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Abstract
Skillful subseasonal prediction is crucial for meteorological disaster prevention and risk management. In this study, the 
subseasonal prediction skills of the new-generation coupled model of Beijing Climate Center (named as BCC-CSM2-HR) 
were evaluated, and a dynamical-statistical prediction model (DSPM) was developed to further improve pentad-mean pre-
cipitation predictions in China. The results show that although BCC-CSM2-HR can generally capture the climatological 
rain belt movement over eastern China, its skillful predictions for rainfall anomalies are basically confined within 3 pentads. 
By combining the dynamical model output and statistical method, a DSPM was built to capture the simultaneously coupled 
evolving patterns between anomalous precipitation and its atmospheric circulation predictors for each subregion of China, 
which was divided in terms of a cluster analysis. The 9-year independent validation shows that the prediction skills of DSPM 
had been significantly improved after 3 forecast pentads compared with the original model forecast. The skillful prediction 
can persist for a 6-pentad lead especially over the northern China and the Yangtze-Huaihe River Basin in the DSPM. As the 
major predictability sources of subseasonal forecasts, the Madden–Julian oscillation (MJO) and boreal summer intraseasonal 
oscillation (BSISO) are skillfully predicted by the BCC model for up to 23 days and 10–13 days, respectively. As a result, 
the improved performance of the DSPM can be largely attributed to its more realistic representation of MJO and BSISO 
associated circulation anomalies.

Keywords  Subseasonal forecast · BCC S2S model · Dynamical-statistical prediction · Predictability sources · Madden–
Julian oscillation (MJO)

1  Introduction

The subseasonal prediction (10–60 days) is subjected to the 
fast damping of atmospheric initial signals and the inad-
equate representation of boundary conditions. Therefore, the 
prediction skill of subseasonal prediction is relatively lower 

than weather forecasts (shorter than 10 days) and climate 
predictions (longer than 2 months), which has become the 
gap in seamless operational predictions (Brunet et al. 2010). 
However, subseasonal predictions for long-lasting extreme 
events (such as continuous rainstorms, heat waves and freez-
ing snow) are particularly important for disaster prevention, 
risk management and agricultural planning (Zhang 2013).

Intraseasonal oscillation (ISO) is an important source 
of subseasonal predictability due to its relatively regu-
lar activity characteristics. In the tropics, intraseasonal 
variability is dominated by the Madden–Julian oscil-
lation (MJO; Madden and Julian 1971, 1972), which is 
characterized by a planetary-scale eastward-propagating 
convection-circulation coupled pattern with time scales 
of 30–80 days (Zhang 2005; Adames and Wallace 2014; 
Li et al. 2020). By releasing abundant diabatic convec-
tive heating, the MJO will exert remarkable influences on 
global teleconnections (Stan et al. 2017), monsoon activity 
(Taraphdar et al. 2018a, b), tropical cyclone genesis (Zhao 
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et al. 2019), and extreme events (Ren and Ren 2017; Hsu 
et al. 2020). Other than the MJO, the intraseasonal vari-
ability in the Asian summer monsoon displays different 
features, such as northward or northwestward propaga-
tion with dual oscillation period peaks of 10–30 days and 
30–60 days, which is recognized as the boreal summer 
intraseasonal oscillation (BSISO; Lee et al. 2013). Recent 
studies have revealed that the BSISO also plays an impor-
tant role on the formation of extreme rainfall and heat 
waves over the eastern China by modulating anomalous 
water vapor transport and vertical circulation (Hsu et al. 
2017; Ren et al. 2018). Therefore, the ISO is considered 
useful for bridging the gap between synoptic and climatic 
timescales. Additionally, recent studies have revealed that 
the quasi-biennial oscillation (QBO) (Zhang and Zhang 
2018), snow cover (Li et al. 2018), stratosphere-tropo-
sphere interaction (Schwartz and Garfinkel 2020) and 
intraseasonal SST variability (Zhu et al. 2021) also act as 
additional potential predictability sources on subseasonal 
timescales.

Based on theoretical advances, several statistical mod-
els have been developed for subseasonal prediction, such 
as the linear regression pattern by the MJO, the “low-fre-
quency weather map” and the principal oscillation pat-
tern (Yang et al. 2012). Specifically, the spatial–temporal 
projection models (STPMs) proposed by Hsu et al. (2015) 
and Zhu et al. (2015) can capture the successively vary-
ing spatial and temporal information of coupled predictor-
predictand patterns well, showing considerable skills for 
predicting summer rainfall, heat waves and cold winter 
days (Zhu and Li 2017, 2018). However, the statistical 
models that mainly rely on the significance of previous 
signals show limits in capturing intraseasonal variability 
at shorter forecast leads (e.g., 10–30 days) or predicting 
rapid swing events (Zhu and Li 2017).

Efforts have also been made to fill the prediction gap 
in the subseasonal time scale based on dynamical models 
(Vitart 2014; Kim et al. 2018), such as improving the ini-
tial conditions (Fu et al. 2011; Wu et al. 2020), optimiz-
ing ensemble strategies (Ham et al. 2012; Hudson et al. 
2013; Green et al. 2017), refining air-sea coupling (Fu 
et al. 2013; Zhu et al. 2018) and developing more realistic 
physical processes (Hirons et al. 2013; Liu et al. 2019). In 
this context, the Subseasonal to Seasonal (S2S) predic-
tion project (Vitart et al. 2017) provides an unprecedented 
opportunity to evaluate the latest subseasonal predic-
tion ability of the 11 most advanced dynamical models 
in operational centers and research institutes worldwide. 
Recent studies have revealed that S2S models gain consid-
erable skills in MJO (Lim et al. 2018), BSISO (Jie et al. 
2017) and their associated convection predictions (Wang 
et al. 2019). However, the usefulness for direct precipita-
tion predictions in dynamic model is generally limited to 

2 weeks and mostly confined to the tropics (Andrade et al. 
2019).

Several factors can contribute to the limited predictive 
skills of precipitation in dynamical models. For instance, 
S2S models still have difficulties in realistically represent-
ing extratropical responses to the MJO (Vitart et al. 2017) or 
capturing the ISO signals in extratropical and mid-latitude 
regions (Zheng et al. 2020). Therefore, potential benefits 
may be gained by effectively combining these dynamical 
models and empirical/statistical methods to calibrate precip-
itation predictions. Although previous studies on seasonal-
scale prediction have shown the effectiveness of utilizing 
dynamical-statistical models (Liu et al. 2021a, b, c), few 
attempts have been made at the subseasonal timescale (Wu 
and Jin 2021).

As a participant in the S2S prediction project, the Bei-
jing Climate Center-Climate System Model (BCC-CSM) has 
been widely used in operational subseasonal prediction and 
displays considerable skills for MJO and monsoon circula-
tion prediction (Wu et al. 2016; Liu et al. 2017; Liu et al. 
2021a, b, c). Compared with its previous version (BCC-
CSM1.2), many improvements have been made for the lat-
est model (BCC-CSM version 2-High Resolution, named as 
BCC-CSM2-HR) that participates in S2S project Phase II 
(Wu et al. 2021), such as a higher atmospheric resolution, 
implementation of a new data assimilation scheme (Liu et al. 
2021a, b, c), and modification of convection and cloud phys-
ical processes (Wu et al. 2019). As a result, these improve-
ments in BCC-CSM-HR contribute to better simulations 
performance than the previous version in many aspects (Wu 
et al. 2021). In this study, the latest BCC-CSM-HR model 
will be used to evaluate its ability to predict subseasonal 
precipitation anomalies and further develop a dynamical-
statistical model to improve its prediction skill.

The remainder of this paper is organized as follows: 
The hindcast and observation data, as well as verification 
method, are introduced in Sect. 2. The subseasonal predic-
tion performance of BCC-CSM-HR is evaluated in Sect. 3. 
The detailed procedure of the dynamical-statistical model 
and its advantages are given in Sect. 4. The possible predict-
ability sources for the dynamic statistical model are exam-
ined in Sect. 5. A summary and discussion are presented in 
Sect. 6.

2 � Model, data and method

2.1 � Model hindcast data

The BCC new-generation dynamical prediction system 
based on BCC-CSM2-HR has participated in the S2S pre-
diction project Phase II in place of BCC_CSM1.2. The 
atmospheric component of the BCC-CSM2-HR model has 



1215The dynamical‑statistical subseasonal prediction of precipitation over China based on the…

1 3

an increased resolution, from T106L40 to T266L56, with the 
top layer and model lid at 0.156 and 0.092 hPa, respectively. 
Moreover, the dynamical core and model physics have also 
been updated, such as inclusion of spatially variant diver-
gence damping processes and improved deep convection and 
cloud macrophysics schemes (Wu et al. 2019). The ocean 
and sea ice components are also updated from MOM4 and 
SIS4 to MOM5 and SIS5, respectively, with resolutions of 
1/4° × 1/4° in the horizontal layer and 40 layers in depth. The 
land component is BCC-AVIM version 2 (Li et al. 2019). 
Following all of the above improvements, the model’s rep-
resentation of the ENSO seasonal cycle, the eastward propa-
gation of the MJO, and the downward propagation of the 
QBO are much more reliable than the previous version (Wu 
et al. 2021).

Different from the fixed hindcast strategy used in the S2S 
project Phase I, the BCC-CSM2-HR adopted the on-the-
fly hind strategy, and running twice a week (on Monday 
and Thursday) for a 60-day integration in the past 15 years. 
Each forecast consists of 4 ensemble members from a sto-
chastic perturbation of physics tendencies (SPPT) scheme. 
The hindcast data used in this study were generated in 2020, 
which cover the period of 2005–2019. All the circulation 
variables were interpolated onto grids with a horizontal reso-
lution of 2.5° × 2.5°, except for the precipitation data, which 
were interpolated onto a higher resolution (0.5° × 0.5°) grid 
in China.

2.2 � Observational data

For model verification and dynamical-statistical model con-
struction, the daily geopotential height, zonal wind, sea level 
pressure and specific moisture are taken from the National 
Centers for Environmental Prediction/National Center for 
Atmospheric Research (NCEP/NCAR) Reanalysis version 
1 dataset (Kalnay et al. 1996), and the daily outgoing long-
wave radiation (OLR) data are from the National Oceanic 
and Atmospheric Administration (NOAA; Liebmann and 

Smith 1996). Specifically, the grid precipitation of the CRA-
40/Land dataset (Liang et al. 2020) with 0.5° × 0.5° grid in 
China is used to avoid the uneven spatial distribution of sta-
tion data. The precipitation form CRA-40/Land dataset has 
introduced two sets of observation based global precipitation 
analyses, which are CPC Merged Analysis of Precipitation 
(CMAP; Xie and Arkin 1997) and CPC unified daily gauge 
analysis (CPCU; Xie et al. 2007), and blended them with the 
CRA-40 reanalysis precipitation. Therefore, the precipitation 
from CRA-40/Land dataset is highly consistent with other 
rain gauge-based gridded dataset in China, such as CN05.1 
(Wu and Gao 2013). All the observational data cover the 
period of 1981–2019.

2.3 � Methodology

A pentad mean is applied to remove synoptic-scale distur-
bances, with 6 fixed pentads for one month and 72 pentads 
for one year. Then, to obtain the anomaly of each pentad, the 
climatologic annual cycle is removed by subtracting a clima-
tological 18-pentad low-pass filtered component, while the 
climatology is defined as the 30-year average of 1981–2010. 
Note that for the hindcast data, the pentad mean is calculated 
from the average of the latest 2 forecasts from the initial 
date, and the model climatology is a function of both the 
initial calendar date and lead time.

Because the distinct variation characteristics in different 
regions, it is necessary to divide the entire China domain into 
several subregions that share spatially coherent variability. 
Here, K-means cluster analysis (Kaufman and Rousseeuw 
2009) was used to objectively classify the subregions for 
boreal winter (NDJFMA) and summer (MJJASO) extended 
seasons. As shown in Fig. 1, seven subregions [from Region 
1 (R1) to Region 7 (R7)] may be appropriate for the divi-
sions: northeast China (NEC), north China (NC), Yangtze-
Huaihe River Basin (YH), south China (SC), southwest 
China (SWC), Tibetan Plateau (TP), and northwest China 
(NWC). Compared with winter, the slight differences in the 

Fig. 1   Divisions of China for a expanded boreal wintertime (NDJFMA) and b summertime (MJJASO) based on the K-means cluster analyses of 
subseasonal rainfall anomalies
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divisions in the summer half-year mainly lay on the expan-
sion of the SWC and SC regions, which may be attributed 
to the northward advance of the southwest summer mon-
soon. Therefore, seven rectangular domains for each region 
(Tables 1 and 2) are defined, and the prediction results for 
the overlap sectors are the average of both involving regions 
to ensure a smooth transition across the regions when com-
bining the forecasts of subregions into the entire China.

A dynamical-statistical prediction model (DSPM) is 
proposed to improve the original dynamical model fore-
cast in this study. The major procedures to construct the 
model are shown in Fig. 2 and can be described as follows. 
(1) Extended-singular value decomposition (E-SVD). For 
each subregion, simultaneously consecutive 6-pentad data 
of predictor and predictand are used for the E-SVD so that 
the temporally coupled evolving patterns are extracted for 
predictor and predictand. (2) Linear Regression. A linear 
regression relationship is built according to the time series 

of observed predictor and predictand. (3) Projection. the 
dynamical prediction of each predictor is used for projec-
tion to obtain the time series of predictors, which are further 
plugged into the regression equation to calculate the pre-
dictand time series. (4) Reconstruction. Prediction can be 
made by multiplying the reproduced time series by the pre-
dictand modes. Finally, the prediction should be modulated 
by multiplying the amplification factors that are determined 
by the amplitude ratios between observation and DSPM 
original prediction during the training period.

The temporal correlation coefficients (TCCs) and the spa-
tial anomaly correlation coefficients (ACCs) are used as skill 
metrics for verifying precipitation forecasts. All of the time 
correlation verification of precipitation forecasts are based 
on pentad data, and effective sample size is estimated fol-
lowing Chen (1982) to determine the significance threshold 
of TCC skills. The significance of the TCC differences was 
examined using Steiger’s Z-test (Raghunathan et al. 1996). 

Table 1   Details of the 7 subregions and their corresponding predictors in MJJASO

Region Geographic areas Domains Predictor domains Predictors

R1 Northeast China
(NEC)

115.25° E–135.25° E;
39.25° N–53.75° N

60° E–180° E;
20° N–80° N

SH700, U850, H200, H850

R2 North China
(NC)

99.25° E–118.25° E;
34.25° N–45.75° N

40° E–160° E;
0° N–70° N

SH700, SLP, U200, U850, H200, H850

R3 Yangtze-Huaihe River Basin
(YH)

102.25° E–123.25° E;
29.25° N–37.75° N

40° E–160° E;
10° S–60° N

OLR, SLP, U200, H850

R4 South China
(SC)

104.25° E–123.25° E;
18.25° N–31.25° N

60° E–160° E;
20° S–50° N

OLR, U200, U850, H500, H850

R5 Southwest China
(SWC)

83.25° E–106.25° E;
20.25° N–32.25° N

20° E–140° E;
20° S–60° N

OLR, SH700, U200, H200, H850

R6 Tibet Plateau
(TP)

78.25° E–104.25° E;
29.25° N–36.25° N

20° E–130° E;
0° N–70° N

OLR, SH700, U200, U850

R7 Northwest China
(NWC)

73.25° E–102.25° E;
34.25° N–50.25° N

20° E–130° E;
10° N–70° N

OLR, SH700, U850, H200

Table 2   Same as Table 1, but 
for NDJFMA

Regions Geographic areas Domains Predictor domains Predictors

R1 Northeast China
(NEC)

115.25° E–135.25° E;
39.25° N–53.75° N

60° E–180° E;
10° N–70° N

OLR, U850

R2 North China
(NC)

101.25° E–123.25° E;
33.25° N–46.25° N

40° E–160° E;
0° N–60° N

OLR, SH700, U850

R3 Yangtze-Huaihe River Basin
(YH)

105.25° E–123.25° E;
27.25° N–35.75° N

40° E–160° E;
10° S–60° N

OLR, SH700, U850

R4 South China
(SC)

106.75° E–123.25° E;
18.25° N–29.25° N

40° E–160° E;
20° S–40° N

OLR, SH0700, SLP, 
U850, H850

R5 Southwest China
(SWC)

97.25° E–108.25° E;
20.25° N–32.25° N

20° E–140° E;
20° S–50° N

OLR, U850

R6 Tibet Plateau
(TP)

78.25° E–106.25° E;
26.25° N–37.25° N

20° E–140° E;
20° S–60° N

OLR, SH700, H200

R7 Northwest China
(NWC)

73.25°E–104.25° E;
35.25° N–50.25° N

20° E–140° E;
0° N–70° N

SH700, H200, H500
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The MJO and BSISO prediction skill can be measured by the 
bivariate anomaly correlation coefficient (COR, Gottschalck 
et al. 2010). Single-member predictability is calculated by 
the COR between one ensemble member and the rest of the 
members and averaged over all subsamples, while ensemble 
predictability is measured in the same way but between one 
ensemble member and the mean of the remaining members 
(Kim et al. 2014).

3 � Evaluation of BCC model direct prediction

3.1 � Climatology

The evolution of the climatological rain belt over eastern 
China in the BCC model is evaluated for forecasts at differ-
ent lead pentads. Generally, the forecasted rainfall belt along 
105º–120º E shows consistent features with the observation 
for the short lead time, which is characterized by a north-
ward shift after the onset of the South China Sea summer 
monsoon in late May, reaching northern China in late July 
and retreating southern China in September (Fig. 3). How-
ever, the model biases increase with lead time, as indicated 
by the ACC decreasing from 0.87 to 0.75 for forecasts of 
1–6 pentads. The main deviations lie on the underestimated 
precipitation during the preflood season in the southern 
China and the Meiyu period in the Yangtze River basin after 
the 3-pentad forecast, and there are overestimations of the 
northward movement of the rain belt in northern China and 
precipitation over the second flood season in southern China.

3.2 � Prediction skills of subseasonal precipitation 
in China

The TCC skills of pentad rainfall anomalies predicted by 
the BCC model over China are shown in Fig. 4. The useful 
skills basically persist for approximately 3 pentads in most 
regions, and the relatively higher skills are mainly located 
in southern China and the eastern TP. After 4 pentads, the 
model nearly loses its skill over all of China except south of 
the Yangtze River, with the areally averaged TCC skills over 
all of China dropping below 0.1. Notable that the predic-
tion skills are relatively higher over eastern Tibetan Plateau 
(ETP), consistent with the model’s good performances on 
its local mid-level geopotential height anomalies, which may 
relate to the higher predictability over the tropical Indian 
Ocean through a meridional teleconnection (Fig. S1). 

The skill dependences on the annual cycle are given in 
Fig. 5 for each region. In the climatic sense, the prediction 
skills are relatively higher during the extended boreal win-
ter than summer, especially in February–March and Octo-
ber–November, with the useful skills extending up to 4–5 
pentads over some regions (such as NC, YH, and SC). Note 
that the lowest skills appear in August over the YH and SC 
regions, presumably associated with their larger climatologi-
cal biases at the time (Fig. 3).

3.3 � Prediction skills for atmospheric circulation

Compared with rainfall, circulation forecasts are typically 
much more reliable in the model. Figure 6 shows the skills of 
the 850-hPa stream function, which represents the large-scale 

Fig. 2   The diagram of major steps of DSPM. X and Y are normalized 
predictor and predictand, respectively. i and j denote spatial grids for 
the predictor and predictand, t is time. K is the total number of SVD 
modes. Lk and Rk denote the singular vectors of predictor and pre-
dictand, respectively. lk and rk indicate the time series of expansion 

coefficient of the kth SVD mode for the predictor and predictand, 
respectively. ak and bk indicate the coefficient and constant of the 
regression equation. The subscripts "o" and "f" represent observation 
and forecast. See the text for more information
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Fig. 3   The climatological time-latitude cross-sections of pentad pre-
cipitation (mm day−1) with an average of 105°–120° E from April to 
October for observations (black lines), BCC models (red lines) and 
their differences (shadings). The contours denote rainfall at 4 and 8 

(mm day−1). a–f Show the forecast time of 1–6 pentads. The spatial 
anomaly correlation coefficients (ACCs) between the observations 
and model forecasts are given in the upper-right corner of each panel
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rotational component of low-level circulation. The TCC is 
higher than 0.7 for the first 2 pentads worldwide except for 
the African continent. The skills drop slowly with increasing 
forecast time but still pass the significance level up to 6 pen-
tads over East Asia, the tropical Indian Ocean, and the tropi-
cal Pacific. The predictability sources mainly come from the 
realistic circulation responses to convection anomalies over the 
tropical Indian Ocean-west Pacific (IOWP) warm pool (Fig. 
S2), which are associated with MJO and ENSO (Andrade et al. 
2019). However, the convection signals are mainly confined 
within IOWP warm pool areas and dissipated sooner after 
reaching Western Hemisphere, which may contribute to the 
relatively lower prediction skills of circulation over the African 

continent. Therefore, the skill of precipitation prediction may 
be improved by constructing a reasonable dynamical-statis-
tical model, which could take full advantage of the skillful 
circulation prediction by the dynamical model and the stable 
circulation-precipitation relationship by statistical methods.

4 � The dynamical‑statistical prediction

4.1 � The establishment of the DSPM

Several candidate predictors for precipitation prediction are 
selected according to some previously revealed physical 

Fig. 4   TCC skills for pentad 
precipitation predictions in BCC 
model over China during 2005–
2019. a–f Show the forecast 
time of 1–6 pentads, where the 
stipples denote where the TCCs 
skill are statistically significant 
at the 95% confidence level. The 
TCC skills averaged over China 
are given in the upper-right 
corner of each panel
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Fig. 5   The averaged TCC skills of pentad precipitation predictions in BCC model for each month. a–h Show the NE, NC, YH, SC, SWC, TP, 
NWC and all of China
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mechanisms (Zhu and Li 2017). The OLR, 850-hPa and 200-
hPa zonal winds (U850 and U200) are selected as potential 
predictors since the MJO signal can be well captured by their 
combination (Wheeler and Hendon 2004). U850 and U200 
could also represent activities of the western Pacific subtrop-
ical high (WPSH) and upper-level westerly jet, respectively. 
The geopotential heights at 850, 500 and 200 hPa (H850, 
H500, and H200) are also selected to represent the activity 
of the WPSH and South Asian high (SAH). The specific 
humidity at 700 hPa (SH700) is used given its slowly vary-
ing nature and important impacts on the development of the 
MJO (Hsu and Li 2012). In addition, SLP is a good indicator 
of air mass variability and can directly influence precipita-
tion variation (Liu et al. 2021b). 

Domains of the predictors in different regions are deter-
mined by their lead-lag correlation patterns against the 

region-averaged rainfall index (figures omitted). Generally, 
for the northern regions of China (NEC, NC, and NWC), 
the correlated signals are mainly located over the upstream 
Euro-Asian continent and exhibit eastward propagation; 
however, for the southern regions of China (YH, SC, SWC, 
and TP), the combined effects from both the mid-high lati-
tude and tropical signals are important. The details of the 
selected predictor and predictand and their domains for dif-
ferent regions are listed in Tables 1 and 2 for the extended 
season of summer and winter. The predictions in each region 
are the average of the results of every selected predictor, and 
the predictions of the overlapping areas are the average in 
each involved region.

E-SVD is applied to the simultaneously consecutive 
6-pentad data of each predictor-predictand pair to extract 
their temporally coupled evolving patterns. Figure 7 shows 

Fig. 6   TCC skills for the pentad 850-hPa stream function prediction 
in BCC model during 2005–2019. a–f Show the forecast time of 1–6 
pentads, and the black contours show the TCC skills of 0.21 and 0.5, 
while the 0.21 is TCC criterion of statistically significant at the 95% 

confidence level. The area-averaged TCC skills over the Eurasian-
Pacific domain (40º–180º E, 20º S–70º N) are given in the upper-right 
corner of each panel
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the first leading E-SVD modes for the pentad U850 (OLR) 
with precipitation anomalies in the SC region (R4) during 
the extended winter, which explains 21.0% (16.2%) of the 
squared covariance, and the correlation between the time 
series reaches 0.66 (0.61). As the eastward-propagating inac-
tive convection and east wind anomalies from tropical Indian 
Ocean to the western Pacific, the precipitation anomalies in 
SC clearly experience a transition from a dry to wet phase 
during 6 pentads. This pair of temporally coupled patterns 
reflects the MJO modulation of the rainfall anomaly in SC, 
with more (less) precipitation occurring during Phases 2–3 
(5–6) of the MJO, as revealed in previous studies (Jia et al. 
2011; Li 2014). In addition to tropical signals, it also can be 
found that the rainfall anomalies over SC are influenced by 
the southward propagating circulations from mid-latitude 
during boreal winter.

Similarly, the leading E-SVD modes for the U850 (OLR) 
with rainfall anomalies in the SC region (R4) during the 
summer half-year are shown in Fig. 8, which explains 14.8% 

(15.7%) of the squared covariance, and the time correla-
tion reaches 0.61 (0.64). Compared with winter, the rainfall 
anomaly over SC during summer is mainly influenced by 
the zonally elongated meridional wave train that originates 
from the Maritime Continent and propagates northward into 
central China. When the low-level westerly (easterly) wind 
is dominant, there will be more (less) precipitation over 
SC. These features are tightly associated with the activi-
ties of BSISO (Hsu et al. 2016), with a correlation coef-
ficient between the E-SVD time series and the BSISO1-1 
index defined by Lee et al. (2013) of − 0.57 for the period 
of 1981-2010 MJJASO. Therefore, the simultaneously con-
secutive E-SVD between the predictor and predictand can 
well capture some dominant predictability sources and their 
influences, which sets a solid basis for further dynamical-
statistical combination prediction.

Fig. 7   Patterns for the extended singular vectors of the first leading SVD for the U850 (left 2 columns) and OLR (right 2 columns) with precipi-
tation in the SC region during NDJFMA
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4.2 � Validation of the DSPM

Here, the first 10 leading SVD modes are retained for the 
predictor projection and predictand (precipitation) recon-
struction given that their total accumulated explained 
covariance generally reaches above 70% and the correla-
tions between predictor and predictand basically remain 
above 0.5 for each region. A rolling independent validation 
was carried out during the period of 2011–2019. That is, 
for 2011 (2012), only the observational data of 1981–2010 
(1981–2011) are used for the training model, and so on. 
Selections of the predictor for each region (Tables 1 and 2) 
can be determined by the area-averaged TCC skills during 
the hindcast period (2005–2010).

The area averaged TCC skills of both the DSPM and BCC 
model are given in Fig. 9. During the boreal summer, the 
skills of the DSPM are only lower than the original model 
prediction in the first pentad but generally become higher 
thereafter, especially for NC, YH and NWC. For each pre-
dictor, the OLR and SH700 generally outperformed the other 
predictors for most regions (except NC and NEC), indicating 
the importance of tropical convection and low-level moisture 
in subseasonal precipitation prediction. However, the skills 
of other predictors are diverse on different regions, as some 
predictors are particularly useful in specific regions, such as 
U200 for the YH and TP regions, which may be attributed to 
the strong modulation of the westerly jet over precipitation 
in those regions. During the boreal winter, the superiority 

Fig. 8   Same as in Fig. 7 but for MJJASO
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of DSPM is obviously in the YH and SC region, which are 
mainly associated with the higher skills from the predictors 
of OLR and U850, indicating the potential contribution of 
MJO modulation. However, less skill’s improvement can be 
found in the TP and NWC region, indicating regional differ-
ences exist for DSPM. Overall, the skills of the ensemble-
mean (EMM) predictions for all the predictors are higher 
than those of each single predictor, showing the effective-
ness of the multipredictor ensemble and the rationality of 
predictor selection. The TCC skills of regional mean pentad 
rainfall anomalies (Fig. S3) are generally highly than the 
averaged of TCC skills of each grid, since the regional mean 

acts as spatial average to extract large scale variability. The 
main conclusion still stands that the DSPM also out-perform 
than BCC model over most regions with the similar skill’s 
improvements.

Figure 10 show the distributions of the TCC skills over 
China for the DSPM and their differences from the BCC 
model. In general, the skill descending as the lead time 
is much slower in the DSPM, which can maintain skillful 
prediction over 6 pentads for the central China, YH, Jiang-
nan and NWC regions during boreal summer and for the 
north China and South China during boreal winter. From 
the forecast time of 3 pentads, the DSPM is superior to the 

Fig. 9   The area averaged TCC skills of pentad precipitation anomaly 
forecasts by the BCC model and DSPM during MJJASO (left 2 col-
umns) and NDJFMA (right 2 columns) for each region. The solid 
thick black, red, and thin colored lines represent the skills of the BCC 
model, ensemble mean of the DSPM (denoted as EMM), and each 

predictor of the DSPM, and the dashed gray lines represent statisti-
cally significant correlations at the 95% confidence level. The regions 
are labelled at the upper-left corner of each panel, which are NE, NC, 
YH, SC, SWC, TP, NWC and all of China
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BCC model over most regions and becomes even larger as 
the forecast time increases. Notably, the skills of the DSPM 
over NEC, SWC and coastal SC during boreal summer and 
over west China during boreal winter are relatively lower 
than other regions. These differences may be attributed to 
precipitation variability over those regions are largely influ-
enced by mid-latitude factors, orographic precipitation and 
landing tropical cyclones, respectively, both of which are 
difficult to be captured by DSPM on subseasonal timescales. 
In addition, the ACC skills of the BCC model and DSPM 
also reflect the higher skills of the DSPM after 2–3 pentads, 
especially for the YH, TP and NWC regions.

A typical case study for the real-time prediction of the 
record-breaking rainfall event over the Yangtze River Basin 
in June 2020 (Liu et al. 2020) is shown in Figs. S4–S5. The 
forecast initialized on 1st June in the DSPM steadily cap-
tured the rain belt over the mid-lower reaches of the Yangtze 
River, with the ACC skills sustained at approximately 0.3 for 

6 pentads, while the skills of the BCC model dramatically 
decreased to below 0 after 4 pentads.

5 � Predictability source analysis

5.1 � Predictability of the MJO and BSISO

The potential predictability sources for the subseasonal pre-
diction in the DSPM and BCC model are analyzed in this 
section. Generally, because of their regular activity nature 
and significant modulations of precipitation anomalies (as 
shown in Figs. 6 and 7), both the MJO and BSISO are well 
recognized as the major predictability sources for subsea-
sonal prediction. Therefore, it is valuable to examine the 
predictability of the MJO and BSISO in the BCC model 
and their possible effects on subseasonal prediction skills.

The prediction skill and the predictability of the RMM 
and BSISO index as a function of lead time in the BCC 

Fig. 10   TCC skills of the DSPM (left 2 columns) and the skill differ-
ences between the DSPM and BCC model (right 2 columns) during 
2011–2019 MJJASO (the 1st and 3rd columns) and NDJFMA (2nd 
and 4th columns). The 1st to the 4th rows show the forecast time of 

3–6 pentads. The stipples denote where the TCC skills or the skill dif-
ferences are statistically significant at the 95% confidence level. The 
skills or the skill differences averaged over China are given in the 
upper-right corner of each panel
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model are shown in Fig. 11. During the boreal winter, the 
single-member and ensemble-mean prediction can achieve 
useful RMM skills up to 20 and 23 days in advance, respec-
tively, when taking the corresponding COR beyond 0.5 as 
the threshold. Such an increased skill level, compared with 
the previous version of the BCC model (Liu et al. 2017), 
is still lower than the potential predictability limit, which 
can reach up to ~ 35 days in terms of single-member esti-
mation and ~ 40 days in terms of ensemble-mean estima-
tion. During the boreal summer, the prediction skill and 
predictability of the RMM index become slightly shorter 
(Fig. 11b), with approximately 19 and 22 days for the single-
member and ensemble-mean predictions, respectively. For 
the BSISO index (Lee et al. 2013), as seen in Fig. 11c, d, 
the number of useful forecast days can reach 12–13 days and 
10 days for BSISO1 and BSISO2, respectively, and their 
corresponding predictability limits can extend to 28–38 days 
and 23–29 days, respectively, which may be related to their 
intrinsic oscillatory periods (30–60 days and 10–30 days). 
We also check the model performance on MJO (denote 
as MJO-K12) and BSISO (BSISO-K12) index defined by 
Kikuchi et al. (2012) and the ROMI index (ROMI-K14) 
define by Kiladis et al. (2014), which represent more coher-
ent propagation characteristic of MJO and BSISO (Wang 
et al. 2018). Consistent with recently studies (Wang et al. 

2019; Shibuya et al 2021), it is found that (Fig. S6) the pre-
diction skill can reach up to 37 and 29 days for MJO-K12 
and ROMI-K14 index during boreal winter, 30 days and 
24 days for BSISO-K12 and ROMI-K14 index during boreal 
summer, respectively, which are higher than the traditional 
RMM and BSISO indices. Therefore, compared with the 
direct precipitation prediction, the dynamic BCC model is 
more capable of capturing these major modes of subseasonal 
variability.

5.2 � Effects of the MJO and BSISO on prediction 
skills

Figure 12 presents the scatter plots of the prediction skills 
when initialized with a strong versus weak MJO or BSISO 
event (the amplitude of the RMM or BSISO index is larger 
or smaller than 1, respectively) in the DSPM. The marks 
above the diagonal line indicate that the skills are higher 
for predictions initialized from the strong MJO or BSISO 
events compared with weak ones. During the wintertime, 
the DSPM forecasts for pentads 1–5 show overall consist-
ently higher skills with a strong MJO at the initial time, 
with the China-averaged skill marks basically located above 
the diagonal line. Except for NEC and NWC, the positive 
effects of the MJO exist in most regions of China where 

Fig. 11   Predictability (dashed lines) and prediction skill (solid lines) 
of the a, b RMM and c, d BSISO index as a function of the lead time 
for the period of a NDJFMA and b, c, d  MJJASO in the BCC model. 

The blue and red lines represent the prediction skills and predictabil-
ity of ensemble members and ensemble mean. The horizontal dashed 
lines are 0.5
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the MJO signals are considered potential predictors (i.e., 
the OLR and U850 over the equatorial Indian Ocean and 
western Pacific area are selected as predictors). During the 
boreal summer, most of the regions have higher skills when 
initialized from a strong BSISO2 event, especially for NC, 
YH, SC and TP, where the related predictors mainly cover 
the signals of convection and circulation over the Wester 
Pacific and Maritime Continent. Therefore, the prediction 
skills of the DSPM are very likely dependent on the initial 
states of some well-known predictability sources. In addi-
tion, the modulations of MJO and BSISO on prediction skill 
can also be found in BCC model (Fig. S7), but with smaller 
skills improvements.

Figure 13 shows a direct comparison of the effects of 
the MJO on predictions of the DSPM and BCC model, 
where the marks above the diagonal line indicate that the 
skills are higher in the DSPM than in the BCC model. 
Moreover, the solid and hollow marks in Fig. 13 denote the 
forecasts initialized with a strong and weak MJO, where 

if the solid marks move to the up (right) of the hollow 
marks, the corresponding predictions would have higher 
skills when initialized with the MJO in the DSPM (BCC 
model). For all of China (Fig. 13h), both models show that 
the predictions with strong MJO initialization are more 
skillful for the forecast time of pentads 1–4, indicated by 
the solid marks shifting to the upper and right sides relat-
ing to the corresponding hollow marks. More importantly, 
the better performance of the DSPM mainly appears when 
the forecasts have been initialized from the strong MJO, 
shown by the more solid marks located above the diagonal 
line than the hollow ones, especially over the YH, SC and 
SWC, implying that the superiority of such a dynamical-
statistical model can mainly be attributed to its capability 
of better capturing the realistic influences of those major 
predictability sources.

Fig. 12   Scatter plots for the 
area-averaged TCC skills of 
each region in the DSPM. The 
X-axis (Y-axis) represents the 
prediction skill of the forecast 
initialized with strong (weak) 
MJO (a, d) and BSISO (c, 
d) conditions. The validation 
time is for NDJFMA (a) and 
MJJASO (b, c, d). The forecast 
pentads are denoted by differ-
ent colors, and the regions are 
denoted by different marks
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6 � Summary and discussion

In this study, the prediction skills of the BCC new-gen-
eration S2S operational model for pentad precipitation 
and circulation anomalies are verified. Then, based on the 
extraction of simultaneously coupled evolving patterns 
between precipitation and its atmospheric circulation pre-
dictors, a dynamical-statistical prediction model, denoted 
as the DSPM, was constructed to improve the original pre-
diction of the BCC model. Finally, as the major predict-
ability sources at the subseasonal timescale, the potential 
effects of the MJO and BSISO on the prediction skills of 
the BCC and DSPM are revealed.

The BCC model can generally capture the climato-
logical rain belt evolutions over eastern China, although 
some deficiencies still exist, such as the unrealistic weaker 
Meiyu front, the stronger second flood season in SC, and 
the excessive northward shifting of the rain belt, which 
become larger as the forecast lead time extends. However, 
the skillful predictions of pentad precipitation anomalies 
are mainly confined within 3 pentads over most regions 
of China, with even lower skills during boreal summer. 
In comparison, the predictions of circulation variables 
are more reliable, especially over the East Asian and west 

Pacific areas, providing the possibility for further dynam-
ical-statistical correction forecasts.

Based on the K-means analysis of pentad precipitation 
anomalies, all of China is divided into 7 subregions for 
summer and winter. By applying E-SVD to the temporally 
coupled evolving patterns of the predictors and predictands, 
the DSPM that effectively captures the modulation of the 
major subseasonal variability (such as the MJO and BSISO) 
on precipitation was built for each region. The independent 
validation results show that the prediction skills of precipita-
tion anomalies are generally improved by the DSPM after 
a forecast time of 3 pentads, especially for the NC, YH, SC 
and part of the NWC regions, where the skillful prediction 
can persist for 6 pentads.

For major subseasonal variability, the prediction skills of 
the MJO and BSISO reach approximately 22–23 days and 
10–13 days in the BCC model, respectively, both of which 
are largely improved compared with the previous version 
(Liu et al. 2017; Jie et al. 2017). In the DSPM and BCC 
models, the overall prediction skills of precipitation tend 
to be higher when the forecasts are initialized with a strong 
MJO at pentads 2–5 during winter and with a strong BSISO2 
at pentads 1–4 during summer, confirming that the MJO and 
BSISO are important predictability sources for subseasonal 
prediction. Moreover, the skill improvements in the DSPM 

Fig. 13   Scatter plots for the ACC skills of each region. The X-axis 
(Y-axis) represents the prediction skill of the BCC model (DSPM). 
The solid (hollow) circles indicate the forecasts initialized with 

strong (weak) MJO conditions. The validation time is NDJFMA, and 
the forecast pentads are denoted by different colors. a–h Denote the 
regions of NE, NC, YH, SC, SWC, TP, NWC and all of China
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are larger than those in the BCC model when initiated from 
the strong MJO over most regions of China (except NEC and 
NWC), indicating that the superiority of the DSPM may be 
attributed to the more realistic representation of the MJO 
and BSISO modulations over precipitation anomalies.

By using the same three predictors (OLR, SH700 and 
U850), the prediction skills of DSPM had been compared 
with that of a pure statistics model, which is STPM proposed 
by Zhu and Li (2017). The results show that except for NEC 
region, the DSPM generally displayed higher skills than the 
statistics model, especially during the first 3 pentads. Noted 
that the STPM we used here is not exactly same with that of 
Zhu and Li (2017) for the region division, predictor selection 
and period for verification, which may bring some discrep-
ancies with their results.

It is worth noting that the DSPM does not perform well 
over the SC region during the boreal summer with the skills 
even lower than the dynamic model during the boreal sum-
mer (Fig. 9). This problem may attribute to the intrinsic 
nature of DSPM and the main periodicity of the rainfall 
variability over SC in summer. Since the E-SVD method is 
used to construct the prediction model, the DSPM is more 
capable of capturing the relatively low-frequency intrasea-
sonal signal with the period of 6–15 pentads (30–90 days). 
However, except for slowly-varying MJO and BSISO, rain-
fall anomalies over SC could also be largely influenced by 
relatively high-frequency synoptic-scale weather systems 

(such as typhoon and tropical easterly wave) and quasi-bi-
weekly oscillation, both of which could not be well captured 
by the DSPM. As shown in Fig. 14, the observed rainfall 
anomaly over SC has an obvious peak at about 2–4 pentads 
(10–20 days) but little power spectrum for the longer intra-
seasonal period, which are necessary for the good opera-
tion of DSPM. Compared with that, during the boreal win-
ter (Fig. 14d–f), the rainfall anomalies over SC are mainly 
modulated by intraseasonal oscillation (such as MJO), which 
can be well captured by DSPM. As a result, the prediction 
skills of DSPM over SC are better compared to the BCC 
model forecast sooner after 2 pentads (Fig. 9). The spectra 
over other regions were also checked (figures omitted). Thus, 
we can infer that the prediction skills of DSPM are largely 
dependent on whether the prevailing of observed rainfall 
anomalies could be well described by the DSPM.

DSPM shows the degradation of prediction skill at short 
leads (1–2 pentads) compared to the dynamic model, which 
may attribute to the prediction strategy that consider the 
6-pentad evolving pattern as a whole to extract the predictor 
signals. The prediction skills of the model with less pentads 
(e.g. 2 pentads) are truly slightly higher skill for the first 2 
pentads, but decrease fast and become lower than the current 
model for the 3–6th pentads (Fig. S8), which is the mainly 
concerns of this study.

Since the DSPM we built in this study used the observed 
simultaneous consecutive 6-pentad data of the predictor and 

Fig. 14   Power spectrum of pentad rainfall anomaly averaged over 
South China (SC) for the a, d observation and 3-pentad lead fore-
casted by b, d DSPM and c, f BCC model during a–c MJJASO and 

d–f NDJFMA. The black, red, green and blue lines denote the power 
spectrum, the Markov "red noise" spectrum, and the threshold of the 
90% and 10% confidence levels, respectively
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predictand, the idealized prediction of the DSPM can be 
obtained if the forecasted predictors are replaced by the cor-
responding observational predictors, which could represent 
the potential predictability limit of this dynamical-statistical 
model. The results show that (Fig. S9) the idealized pre-
diction can generally maintain the current skill level from 
pentad 1 to pentad 6 with no drop, showing that there is large 
room for potential improvement in subseasonal prediction 
for the DSPM model. Beyond that, the current study mainly 
focuses on the atmospheric circulation predictors which 
dynamic model has relatively higher skills. In the future 
studies, we will try to involve other important S2S predict-
ability (such as land/soil processes, intraseasonal SST vari-
ability, troposphere-stratosphere interactions) in the proper 
way and utilize the deep learning method (Kim et al. 2021) 
to further improve the subseasonal prediction.
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