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Abstract
It is well-known that the upper ocean heat content (OHC) variability in the tropical Pacific contains valuable information 
about dynamics of El Niño–Southern Oscillation (ENSO). Here we combine sea surface temperature (SST) and OHC indices 
derived from the gridded datasets to construct a phase space for data-driven ENSO models. Using a Bayesian optimization 
method, we construct linear as well as nonlinear models for these indices. We find that the joint SST-OHC optimal models 
yield significant benefits in predicting both the SST and OHC as compared with the separate SST or OHC models. It is shown 
that these models substantially reduce seasonal predictability barriers in each variable—the spring barrier in the SST index 
and the winter barrier in the OHC index. We also reveal the significant nonlinear relationships between the ENSO variables 
manifesting on interannual scales, which opens prospects for improving yearly ENSO forecasting.

Keywords Statistical ENSO models · Data-driven models · Spring predictability barrier · Early predictors of ENSO · 
ENSO nonlinearity · Ocean heat content

1 Introduction

El Niño–Southern Oscillation (ENSO) is the dominant 
mode of interannual climate variability which originates in 
the tropical Pacific, but impacts climate conditions over the 
world (Trenberth 2019; Alexander et al. 2002; Wang and 
Picaut 2004). Historically, two conceptual elements are con-
sidered as key ingredients underlying ENSO. The first one 
is a Bjerknes mechanism (Bjerknes 1969) based on positive 
ocean-atmosphere feedback: weakening of the trade winds 
in response to increasing sea surface temperature (SST) 
results in even warmer SST in the equatorial eastern and 
central Pacific. The second was realized by Wyrtki (1975, 
1985), who supposed that accumulation of warm water in the 
equatorial Pacific is a necessary precondition for the initia-
tion of a warm ENSO event (El Niño). Strong trade winds 
contribute to accumulating warm water in the western part 
of the basin, thus building up of the east-west slope of sea 
level. Eventually, excessive amount of warm water provides 
favorable conditions for triggering the Bjerknes feedback 

yielding the weakening of the trade winds due to increasing 
of SST that contributes to eastward transport of accumulated 
warm water. Further studies developed the Bjerkens–Wyrtki 
hypothesis to explain the distinctive cyclic nature of ENSO. 
In the so-called recharging oscillator theory of ENSO, 
charge-discharge of the warm water, and hence, the heat 
content in the tropical Pacific is regarded as a key process 
underlying the observed oscillations (Cane and Zebiak 1985; 
Jin 1997). This theory involves the meridional subsurface 
water transport driven by the wind stress curl (also known 
as Sverdrup transport) as the main source of the heat content 
alteration. The anomalous heat content stored in the tropics 
due to the equatorward mass transport during the cold (La 
Niña) and neutral phases of ENSO eventually enables an El 
Niño event onset, which, in turn, changes the wind stress 
curl outside the equator, and, as a result, discharges warm 
water. After that the charging stage of the oscillation starts 
again. Alternative theory of ENSO is based on the delayed 
oscillator models (Suarez and Schopf 1988; Galanti and 
Tziperman 2000) highlighting the role of oceanic equato-
rial waves as carriers of thermocline depth anomalies along 
the equator. Such anomalies impact the SST and therefore 
can lead to initiating the Bjerknes feedback. Different direc-
tions and propagating times inherent for different equatorial 
wave modes provide complex quasiperiodical ENSO-like 
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oscillations in such models. All the key physical processes 
that theories account for are shown to take place in the cou-
pled shallow-water ocean-atmosphere models (Zebiak and 
Cane 1987; Anderson and McCreary 1985; Jin and Neelin 
1993). The role of stochastic forcing in ENSO dynamics 
is also important, as was noticed (e.g., in Philander and 
Fedorov 2003; Fedorov et al. 2003; Chen et al. 2016; Hu 
and Fedorov 2019; Martinez-Villalobos et al. 2019), since it 
is responsible for ENSO irregularity. Typically, it is associ-
ated with an atmospheric noise producing short-scale zonal 
wind anomalies (e.g., westerly wind bursts (Levine and Jin 
2017; Hu and Fedorov 2019)). Among the drivers of such 
anomalies are indicated, for example, the Madden–Julian 
oscillation (Zhang and Gottschalck 2002; Chiodi et al. 2014; 
Puy et al. 2016), or large-scale subtropical atmospheric pat-
terns (Vimont et al. 2003; Sullivan et al. 2021).

Growing amount of high-resolution measurements of 
different geophysical fields in recent decades offers great 
opportunities of verifying existing concepts of ENSO as 
well as for constructing data-driven prognostic models. The 
data-driven, or statistical, ENSO models became an efficient 
tool for interseasonal ENSO forecasting; they can compete 
with dynamical, i.e. constructed from the “first principles”, 
models in this regard (Barnston et al. 2012). The common 
problem for both statistical and dynamical ENSO models is 
the spring predictability barrier (SPB) (Jin et al. 2008; Barn-
ston et al. 2012) which substantially limits the tropical SST 
forecasts that start from the winter and spring seasons. Many 
statistical ENSO models (Penland and Sardeshmukh 1995; 
Kondrashov et al. 2005; Gavrilov et al. 2019) are based on 
purely SST anomalies in the tropical Pacific which accu-
rate forecast is the main goal in ENSO predictive modeling 
(Barnston et al. 2012). In such models, the SPB is caused 
by the observed growing loss of autocorrelations in tropical 
SST trough May-June. Relying on theoretical understanding 
of ENSO, many studies are focused on finding additional 
atmospheric and oceanic predictors which can help to lower 
the SPB. Various predictors based on ocean heat content 
(OHC) (Clarke and Van Gorder 2003), warm water volume 
(Meinen and McPhaden 2000; Chen et al. 2020), as well as 
atmospheric fields (Clarke and Van Gorder 2003; Byshev 
et al. 2016; Chen et al. 2020; Mukhin et al. 2021) has been 
suggested. Nevertheless, there is still no conventional way 
to derive statistically justified predictors from data and to 
include them into prognostic models. Often (Chen et al. 
2020; Mukhin et al. 2021) such predictors are determined by 
finding significant lagged correlations between time series 
of SST-based ENSO index which needs to be predicted and 
corresponding time series of another ENSO-related climate 
variables. Typically, the obtained predictors are passed to the 
model as a fixed forcing (e.g. as components of regression 
(Clarke and Van Gorder 2003; Chen et al. 2020)), but not 
as dynamical variables, which makes it difficult to use such 

models for “no look ahead” forecast requiring extrapolation 
of the predictors to the future.

In this study we introduce an efficient predictor of ENSO-
related SST variability constructed from OHC anomalies in 
the tropical Pacific. The proposed signal is obtained simply 
using the standard empirical orthogonal function (EOF) 
decomposition. We construct an optimal data-driven ENSO 
model which uses this predictor along with the SST-based 
predictor as equitable dynamical variables. Being phase-
shifted, these SST- and OHC-based variables complement 
each other providing proper phase space capturing the 
ENSO dynamics. We demonstrate that the model obtained 
surpasses the purely SST-based model in predicting SST 
variability and allows to substantially lower the SPB. Also, 
we show that joint analysis of the SST- and OHC-based 
variables uncovers the long-term nonlinear relationships 
between the ENSO variables, thus revealing ENSO nonlin-
erity on interannual time scales.

The paper is organized as follows. In Sect. 2 we present a 
general form of the proposed data-driven model of ENSO, 
outline its phase space, parameterizations and the learning 
procedure. In Sect. 3, we describe the analyzed data and 
the EOF analysis used for obtaining the variables capturing 
the meaningful processes contributing to ENSO dynam-
ics. The different data-driven stochastic models (linear and 
nonlinear) based on obtained variables are compared. Then 
we analyze prediction skills and qualitative properties of 
the models. In Sect. 4 we discuss the obtained results and 
conclude.

2  Data‑driven ENSO model

2.1  Phase space of the model

In constructing our ENSO model we use the concept of 
data-driven stochastic model developed in Molkov et al. 
(2012), Mukhin et al. (2015b), and Gavrilov et al. (2017) 
and adapted for high-dimensional and spatially distributed 
data in Mukhin et al. (2015a) and Gavrilov et al. (2019)). 
Let the time series � = (�1,… , �N ), �n ∈ ℝ

D represents 
observations of some ENSO-related climate variable 
obtained in D nodes of a spatial grid at equidistant time 
moments t1,… , tN . Without loss of generality, we suppose 
that the time series is monthly sampled and has zero mean, 
i.e. 1

N

∑N

n=1
�n = � . We use the conventional Empirical 

orthogonal function (EOF) analysis (Hannachi et al. 2007; 
Hannachi 2021) to construct the phase space of the ENSO 
model from observed data � . The corresponding state 
variables are obtained as d leading principal components 
(PCs) �n = �T�n, �n ∈ ℝ

d , i.e. the projections of data vec-
tors �n at time tn to d EOFs (columns of the D × d matrix 
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� ), that explain a substantial part of data variance: ∑d

k=1

�
p2
k,n

�

n
 . The transformation from PCs space back 

into physical space is a linear map:

where �′ is a D × D − d matrix, which columns are the 
residual EOFs and ��

n
∈ ℝ

D−d are the corresponding PCs.
Although the leading EOFs characterize the most mean-

ingful processes contributing to the observed dynamics, the 
residual EOFs keep the useful information about short auto-
correlations in the observed dynamics, which could improve 
the short-term prediction of a state trajectory. In this work 
we construct the evolution model for the leading and resid-
ual PCs separately. The particular functional form of the 
corresponding models in the context of ENSO modeling is 
described in the next section.

2.2  Functional form of the model

2.2.1  Leading PCs

The general form of the model we use for describing evo-
lution of leading PCs is a stochastic model with memory 
(Molkov et al. 2012; Mukhin et al. 2015a; Gavrilov et al. 
2017):

Here the first term � is a deterministic function depending on 
l successive states of the system. The second term in (2) is a 
random component aimed at modeling poorly resolved pro-
cesses (e.g., the processes which time scales are close to the 
sampling time). This component is expressed as the product 
of a low-triangular deterministic d × d matrix �̂ and a ran-
dom vector �n ∈ ℝ

d which is assumed taken from Gaussian 
uncorrelated (in space and time) processes with zero means 
and unit variances. Resulting noise in the model has the 
covariance matrix �̂�̂T . Note that neither parameters of the 
function � nor the matrix �̂ are know a priori; they need to 
be estimated through model learning.

In this work we use two different parameterizations of 
deterministic part � of the model (2) which account phase 
locking of the ENSO dynamics to the annual cycle (Chen 
and Jin 2020). The first one is a linear parameterization, 
suggested by Mukhin et al. (2021):

Here �n ∈ ℝ
ld contains the components of the vectors 

�n−1,… , �n−l , �n is a d × ld matrix of coefficients. To model 
the seasonal forcing needed for accounting possible annual 
cycles in data, the coefficients are defined to be periodic 

(1)�n = ��n + ����
n
,

(2)�n = �
(
�n−1,… , �n−l

)
+ �̂ ⋅ �n.

(3)�
(
�n
)
= �n�n.

with the period T = 12 month. They are decomposed into 
the discrete Fourier series:

where the parameter q taking values from 0 to 6 ( �6
s
= � 

by definition; the case q = 0 corresponds to a simple linear 
model with constant �n = �0 ) regulates possible depend-
ence of the model on different harmonics of the annual 
cycle.

The second parameterization we consider is nonlinear. In 
this case the deterministic part � of the model is represented 
by a single layer perceptron with the hyperbolic tangent acti-
vation function:

Here �
n
=

(
cos

2�

T
n, sin

2�

T
n

)
 is a two-dimensional harmonic 

signal which is passed to the model input together with the 
sate vector �n in order to model the seasonal forcing, T = 12 
month, �i ∈ ℝ

d , �i ∈ ℝ
ld , �i ∈ ℝ

2 , �i ∈ ℝ are the unknown 
coefficients. The function in the form (5) is able to approxi-
mate an arbitrary nonlinear dependence just by increasing 
the number of neurons m (Cybenko 1989). The efficiency of 
such a parameterization in different ENSO-related examples 
was demonstrated in Mukhin et al. (2015a, b), and Gavrilov 
et al. (2019).

Given some fixed value of the leading d PCs, the com-
plexity of the model deterministic part � is defined by its 
structural parameters (or hyperparametrs) l, q in the case 
of linear parameterization (3)–(4) and l, m in the case of 
nonlinear parameterization (5). To avoid overfitting of the 
model, the choice of the hyperparameters should be statis-
tically justified, or optimal. According to Gavrilov et al. 
(2017, 2019), and Mukhin et al. (2021), we use the Bayes-
ian optimality criterion for estimating them, which relies on 
assessing the probability density function of data given the 
particular model; see details in Appendix A.

2.2.2  Residual PCs

When mapping the phase variables of the model (2) to the 
physical space (e.g. SST field defined on geographical grid), 
the forecast produced by the model can be slightly improved 
by taking into account dynamics of the residual PCs of the 
field of interest, which are not included in the phase space of 
the model. For this purpose, we construct a simple additional 
model for the residual PCs in the same way as described by 
Gavrilov et al. (2019). According to this work, the evolu-
tion law of each k-th residual PC {p�

k,n
} ( k = 1,… ,D − d ) 

(4)�n = �0 +

q∑

k=1

[
�k

c
cos

2�k

T
n + �k

s
sin

2�k

T
n
]
,

(5)�
(
�n
)
=

m∑

i=1

�i tanh(�
T
i
�n + �T

i
�n + �i).
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is approximated by the first-order autoregressive model 
separately:

Here {�k,n} is a sample of the uncorrelated Gaussian noise 
with the variance equal to 1 and zero mean, bk and �k are the 
parameters estimated by the least square method. In doing 
so, we represent the residual PCs as independent red noise 
processes. Including such a model in the forecasting scheme 
is aimed at improving the prediction skills at lead times of 
order of autocorrelation times of the processes captured by 
the residual PCs.

3  Results

3.1  Data and preprocessing

We construct the data-driven model from two datasets 
reflecting ENSO-related variability. The first one is the 
monthly sea surface temperature (SST) taken from extended 
reconstructed SST (ERSST) data set (version 5) with 2◦ × 2◦ 
spatial resolution (Huang et al. 2017). The second dataset 
is the monthly time series of ocean heat content (OHC) in 
0–300 m depth layer defined on a 10 × 10 grid provided by 
the Institute of Atmospheric Physics (Cheng et al. 2017). 
From both datasets we took data in the tropical Pacific 
region (10 S–10 N, 120 E–80 W) covering the time inter-
val from Jan 1960 to Dec 2020; the total duration of the 
time series is N = 732 months. The anomalies were pre-
pared from this data by subtracting the monthly climatology 
within the 1960–2020 interval followed by removing the 
linear regression on the CO2 trend. Note that such a simple 
subtraction of the monthly climatology does not remove the 
annual cycle completely, because its contribution to ENSO 
dynamics is generally non-additive. The data-driven model 
with periodic dependence described in Sect. 2.2 allows to 
reflect a non-additive response of ENSO to the annual cycle, 
i.e. ENSO phase locking which is discussed in Sect. 3.3.2.

(6)p�
k,n

= bkp
�
k,n−1

+ �k ⋅ �k,n.

3.2  EOF analysis

Figure 1 shows the spatial patterns corresponding to the 
two leading EOFs of the sea surface temperature anomalies 
(SSTA) and ocean heat content anomalies (OHCA) fields 
obtained as described in Sect. 3.1. For both data sets they 
explain more than 70% of data variance. It is often noted 
(Martinez-Villalobos et al. 2019; Deser et al. 2009; Bamston 
et al. 1997) that the first EOF of SSTA in the tropical Pacific 
is associated with ENSO and the corresponding PC strongly 
correlates with the Niño 3.4 index. The second EOF together 
with the first EOF allow to describe the diversity of ENSO, 
i.e. variety of SSTA patterns arising during different El Niño 
events (e.g., “canonical” or “Modoki” El Niño (Takahashi 
et al. 2011)).

In order to interpret the OHCA EOFs we consider the 
planes of different combinations of the two leading SSTA 
and OHCA PCs (Fig. 2). It is clearly seen from this fig-
ure that the first OHCA and SSTA PCs strongly correlate 
(Fig. 2b). Note that the corresponding EOF patterns shown 
in Fig. 1a, c are also similar. What we can learn from the 
Fig. 2c, d is a cyclic nature of trajectories in both SSTA 
PC1-OHCA PC2 and OHCA PC1-PC2 planes indicating an 
apparent phase shift between these variables. We obtain that 
the peak absolute value of correlation between the SSTA 
PC1 and OHCA PC2 is achieved with a lag of about 5–9 
months, as Fig. 3b demonstrates. We note that the simi-
lar results about the relationships between SST and OHC 
in the tropical Pacific have been obtained by Meinen and 
McPhaden (2000) and Clarke et al. (2007) using warm water 
volume observations. The EOF pattern corresponding to the 
second OHCA PC (Fig. 1d) dominates mainly in the central 
and western tropical Pacific and can be associated with the 
OHC accumulation and discharge before and during the El 
Niño events (Zebiak 1989; Clarke et al. 2007; Cheng et al. 
2019).

3.3  ENSO modeling

In this section we analyze prediction skills and qualitative 
properties of the different data-driven ENSO models, built 

Fig. 1  Spatial patterns corresponding to the two leading EOFs of SSTA (top panel, color scale in ◦ C) and OHCA (bottom panel, color scale in 
10

9 J/m2 ) fields. Fractions of explained variance in percentage are shown for each EOF in the titles of the panels
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in accordance with the scheme described in the Sect. 2. As 
it follows from the analysis performed in the previous sec-
tion, the first SSTA (OHCA) and second OHCA PCs con-
tain most useful information about ENSO dynamics. We can 
state that they reflect the ENSO recharge oscillator and are 
therefore the correct choice of phase variables for the sto-
chastic model (2). Although the first OHCA and SSTA PCs 
are very close (see Fig. 2b), here we use the last one, since 
it can be mapped directly to the SSTA field or, in particular, 

to the widely used Niño 3.4 index. Here we construct and 
compare the stochastic models of the following types: 

1. Separate linear models (3)–(4), the first learnt from the 
SSTA PC1 (L-SST model) and the second—from the 
OHCA PC2 (L-OHC model);

2. Joint linear model (3)–(4), i. e. the model learnt from 
both these PCs (L-SST+OHC model);

3. Joint nonlinear model (5) (NL-SST+OHC model).

Fig. 2  Phase trajectories reflect-
ing the relationships between 
the leading PCs of SSTA and 
OHCA in different planes. The 
color markers correspond to 
December of the year of a very 
strong El Niño event (as classi-
fied by https:// ggwea ther. com/ 
enso/ oni. htm). All quantities are 
normalized by their standard 
deviations. The absolute values 
of the Pearson correlation 
coefficient between the PCs are 
shown in the titles of the panels

Fig. 3  Comparison of the SSTA 
PC1 and the OHCA PC2. Top 
panel: time series of the SSTA 
PC1 (blue) and the OHCA 
PC2 (red), divided by their 
standard deviations. Bottom 
panel: lagged cross correlations 
between these time series (see 
the legend)

https://ggweather.com/enso/oni.htm
https://ggweather.com/enso/oni.htm
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We train each model using the Bayesian optimization pro-
cedure described in Appendix A. The estimated optimal 
values of the hyperparameters are l = 2 and q = 1 for the 
L-SST and L-SST+OHC models, l = 3 and q = 1 for the 
L-OHC model and l = 2 and m = 5 for the NL-SST+OHC 
model. Note that the the obtained q = 1 implies the coef-
ficients of a model are the sine functions with the period 
T = 12 month, see Eq. (4). The future states of the system 
can be predicted by iterating these models starting from 
the current states. Then the predicted values of PCs can be 
transformed to the physical space (e.g. the Niño 3.4 index) 
using Eq. (1), where the residual PCs are all SSTA PCs 
except for the SSTA PC1. Since the described models are 
stochastic (see Eqs. (2) and (6)), the forecasts they produce 
are random sequences of states, which means that differ-
ent model runs yield different forecasts. According with 
(Gavrilov et al. 2019; Mukhin et al. 2021), the future value 
of a quantity x is assessed from a model forecast as the 
ensemble median x over a large number of the model runs.

3.3.1  Prediction skill analysis

To analyze and compare prediction skills of the data-
driven models, we use two conventional metrics. The first 
one is the root mean square forecast error (RMSE), defined 
through the differences between the true and predicted val-
ues of a variable of interest x, for the time instances inside 
the learning set:

Here the index j denotes the forecast lead time in months, 
xn+j is a true value of the predicted variable at time tn+j , xn,j 
is the value predicted by the model starting at time tn.

The second metric is the Pearson correlation between the 
variable and its forecast:

where �xn+j and �xn,j are the deviations of xn+j and xn,j from 
their means. The metrics (7)–(8) complement each other: 
while the RMSE measures a distance between the real and 
predicted values, the correlation metric reflects their relative 
similarity (in terms of linear relationships).

Hindcast skill of SST field
In practice, the correct prediction of SST variability in 

the tropical Pacific is the main goal of both statistical and 
dynamical ENSO models (Barnston et al. 2012). Figure 4 
shows the spatial distributions of RMSE for all components 
�n of the SST field obtained using the three considered mod-
els described above. As we can see from Fig. 4, all models 
provide the best forecasts in the central tropical Pacific, for 
lead times up to 5 months. At the same time, both the L-SST 
+ OHC and NL-SST + OHC models yield significantly 

(7)ej =

�∑N−j

n=l
(xn+j − xn,j)

2

N − j − l + 1
.

(8)rj =

∑N−j

n=l
�xn+j ⋅ �xn,j

�∑N−j

n=l
(�xn+j)

2
⋅

∑N−j

n=l
(�xn,j)

2

,

Fig. 4  Spatial distributions of the SSTA forecast RMSE (normalized 
by the standard deviation of the CO

2
 detrended SSTA time series 

at each grid point) given by three different models for different lead 

time. The contours in the central and right panels bound the areas of 
significant improvements for the forecast RMSE of joint L-SST + 
OHC and NL-SST + OHC models over the separate L-SST model
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lower the RMSE than the L-SST model for lead times up 
to 11 months.

To find the areas where these SST + OHC models demon-
strate statistically significant improvements of the prediction 
skills, we use a surrogates test similar to the test suggested 
by Mukhin et al. (2021). First, we produce 1000 surrogates 
of the first SSTA PC using the optimal L-SST model and 
1000 surrogates of the second OHCA PC using the optimal 
L-OHC model. Each surrogate is a stochastic time series 
produced by the corresponding model starting from random 
initial point. The length of each surrogate N = 732 months 
is equal to the length of the original dataset. Then we train 
the SST+OHC models with optimal values of their hyperpa-
rametes on each pair of surrogates and calculate the metric 
(7) in the physical space. Using the obtained ensemble of the 
RMSE values we can find the areas where the RMSE of the 
SST + OHC models constructed from data lies on the tail of 
distribution. Thus the null hypothesis to be rejected supposes 
that the model that includes the information about both SST 
and OHC variability delivers the same prediction skills as 
the separate SST and OHC models. The areas where the null 
hypothesis is rejected at significance levels of 0.1 and 0.35 
are marked by contours in Fig. 4. We observe that the the 
most significant improvements of the 11-month prediction 
skills using the SST+OHC models appears in the central 

tropical Pacific around the Niño 3.4 region (5 S–5 N, 160 
E–150 W) (Bamston et al. 1997).

Seasonal dependence of model prediction skills
Figure 5 shows the month-to-month distribution of the 

prediction skill of different models for the Niño 3.4 index. 
The top panel corresponds to the RMSE metric (7) and the 
low panel—to the correlation metric (8). For all models 
we observe drop of the skills in the Niño 3.4 forecasts 
in the late spring and summer months. In other words, 
the Niño 3.4 index is less-predictable in the months when 
ENSO events normally start to develop. It is a manifesta-
tion of the so-called ”spring predictability barrier” which 
is a common problem for statistical and dynamical ENSO 
models (Bamston et al. 1997). From Fig. 5 one can see 
that the joint SST+OHC models have significantly bet-
ter prediction skills as compared with the separate linear 
SST model, for all months including ones associated with 
the spring barrier. The 0.1 and 0.35 significance levels 
are evaluated for both metrics using the statistical test 
described above with 1000 surrogates. Figure 6 displays 
the month-to-month dependence of the prediction skills 
for second OHCA PC, which plays the role of an index 
characterizing OHC accumulation in the tropical Pacific. 
For this variable, we also see the predictability barrier, 
but now the drop of the prediction skills falls in the winter 

Fig. 5  Seasonal dependence of 
the prediction skills of different 
models calculated for the Niño 
3.4 index. The forecast RMSE 
7 normalized by the standard 
deviation of the CO

2
 detrended 

Niño 3.4 index (upper panels) 
and the correlations 8 (bottom 
panels) are shown for different 
target months and lead times 
ranging from 1 to 12 months. 
The contours in the central and 
right panels bound the areas 
of significant improvements 
of the joint L-SST + OHC 
and NL-SST + OHC model 
prediction skills relative to the 
separate L-SST model. The 
left-tailed statistical test is used 
for the RMSE metric, and the 
right-tailed test is used for the 
correlation metric (see the text)
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months.Thus we obtain that predictability barriers of first 
SSTA PC and second OHCA PC are shifted to each other 
by 5–7 months. It is consistent with Fig. 3 which demon-
strates the equivalent phase shifting between these PCs. 
Again, the SST + OHC models outperform the separate 
OHC-based model.

In this section we found that both the L-SST + OHC 
and NL-SST + OHC models yield significant benefits in 
the forecast as compared with separate models. At the same 
time, they deliver almost the same prediction skills, with 
no significant differences. This means that the nonlinearity 
does not matter for intra-annual multi-month forecasts in 
the tropical Pacific region. In the next section, we show that, 
nevertheless, the NL-SST + OHC model captures signifi-
cant nonlinear laws that manifest themselves in the observed 
dynamics on inter-annual scales.

3.3.2  Simulation of ENSO phase locking

The spring predictability barrier is closely connected with 
ENSO phase locking to the annual cycle (Liu et al. 2019). 
Tippett and L’Heureux (2020) demonstrated that approxi-
mately 90% of observed seasonal evolution of the Niño 
3.4 index can be explained by deterministic year-long 
signal defined on the June–May interval, which reaches a 

maximum in December and has the lowest absolute values 
at the boundaries of the interval—in June and May. This sig-
nal, multiplied by different amplitudes in different June–May 
windows, “isolates the intrinsic seasonal cycle of ENSO 
evolution and its phase-locking to the annual cycle” (Tip-
pett and L’Heureux 2020).

Technically, we can retrieve the seasonal cycle of this 
type from a monthly ENSO index by means of the EOF 
decomposition applied to the set of non-overlapping suc-
cessive 12-month segments of the index time series. The 
leading EOF of the obtained yearly 12-channel time series 
(hereinafter, the temporal EOF) determines the required 
12-month cycle, whereas the corresponding PC is a yearly 
time series of the cycle amplitudes. Obviously, this leading 
EOF depends on the dividing the time series into the seg-
ments, or, equivalently, selecting the start month of the seg-
ment. Since we naturally interest in obtaining the cycle that 
explains a substantial part of variability, we select the start 
month providing that the leading temporal EOF captures the 
largest variance of the original index.

We have checked if strong seasonal cycles underlie the 
first SSTA PC and second OHCA PC time series. The black 
boxes in Fig. 7 indicate the fraction of variance explained by 
the leading temporal EOFs depending on the segment start 
months. This figure shows a strong cycle in the SSTA PC 
that starts in May–June and captures about 86% of variance, 

Fig. 6  The same as in Fig. 5 
but for the OHCA PC2 (see the 
text). The RMSE is normalized 
to the standard deviation of the 
OHCA PC2
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which is in agreement with the results obtained by Tippett 
and L’Heureux (2020) for the Niño 3.4 index. For the second 
OHCA PC, 88% of variance is explained by the cycle start-
ing from December–January. This tells us that we would 
be facing a winter (not spring) barrier, if we constructed a 
model based on this OHC time series alone. In Fig. 7c, d the 
temporal EOFs determining the shapes of the above cycles 
are plotted. Although, as expected, the SST cycle peaks 
in December, the OHC accumulation cycle culminates in 
August–September.

Now let us look how our data-driven models reproduce 
these cycles. We repeated the cycle analysis described above 
for the time series generated by both the L-SST + OHC and 
NL-SST + OHC models; the results are shown in Fig. 7 by 
blue and red, respectively. We performed 1000 model runs 
per model, calculated the leading temporal EOFs for each 
time series from this ensemble, and then evaluated the con-
fidence intervals for the EOFs and variances in each month. 
Overall, we can say that both models reproduce well the 
temporal EOF patterns and therefore capture the seasonal 
cycles in the two key variables of ENSO.

Figure 8a–d shows several planes of lead-lag and syn-
chronous dependencies between the temporal EOF (cycle) 
amplitudes in the SSTA PC1 and the OHCA PC2 time 
series. It can be observed from the planes (c) and (d) that the 
dependencies of the OHC cycle amplitude on the previous 
OHC and SST cycle amplitudes look nonlinear. To verify the 
nonlinearities observed, we fit the linear Y = B ⋅ X + A + � 
as well as quadratic Y = C ⋅ X2 + B ⋅ X + A + � functions to 
the observed dependencies and analyze the significance of 
the quadratic terms. The traditional least square method was 
used for estimating the coefficients A, B and C as well as the 
variance of an approximation error � represented as Gauss-
ian noise without point-to-point correlations. The resulting 
fits are shown by blue and red in Fig. 8a–d. We can notice 
that the curves of the linear and quadratic models are most 
distinct in the planes (c)–(d). Testing the significance of the 
quadratic approximation can be performed via rejecting the 
null-hypothesis that the obtained value of the coefficient C in 
the quadratic term could be obtained from a similar sample 
but with a linear dependence between variables. For each 
plane, using the linear function fitted to the original sample, 

Fig. 7  Leading temporal EOF in ENSO dynamics. Top panel: vari-
ance explained by the leading temporal (12-month) EOF of the SSTA 
PC1 (a) and the OHCA PC2 (b) is shown as a function of the first 
month of the EOF. The black boxes correspond to the data-based PCs 
and the color curves correspond to the PCs produced by the L-SST 
+ OHC (blue) and NL-SST + OHC (red) models. Bottom panel: the 

leading temporal EOF of the SSTA PC1 (c) and the OHCA PC2 (d). 
The black curves correspond to the data-based temporal EOFs and 
the color curves correspond to the temporal EOFs in the behavior 
of the L-SST + OHC (blue) and NL-SST + OHC (red) models. The 
90% confidence intervals are evaluated using the ensemble of 1000 
model runs (see the text)
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we generated an ensemble of 1000 random surrogate sam-
ples. Then we fitted the quadratic model to each surrogate 
and used the resulting values of C as the ensemble corre-
sponding to the null-hypothesis. Such ensembles relating to 
the planes from Fig. 8 are shown in Fig. 9. It is seen from 
this figure that the quadratic approximation is significant by 
level 0.1 for the planes (c) and (d) from Fig. 8 indicating an 
apparent nonlinear dependence of the current OHC cycle on 
the previous OHC and SST cycles.

Next, we can use our optimal data-driven models for veri-
fying the detected nonlinear relationships. To this end, we 
took an ensemble of 1000 monthly time series of SSTA PC1 
and OHCA PC2 generated by the NL-SST + OHC model, 
and, for comparison, the same ensemble but generated by 
the L-SST + OHC model. Then we calculated the OHC and 
SST cycles amplitudes from these time series and plotted 
resulting probability densities (PDs) in the planes shown in 
Fig. 8. Naturally, no nonlinearity can be captured by a linear 

Fig. 8  Relationships between 
state variables. Left column: 
the planes of the amplitudes of 
the leading temporal EOF of 
the SSTA PC1 (May is the first 
month) and the OHCA PC2 
(January is the first month). 
Black points correspond to 
data and colored points—to 
the approximations of data 
via linear (blue) and quadratic 
regression models (red). Central 
and right columns: PDs in the 
same planes, estimated from 
1000 runs of the L-SST + OHC 
and NL-SST + OHC models, 
respectively
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model, therefore, the L-SST + OHC model yields Gauss-
ian PD in all the planes considered. However, the optimal 
nonlinear (NL-SST + OHC) model produces apparently 
non-Gaussian PDs thus confirming pronounce nonlinear 
laws underlying the inter-cycle dynamics. We can also con-
clude that although this nonlinear model does not provide 
additional benefits in short-term forecasting over the linear 
model, it nevertheless more adequately reflects the dynami-
cal properties of ENSO on interannual scales.

4  Discussion

In this study we have utilized gridded datasets of the tropical 
Pacific SST and OHC anomalies in the 0–300 m depth layer 
to reveal the dynamical variables containing meaningful 
information about ENSO as well as to construct the data-
driven model based on these variables. The EOF analysis 
applied to both data sets clearly demonstrates phase rela-
tionships between the first SSTA and second OHCA PCs 
yielding the largest absolute cross-correlations when the 
corresponding time series are shifted by about 5–9 months. 
While the first SSTA EOF is known to be associated with 
SST variability in the highly ENSO-related region, the sec-
ond OHCA EOF, in accordance with Clarke et al. (2007), 
likely reflects the OHC accumulation and discharge before 
and during the El Niño events, respectively.

We constructed and compared different (linear and non-
linear) data-driven stochastic models based on the SSTA 
PC1 and OHCA PC2 variables taken separately and together. 
It is shown that the data-driven models combining these two 
variables yield significant benefits in predicting both the SST 
and OHC variability and allow to substantially lower the 
seasonal predictability barriers as compared with the sepa-
rate models. Thus the second OHCA EOF can be used as an 
effective additional ENSO predictor in statistical models.

We then obtained that the seasonal cycles (dominating 
12-month patterns) in SST and OCH variability are differ-
ent: while the SST cycle peaks in early winter and drops in 
late spring, the OHC accumulation cycle is shifted forward 

by approximately 8 months. Generally speaking, a strong 
seasonal cycle in a single variable, defined as the leading 
temporal EOF, unavoidably leads to the existence of a pre-
dictability barrier when we use a statistical model derived 
from the time series of this variable. The reason is that the 
variable values at months inside the cycle interval are highly 
correlated, but the inter-cycle connections are more stochas-
tic. A possible way to overcome such a barrier is to invoke 
an additional variable that is connected with the original 
one, but has no barrier in the same months. As it is seen 
from Figs. 5, 6 and 7, there is a pronounce winter (Dec–Jan) 
predictability barrier in the OHC accumulation variability, 
in contrast to the well-known spring barrier in the SST vari-
ability. Note that if the similar seasonal patterns in the SST-
based Niño-family indices are mentioned in other studies 
(Kondrashov et al. 2005; Tippett and L’Heureux 2020; Chen 
and Jin 2020, 2021), the corresponding OHC seasonal evolu-
tion has not been in focus yet. Since it is found that the joint 
SST+OHC models outperform the separate SST and OHC 
models in prediction skill, we conclude that the detected 
SST and OHC accumulation cycles strongly interact, and 
hence, the use of the combined SST-OHC phase space helps 
to lower the seasonal barriers in the ENSO variables.

We also derived from data that the inter-annual interac-
tion of the cycles is substantially nonlinear, and the optimal 
data-driven model with the nonlinear parameterization con-
firms this. It is important that ENSO manifests its nonlin-
ear dynamical properties on long, interannual scales, while 
nonlinearity on several-month intervals is not resolved. This 
finding opens prospects for developing nonlinear statistical 
models for yearly ENSO variability, which could expand the 
horizon of ENSO forecasts.

Appendix: Bayesian approach to ENSO 
model learning and optimization

Here we outline the Bayesian approach we use for learn-
ing and optimization of the stochastic model (2). The opti-
mal model relied on observed data is supposed to be a right 

Fig. 9  Testing the significance of the quadratic term. PDs of the coef-
ficient C of the quadratic model fitted to each of 1000 surrogate time 
series produced by the linear model. Each plot from left to right cor-

responds to a particular plane from Fig. 8a–d. Blue lines denote the 
values of coefficient C of the quadratic model fitted on data. Red lines 
mark the 10th and 90th percentiles
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balance between the “too simple” model poorly describing 
data and “too complex” model which contains too many 
parameters and tends to be ovefitted to the available sample 
rather than to capture the laws underlying the dynamics. Let 
the � =

{
H1,H2,… ,H

i
,…

}
 is the set of possible hypoth-

eses about the model complexity. In the case of a stochastic 
model (2) each hypothesis Hi is determined by the particu-
lar combination of the hyperparametrs l, q in the case of 
the linear parameterization (3)–(4) of deterministic part � 
and l, m in the case of the nonlinear parameterization (5). 
According to the Bayes rule the probability P(Hi|�) that the 
model Hi produces the observed time series � = (�1,… , �n) 
is equal to:

Here probability density function (PDF) P(�|Hi) is the evi-
dence (marginal likelihood) of the model Hi characterizing 
the probability of the observed data � to belong to the whole 
possible ensemble of time series which can be produced 
by the model Hi ; P(Hi) is a prior probability of the model 
Hi . The denominator in (9) is a normalization term which 
does not depend on Hi . Assuming all the models from � 
equiprobable a priori, the expression (9) can be rewritten as 
P(Hi|�) = �P(�|Hi) where � is independent of Hi . Let us 
define the Bayesian criterion of the model optimality

minimization of which leads to maximization of the PDF 
P(�|Hi) . The optimality criterion (10) has a clear interpre-
tation. If the model Hi is too simple, than the observed data 
likely lie on a tail of the PDF P(�|Hi) . Therefore, the prob-
ability that the observed data � could be produced by such 
a model is small. In contrast, the overfitted model, due to a 
large number of parameters, produces a widely distributed 
population of different datasets, which lowers again the PDF 
of the observed � . Therefore, the optimality (10) helps to 
select the optimal model that is neither too simple nor over-
fitted model.

The evidence P(�|Hi) is expressed via integration 
of the product of the corresponding likelihood function 
P(�|�� ,��̂,Hi) and the prior distribution P(�� ,��̂|Hi) over 
the model parameter space:

Here the vectors �� ,��̂ contain parameters of the determin-
istic part � and the stochastic part of the model (2), respec-
tively. The likelihood function P(�|�� ,��̂,Hi) corresponds 
to the assumption that the stochastic part of the model is the 
delta-correlated in time Gaussian process with the amplitude 
�̂ (see Sect. 2.2.1):

(9)P(Hi��) =
P(��Hi)P(Hi)∑
i P(��Hi)P(Hi)

.

(10)L = − logP(�|Hi),

(11)P(�|Hi) = ∫ P(�|�� ,��̂,Hi) ⋅ P(�� ,��̂|Hi)d����̂.

H e r e  Î  i s  t h e  d × d  i d e n t i t y  m a t r i x , 
PN(�, Σ̂) ∶=

1√
(2�)d�Σ̂�

exp
�
−

1

2
�T Σ̂−1�

�
 ,  � ∈ ℝ

d  , 
l∏

n=1

PN(�n, Î) is a term describing PDF of the initial state of 

the model (see Gavrilov et al. 2017 for more details). The 
prior PDF P(�� ,��̂|Hi) is the product of Gaussian PDFs for 
each parameter of the model. The proper choice of disper-
sions of the corresponding PDFs for linear (3)–(4) and non-
linear (5) parametrizations is discussed in detail in Mukhin 
et al. (2021), and Seleznev et al. (2019).

The evidence (11) is estimated using the Laplace’s 
method based on approximate integrating in the neighbor-
hood of maximum of integrand. Let us denote the minus 
logarithm of the integrand in (11) as �

Hi
(�� ,��̂) . Then the 

integrand can be rewritten as:

The integration of (11) using Laplace method by decompos-
ing the function �Hi

(�� ,��̂) in the neighborhood of its mini-
mum into a second-order Taylor series leads to the following 
expression for the optimality criterion (10):

Here �Hi
(�� ,��̂) is the function value at its minimum, M is 

full number of model parameters collected in vectors �� ,��̂ , 
∇∇T�Hi

(�� ,��̂) is the M ×M matrix of the second deriva-
tives (hessian matrix) at the minimum. The first term in (14) 
reflects the accuracy of data approximation by the model. It 
decreases with expanding the model complexity, i.e. with 
growing of number of parameters, and therefore prevents too 
simple models. In contrast, the second term in (14) increases 
with growing of the number of model parameters and penal-
izes the overfitted models. The particular algorithm we use 
for numerical calculation of (14) can be found in Seleznev 
et al. (2019).

In practice, to select the optimal hyperparameters, we 
iterate over the integers q (or m) and l in a wide predefined 
range and select those that provide the smallest L. In this 
work we define the range [0, 1,… , 6] for q, [1, 2,… , 10] for 
m, and [1, 2,… , 10] for l.

(12)

P(�|�� ,��̂,Hi
) =

l∏

n=1

PN(�n, Î) ×

N∏

n=l+1

PN(�n − �
(
�
n−1,… , �

n−l

)
, �̂�̂T ).

(13)P(�|�� ,��̂,Hi
) ⋅ P(�� ,��̂|Hi

) = exp(−�
Hi
(�� ,��̂)).

(14)
L = − logP(�|Hi)

=�Hi
(�� ,��̂) +

1

2
ln

[
1

(2�)M
|||∇∇

T�Hi
(�� ,��̂)

|||

]
.
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