVA technique. The paper is organized as 
follows: Sect. 2 describes the observed and forecast data, 
Sect. 3 presents the main results and Sect. 4 discusses the 
main conclusions.

2  Data and methodology

For verification, 2-meter air temperature from the Global 
Historical Climatology Network and Climate Anomaly 
Monitoring System (GHCN + CAMS, Fan and van den Dool 
2008) with 1.0◦ × 1.0◦ resolution and precipitation from the 
CPC Merged Analysis of Precipitation (CMAP, Xie and 
Arkin 1997) were used as verification fields. CMAP data 
was regridded to a 1.0◦ × 1.0◦ using the R-package (R Core 
Team 2020) “fields” (Nychka et al. 2017).

Seasonal hindcasts from eight models participating in 
the NMME project were used in this study. Each model’s 
features, such as the ensemble size, atmosphere and ocean 
models, are detailed in Table 1. The predictability analysis 
is based on 3-monthly mean outputs of 2-m air [ ◦ C] tem-
perature and precipitation rate [mm], both predicted for 
March–April–May (MAM), June–July–August (JJA), Sep-
tember–October–November (SON), and December–Janu-
ary–February (DJF), with initial conditions observed in 
February, May, August and November, respectively (lead 1 
month) over the period 1982–2010. The analysis is confined 
to South America (60 ◦S–15 ◦ N; 265 ◦E–330 ◦E).

All figures were made using R and contour plots using the 
metR package (Campitelli 2021).

2.1  Analysis of variance

A two-way ANOVA with interactions (Storch and Zwiers 
1999; Hodson and Sutton 2008) was applied to identify the 
sources of variability in the MME. A detailed description 
of the methodology can be found in Storch and Zwiers 
(1999). The goal of ANOVA is to decompose the total 
variance of the ensemble into contributions from different 
factors in order to estimate the potential predictability. If 
we want to examine a variable X (precipitation or tempera-
ture) in a multi-model multi-member ensemble then each 
of the M models has K ensemble members in a period T of 
years. Unlike Hodson and Sutton (2008), the number of 
ensemble members varies between the models. Therefore, 
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K values varies according to the model (as shown in 
Table 1), and we can define K

m
 with m = 1,… ,M as the 

number of k ensemble members for each m model. Fol-
lowing Hodson and Sutton (2008), the analysis begins by 
proposing a linear decomposition of a certain data value 
X
tmk

 (where t = 1,… , T  , m and k denote year, model, and 
ensemble member, respectively) as follows:

Here, � represents the time-mean ensemble-mean model-
mean, �

t
 is the time-varying behavior that is common to all 

members from all models, �
m

 is the bias of a given model 
relative to the MME climatology, �

tm
 is the unbiased time-

varying difference between the ensemble-mean of the mod-
els and captures the difference in the model’s response to 
the same forcing and �

tmk
 is the residual noise. Concerning 

the structural term �
tm

 , it is important to note that, unlike 
Hodson and Sutton (2008), NMME models do not all have 
the same initial conditions. It can be thought that the forc-
ing is the same in all cases but that each model represents it 
differently (differences due to the observations or reanalyses 
and assimilation methods employed to initialize the models). 
Therefore, this term captures the variability associated with 
differences in model responses to forcings, as well as the 
differences between the initial conditions used to initialize 
models. However, it could be the case that the models have 
systematic (i.e. independent of time) differences associated 
with the initial conditions used to initialize the models, in 
which case it would be reflected in the � term. In this study 
we assume that the influence of initial condition is mainly 
capture by �.

Due to the definition of � ; �
t
 , �

m
 and �

tm
 must satisfy:

To assess the effect of each term in Eq. 1, the total sum of 
squares (TSS) is defined as:

(1)X
tmk

= � + �
t
+ �

m
+ �

tm
+ �

tmk

(2)
∑

t

�
t
=
∑

m

�
m
=
∑

t

�
tm

=
∑

m

�
tm

= 0

where the sub-index o indicates the average in the missing 
sub-index. TSS represents the X

tmk
 variance concerning the 

mean of the MME. This expression can be decomposed as 
follows:

where

with K
total

=
∑M

m
K
m

 . From these expressions, one can 
construct estimators of the terms on the right-hand side of 
equation 1 and then assess the effect of each of them on the 
MME. For example, for �

m
 the ratio:

is an unbiased estimator (Storch and Zwiers 1999) of:

(3)TSS =
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(X
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)2
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Table 1  Models from NMME used in this study

Model Institution Atmospheric Component Oceanic component Ensemble size Hindcast period

NCAR-CCSM4 NCAR CAM4 0.9 × 1.25◦ L26 POPL60 .25◦ 10 (1982–2010)
GFDL-CM2p1 NOAA/GFDL CM2.1 1 ×2.5◦ L24 MOM4 L50 .3◦Eq 10 (1982–2010)
GFDL-FLOR-A06 NOAA/GFDL CM2.5 C18L32 MOM5 L50 .3◦Eq 12 (1982–2010)
GDFL-FLOR-B01 NOAA/GFDL CM2.5 C18L32 MOM5 L50 .3◦Eq 12 (1982–2010)
NASA-GEOS S2S NASA Goddard Space 

Flight Center
GEOS5 AGCM 0.5◦ L72 MOM5 L40 .5◦Eq 4 (1982–2017)

NCEP-CFSv2 NOAA/NCEP GFS T126L64 MOM4 L40 .25◦Eq 24 (1982-2010)
ECCC-CanCM4i Environment Canada CanAM4 T63L35 CanOM4 L40 .94◦Eq 10 (1981–2018)
ECCC-GEM-NEMO Environment Canada GEM256 ×128 NEMO 1 × 1 1/3 Eq. 10 (1981–2018)
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Then, it is possible to compare the magnitude of the effects 
of �

m
 with respect to the noise. Formally, it allows the formu-

lation of a null ( H0 ) and alternative hypothesis ( H1):

and to perform a Fisher-test with (M − 1) and T(K
total

−M) 
degrees of freedom. If the effect is significant, it is possible 
to ask how much of �

m
 contributes to the X

tmk
 variability 

(TSS). The latter can be calculated through the adjusted coef-
ficient of multiple determination:

This coefficient is the fraction of the total variance deter-
mined by SS� . Similar expressions for �

t
 and �

tm
 can also 

be constructed.
The potential predictability ( PP

t
 ) of the MME was 

assessed using ANOVA. The PP
t
 is the fraction of vari-

ability that could be predicted given knowledge of the 
forcing. A measure of PP

t
 was defined as follows:

where the variances were calculated from � and � . Follow-
ing Zwiers et al. (2000), an unbiased estimator of PP

t
 can 

be defined as:

and its significance can be tested with a Fisher test, with 
(T − 1) and T(K

total
−M) degrees of freedom.

We also analyzed the impact on PP
t
 of removing one 

model at a time from the MME. To assess whether the 
observed differences with respect to the total MME 
were statistically significant, a Monte Carlo test was 
performed. The test consists of constructing a random 
ensemble of the eight NMME models, calculating the PP

t
 

of this new random MME and the difference with respect 
to the original MME. This process was repeated 10,000 
times to compute the 95th percentile based on 10,000 
sample values. Differences from the original MME 
obtained by removing a single model from the MME were 
compared with the 95th percentile of the test to assess the 
significance.

(7)
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m
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2.2  Forecast skill

The forecast skill was assessed by the standard-deviation-
normalized root-mean-square error (NRMSE) as follows:

Here, F and O are the forecast and reference data values for 
any variable (precipitation or temperature), while F̄

t
 and Ō

t
 

are the climatological means of each without including year 
t. Moreover, the skill was also assessed by the anomaly cor-
relation coefficient (ACC) between the MME and the refer-
ence data (Wilks 1995). The statistical significance of the 
ACC was estimated using a one-tailed t-test at 95% of con-
fidence. In all calculations a one-year-out cross-validation 
was used. In addition, theoretical ACC was calculated as 
the mean ACC between the MME and the individual mod-
els, as the skill score of the perfect model. This skill was 
used as a measure of the agreement between the models 
as an alternative estimate of predictability. However, it is 
important to remember that perfect-model skill should not 
be considered an upper bound on actual skill (Kumar et al. 
2014). The differences between the actual and theoretical 
ACC were tested through a Monte Carlo test as was done 
for PP

t
 (see Sect. 2.1).

3  Results

3.1  MME variance decomposition

Figure 1 shows the fraction of the MME temperature vari-
ance explained by each term of Eq.1 for each season. The 
dots denote the grid points where the contribution of each 
term is non-significant according to the Fisher test. As was 
found in Zwiers et al. (2000), the value that delimits the 
significance level is usually low, so most of the grid points 
are significant. Overall, the signal ( � ) and inter-model bias 
( � ) are the dominant contributors to TSS (Eq. 3). In MAM 
and DJF, the signal dominates the variability (Fig. 1a, e, i, 
and m) at low latitudes in northeastern Peru, southeastern 
Colombia, northern Bolivia, and in central and west-central 
Brazil (0.6–0.8). At midlatitudes, moderate values (0.4–0.5) 
are observed in SESA and central Argentina in both seasons. 
On the other hand, in JJA and SON the variability is domi-
nated by the inter-model biases (Fig. 1b, f, j, and n) in almost 
the entire continent, especially at low latitudes in SON 
(0.7–0.8). The contribution of the structural term ( � , Fig. 1c, 
g, k, and o) to TSS is smaller than the other terms but is sig-
nificant and presents a high inter-seasonal variability with 
maximum values over Amazonia in MAM, southeast Brazil 

(10)NRMSE = 1 −

�

1

T

∑T

t
(F

t
− F̄

t
+ Ō

t
− O

t
)2

�

1

T

∑T

t
(O

t
− Ō

t
)
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Fig. 1  Fraction of the total variance of the MME forecast temperature 
explained by each TSS component in MAM, JJA, SON and DJF (row 
1, 2, 3 and 4, respectively), represented by �

t
 (a, e, i, m), �

m
 (b, f, j, 

n), �
tm

 (c, g, k, o) y �
tmk

 (d, h, l, p). The upper color bar corresponds 
to the figures for the �

t
 , �

m
 and �

tmk
 terms, while the lower color bar 

corresponds to the figures for the �
tm

 term. Dotted areas denote the 
grid points where the F-test, which compares the variance of the plot-
ted component to the noise term, is not significant at the 90% confi-
dence level



3266 L. G. Andrian et al.

1 3

in JJA; over SESA, northern Peru and Colombia in SON; 
and SESA in DJF. Finally, the fraction of variance associated 

with the noise ( � , Fig. 1d, h, l, and p) is highest from mid to 
high latitudes and reaches its maxima in MAM.

Fig. 2  Same as Fig. 1 but for precipitation
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In the case of precipitation, the signal is notably lower 
than that for temperature across the continent. The regions 
in which � (Fig. 2a, e, i, and m) explains a large part of the 
variance (between 0.4 and 0.7) show a high inter-seasonal 
variation and correspond very well to the areas where pre-
cipitation is modulated by ENSO (Cai et al. 2020). However, 
in SON, a season when ENSO influence on precipitation 
in SESA is high, the signal does not peak there. The inter-
model biases (Fig. 2b, f, j, and n) dominate the precipitation 
variability at low latitudes over the northern and northwest-
ern portion of the continent and present high inter-seasonal 
variations over midlatitudes. The structural term (Fig. 2c, 
g, k, and o) is lower than the other terms and presents non-
significant values (dotted areas) in most of the continent 
and high inter-seasonal variations. The highest � values are 
found over eastern Brazil in JJA. Noise (Fig. 2d, h, l and p) 
dominates the precipitation variability from 10 ◦S–20 ◦ S 
towards higher latitudes in all seasons, especially in MAM.

3.2  Model biases and structural term

The bias term of the ANOVA ( � ) provides information on 
the consistency between models. A large � means consid-
erable differences in the model’s climatologies. In the case 
of temperature (Fig. 1b, f, j, and n), � presents high values 
in JJA and SON over central Brazil and throughout the 
four seasons in regions with high topography, such as the 
Andes and the Guyana Plateau in southern Venezuela. To 
assess whether it is possible to attribute the large biases in 
these regions to specific models, the ANOVA is computed 
when each model, in turn, is removed from the MME. 
Based on the analysis of the figures obtained in each case, 

we have selected the most outstanding ones. Figure 3a 
shows the bias term after removing the CanCM4i model 
from the MME in MAM. The comparison between Fig-
ures 1b and 3a reveals that most of the inter-model bias in 
Amazonia reduces when CanCM4i is removed from the 
MME: Thus, most of the inter-model bias is attributable 
to the CanCM4i model. Figure 3b shows the difference 
between the CanCM4i climatology and the MME (without 
the CanCM4i model) climatology, where large positive 
values are observed over the Amazonia, confirming the 
discrepancies between CanCM4i and the MME without 
considering it. It is important to note that the bias term 
provides information about the consistency among models 
but does not assess any agreement with observations. We 
then evaluate the extent of such agreement by computing 
the differences between the climatology of the reference 
data and the climatology of the CanCM4i model. Figure 3c 
confirms that the positive bias in the temperature over the 
Amazonia region is also observed when the model is com-
pared against the reference data, in agreement with previ-
ous works (Lin et al. 2020). When the CanCM4i model is 
removed from the MME, the MME biases in Amazonia 
decreases (Fig. 3d), suggesting that the model’s climate 
representation in that region may be inadequate. In JJA and 
SON, a similar reduction of the inter-model biases term 
across the northern portion of the continent is observed by 
removing the CM2p1 model from the MME, while in JJA 
removing the CFSv2 from the MME reduces the bias term 
in SESA and eastern Brazil (not shown).

For precipitation, the removal of models from the MME 
has a less consistent impact than for temperature. Removing 
a given model can reduce the variability explained by the 

Fig. 3  Fraction of total variance represented by �
m
 for the MME with-

out CanCM4i model a in MAM. Differences in the climatology fields 
between (b) the CanCM4i and the MME without CanCM4i model, 

(c) the CanCM4i model and the reference data, and (d) the MME 
without the CanCM4i model and the reference data, in MAM
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inter-model bias in the north of the continent and increase it 
in the south, and vice versa.

The structural term captures the differences in model 
response to the same forcing and the differences between 
initial conditions used to initialize the forecasts. To assess 
each model’s impact on this term as well as the inter-model 
biases, the ANOVA is repeated after each model, in turn, 
is removed from the MME. For the temperature, the struc-
tural term decreases in SON when the CFSv2 model is 
removed from the MME (Fig. 4a). Most of the changes in 
the structural term are observed in regions where ENSO 
modulates the temperature variability, such as central and 
southeastern Brazil, although not over Colombia and north-
ern Peru. Therefore, the relationship between El Niño 3.4 
and temperature in the MME and CFSv2 was explored. For 
this purpose, the correlation between the sea surface tem-
perature (SST) in the El Niño 3.4 region in August (i.e., the 
month when the forecasts are issued), and the SON tem-
perature forecast by the MME (Fig. 4b), the SON tempera-
ture forecast by CFSv2 model (Fig. 4c), and the observed 
SON temperature (Fig. 4d), respectively, were calculated. 
The regions without dots denote the grid points where the 
correlation is significant according to a t-test with 90% con-
fidence. The model-simulated SST was used for the correla-
tion between the temperature of MME without CFSv2 and 
the single CFSv2 model, whereas the “NOAA OI V2” SST 
database (Reynolds et al. 2007) was used for the reference 
temperature. The correlation between SST and the tempera-
ture of the MME without the CFSv2 model is significant 
on almost the entire continent (Fig. 4b). Conversely, in the 
north and south of the continent, the correlation between the 
SST and the CFSv2 model is weaker than that between the 

SST and the MME. Moreover, in the center of the continent, 
the sign of these correlations differs (Fig. 4c). While the 
MME without the CFSv2 model seems to overestimate the 
ENSO signal (as observed in Cash and Burls (2019)), the 
CFSv2 model also differs from the reference data (Fig. 4d). 
These results suggest that the CFSv2 model contribution 
to the structural term in the MME may be due in part to an 
inadequate representation of ENSO impacts on temperature 
in this season.

In the case of precipitation, the structural term is reduced 
in central-eastern Brazil in JJA when the GEM-NEMO 
model is removed from the MME (Fig. 5a). According to 
previous works, the precipitation in this region is modulated 
by the SST anomalies of the tropical North Atlantic Ocean 
(TNA) (Ronchail et al. 2002; Yoon and Zeng 2009; Towner 
et al. 2020). The correlation between the observed precipi-
tation in central-eastern Brazil and the SST over the TNA 
(Fig. 5d) is significant and negative. The correlation for the 
MME without the GEM-NEMO model has the same sign 
and similar spatial distribution to the observed correlation 
(Fig. 5b), but this is not the case for the individual model 
(Fig. 5c). These differences in the TNA signal on precipita-
tion variability may be causing the changes in variability 
explained by the structural term, but the influence of local 
factors cannot be ruled out.

3.3  Potential predictability

The potential predictability ( PP
t
 ) was estimated from 

ANOVA as the ratio between the signal variance and the 
sum of the signal and noise variances (Eq. 8). The estimate 
for temperature is shown in Fig. 6. At all seasons, PP

t
 is 

Fig. 4  Fraction of total variance represented by �
tm

 for the MME 
without CFSv2 model (a) in SON. Correlation between the observed 
SST in the Nino3.4 region in August and the forecast mean tempera-

ture in South America in SON for the MME (b), the EMM without 
the CFSv2 model (c), and the reference data (d)
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higher in the tropical region and reaches the maximum 
values in MAM and DJF, while the lowest values in these 
regions are observed in SON. At middle and sub-polar lati-
tudes, PP

t
 is always lower than that found further north. 

However, relatively high values of PP
t
 are observed over 

central Argentina in MAM, JJA, and DJF, and in particular 
the highest PP

t
 value is found in SON and DJF over north-

ern Patagonia and central-eastern Argentina, respectively. 
Each model impact on PP

t
 was assessed in the same man-

ner as each term of the variance decomposition. For this 

Fig. 5  Same as Fig.  4 but for precipitation, the MME without the 
GEM-NEMO model in JJA (a), and (b–d) the correlation between the 
observed SST in the NTA (10◦–30◦ N; 300◦–330◦ E) in May and the 

forecast mean precipitation in JJA for the MME (b), the EMM with-
out the GEM-NEMO model (c), and the reference data (d)

Fig. 6  Temperature potential predictability in MAM, JJA, SON, and DJF for the EMM (a–d) and EMM without the CFSv2 model (e–h)
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purpose, the PP
t
 was computed again, but removing each 

model in turn from the MME. Overall, for temperature PP
t
 

no important changes were observed when removing indi-
vidual models from the MME. The most relevant changes, 
but non significant according to the Monte Carlo test, are 
observed when the CFSv2 model was removed from the 
MME (Fig. 6e-h). However, these slight changes do not 
point in the same direction across the continent. For exam-
ple, in SON, PP

t
 increases in Ecuador and northern Peru but 

decreases in southern Brazil.
Due to the high fraction of variance explained by noise in 

precipitation, the PP
t
 is lower than for temperature (Fig. 7). 

Despite this, highest precipitation PP
t
 values are observed 

at low latitudes in all seasons, being maximum for DJF in 
Amazonia. Unlike temperature PP

t
 , precipitation PP

t
 over 

Bolivia, Peru, Ecuador, and Colombia is among the lowest 
on the continent in all seasons, with values close to zero in 
MAM. These lower PP

t
 values are because the precipitation 

variability over these regions is dominated by inter-model 
biases, as in all regions with high topography, and the sig-
nal is close to zero (see Fig. 2). At middle and sub-polar 
latitudes, the PP

t
 is lower, with relative maxima in south-

ern Brazil in JJA, northern Patagonia in SON, and central-
eastern Argentina and Uruguay in DJF. Precipitation PP

t
 

increases when the CFSv2 model is removed from the MME 
(Fig. 7e-h) because most of the noise in continent-wide 

precipitation variability is attributable to this model (not 
shown). Although these PP

t
 increases are non significant 

according to the Monte Carlo test, PP
t
 values of the MME 

without the CFSv2 model are higher in all seasons, with the 
same spatial pattern as when this model is included in the 
MME.

3.4  Skill

The MME skill was analyzed through the RMSE and ACC. 
Since the models have systematic errors, the RMSE was 
corrected by the climatology and normalized by the stand-
ard deviation (NRMSE). That gives a measure of how good 
the approximation of the MME is, compared to the simple 
approximation of the climatology mean. NRMSE values 
close to 1 indicate that the errors are lower than the vari-
ability and that the error associated with the MME forecast 
is smaller than the error obtained when using climatology 
as a forecast. Figure 8 shows the NRMSE of temperature 
(upper panel) and precipitation (lower panel) for the four 
seasons. For temperature, negative NRMSE values domi-
nate almost the entire continent, while positive values are 
found only over northeastern Brazil for all the seasons. For 
precipitation, NRMSE values are close to zero over almost 
the entire continent while positive values are found only over 

Fig. 7  Same as Fig. 6 but for precipitation
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northeastern Brazil in MAM, over SESA in all seasons, and 
northern Brazil in DJF.

Figure 9 shows the temperature ACC computed between 
reference data and the MME (skill, top panel); and the 
theoretical ACC (perfect-model skill, bottom panel) in all 
seasons. Overall, a better skill (Fig. 9a–d) is observed at 
tropical regions, which decreases at extratropical latitudes, 
although with high inter-seasonal variations. Northeastern 
Brazil shows the highest skill in all four seasons, with a 
maximum of 0.8 in MAM. It also shows high skill over Peru 
and northern Bolivia in MAM and DJF. At midlatitudes, 
modest skill values of 0.5–0.6 are found over SESA in all 
seasons and are maximum in JJA. At sub-polar latitudes, 
the highest skill is found in MAM over the southern tip of 
Patagonia, with values of 0.6–0.7. In JJA and SON at these 
latitudes, a significant skill is found only over the east coast.

The perfect-model skill (Fig. 9e–h) is higher in the tropi-
cal region, and a secondary maximum is found at midlati-
tudes. Perfect-model skill is always higher than the skill, 
which means a better agreement between models than 
between them and observations. However, the differences 
observed between the skill and perfect-model skill are not 
significant, according to the Monte Carlo test, over most of 
the continent (shaded regions). These differences are sig-
nificant only over Patagonia in MAM and DJF; and over 

midlatitudes in JJA and SON. In all seasons, the lowest val-
ues of the perfect-model skill are found between 20 ◦S–30 
◦S.

For precipitation, the skill (Fig. 10a–d) is lower than for 
temperature, and most of the continent presents non-signif-
icant values.The highest skill is located over the equatorial 
region, in northeastern Brazil in MAM, which is the maxi-
mum of all seasons, and northern Brazil and Colombia in 
SON and DJF. In JJA the skill is the lowest at these latitudes. 
Models fail in forecasting precipitation over the Monsoon 
region in SON and DJF, when the Monsoon develops and 
peaks, respectively. At midlatitudes, the skill is significant 
over SESA with values between 0.5–0.7 but with large inter-
seasonal variations, and over Bolivia and Paraguay only in 
JJA. Over Patagonia, the skill is significant over the east 
coast and is maximum in JJA and SON while, as for tem-
perature, the skill is non-significant in DJF.

The perfect-model skill is higher than the skill 
(Fig. 10e–h) but with large areas with non-significant values. 
The region between 10 ◦ S and 20 ◦ S presents non-significant 
values in all the seasons but JJA. Unlike temperature, it is 
possible to identify some regions where the skill exceeds 
the perfect-model skill, such as northeastern Brazil in MAM 
and SON, but these differences are non-significant (shaded 
regions) according to the Monte Carlo test.

Fig. 8  NRMSE in MAM, JJA, SON, and DJF (from left to right) for temperature (upper panel) and precipitation (bottom panel)
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As in the previous sections, individual MME models were 
removed to assess their impact on MME skill. In doing so, 
no major changes in MME skill were observed for either 
variable. Although removing the CFSv2 model from the 
MME showed considerable changes in the sources of vari-
ability and potential predictability, the MME skill does not 
show important changes in either direction.

Given that South America encompasses tropical and 
extratropical regions, the models’ skill can be different in 
each of them. Therefore, the skill was analyzed over regions 
where potential predictability is maximized according to the 
previous analysis (rectangles in upper panel of Figs. 9 and 
10): (1) Amazonia (Am) (13 ◦ S–2 ◦ N ; 291 ◦E–304 ◦E), (2) 
northeast Brazil (NeB) (15 ◦S–2 ◦ N; 311 ◦E–325 ◦E), (3) 
north of SESA (N-SESA) (29 ◦S–17 ◦ S; 303 ◦E–315 ◦E), 4) 
south of SESA (S-SESA) (39 ◦S–25 ◦ S; 296 ◦E–306 ◦ E) y 
5) Patagonia (73 ◦S–37◦ S; 287 ◦E–294 ◦E). Figure 11 shows 
the MME skill in the four seasons, measured as the average 
of ACC over the study regions. The horizontal gray line indi-
cates the 95% confidence level according to a t-test. In the 
case of temperature (Fig. 11a), although on some occasions 
the MME has lower skill than the individual models, overall 
the MME skill is among the best. This is important since no 

model always has the best or worst skill at all regions and 
seasons. Moreover, some models may have the best skill in 
one season and the worst in another, such as the FLOR-B01 
model (model number 4 in the figure) in MAM and SON in 
Patagonia.

For precipitation (Fig. 11b), results are like temperature 
but with lower values of skill, which results in most of the 
regions with non-significant values in most of the seasons. 
The skill of the MME is among the best at almost all regions 
and seasons, and no model stands out with the worst or best 
skill.

4  Conclusions and discussion

In this paper, we analyzed the variance, predictability, 
and skill of the North American Multi-Model Ensemble 
(NMME) seasonal forecasts of temperature and precipita-
tion in South America. In addition, we studied for the first 
time in South America the predictability and performance 
of an ensemble of CGCMs in the transitional seasons. An 
ANOVA was applied to analyze the contribution of signal, 

Fig. 9  Anomaly correlation coefficient (ACC) for temperature in 
MAM, JJA, SON and DJF (from left to right). ACC between the 
EMM and the reference data (a–d), average of the ACC between 
MME with each individual model, theoretical ACC (e–h). Dotted 
areas indicate the grid points where the ACC is negative or non-sig-

nificant positive at the 95% confidence level. Shadded areas denote 
grid point where the differences between actual and theoretical ACC 
are not significant according to the Monte Carlo test (see Sect.  2). 
The rectangles delimit the averaged regions in Fig. 11 (see text)
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inter-model biases, differences in response to initial condi-
tions, and noise to the total variance of both variables.

For temperature, two different behaviors were identi-
fied in the analysis of the sources of variance throughout 
the year. In the northern part of the continent, the signal 
explained around 70% of the total variance in MAM and 
DJF, whereas near 60% of the total variance is explained by 
the inter-model biases in JJA and SON. On the other hand, 
in SESA the signal dominates the variance in MAM and 
JJA, and the inter-model biases dominate it in SON and DJF. 
The results obtained for DJF and JJA agree with Osman and 
Vera (2017) using the CHFP models. For the precipitation, 
as was reported by previous works (Barreiro et al. 2002; 
Osman and Vera 2017; Bombardi et al. 2018), noise explains 
around 60% of the variance in all seasons. We also found 
that the use of the ANOVA technique was adequate for a 
better understanding of the variability of the models and 
helped document the effect of model biases and the different 
response to initial conditions in the MME variability.

The ANOVA was also used to study the potential predict-
ability ( PP

t
 ). For both variables, the highest PP

t
 was found 

in the tropics throughout the year and decreases towards 
higher latitudes, while the temperature PP

t
 is considerably 

higher than precipitation PP
t
 . Although the signal peaks in 

regions where precipitation is modulated by ENSO in MAM, 
JJA, and DJF (Cai et al. 2020), this is only reflected in PP

t
 

at low latitudes due to the lower noise in that region. These 
two results are consistent with those previously found by 
Wu and Kirtman (2006), Peng et al. (2009) and Osman and 
Vera (2017).

Finally, the NMME performance was analyzed using the 
ACC. Similar to previous studies (e.g. Becker et al. 2014; 
Osman and Vera 2017), the best skill for both variables was 
found at low latitudes, and the temperature skill was better 
than precipitation skill. In addition, forecasting precipita-
tion over the Monsoon region is still challenging, as the 
skill found in this work does not improved from what was 
previously reported in Becker et al. (2014); Bombardi et al. 
(2018). Finally, as was observed for DJF in previous works 
(e.g. Coelho et al. 2006; Gubler et al. 2020), the highest skill 
in the four seasons was found in regions where both vari-
ables are modulated by ENSO.

To our knowledge, the most recent study documenting 
the predictability of a MME in South America is Osman 
and Vera (2017) using the CHFP models. We noticed that 
one major difference between our work and the former is 
in the position of maximum values of precipitation noise, 
towards high latitudes for NMME and in the tropical 
regions for CHFP. In both ensembles the spatial pattern 
of PP

t
 is similar although NMME models show higher 

values for temperature and smaller for precipitation. For 
both variables, the skill of the NMME models is better 

Fig. 10  Same as Fig. 9 but for precipitation



3274 L. G. Andrian et al.

1 3

Fig. 11  Average ACC for temperature (upper panel) and precipitation 
(bottom panel) in north and south SESA (N-SESA, S-SESA), north-
east of Brazil (NeB), Patagonia and Amazonia (Am) for the models 
(numbers) and mean MME (bold hyphen) in MAM, JJA, SON, and 

DJF (from left to right). The horizontal gray line indicates the sig-
nificance limit at the 95% confidence level. CCSM4(1), CM2p1(2), 
FLOR-A06(3), FLOR-B01(4), GEOSS2S(5), CFSv2(6), CanCM4i(7) 
and GEM-NEMO(8)
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than that achieved by the CHFP models in JJA and similar 
in DJF. Furthermore, NMME presents a higher theoreti-
cal ACC than CHFP, which indicates a better agreement 
between the models in NMME than in CHFP. Comparing 
the NMME version used in this work to the previous one 
(Becker et al. 2014), the temperature skill is better in JJA 
and SON and similar for precipitation in all seasons. In 
addition, since no model was found to have the best or 
worst performance in all regions and seasons, the MME 
skill proves to be one of the best compared to the indi-
vidual model skill. Finally, as in Becker et al. (2014), we 
find that the dispersion between the individual model skill 
is much smaller for precipitation than for temperature.

We conclude that the NMME represents an advance 
over other model ensembles such as CHFP, not only 
because it is an operational model ensemble which has ret-
rospective and real-time forecasts produced every month 
with a lead time of up to 1 year, but also because it exhib-
its a better skill, at least for JJA and SON temperature. 
Moreover, considering that NMME provides access to all 
data in near real-time, it has potential as an operational 
seasonal forecasting tool in South America.

Although this study has documented the predictability 
and performance of NMME models, there are still further 
investigations that could be carried out in the future. These 
include the assessment of the predictability and skill of 
the models when they are initialized several months in 
advance and the evaluation the probabilistic prediction 
performance of this ensemble.
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