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Abstract
The frequency and severity of climatic extremes is expected to escalate in the future primarily because of the increasing 
greenhouse gas concentrations in the atmosphere. This study aims to assess the impact of climate change on the extreme 
temperature and precipitation scenarios using climate indices in the Kashmir Himalaya. The analysis has been carried out for 
the twenty-first century under different representative concentration pathways (RCPs) through the Statistical Downscaling 
Model (SDSM) and ClimPACT2. The simulation reveals that the climate in the region will get progressively warmer in the 
future by increments of 0.36–1.48 °C and 0.65–1.07 °C in mean maximum and minimum temperatures respectively, during 
2080s (2071–2100) relative to 1980–2010 under RCP8.5. The annual precipitation is likely to decrease by a maximum of 
2.09–6.61% (2080s) under RCP8.5. The seasonal distribution of precipitation is expected to alter significantly with winter, 
spring, and summer seasons marking reductions of 9%, 5.7%, and 1.7%, respectively during 2080s under RCP8.5. The results 
of extreme climate evaluation show significant increasing trends for warm temperature-based indices and decreasing trends 
for cold temperature-based indices. Precipitation indices on the other hand show weaker and spatially incoherent trends 
with a general tendency towards dry regimes. The projected scenarios of extreme climate indices may result in large-scale 
adverse impacts on the environment and ecological resource base of the Kashmir Himalaya.

Keywords  Climatic extremes · Kashmir Himalaya · Representative Concentration Pathway (RCP) · Statistical Downscaling 
Model (SDSM) · ClimPACT2

1  Introduction

Climate change is central to the global environmental man-
agement and sustainability issues of the twenty-first cen-
tury, given its implications to natural and human systems 
(Campbell et al. 2011; Gan et al. 2015). The perturbation of 
global radiation balance owing to increasing emissions of 
CO2 and other greenhouse gases is heating the atmosphere 
and causing global warming (Chu et al. 2010; Huang et al. 
2011). From the perspective of climate change impacts, the 
most noticeable and heavily felt are the extreme weather 
and climate events because of their immediate and disas-
trous consequences on the natural and social environment. 

Climate change has enhanced the probability of temperature 
and precipitation extremes (Fischer et al 2013), and several 
studies (Orlowsky and Seneviratne 2012; Kharin et al. 2013; 
Sillmann et al. 2013) have projected the changing patterns 
of extreme climate events along with rising anthropogenic 
greenhouse gas emissions. The change in the frequency and 
magnitude of extreme weather events is also considered as 
an indicator of changing climate in a region (Easterling et al. 
2000; Zhang et al. 2011). The study of extreme weather and 
climate events has attained significant attention, however, 
the majority of studies on long-term climate changes have 
focused on changes in mean values (Kostopoulou and Jones 
2005; Alexander et al. 2006). This is primarily because 
of the lack of long-term high-quality observational data, 
required for the detection and attribution of the extremes 
(Zhang et al. 2005). Global circulation models (GCMs) 
provide a promising option for simulating the present and 
future climates and generation of long-term time-series data, 
which can be used to analyze the possible changes in future 
extreme events (Sillman and Roeckner 2008).
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GCMs have been the primary tools for understanding the 
present and future state of the climate of the planet earth. 
The data provided by GCMs are being used to carry out 
the impact studies from global to regional scales; however, 
the coarser grid resolution limits their direct applicability at 
the regional and local levels. The larger grid size of GCMs 
does not account for regional, sub-grid features (e.g., topog-
raphy, cloud, and land use) that play a significant role in 
determining the local climate (Mearns et al. 2003; Coulibaly 
et al. 2005; Koukidis and Berg 2009). This scale mismatch 
is being dealt with using a wide range of dynamical and sta-
tistical downscaling techniques (Nguyen et al. 2006, 2007; 
Fowler et al. 2007). The dynamical downscaling involves 
the nestling of a higher resolution Regional Climate Model 
(RCM) within a GCM to obtain the resolved climate sce-
narios. This approach can generate the climate data at much 
finer scales ∼ 0.5° latitude and longitude scale (Fowler et al. 
2007); however, being computationally intensive (Wilby 
and Wigley 1997), it has relatively restricted application in 
the local impact assessment studies (Hay and Clark 2003; 
Fowler et al. 2007). Statistical downscaling on the other 
hand relies upon the empirical relationships between the 
observed data and the large-scale predictors and has the 
advantages of being simple in application and also com-
putationally less demanding (Samadi et al. 2013). Among 
the different Statistical downscaling approaches, Statisti-
cal Downscaling Model (SDSM) is a popular method used 
globally for climate change assessment and impact studies 
(Wilby et al. 2002; Gagnon et al. 2005; Chu et al. 2010; 
Huang et al. 2011; Mahmood and Babel 2014; Zhu et al. 
2019). Numerous comparative studies have pointed out the 
ability of SDSM to perform better than other downscaling 
techniques in simulating the current and future climate vari-
ability with confidence (Coulibaly et al. 2005; Khan et al. 
2006; Chen et  al.2011; Teutschbein et  al.2011; Samadi 
et al.2013). In addition to simulation of the mean climate 
variables, SDSM has a good capability in simulating cli-
matic extremes (Hashmi et al.2010; Huang et al.2011) and 
thus has been adopted for the present study as well.

Numerous studies across the globe have demonstrated the 
increase in the magnitude, frequency, and duration of the 
climatic extremes in response to global warming (Trenberth 
2011; Otto et al.2012; Fischer et al.2013; Morak et al.2013). 
In the central and south Asian region percentage of warm 
days/nights has increased while as there has been a decrease 
in cold days/nights from 1961 to 2000 over 70% of the sam-
pled stations (Klein Tank et al.2006). These imprints are 
also well established over the Indian landmass. Kothawale 
et al.(2010) examined the trends in pre-monsoon tempera-
ture extremes for 121 stations in India and found widespread 
positive trends in the frequency of hot days and nights, while 
negative trends were observed for cold days and nights. Sim-
ilar findings were reported by Dash and Mamgain (2011) 

for 1969–2005 and Revadekar et al.(2012) for 1970–2003. 
Joshi et al.(2020) assessed the changing patterns of hot 
extremes over India and reported that the frequency of hot 
days has augmented by 24.7% in the recent past (1976–2018) 
compared with the past (1951–1975). This pattern is pro-
jected to continue in the future with marked increases and 
decreases in the frequency of hot and cold extremes respec-
tively towards the end of the twenty-first century (Revadekar 
et al.2012). In India, the frequency of concurrent hot day and 
hot night (CNDHN) heat waves has increased substantially 
post-1984 and is projected to amplify by about 4-fold and 
12-fold towards the mid-21st and end-twenty-first century 
respectively under RCP8.5 (Mukherjee and Mishra 2018). 
For the western Himalayan region, decreases have been 
reported in the percentage of cold nights while as there have 
been increases in the percentage of warm nights during the 
winter season (Dimri and Dash 2012). Global analysis of 
the precipitation-based extreme indices, on the other hand, 
manifests spatially heterogeneous trends with a tendency 
towards wetter conditions in some regions while drying 
trends in other regions (Donat et al.2013). Klein Tank et al.
(2006) also reported the same for the central and south Asian 
region. From 1910 to 2000 there has been an increase in the 
extreme precipitation events in contagious areas from NWH 
in Kashmir to the Deccan plateau in India (Roy and Balling 
2004). In the Hindu Kush Himalayan (HKH) region signifi-
cant positive trends have been reported for light and heavy 
precipitation events from 1961 to 2012 (Zhan et al.2017). 
Similar results have been reported in the Pir-Panjal range 
from 1991 to 2016 (Shekhar et al.2017).

In the regional context, few studies have been carried 
employing SDSM for downscaling the mean temperature 
and precipitation (Mahmood and Babel 2014; Mahmood 
et al.2015; Shafiq et al.2019). Mahmood and Babel (2014) 
have also used SDSM for simulating some of the extreme 
temperature indices using the HadCM3 model and reported 
that there will be more warm extremes and fewer cold 
extremes in the future. Rashid et al.(2015) using the PRE-
CIS simulations at a spatial resolution of 0.5° × 0.5° pro-
jected an increase of 7.23 °C (± 1.84) °C and 4.89 (± 1.51) 
°C in average annual maximum and minimum temperatures 
over Pahalgam station from 2011 to 2098. Furthermore, the 
average annual maximum and minimum temperatures over 
Gulmarg station were projected to increase by 7.68 (± 2.01) 
°C and 5.88(± 1.51) °C. Gujree et al.(2017) explored the 
historic and future changes in extreme temperature and 
precipitation events for the twenty-first century using the 
PRECIS RCM model at a grid resolution of 50 × 50 km and 
reported climatic extremities over the region are growing 
owing to changing climate. However, in this study (Gujree 
et al.2017), no bias correction of model results was done 
using the observed climate data; essential to assess the inher-
ent systematic bias (Varis et al.2004; Ines and Hansen 2006; 
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Christensen et al.2008; Teutschbein and Seibert 2010; Turco 
et al.2013). No detailed analysis has been carried out in this 
region earlier which assesses the spatio-temporal variations 
in extreme climate indices for the twenty-first century. The 
previous studies projecting the future climate change in the 
region have largely focused on changes in the mean clima-
tology. However, the mean climatology smoothens a lot of 
information that can be pivotal in carrying out an impact 
assessment on the different climate-dependent natural and 
bio-physical sectors like agriculture, water resources, human 
health, etc. The present study is thus attempting to pro-
vide an updated and detailed description of future climatic 
variations and their impact on the extreme climate indices 
under different climate change scenarios. While evaluating 
the extreme climate, the study employs the suite of indices 
defined by the expert team on sector-specific climate indices 
(ET-SCI). The study utilizes the IPCC recommended repre-
sentative concentration pathways (RCPs) in projecting the 
changes in the mean values (RCP2.6, RCP4.5, and RCP8.5) 
and extreme climate indices (RCP4.5 and RCP8.5). Besides 
the station scale investigation, the study projects the regional 
dimensions of the future climate change and will serve as a 
baseline study for formulating the regional and sector-spe-
cific adaptation strategies to mitigate the impacts of climate 
change in the fragile ecosystems of the Kashmir Himalaya.

2 � Study area

This study is carried out for the Kashmir Himalaya that 
forms a substantial part of the northwest Himalaya (Fig. 1). 
The broad geomorphic architecture of the Kashmir Himalaya 
has evolved as result of collision between India and Eura-
sia (Alam et al. 2015, 2017). The elevation varies between 
1450 and 5500 a.m.s.l and results in microclimatic variations 
within the area (Fig. 1). Based on stratigraphy and eleva-
tion, the region has three distinct physiographic divisions 
i.e., mountains, Karewas (lacustrine deposits), and the val-
ley floor with a network of tributaries draining into trunk 
river Jhelum (Bhat et al. 2019). Although located in the 
subtropical latitudes the climate of the area falls under the 
Sub-Mediterranean type because of the orographic controls 
and altitudinal variations. The average mean maximum and 
minimum temperature of the region is 19.3 °C and 7.3 °C 
respectively with an average annual precipitation of about 
84 cm (Husain 1987). The climate is marked by sharp sea-
sonality characterized by four distinct seasons based on the 
mean temperature and precipitation viz., spring, summer, 
autumn, and winter. The precipitation mainly occurs in the 
form of snowfall from the westerly disturbances in the win-
ter season from November to April. With some monsoon 
incursions into the region, the enclosing Pir-Panjal mountain 

Fig. 1   Location of the study 
area and distribution of the 
CFSR and IMD stations; a India 
b Kashmir Himalaya
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range from the S-SW largely restricts the influence of sum-
mer monsoon on the region.

3 � Materials and methods

3.1 � Observed data

The observed time-series data for the maximum temperature 
(Tmax), the mean minimum temperature (Tmin), and the pre-
cipitation at daily and monthly scales were obtained from 
the Indian Meteorological Department (see Supplementary 
Material, S1). A quality check was done to identify the 
errors in the data before using it for the analysis. Negative 
daily precipitations were removed and both daily maximum 
and minimum temperatures were set to zero if daily Tmax was 
less than daily Tmin (e.g., Alexander et al.2006). Outliers in 
daily Tmax and Tmin, defined by values outside the range of 
four standard deviations (std) of the climatological mean of 
the value for the day i.e., mean ± 4 × std (Zhang  et al. 2005; 
Alexander et al. 2006; Athar 2014) were identified and man-
ually adjusted on a case to case basis to the data of neighbor-
ing stations. The next quality criterion was the homogeneity 
check of data series to make sure that the variations in the 
data are caused only by the variations in climate rather than 
other external factors (Aguilar et al. 2003; Campozano et al. 
2014) using the double-mass curve analysis (Tabari et al. 
2011). Various stations had missing daily data gaps ranging 
from months to years; however, monthly data was available 
which was later utilized for the bias correction. Individual 
scattered missing entries were filled with multiple imputa-
tion techniques using Statistical Package for the Social Sci-
ences (SPSS) software. The data gaps of the range from 
months to years were substituted with the bias-corrected 
Climate Forecast System Reanalysis (CFSR) climate data.

3.2 � Climate Forecast System Reanalysis (CFSR) data

CFSR climate data is valuable global data set provided by 
the National Centers for Environmental Prediction (NCEP) 
(Saha et al. 2010; Fuka et al. 2014; Dile and Srinivasan 
2014). The data was downloaded for the study area using 
a bounding box of latitude 33.53°–34.54° N and longitude 
74.25°–75.41 °E which generated the data at daily scale 
for 14 stations. The nearest CFSR data station (Fig. 1) was 
chosen to infill observed station data. Raw CFSR data suit-
ability was checked statistically by plotting it against the 
available data of the respective stations and a systematic bias 
was found in the raw CFSR climate data, therefore it was 
imperative to correct the bias utilizing the available observed 
monthly data. Bias in the CFSR data was corrected using the 
Linear Scaling (LS) method which aims to perfectly match 
the monthly mean of corrected values with that of observed 

ones (Lenderink et al. 2007). It operates with monthly cor-
rection values based on the differences between observed 
and raw data using Eqs. (1) and (2)

where Tbc, m,d and Pbc,m,d are bias-corrected temperature 
and precipitation on dth day of m-th month and Traw,m,d and 
Praw,m,d are raw temperature and precipitation on the dth day 
of mth month. µ(.) is the mean value of the variable for mth 
month (Fang et al. 2015).

3.3 � GCM/NCEP data

Historical and future simulated data on the predictors 
required for the SDSM were derived from the second-gener-
ation Canadian Earth System Model (CanESM2) developed 
by the Canadian center for climate modeling and analysis 
(CCCma) (von Salzen et al. 2013; Khadka and Pathak 2016; 
Huang et al. 2016; Zhu et al. 2019). The model is a part of 
the fifth Coupled Model Inter Comparison Project (CMIP5) 
and is currently the only CMIP5 model for which ready-
to-use SDSM predictors are available. The future modeled 
predictors are available for RCP2.6, RCP4.5, and RCP8.5. 
In addition to CanESM2 predictors, the National Centers for 
Environmental Prediction (NCEP) reanalysis predictors for 
the period 1961–2005 were used to calibrate and validate 
the SDSM model.

3.4 � Description of SDSM model

The most popularly used downscaling model SDSM version 
4.2 (Wilby and Dawson 2007) was used in this study. SDSM 
is a hybrid of multiple linear regression (MLR) and stochas-
tic weather generator (SWG) (Meenu et al. 2013; Mahmood 
and Babel 2014). The SWG can generate a maximum of 
100 ensembles while 20 ensembles are considered sufficient 
(Wilby et al. 2002; Gagnon et al. 2005; Chu et al. 2010). 
SDSM contains two kinds of optimization algorithms: (1) 
ordinary least squares (OLS) and (2) dual simplex (DS). 
The OLS was used because it is faster than DS and produces 
comparable results with DS (Huang et al. 2011). Moreover, 
annual and monthly sub-models can be developed during the 
calibration and generation of future scenarios. The annual 
model uses the same transfer function for 12 months while 
as in the monthly model 12 regression equations are devel-
oped for 12 months (Huang et al. 2011). The model can be 
set unconditional or conditional model depending upon the 
nature of predictant; for temperature unconditional model is 

(1)T
bc,m,d = T

raw,m,d + �

(

T
obs,m
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used whereas precipitation is downscaled using a conditional 
model (Wilby et al. 2002; Chu et al. 2010). Unconditional 
models assume that regional predictors and the local pre-
dictand are directly linked e.g., the temperature is depend-
ent directly on the large-scale predictors. In contrast to this 
conditional model have an intermediate variable e.g., daily 
precipitation amounts or evaporation is conditioned by the 
probability of wet-day occurrence (Wilby et al. 2002). Since 
the precipitation data generally does not possess a normal 
distribution, SDSM provides several transformations before 
using it in developing regression equations (Khan et al. 
2006; Huang et al. 2011). The SDSM performs a sequence 
of steps i.e., screening of predictors, calibration and valida-
tion, and generation of future scenarios.

3.4.1 � Screening of predictors

The selection of appropriate predictors is the most important 
step of any downscaling method (Wilby et al. 2002). This 
study employed a combination of the correlation matrix, 
partial correlation, and P-value (Gagnon et al. 2005; Huang 
et al. 2011; Mahmood and Babel 2014). The selection of 
the first predictor also called a super predictor is based on 
the highest correlation coefficient with the local predictant. 
The selection of subsequent predictors was done using 
the concept of percentage reduction in partial correlation 
(Mahmood and Babel 2014) and is given by the Eq. (3).

where PRP is the percentage reduction in partial correlation 
with respect to the correlation coefficient, P.r is the partial 
correlation coefficient of a predictor in the presence of super 
predictor, and R1 is the correlation coefficient between the 
predictor and predictants.

The predictors having P-value > 0.05 are ruled out of the 
selection process and the predictor with the lowest PRP is 
selected as the second predictor. This procedure is repeated 
up to the desired number of predictors. Multi-collinearity 
between the predictors was also taken into consideration 
during the selection of predictors.

3.4.2 � Calibration and validation

After the selection of appropriate predictors, the model was 
calibrated for each of the predictants using NCEP predic-
tors (Fig. 2). Both the annual and monthly sub-models were 
developed for evaluation and a later monthly model was 
selected (Mahmood and Babel 2014). The model was set 
unconditional for temperature while for precipitation condi-
tional model was used (Wilby et al. 2002; Chu et al. 2010). 
Moreover, the precipitation data were transformed to the 

(3)PRP =
(P.r − R1)

R1

4th root to render it normal before using it for the calibra-
tion (Khan et al. 2006). Explained variance and standard 
error were chosen as indicators of the performance of the 
calibration process (e.g., Huang et al. 2011, 2012; Mahmood 
et al. 2015). The model was validated by using independent 
data of 10 years for each of the meteorological stations (S2). 
With the calibrated models 20 ensembles were generated for 
Tmax, Tmin, and Prcp. for both the calibration and validation 
periods. Moreover (R2) was chosen to compare the simu-
lated data (mean of 20 ensembles) with that of observed data 
(Huang et al. 2011; Mahmood et al. 2015).

3.4.3 � Generation of future scenarios

The future scenarios for Tmax, Tmin, and Prcp. were gener-
ated by forcing the calibrated models with the CanESM2 
predictors for the RCP2.6, RCP4.5, and RCP8.5. The future 
period (2006–2100) was divided into 3-time slices of near 
future, mid future, and far future i.e., 2020s (2011–2040), 
2050s (2041–2070), and 2080s (2071–2100) respectively 
(e.g., Mahmood and Babel 2013). A total of 20 ensembles 
(Gagnon et al. 2005; Chu et al. 2010) were generated for 
each variable. The simulated values (mean of 20 ensembles) 
were compared with the observed means from the baseline 
data (1980–2010) to calculate the magnitude of changes 
in Tmax, Tmin, and Prcp. during the various spans of the 
twenty-first century with respect to the baseline climatol-
ogy (1980–2010).

3.5 � Calculation of extreme climatic indices

The future daily data series of Tmax, Tmin, and Prcp. simu-
lated by SDSM was used to calculate the extreme climatic 
indices using the ClimPACT2 model for RCP4.5 (stabili-
zation scenario) and RCP8.5 (business as usual scenario). 
From the suite of indices, 15 temperature indices (S3) and 14 
precipitation indices (S4) were selected for the present study.

3.6 � Trend analysis of extreme indices

Linear trends were computed for each index to explore the 
variability in the magnitude of indices under a changing 
climate during the various spans of the twenty-first cen-
tury. The magnitude of the trend was estimated using Sen’s 
slope estimator (Sen 1968) and the statistical significance of 
trends was established using Man Kendall’s tau test at con-
fidence levels of 90% and 95%. The trends were calculated 
for the future period of 2010–2100 and also for the near 
future (2010–2040), mid future (2041–2070), and far future 
(2071–2100) to explore the variability of extremes within 
each period. Moreover, the regional averages were computed 
for each index and were also subjected to trend analysis.
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4 � Results

4.1 � Screening of predictors

The selected predictors for the downscaling temperature 
(Tmax, Tmin) and precipitation (Prcp.) are given in (S5 and 
S6) respectively. The temperature at 2 m height (temp) 

was the super predictor for both Tmax and Tmin; precipita-
tion being heterogeneous, the partial correlation coefficient 
between the predictors and predictants was generally low 
(e.g., Dibike and Coulibaly 2005; Hashmi et al. 2010; Huang 
et al. 2011) and as such the screening of predictors for down-
scaling the precipitation was complex. Among the predic-
tors, 500 hPa geopotential height (p500), the meridional 
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Fig. 2   Comparison of observed and simulated mean maximum temperature (a calibration period, b validation period), mean minimum tempera-
ture (c calibration period, d validation period) and mean monthly precipitation (e calibration period, f validation period) for the Srinagar station
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velocity component at 500 hPa (p5_v), and mean sea level 
pressure (Mslp) were frequent predictors for downscaling 
precipitation. The selected predictors for Tmax, Tmin, and 
Prcp. are similar to the type of predictors that have been 
chosen in previous studies in and around Kashmir Himalayas 
(Mahmood and Babel 2013, 2014; Mahmood et al. 2015; 
Shafiq et al. 2019).

4.2 � Calibration and validation

The model was calibrated using the station-wise observed 
and NCEP predictors and validated for independent data of 
10 years for each predictant. The percentage of explained 
variance E (%) and standard error (SE) were chosen as a 
measure of the performance of the calibrated model. E (%) 
for Tmax and Tmin varied between 48 and 70% and 54–66% 
respectively. The standard error (SE) ranged between 2.34 
and 3.14 °C and 1.67–2.69 °C for Tmax and Tmin respectively. 
The E (%) for precipitation was generally low as compared 
to temperature and ranged between 12.6 and 27% with SE 
ranging between 0.43 and 0.51 mm. The E (%) is gener-
ally low for the heterogeneous variable like daily precipi-
tation amounts (Wilby et al. 2002). The R2 computed on 
the monthly series, varied between 94 and 97%, 93–96%, 
and 78–85% for Tmax, Tmin, and precipitation, respectively 
during the calibration period. For the validation period, R2 
varied between 91 and 95% and 89–93% for Tmax and Tmin 
respectively whereas for precipitation it ranged between 58 
and 75%. The results are well in agreement with the previous 
studies (Liu et al. 2008; Huang et al. 2011; Souvignet and 
Heinrich 2011), shown graphically for the Srinagar station 
(illustrative purposes) in Fig. 2 to visualize the inter-annual 
variations during the calibration and validation process.

4.3 � Projected changes in the temperature

The Kashmir Himalayas show clear warming trends in 
temperature both in Tmax and Tmin in response to the ris-
ing greenhouse gas concentrations under different radia-
tive forcing levels. The annual Tmax (Tmin) is projected to 
increase on an average by 0.22 (0.23) °C, 0.33 (0.29) °C, 
and 0.30 (0.30) °C during the 2020s, 2050s, and 2080s 
respectively for RCP2.6 forcing levels. The rates of increase 
under RCP2.6 show a dip towards the end of the century in 
conformity with the assumption that radiative forcing levels 
under RCP2.6 tend to decline towards the end of the twenty-
first century (van Vuuren et al. 2011; Chaturvedi et al. 2012). 
Under RCP4.5 the average annual Tmax (Tmin) is showing an 
increase of 0.20 (0.25) °C, 0.37 (0.39) °C, and 0.45(0.44) 
°C during the 2020s, 2050s, and 2080s, respectively. The 
warming continues to increase under RCP8.5 for Tmax (Tmin) 
of the order 0.22(0.24) °C, 0.52 (0.49) °C and 0.83(0.84) 
°C for 2020s, 2050s, and 2080s, respectively (Fig. 3a, b). 

Spatial variability is being observed in climatic variables as 
the rates of increase vary considerably between the different 
altitudinal ranges (S7). A relatively higher rate of warming 
is associated with the high-altitude stations (Pahalgam and 
Gulmarg) as compared to the low altitude stations. In the 
lower troposphere, the rate of warming varies directly with 
the altitude thus implying that temperatures will increase 
more in high mountains than at low altitudes (e.g., Bradley 
et al. 2006). On the seasonal scale, autumn is projected to 
have the maximum increases both in Tmax and Tmin (averaged 
over six stations) under all RCPs followed by the summer 
season (S8). Furthermore, the station scale analysis reveals 
that high-altitude areas will mark substantial increments in 
winter Tmin of order 0.23–0.37 °C (RCP2.6), 0.32–0.43 °C 
(RCP4.5), and 0.38–0.68 °C (RCP8.5) for the Gulmarg sta-
tion and 0.43–0.86 °C (RCP2.6), 0.80–0.94 °C (RCP4.5) 
and 0.79–1.50 °C (RCP8.5) for the Pahalgam station. These 
are the only available stations representative of major gla-
ciated and snow-covered areas suggesting that climate 
change will have a significant impact on the glacial health 
and snow accumulation (e.g., Akhtar et al. 2008; Immerzeel 
et al. 2010). These effects will be further amplified by the 
increases in average spring temperature that will result in 
early snowmelt (e.g., Barnett et al. 2005), thereby altering 
the surface runoff and water availability (Sharma et al. 2000; 
Beniston and Stoffel 2014). The inferences of the present 
study concur with other relevant studies (e.g., Mahmood and 
Babel 2013, 2014; Mahmood et al. 2015).

4.4 � Projected changes in the precipitation

Precipitation shows a general decreasing trend in response 
to rising greenhouse gas concentrations when compared 
with the baseline precipitation (1980–2010). All the sta-
tions except the Gulmarg (showing marginal increases) are 
projected to experience reductions in annual precipitation of 
varying magnitudes under different RCPs during the twenty-
first century (S7). Under RCP2.6 annual precipitation shows 
a decrease of 1.05% (2020s), 0.75% (2050s) and 1.43% 
(2080s) in the region. RCP4.5 shows an average decrease 
of about 0.81% (2020s), 1.83% (2050s) and 2.30% (2080s). 
The precipitation is projected to decrease by 0.86% (2020s), 
2.32% (2050s) and 3.36% (2080s) under RCP8.5 (Fig. 3c). 
On the station scale, Kupwara shows the maximum decrease 
of 6.61% (2080s) followed by Qazigund (5.69%) (2050s) and 
the Srinagar Station (5.5%) (2080s) under RCP8.5. The sea-
sonal distribution of precipitation is projected to get altered 
during the twenty-first century with substantial decreases 
in the winter precipitation under all RCPs (S8). Changes in 
winter precipitation are directly related to glacial health and 
water resource availability in the region (Akhtar et al. 2008). 
The average winter precipitation shows a maximum decrease 
of about 9% during the 2080s under RCP8.5. The average 
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Fig. 3   Projected changes (averaged over six stations) in annual—TMAX (a), TMIN (b) and PRCP (c) under different RCPs
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spring precipitation shows an increase under RCP2.6 but 
decreases during the 2050s (2.07%) and 2080s (4.7%) under 
RCP8.5. On the other hand, summer precipitation shows an 
increase of about 0.68–2.82%, and autumn precipitation is 
projected to increase by 2.24–6.9% under different RCPs. 
The changes in the seasonal distribution of precipitation will 
alter the runoff regimes and the water availability (Immer-
zeel et al. 2010; Beniston and Stoffel 2014). The spatial pat-
terns of changes in mean annual temperature (Fig. 4) and 
annual precipitation (Fig. 5) under RCP2.6 and RCP8.5 were 
obtained by using the Inverse Distance Weighted (IDW) 
interpolation method. The average changes in seasonal Tmax, 
Tmin, and Prcp. under RCP2.6 and RCP8.5 are shown graphi-
cally (S9) for the comparison.

4.5 � Trends in the extreme temperature indices

A total of 15 temperature-based indices were chosen for the 
analysis. Similar types of the selected indicators have been 
used in most of the studies of this kind (e.g., Klein Tank 
et al. 2006, 2009; Tebaldi et al. 2006; Sillmann and Roe-
ckner 2008; Athar 2014). The annual number of frost days 
(FD) shows generally a declining trend over the twenty-first 

century in response to the warming temperature with some 
statistically insignificant increasing trends at Gulmarg, Sri-
nagar, and Pahalgam under RCP4.5. The trends become clear 
and significant under RCP8.5 with a decrease of 1.9 days/
decade (Gulmarg), 2 days/decade (Srinagar), 0.4 days/dec-
ade (Qazigund), and 1.1 days/decade (Kupwara and Koker-
nag). The annual number of summer days (SU) exhibits an 
increasing trend at almost all the stations for both RCPs. The 
trends of SU become more pronouncing under RCP8.5 with 
a maximum increase of 8.8 days/decade at the Pahalgam 
station during the 2020s. From 2011 to 2100 the increases 
are of magnitude 1.5 days/decade (Srinagar), 2 days/decade 
(Kupwara), 2.1 days/decade (Kokernag) 4.4 days/decade 
(Pahalgam), and 1 day/decade at Qazigund. Tropical nights 
(TR) will no longer be an exception of climate in Kashmir 
Himalaya as TR show a significant increasing trend with a 
maximum increase of about 1.5 nights/decade under RCP8.5 
during the 2080s at the Srinagar station. For the period 
2011–2100 TR shows statistically significant increases of 
0.43 nights/decade (Srinagar), 0.13 nights/decade (Koker-
nag) 0.15 nights/decade (Kupwara) and 0.04 nights/decade 
(Qazigund). The growing season length (GSL) is extending 
by 1.7 days/decade (Gulmarg), 0.57 days/decade (Srinagar), 

Fig. 4   Spatial pattern of the changes in the annual mean temperature (°C) under RCP2.6 (a-2020s, b-2050s, c-2080s) and RCP8.5 (d-2020s, 
e-2050s, f-2080s) with respect to baseline mean temperature (1980–2010)
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0.73 days/decade (Pahalgam), 0.12 days/decade (Kupwara) 
and 0.16 days/decade (Kokernag) over 2011–2100 under 
RCP4.5 scenario. The increases in GSL are of magnitude 
3 days/decade (Gulmarg), 0.76 days/decade (Srinagar), 
2.3 days/decade (Pahalgam), 0.13 days/decade (Kupwara) 
and 1 day/decade (Qazigund) for a period of 2011–2100 
and a maximum increase of 6.9 days/decade (Gulmarg) dur-
ing the 2020s under RCP8.5. The diurnal temperature range 
(DTR) shows divergent trends across the stations over the 
twenty-first century because of the differential warming rates 
of Tmax and Tmin, Pahalgam (0.1 °C/decade) and Kupwara 
(0.1 °C/decade) show statistically significant increasing 
trends under RCP4.5 during 2011–2100. With the enhanced 
radiative forcing under RCP8.5, DTR marks statistically sig-
nificant reductions of − 0.3 °C/decade (Srinagar), − 0.3 °C/
decade (Gulmarg), and − 0.2 °C/decade (Kokernag) whereas 
an increase of 0.3 °C/decade is reported for Kupwara sta-
tion during 2001–2100. The warm spell duration indicator 
(WSDI) is showing discernible and statistically significant 
increases of 1.76 days/decade (Gulmarg), 1.49 days/decade 
(Srinagar), 2.7 days/decade (Pahalgam), 2.9 days/decade 
(Kupwara), and 2.5 days/decade (Kokernag) under RCP4.5. 
The magnitude of trend gets amplified under RCP8.5 with 
increments of 5.85 days/decade (Gulmarg), 7.41 days/decade 

(Srinagar), 10.6 days/decade (Pahalgam), 9.78 days/decade 
(Kupwara), 10.3 days/decade (Kokernag), and 0.73 days/
decade (Qazigund). The cold spell duration indicator (CSDI) 
has overall decreasing trend statistically significant at Srina-
gar (2080s), Pahalgam (2011–2100), Kokernag (2080s), and 
Qazigund (2020s) for RCP4.5. Under RCP8.5 CSDI shows a 
maximum decrease of 8.3 days/decade at Pahalgam (2080s). 
In response to the increasing temperatures fraction of days 
with above-average temperature (TXgt50p) is increasing at 
all the stations of the order 0.87% (Gulmarg), 1% (Srinagar), 
1.8% (Pahalgam), 1.96% (Kupwara), 1.28% (Kokernag), 
and 0.69% (Qazigund) per decade under RCP4.5 over the 
period 2011–2100. The magnitudes further increase to 1.7% 
(Gulmarg), 2.6% (Srinagar), 3.7% (Pahalgam), 3.15% (Kup-
wara), 2.8% (Kokernag), and 1.5% (Qazigund) per decade 
under RCP8.5 forcing levels. Likewise, the amount of hot 
days (TX90p) and hot nights (TN90p), witness statistically 
significant increasing trends and the amount of cool days 
(TX10p) and cool nights (TN10p) show decreasing trends 
(statistically significant) for all the stations. The detailed 
trend analysis of the temperature indices under RCP4.5 and 
RCP8.5 are given in the Supplementary Material, S10, and 
S11, respectively. The results agree with the global trends 
wherein a general increase in the warm temperature-based 

Fig. 5   Spatial pattern of the changes in the annual mean precipitation (%) under RCP2.6 (a-2020s, b-2050s, c-2080s) and RCP8.5 (d-2020s, 
e-2050s, f-2080s) with respect to baseline precipitation (1980–2010)
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indices and a decrease in the cold temperature-based indices 
have been reported (e.g., Zhang et al. 2005; Klein Tank et al. 
2006; Tebaldi et al. 2006; Sillmann and Roeckner 2008; 
Athar 2014).

4.6 � Trends in extreme precipitation indices

A total of 14 precipitation indices were selected for the 
analysis (Zhang et al. 2005; Tebaldi et al. 2006; Sillmann 
and Roeckner 2008; Athar 2014). The trends in precipitation 
indices are weak with only a few indices showing statisti-
cally significant trends over the various spans of the twenty-
first century (S12 and S13). Moreover, the trends, unlike 
the temperature-based indices, are spatially and temporally 
incoherent partly in the response to the poor performance 
of GCM models in resolving the local precipitation (Huang 
et al. 2012) and also due to greater spatio-temporal varia-
tion of the precipitation in the study area. This problem has 
been reported in numerous other studies of this type (e.g., 
Kostopoulou and Jones 2005; Klein Tank et al. 2006; Vin-
cent et al. 2018). Besides, the network of meteorological 
stations is very sparse given the optimum number of weather 
stations prescribed by the World Meteorological Organi-
zation (WMO), and the stations are located in the differ-
ent geographical and altitudinal zones thus having varied 
orographic and altitudinal forcing which results in strong 
horizontal and vertical gradients in precipitation (Yao et al. 
2012; Sharma et al. 2016; Zhan et al. 2017). The maximum 
number of consecutive dry days (CDD) shows increas-
ing trends (statistically insignificant) at Gulmarg (2020s), 
Srinagar (2020s), Qazigund (2020s), Pahalgam (2050s, 
2011–2100), and Kupwara (2050s, 2080s) under RCP4.5. 
For RCP8.5 forcing levels for Gulmarg (2050s), Srinagar 
(2050s, 2080s), Pahalgam (2020s, 2080s) Kupwara (2050s, 
2080s,) Kokernag (2080s), and Qazigund (2020s, 2050s, 
2080s) show statistically insignificant increases whereas 
the significant positive trends were found for Pahalgam 
(2050s, 2011–2100) and Kupwara (2011–2100). The maxi-
mum number of consecutive wet days (CWD) is showing 
decreasing trends at Gulmarg (2050s) (statistically sig-
nificant), Kupwara (2080s), and Qazigund (2050s, 2080s) 
under RCP4.5. CWD shows an increasing trend (statistically 
insignificant) at Srinagar (2020s), Qazigund (2050s, 2080s) 
under RCP8.5. Annual precipitation (PRCPTOT) is show-
ing a decreasing trend statistically significant at Pahalgam 
(2080s, 2011–2100) and Kupwara (2080s). Under RCP8.5 
Kupwara shows a decrease (statistically significant) of about 
6.6 mm/year during 2050s. The annual number of rainy days 
(rainfall > 2.5 mm) (R2.5 mm) exhibits increasing trends 
(statistically insignificant) for Srinagar, Kupwara (2050s), 
and Kokernag (2020s, 2080s, 2011–2100) while decreas-
ing trends (statistically significant) were found at Kupwara 
(2080s, 2011–2100) under RCP4.5. Under RCP8.5 the 

decreases in R2.5 mm are statistically significant for Kup-
wara (2050s, 2011–2100) and Kokernag (2080s). The trends 
of other extreme precipitation indices of absolute thresh-
olds (R10mm, R20mm), percentile-based thresholds (R95P, 
R99P, R95PTOT, R99PTOT), or duration based (RX1DAY, 
RX5DAY, RX7DAY) show a mix of increasing and decreas-
ing trends without spatial coherence.

4.7 � Trends in the regional average indices

To capture an overall picture of extremes in the region, 
regional averages of the indices were computed by averag-
ing the values of indices over all the stations for the 2020s, 
2050s, 2080s, and 2011–2100 (Tables 1, 2) under RCP4.5 
and RCP8.5. FD shows decreasing trends (statistically signif-
icant) of order 2.3 days/decade (2080s) and 1.1 days/decade 
(2011–2100) under RCP8.5. Increasing trends were found 
for SU under both RCPs with trends increasing in magnitude 
(statistically significant) of the order ~ 2 days/decade for the 
twenty-first century. TR which are rare features of present 
climate mark their presence during the 2080s under RCP8.5. 
GSL is showing extensions of 1.1 days/decade, 1.4 days/
decade, 3 days/decade and 1.2 days/decade during 2020s, 
2050s, 2080s and 2011–2100, respectively for RCP8.5. 
DTR reveals increasing trends statistically significant dur-
ing the 2020s and 2011–2100 under RCP4.5. In response to 
enhanced radiative forcing other warm temperature-based 
indices (WSDI, TXgt50p, TX90p, TN90p) show significant 
increasing trends and cold temperature-based indices (CSDI, 
TX90p, TN10p) show significant decreasing trends. Like-
wise, TXm, TNm, and TMm show increments of ~ 0.1 °C/
decade over the twenty-first century under RCP8.5.

Among the precipitation indices, CDD shows insignifi-
cant decreasing trends under RCP4.5 while as, the trend 
shows an increase (statistically significant) under RCP8.5 
over 2011–2100. The annual precipitation (PRCPTOT) 
decreases at the rate of 6.4  mm/decade (RCP4.5) and 
4.2 mm/decade (RCP8.5) during 2011–2100. R2.5 mm is 
projected to decrease under both RCPs statistically signifi-
cant during the 2080s (RCP4.5) and 2011–2100 (RCP8.5). 
The number of heavy rainfall days (R10mm) shows statis-
tically significant decreasing trends under both the RCPs. 
In contrast to this, the number of very heavy rainfall days 
(R20mm) shows insignificant increases under RCP8.5. 
The total annual rainfall from very wet and extremely wet 
rain days (R95P, R99P) as well as the contribution of these 
to total rainfall (R95PTOT, R99PTOT) mark an increase 
although statistically insignificant under the RCP8.5. Simi-
larly, Rx1day and Rx5day also show decreasing trends under 
RCP4.5 but increasing trends under RCP8.5. The Simple 
Daily Intensity Index (SDII) shows a decrease of 0.004 mm/
day under RCP4.5, while an increasing trend (statistically 
insignificant) at the rate of 0.001 mm/day is found under 
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RCP8.5 for the period 2011–2100. The regional averages of 
the indices under RCP4.5 and RCP8.5 are shown in Figs. 6 

and 7 to visualize the inter-annual variations for the period 
2011–2100.

Table 1   Trend analysis of 
regionally averaged temperature 
indices under RCP4.5 and 
RCP8.5

Numbers in italic represent the significant trends
*Significant at 0.05
**Significant at 0.1

Index Time period

2020s 2050s 2080s 2011–2100

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

FD − 0.13** − 0.133 0.021 − 0.083 0.053 − 0.233* − 0.009 − 0.112*
SU 0.138* 0.256* 0.021 0.2* 0.095 0.2* 0.082* 0.183*
TR 0.00 0.00 0.00 0.00 0.00 0.024 0.00 0.005*
GSL 0.023 0.111* 0.043 0.144* 0.053 0.296* 0.05* 0.122*
DTR 0.00 − 0.001 0.005** 0.001 0.003 0.002 0.001* 0.00
WSDI 0.108 0.144* 0.246** 0.619* − 0.033 1.5* 0.233* 0.67*
CSDI − 0.103** − 0.37 − 0.022 − 0.083 − 0.111** 0.018 − 0.005 − 0.005
TXgt50p 0.207** 0.382* 0.147** 0.221* 0.164** 0.188* 0.128* 0.262*
TX10p − 0.071** − 0.189* − 0.046 − 0.023 − 0.064* 0.042 − 0.03* − 0.041*
TX90p 0.104* 0.158* 0.1** 0.252* 0.097** 0.388* 0.085* 0.256*
TN10p − 0.111* − 0.204* − 0.027 − 0.101* − 0.033 0.011* − 0.034* − 0.065*
TN90p 0.132* 0.213* 0.047 0.276* 0.024 0.567* 0.089* 0.315*
TMm 0.007* 0.011* 0.003 0.009* 0.004 0.014* 0.004* 0.01*
TXm 0.006** 0.011** 0.006** 0.009* 0.005* 0.014** 0.004* 0.01*
TNm 0.006* 0.011* 0.001 0.01* 0.002 0.015* 0.003* 0.01*

Table 2   Trend analysis 
of regionally averaged 
precipitation indices under 
RCP4.5 and RCP8.5

Numbers in italic represent the significant trends
*Significant at 0.05
**Significant at 0.1

Index Time period

2020s 2050s 2080s 2011–2100

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

CDD − 0.125 − 0.042 0.033 0.119 − 0.078 0.059 − 0.009 0.036**
CWD 0.00 0.00 − 0.019 0.00 − 0.021 0.00 0.002 0.00
PRCPTOT − 0.804 0.087 − 1.344 − 1.477 − 3.559* − 0.615 − 0.64* − 0.427**
R2.5 mm − 0.042 − 0.074 − 0.077 − 0.119 − 0.115* − 0.044 − 0.018 − 0.035*
R10mm 0.00 − 0.013 − 0.022 − 0.091** − 0.167* − 0.09* − 0.028* − 0.024*
R20mm − 0.028 0.00 − 0.083* − 0.03 − 0.067* 0.017 − 0.011** 0.01
R95p − 1.242** 0.58 − 1.175 0.566 − 0.557 0.468 − 0.339* 0.078
R95ptot − 0.18* 0.055 − 0.031 0.077 0.033 0.02 − 0.015 0.015
R99p − 1.177** 0.428 − 0.428 0.32 − 1.024 0.323 − 0.162 0.015
R99ptot − 0.137* 0.025 − 0.034 0.046 − 0.053 0.035 − 0.014 0.001
Rx1day − 0.477 0.124 − 0.077 0.109 − 0.187 0.125 − 0.066 0.06
Rx5day − 0.476** 0.057 − 0.198 0.047 − 0.183 0.173 − 0.087* 0.038
Rx7day − 0.513 − 0.089 − 0.141 − 0.183 − 0.47** 0.135 − 0.129* − 0.012
SDII − 0.009 0.008 − 0.007 − 0.001 − 0.02** − 0.009 − 0.004* 0.001
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5 � Discussion

Changing form of the climatic extremes is important 
evidence and impact of anthropogenic induced climate 
change. In the current study, future projections of tem-
perature and precipitation showed significant changes for 
the twenty-first century with the temperature manifesting 
increasing trends and precipitation showing a decrease 
over the basin. The present study established the imprints 
of global warming on the climatic extremes in the region. 
The model projections show increasing trends in the warm 
temperature-based indices while decreasing trends were 
found in the cold temperature-based indices for the twenty-
first century. In the present study the warm extremes viz., 
amount of hot days/nights, fraction of days with above-
average temperature, warm spell duration, summer days, 
and tropical nights witnessed increasing trends under 
RCP4.5&8.5. Consistent patterns of the trends have been 
reported among the different regions of the world (Klein 
Tank et al. 2006, 2009; Tebaldi et al. 2006; Sillmann and 
Roeckner 2008). A similar pattern of trends resonates over 
the Indian landmass and the results of the present study 
conform with the previous studies like Kothawale et al. 
(2010), Dash and Mamgain (2011), and Revadekar et al. 
(2012). Revadekar et al. (2012) and Mukherjee and Mishra 
(2018) also projected the enhancement of the hot extremes 
in India over the twenty-first century under different cli-
mate change scenarios. While the cold extremes like the 
amount of cool days/nights, cold spell duration, and frost 
days are projected to decrease over the twenty-first century 
in the study area. Similar results have been reported by 
Gujree et al. (2017) who used the PRECIS RCM for pro-
jecting the extreme climate events in the Kashmir valley.

The increase in the frequency and occurrence of the 
warm temperature-based extreme indices is consistent 
with global warming but the magnitude of change var-
ies spatially due to the large-scale atmospheric circula-
tion patterns associated with it (Meehl and Tebaldi 2004). 
Changes in the geopotential height anomalies at 500 hPa 
have been linked to the enhanced prevalence of the hot 
extremes (Ding et al. 2010; Loikith and Broccoli 2012; 
Lee and Lee 2016). Joshi et al. (2020) explored the physi-
cal driving mechanisms responsible for the observed 
increases in the frequency and intensity of hot extremes 
over the Indian landmass. The study cited that the augmen-
tation of the geopotential height anomalies at 500 hPa over 
the northern parts of India is leading to increases in hot 
extremes. The persistent atmospheric subsidence associ-
ated with it results in adiabatic warming and increases 
atmospheric stability (Lee and Lee 2016). This phenom-
enon produces clear skies and decreases in the cloud 
cover, thus leading to increases in hot extremes due to 

pronounced surface warming. The decrease in the amount 
of the precipitable water is yet another mechanism yield-
ing the enhancements in hot extremes over India (Joshi 
et al. 2020). The augmentation of temperature extremes 
over the twenty-first century could also be related to the 
inverse trends in the precipitation in the Kashmir Hima-
laya. The model projections manifested a decrease in the 
precipitation with similar trends for the extreme precipita-
tion-based indices. The length of the dry spell and the con-
sequent soil moisture deficit is projected to increase in the 
future. The positive feedback loop induced by the reduced 
precipitation is causing the reduction in the soil moisture 
content which in turn alters the atmospheric heat fluxes. 
The reduced soil moisture conditions favor the decreases 
in latent heat flux and increases in sensible heat flux which 
also leads to the enhanced surface warming (Fischer et al. 
2007).

Some indicators of intensification of the precipitation 
regimes in the region are also there e.g., the number of very 
heavy rainfall days, total annual precipitation from heavy 
and very heavy rain days, maximum 1-day precipitation, 
and maximum 5-day precipitation show increasing trends. 
Although the trends are weak but such signals cannot be 
ignored knowing the flood susceptibility of the region. These 
indices could have a direct bearing on the flood risks in the 
basin as the region is very prone to flood disasters. Floods 
have been a recurrent feature in the basin but the flood risk 
has increased in the recent past due to encroachment of the 
wetlands/waterways, urban expansion, landfilling and dis-
section of the floodplain by railway/roads (Alam et al. 2018; 
Bhat et al. 2019). Climate change has the potential to further 
exacerbate the flood risks and the losses. On the other hand, 
the length of dry spells showing increasing trends may cause 
droughts in different parts of the Kashmir Himalaya. Long 
dry spells are an emerging concern in the study area that 
lead to acute water scarcity and an increase in the drought 
episodes (Himayoun and Roshni 2019).

6 � Conclusions

Climate change will have serious implications for the 
mountain ecosystems like the Kashmir Himalaya. In this 
study, a combination of the Statistical Downscaling Model 
(SDSM), and ClimPACT2 were used to assess the pro-
jected changes in the extreme climate (frequency and mag-
nitude) over the twenty-first century. The average annual 
temperatures (Tmax and Tmin) have shown an increase at 
all the stations although with different magnitudes and 
patterns under the different RCPs. The projected increase 
varied directly with the levels of radiative forcing. The 
patterns of increase also revealed the orographic controls 
with the high altitude areas registering relatively higher 



1666	 S. Ahsan et al.

1 3

increases as compared to the low altitude areas. Season-
ally, autumn exhibited the highest warming followed by 
summer season. On the other hand, precipitation has 
shown a decrease in most of the area with some increases 
at the Gulmarg station with respect to the baseline pre-
cipitation (1980–2010). Winter will be the most affected 
season showing significant decreases in the precipitation 
under all the RCPs. The projected variations in the extreme 
climate revealed that in response to the rising greenhouse 
gas concentrations in the atmosphere, the extreme climate 
is likely to intensify further in future. Conforming to the 
global trends, Kashmir Himalaya showed increasing trends 
in the warm temperature-based indices and a reduction in 
the cold extremes over the twenty-first century. The trends 
were more pronounced under the RCP8.5 due to higher 
levels of forcing and resultant warming associated with 
it. Precipitation indices comparatively showed divergent 
and spatially incoherent trends with an overall inclination 
towards drier regimes. The changes in the climate will 
have serious implications for sectors like agriculture, water 
resources, and human health. A decrease in the number of 
frost days, extensions in growing season length may be 
favorable for the agriculture sector but the increasing tem-
peratures and decreasing precipitation will induce greater 
demands of water for irrigation purposes. Water resources 
and water dependent systems will be affected directly 
under the changing temperature and precipitation scenar-
ios. Dry spells are a new trend of the climate in Kashmir 
Himalaya and recent years have marked abnormally long 
dry periods, creating acute water shortages. Prolonged 
dry spells indicated by consecutive dry days impact the 
surface water availability during the summer and autumn 
seasons. Increases in the number of hot days and nights 
will affect human health by increasing the thermal stresses. 
The results of the study can be valuable for formulating 
the sector-specific mitigation of climate change; how-
ever, more studies are required for the analysis of climate 
extremes using multi-model ensembles to further refine the 
quantification of the changes and uncertainty associated 
with GCM outputs. Furthermore, increasing the density of 
meteorological observatories would further help in under-
standing the microclimatic variation and climate change 
signals more lucidly.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00382-​021-​05984-6.

Acknowledgements  We acknowledge the Indian Meteorological 
Department (IMD), Srinagar, and National Data Centre, Pune, for the 
providing necessary meteorological data. We would like to thank the 
developers of—CanESM2 GCM, Canadian Centre for Climate Model-
ling and Analysis (CCCma), CFSR data, SDSM, and ClimPACT2 for 
keeping the data in public domain. We are indebted to the executive 
editor (Professor V. Krishnamurthy) and the reviewers for their insight-
ful comments that improved the quality and structure of this paper.

Funding  This research has been funded by University Grants Commis-
sion, New Delhi, under CPEPA scheme being currently carried out at 
University of Kashmir, Srinagar-190006.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guide-
lines on climate metadata and homogenization. World Climate 
Programme Data and Monitoring WCDMP-no. 53, wmo-td no. 
1186. World Meteorological Organization, Geneva, p 55

Akhtar M, Ahmad N, Booij MJ (2008) The impact of climate change 
on the water resources of Hindukush–Karakorum–Himalaya 
region under different glacier coverage scenarios. J Hydrol 355(1–
4):148–163. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2008.​03.​015

Alam A, Ahmad S, Bhat MS, Ahmad B (2015) Tectonic evolution of 
Kashmir basin in northwest Himalayas. Geomorphology 239:114–
126. https://​doi.​org/​10.​1016/j.​geomo​rph.​2015.​03.​025

Alam A, Bhat MS, Kotlia BS, Ahmad B, Ahmad S, Taloor AK, Ahmad 
HF (2017) Coexistent pre-existing extensional and subsequent 
compressional tectonic deformation in the Kashmir basin, NW 
Himalaya. Quatern Int 444:201–208. https://​doi.​org/​10.​1016/j.​
quaint.​2017.​06.​009

Alam A, Bhat MS, Farooq H, Ahmad B, Ahmad S, Sheikh AH (2018) 
Flood risk assessment of Srinagar City in Jammu and Kashmir, 
India. Int J Disaster Resilience in Built Environ 9(2)114–129, 
https://​doi.​org/​10.​1108/​IJDRBE-​02-​2017-​0012

Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein 
Tank AMG et al. (2006) Global observed changes in daily climate 
extremes of temperature and precipitation. J Geophys Res Atmos. 
https://​doi.​org/​10.​1029/​2005J​D0062​90

Athar H (2014) Trends in observed extreme climate indices in Saudi 
Arabia during 1979–2008. Int J Climatol 34(5):1561–1574. 
https://​doi.​org/​10.​1002/​joc.​3783

Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a 
warming climate on water availability in snow-dominated regions. 
Nature 438(7066):303–309. https://​doi.​org/​10.​1038/​natur​e04141

Beniston M, Stoffel M (2014) Assessing the impacts of climatic change 
on mountain water resources. Sci Total Environ 493:1129–1137. 
https://​doi.​org/​10.​1016/j.​scito​tenv.​2013.​11.​122

Bhat MS, Alam A, Ahmad B, Kotlia BS, Farooq H, Taloor AK, Ahmad 
S (2019) Flood frequency analysis of river Jhelum in Kashmir 
basin. Quatern Int 507:288–294. https://​doi.​org/​10.​1016/j.​quaint.​
2018.​09.​039

Bradley SB, Vuille M, Diaz HF, Vergara W (2006) Threats towater 
supplies in the tropical Andes. Science 312:1755–1756. https://​
doi.​org/​10.​1126/​scien​ce.​11280​87

Campbell JL, Driscoll CT, Pourmokhtarian A, Hayhoe K (2011) 
Streamflow responses to past and projected future changes in cli-
mate at the Hubbard Brook Experimental Forest, New Hampshire, 

https://doi.org/10.1007/s00382-021-05984-6
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jhydrol.2008.03.015
https://doi.org/10.1016/j.geomorph.2015.03.025
https://doi.org/10.1016/j.quaint.2017.06.009
https://doi.org/10.1016/j.quaint.2017.06.009
https://doi.org/10.1108/IJDRBE-02-2017-0012
https://doi.org/10.1029/2005JD006290
https://doi.org/10.1002/joc.3783
https://doi.org/10.1038/nature04141
https://doi.org/10.1016/j.scitotenv.2013.11.122
https://doi.org/10.1016/j.quaint.2018.09.039
https://doi.org/10.1016/j.quaint.2018.09.039
https://doi.org/10.1126/science.1128087
https://doi.org/10.1126/science.1128087


1667Evaluating the impact of climate change on extreme temperature and precipitation events over…

1 3

United States. Water Resources Res. https://​doi.​org/​10.​1029/​
2010W​R0094​38

Campozano L, Sánchez E, Avilés Á, Samaniego E (2014) Evaluation of 
infilling methods for time series of daily precipitation and temper-
ature: the case of the Ecuadorian Andes. Maskana 5(1):99–115. 
https://​doi.​org/​10.​18537/​mskn.​05.​01.​07

Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH 
(2012) Multi-model climate change projections for India under 
representative concentration pathways. Curr Sci 791–802

Chen J, Brissette FP, Leconte R (2011) Uncertainty of downscaling 
method in quantifying the impact of climate change on hydrol-
ogy. J Hydrol 401(3–4):190–202. https://​doi.​org/​10.​1016/j.​jhydr​
ol.​2011.​02.​020

Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On 
the need for bias correction of regional climate change projections 
of temperature and precipitation. Geophys Res Lett. https://​doi.​
org/​10.​1029/​2008G​L0356​94

Chu JT, Xia J, Xu CY, Singh VP (2010) Statistical downscaling of daily 
mean temperature, pan evaporation and precipitation for climate 
change scenarios in Haihe River, China. Theoret Appl Climatol 
99(1–2):149–161. https://​doi.​org/​10.​1007/​s00704-​009-​0129-6

Coulibaly P, Dibike YB, Anctil F (2005) Downscaling precipitation 
and temperature with temporal neural networks. J Hydrometeorol 
6(4):483–496. https://​doi.​org/​10.​1175/​JHM409.1

Dash SK, Mamgain A (2011) Changes in the frequency of different 
categories of temperature extremes in India. J Appl Meteorol Cli-
matol 50(9):1842–1858

Dibike YB, Coulibaly P (2005) Hydrologic Impact of Climate Change 
in the Saguenay Watershed: Comparison of Downscaling Methods 
and Hydrologic Models. J Hydrol 307:145–163. https://​doi.​org/​
10.​1016/j.​jhydr​ol.​2004.​10.​012

Dile YT, Srinivasan R (2014) Evaluation of CFSR climate data for 
hydrologic prediction in data-scarce watersheds: an application in 
the Blue Nile River Basin. JAWRA J Am Water Resources Assoc 
50(5):1226–1241. https://​doi.​org/​10.​1111/​jawr.​12182

Dimri AP, Dash SK (2012) Wintertime climatic trends in the western 
Himalayas. Clim Change 111(3–4):775–800

Ding T, Qian W, Yan Z (2010) Changes in hot days and heat waves in 
China during 1961–2007. Int J Climatol 30(10):1452–1462

Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH et al 
(2013) Updated analyses of temperature and precipitation extreme 
indices since the beginning of the twentieth century: The HadEX2 
dataset. J Geophys Res Atmos 118(5):2098–2118

Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, 
Mearns LO (2000) Climate extremes: observations, modeling, 
and impacts. Science 289(5487):2068–2074. https://​doi.​org/​10.​
1126/​scien​ce.​289.​5487.​2068

Fang G, Yang J, Chen YN, Zammit C (2015) Comparing bias cor-
rection methods in downscaling meteorological variables for a 
hydrologic impact study in an arid area in China. Hydrol Earth 
Syst Sci 19(6):2547–2559

Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil 
moisture–atmosphere interactions during the 2003 European sum-
mer heat wave. J Clim 20(20):5081–5099

Fischer EM, Beyerle U, Knutti R (2013) Robust spatially aggregated 
projections of climate extremes. Nat Clim Chang 3(12):1033–
1038. https://​doi.​org/​10.​1038/​nclim​ate20​51

Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change 
modelling to impacts studies: recent advances in downscaling 
techniques for hydrological modelling. Int J Climatol J R Meteorol 
Soc 27(12):1547–1578. https://​doi.​org/​10.​1002/​joc.​1556

Fuka DR, Walter MT, MacAlister C, Degaetano AT, Steenhuis TS, 
Easton ZM (2014) Using the Climate Forecast System Reanaly-
sis as weather input data for watershed models. Hydrol Process 
28(22):5613–5623

Gagnon S, Singh B, Rousselle J, Roy L (2005) An application of the 
statistical downscaling model (SDSM) to simulate climatic data 
for streamflow modelling in Québec. Can Water Resources J 
30(4):297–314

Gan R, Luo Y, Zuo Q, Sun L (2015) Effects of projected climate change 
on the glacier and runoff generation in the Naryn River Basin, 
Central Asia. J Hydrol 523:240–251. https://​doi.​org/​10.​1016/j.​
jhydr​ol.​2015.​01.​057

Gujree I, Wani I, Muslim M, Farooq M, Meraj G (2017) Evaluating the 
variability and trends in extreme climate events in the Kashmir 
Valley using PRECIS RCM simulations. Model Earth Syst Envi-
ron 3(4):1647–1662. https://​doi.​org/​10.​1007/​s40808-​017-​0370-4

Hashmi MZ, Shamseldin AY, Melville BW (2010) Comparison of 
SDSM and LARS-WG for simulation and downscaling of extreme 
precipitation events in a watershed. Stoch Environ Res Risk 
Assess. https://​doi.​org/​10.​1007/​s00477-​010-​0416-x

Hay LE, Clark MP (2003) Use of statistically and dynamically down-
scaled atmospheric model output for hydrologic simulations in 
three mountainous basins in the western United States. J Hydrol 
282(1–4):56–75. https://​doi.​org/​10.​1016/​s0022-​1694(03)​00252-x

Himayoun D, Roshni T (2019) Spatio-temporal variation of drought 
characteristics, water resource availability and the relation of 
drought with large scale climate indices: a case study of Jhelum 
basin, India. Quatern Int 525:140–150

Huang J, Zhang J, Zhang Z, Xu C, Wang B, Yao J (2011) Estimation 
of future precipitation change in the Yangtze River basin by using 
statistical downscaling method. Stoch Environ Res Risk Assess 
25(6):781–792. https://​doi.​org/​10.​1007/​s00477-​010-​0441-9

Huang J, Zhang J, Zhang Z, Sun S, Yao J (2012) Simulation of extreme 
precipitation indices in the Yangtze River basin by using statisti-
cal downscaling method (SDSM). Theoret Appl Climatol 108(3–
4):325–343. https://​doi.​org/​10.​1007/​s00704-​011-​0536-3

Huang YF, Ang JT, Tiong YJ, Mirzaei M, Amin MZM (2016) Drought 
forecasting using SPI and EDI under RCP-8.5 climate change sce-
narios for Langat River Basin, Malaysia. Procedia Eng 154:710–
717. https://​doi.​org/​10.​1016/j.​proeng.​2016.​07.​573

Husain M (1987) Geography of Jammu & Kashmir State. Rejesh Pub-
lications, New Delhi

Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change 
will affect the Asian water towers. Science 328(5984):1382–1385. 
https://​doi.​org/​10.​1126/​scien​ce.​118318

Ines AV, Hansen JW (2006) Bias correction of daily GCM rainfall for 
crop simulation studies. Agric Meteorol 138(1–4):44–53

Joshi MK, Rai A, Kulkarni A, Kucharski F (2020) Assessing changes 
in characteristics of hot extremes over India in a warming environ-
ment and their driving mechanisms. Sci Rep 10(1):1–14

Khadka D, Pathak D (2016) Climate change projection for the marsy-
angdi river basin, Nepal using statistical downscaling of GCM 
and its implications in geodisasters. Geoenviron Disasters 3(1):15. 
https://​doi.​org/​10.​1186/​s40677-​016-​0050-0

Khan MS, Coulibaly P, Dibike Y (2006) Uncertainty analysis of statis-
tical downscaling methods. J Hydrol 319(1–4):357–382. https://​
doi.​org/​10.​1016/j.​jhydr​ol.​2005.​06.​035

Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in tem-
perature and precipitation extremes in the CMIP5 ensemble. Clim 
Change 119(2):345–357. https://​doi.​org/​10.​1175/​JCLI4​066.1

Klein Tank AMG, Peterson TC, Quadir DA, Dorji S, Zou X, Tang 
H et al (2006) Changes in daily temperature and precipitation 
extremes in Central and South Asia. J Geophys Res Atmos. 
https://​doi.​org/​10.​1007/​s00477-​012-​0615-8

Klein Tank AMG, Zwiers FW, Zhang X (2009) Guidelines on analysis 
of extremes in a changing climate in support of informed deci-
sions for adaptation. Climate data and monitoring WCDMP-No. 
72, WMO-TD No. 1500, pp 56

https://doi.org/10.1029/2010WR009438
https://doi.org/10.1029/2010WR009438
https://doi.org/10.18537/mskn.05.01.07
https://doi.org/10.1016/j.jhydrol.2011.02.020
https://doi.org/10.1016/j.jhydrol.2011.02.020
https://doi.org/10.1029/2008GL035694
https://doi.org/10.1029/2008GL035694
https://doi.org/10.1007/s00704-009-0129-6
https://doi.org/10.1175/JHM409.1
https://doi.org/10.1016/j.jhydrol.2004.10.012
https://doi.org/10.1016/j.jhydrol.2004.10.012
https://doi.org/10.1111/jawr.12182
https://doi.org/10.1126/science.289.5487.2068
https://doi.org/10.1126/science.289.5487.2068
https://doi.org/10.1038/nclimate2051
https://doi.org/10.1002/joc.1556
https://doi.org/10.1016/j.jhydrol.2015.01.057
https://doi.org/10.1016/j.jhydrol.2015.01.057
https://doi.org/10.1007/s40808-017-0370-4
https://doi.org/10.1007/s00477-010-0416-x
https://doi.org/10.1016/s0022-1694(03)00252-x
https://doi.org/10.1007/s00477-010-0441-9
https://doi.org/10.1007/s00704-011-0536-3
https://doi.org/10.1016/j.proeng.2016.07.573
https://doi.org/10.1126/science.118318
https://doi.org/10.1186/s40677-016-0050-0
https://doi.org/10.1016/j.jhydrol.2005.06.035
https://doi.org/10.1016/j.jhydrol.2005.06.035
https://doi.org/10.1175/JCLI4066.1
https://doi.org/10.1007/s00477-012-0615-8


1668	 S. Ahsan et al.

1 3

Kostopoulou E, Jones PD (2005) Assessment of climate extremes in 
the Eastern Mediterranean. Meteorol Atmos Phys 89(1–4):69–85. 
https://​doi.​org/​10.​1007/​s00703-​005-​0122-2

Kothawale DR, Revadekar JV, Kumar KR (2010) Recent trends in pre-
monsoon daily temperature extremes over India. J Earth Syst Sci 
119(1):51–65

Koukidis EN, Berg AA (2009) Sensitivity of the Statistical Down-
Scaling Model (SDSM) to reanalysis products. Atmos Ocean 
47(1):1–18. https://​doi.​org/​10.​3137/​AO924.​2009

Lee WS, Lee MI (2016) Interannual variability of heat waves in South 
Korea and their connection with large-scale atmospheric circula-
tion patterns. Int J Climatol 36(15):4815–4830

Lenderink G, Buishand A, Van Deursen W (2007) Estimates of 
future discharges of the river Rhine using two scenario meth-
odologies: direct versus delta approach

Liu LL, Liu ZF, Xu ZX (2008) Trends of climate change for the 
upper-middle reaches of the Yellow River in the 21st century. 
Adv Clim Chang Res 4(3):167–172

Loikith PC, Broccoli AJ (2012) Characteristics of observed atmos-
pheric circulation patterns associated with temperature extremes 
over North America. J Clim 25(20):7266–7281

Mahmood R, Babel MS (2013) Evaluation of SDSM developed by 
annual and monthly sub-models for downscaling temperature 
and precipitation in the Jhelum basin, Pakistan and India. Theo-
ret Appl Climatol 113(1–2):27–44

Mahmood R, Babel MS (2014) Future changes in extreme tempera-
ture events using the statistical downscaling model (SDSM) in 
the trans-boundary region of the Jhelum river basin. Weather 
Clim Extremes 5:56–66. https://​doi.​org/​10.​1016/j.​wace.​2014.​
09.​001

Mahmood R, Babel MS, Shaofeng JIA (2015) Assessment of temporal 
and spatial changes of future climate in the Jhelum river basin, 
Pakistan and India. Weather Clim Extremes 10:40–55. https://​doi.​
org/​10.​1016/j.​wace.​2015.​07.​002

Mearns LO, Giorgi F, Whetton P, Pabon D, Hulme M, Lal M (2003) 
Guidelines for use of climate scenarios developed from regional 
climate model experiments

Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer 
lasting heat waves in the 21st century. Science 305(5686):994–997

Meenu R, Rehana S, Mujumdar PP (2013) Assessment of hydrologic 
impacts of climate change in Tunga-Bhadra river basin, India 
with HEC-HMS and SDSM. Hydrol Process 27(11):1572–1589. 
https://​doi.​org/​10.​16943/​ptinsa/​2018/​49506

Morak S, Hegerl GC, Christidis N (2013) Detectable changes in the fre-
quency of temperature extremes. J Clim 26(5):1561–1574. https://​
doi.​org/​10.​1175/​JCLI-D-​11-​00678.1

Mukherjee S, Mishra V (2018) A sixfold rise in concurrent day and 
night-time heatwaves in India under 2 C warming. Sci Rep 
8(1):1–9

Nguyen VTV, Nguyen TD, Gachon P (2006) On the linkage of large-
scale climate variability with local characteristics of daily pre-
cipitation and temperature extremes: an evaluation of statistical 
downscaling methods. Adv Geosci Hydrol Sci (HS) 4:1–9. https://​
doi.​org/​10.​1142/​97898​12707​208_​0001

Nguyen VTV, Nguyen TD, Cung A (2007) A statistical approach to 
downscaling of sub-daily extreme rainfall processes for climate-
related impact studies in urban areas. Water Sci Technol Water 
Supply 7(2):183–192. https://​doi.​org/​10.​2166/​ws.​2007.​053

Orlowsky B, Seneviratne SI (2012) Global changes in extreme events: 
regional and seasonal dimension. Clim Change 110(3–4):669–
696. https://​doi.​org/​10.​1007/​s10584-​011-​0122-9

Otto FE, Massey N, Van Oldenborgh GJ, Jones RG, Allen MR (2012) 
Reconciling two approaches to attribution of the 2010 Russian 
heat wave. Geophys Res Lett. https://​doi.​org/​10.​1029/​2011G​
L0504​22

Rashid I, Romshoo SA, Chaturvedi RK, Ravindranath NH, Sukumar 
R, Jayaraman M et al (2015) Projected climate change impacts 
on vegetation distribution over Kashmir Himalayas. Clim Change 
132(4):601–613. https://​doi.​org/​10.​1007/​s10584-​015-​1456-5

Revadekar JV, Kothawale DR, Patwardhan SK, Pant GB, Kumar KR 
(2012) About the observed and future changes in temperature 
extremes over India. Nat Hazards 60(3):1133–1155

Roy S, Balling RC Jr (2004) Trends in extreme daily precipitation 
indices in India. Int J Climatol J R Meteorol Soc 24(4):457–466. 
https://​doi.​org/​10.​1002/​joc.​995

Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S et al (2010) The 
NCEP climate forecast system reanalysis. Bull Am Meteor Soc 
91(8):1015–1058. https://​doi.​org/​10.​1175/​2010B​AMS30​01.1

Samadi S, Wilson CA, Moradkhani H (2013) Uncertainty analysis 
of statistical downscaling models using Hadley Centre Coupled 
Model. Theoret Appl Climatol 114(3–4):673–690. https://​doi.​org/​
10.​1007/​s00704-​013-​0844-x

Sen PK (1968) Estimates of the regression coefficient based on Kend-
all’s tau. J Am Stat Assoc 63(324):1379–1389

Shafiq M, Ramzan S, Ahmed P, Mahmood R, Dimri AP (2019) Assess-
ment of present and future climate change over Kashmir Himala-
yas, India. Theoret Appl Climatol 137(3–4):3183–3195. https://​
doi.​org/​10.​1007/​s00704-​019-​02807-x

Sharma KP, Vorosmarty CJ, Moore B (2000) Sensitivity of the Hima-
layan hydrology to land-use and climatic changes. Clim Change 
47(1–2):117–139

Sharma E, Molden D, Wester P, Shrestha RM (2016) The Hindu Kush 
Himalayan monitoring and assessment programme: action to sus-
tain a global asset. Mt Res Dev 36(2):236–239. https://​doi.​org/​10.​
1659/​MRD-​JOURN​AL-D-​16-​00061.1

Shekhar MS, Devi U, Paul S, Singh GP, Singh A (2017) Analysis of 
trends in extreme precipitation events over Western Himalaya 
Region: intensity and duration wise study. J Ind Geophys Union 
21(3):225–231

Sillmann J, Roeckner E (2008) Indices for extreme events in projections 
of anthropogenic climate change. Clim Change 86(1–2):83–104. 
https://​doi.​org/​10.​1007/​s10584-​007-​9308-6

Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Cli-
mate extremes indices in the CMIP5 multimodel ensemble: Part 
2. Future climate projections. J Geophys Res Atmos 118(6):2473–
2493. https://​doi.​org/​10.​1002/​jgrd.​50188

Souvignet M, Heinrich J (2011) Statistical downscaling in the arid 
central Andes: uncertainty analysis of multi-model simu-
lated temperature and precipitation. https://​doi.​org/​10.​1007/​
s00704-​011-​0430-z

Tabari H, Somee BS, Zadeh MR (2011) Testing for long-term trends 
in climatic variables in Iran. Atmos Res 100(1):132–140. https://​
doi.​org/​10.​1016/j.​atmos​res.​2011.​01.​005

Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the 
extremes. Clim Change 79(3–4):185–211. https://​doi.​org/​10.​1007/​
s10584-​006-​9051-4

Teutschbein C, Seibert J (2010) Regional climate models for hydro-
logical impact studies at the catchment scale: a review of recent 
modeling strategies. Geogr Compass 4(7):834–860

Teutschbein C, Wetterhall F, Seibert J (2011) Evaluation of different 
downscaling techniques for hydrological climate-change impact 
studies at the catchment scale. Clim Dyn 37(9–10):2087–2105. 
https://​doi.​org/​10.​1007/​s00382-​010-​0979-8

Trenberth KE (2011) Attribution of climate variations and trends to 
human influences and natural variability. Wiley Interdiscip Rev 
Clim Change 2(6):925–930. https://​doi.​org/​10.​1002/​wcc.​142

Turco M, Sanna A, Herrera S, Llasat MC, Gutiérrez JM (2013) Large 
biases and inconsistent climate change signals in ENSEMBLES 
regional projections. Clim Change 120(4):859–869. https://​doi.​
org/​10.​1007/​s10584-​013-​0844-y

https://doi.org/10.1007/s00703-005-0122-2
https://doi.org/10.3137/AO924.2009
https://doi.org/10.1016/j.wace.2014.09.001
https://doi.org/10.1016/j.wace.2014.09.001
https://doi.org/10.1016/j.wace.2015.07.002
https://doi.org/10.1016/j.wace.2015.07.002
https://doi.org/10.16943/ptinsa/2018/49506
https://doi.org/10.1175/JCLI-D-11-00678.1
https://doi.org/10.1175/JCLI-D-11-00678.1
https://doi.org/10.1142/9789812707208_0001
https://doi.org/10.1142/9789812707208_0001
https://doi.org/10.2166/ws.2007.053
https://doi.org/10.1007/s10584-011-0122-9
https://doi.org/10.1029/2011GL050422
https://doi.org/10.1029/2011GL050422
https://doi.org/10.1007/s10584-015-1456-5
https://doi.org/10.1002/joc.995
https://doi.org/10.1175/2010BAMS3001.1
https://doi.org/10.1007/s00704-013-0844-x
https://doi.org/10.1007/s00704-013-0844-x
https://doi.org/10.1007/s00704-019-02807-x
https://doi.org/10.1007/s00704-019-02807-x
https://doi.org/10.1659/MRD-JOURNAL-D-16-00061.1
https://doi.org/10.1659/MRD-JOURNAL-D-16-00061.1
https://doi.org/10.1007/s10584-007-9308-6
https://doi.org/10.1002/jgrd.50188
https://doi.org/10.1007/s00704-011-0430-z
https://doi.org/10.1007/s00704-011-0430-z
https://doi.org/10.1016/j.atmosres.2011.01.005
https://doi.org/10.1016/j.atmosres.2011.01.005
https://doi.org/10.1007/s10584-006-9051-4
https://doi.org/10.1007/s10584-006-9051-4
https://doi.org/10.1007/s00382-010-0979-8
https://doi.org/10.1002/wcc.142
https://doi.org/10.1007/s10584-013-0844-y
https://doi.org/10.1007/s10584-013-0844-y


1669Evaluating the impact of climate change on extreme temperature and precipitation events over…

1 3

Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hib-
bard K et al (2011) The representative concentration pathways: 
an overview. Clim Change 109(1–2):5. https://​doi.​org/​10.​1007/​
s10584-​011-​0148-z

Varis O, Kajander T, Lemmelä R (2004) Climate and water: from cli-
mate models to water resources management and vice versa. Clim 
Change 66(3):321–344. https://​doi.​org/​10.​1023/B:​CLIM.​00000​
44622.​42657.​d4

Vincent LA, Zhang X, Mekis É, Wan H, Bush EJ (2018) Changes in 
Canada’s climate: trends in indices based on daily temperature and 
precipitation data. Atmos Ocean 56(5):332–349. https://​doi.​org/​
10.​1080/​07055​900.​2018.​15145​79

Von Salzen K, Scinocca JF, McFarlane NA, Li J, Cole JN, Plummer D 
et al (2013) The Canadian fourth generation atmospheric global 
climate model (CanAM4). Part I: representation of physical pro-
cesses. Atmos Ocean 51(1):104–125. https://​doi.​org/​10.​1080/​
07055​900.​2012.​755610

Wilby RL, Dawson CW (2007) SDSM 4.2—a decision support tool 
for the assessment of regional climate change impacts, Version 
4.2 User Manual. Lancaster University, Lancaster/Environment 
Agency of England and Wales, Lancaster, pp 1–94

Wilby RL, Wigley TML (1997) Downscaling general circulation model 
output: a review of methods and limitations. Prog Phys Geogr 
21(4):530–548. https://​doi.​org/​10.​1177/​03091​33397​02100​403

Wilby RL, Dawson CW, Barrow EM (2002) SDSM—a decision sup-
port tool for the assessment of regional climate change impacts. 
Environ Model Softw 17(2):145–157. https://​doi.​org/​10.​1016/​
S1364-​8152(01)​00060-3

Yao T, Thompson LG, Mosbrugger V, Zhang F, Ma Y, Luo T et al 
(2012) Third pole environment (TPE). Environ Dev 3:52–64. 
https://​doi.​org/​10.​1016/j.​envdev.​2012.​04.​002

Zhan YJ, Ren GY, Shrestha AB, Rajbhandari R, Ren YY, Sanjay J et al 
(2017) Changes in extreme precipitation events over the Hindu 
Kush Himalayan region during 1961–2012. Adv Clim Chang Res 
8(3):166–175

Zhang X, Aguilar E, Sensoy S, Melkonyan H, Tagiyeva U, Ahmed N 
et al (2005) Trends in Middle East climate extreme indices from 
1950 to 2003. J Geophys Res Atmos. https://​doi.​org/​10.​1029/​
2005J​D0061​81

Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, 
Zwiers FW (2011) Indices for monitoring changes in extremes 
based on daily temperature and precipitation data. Wiley Inter-
discip Rev Clim Change 2(6):851–870

Zhu X, Zhang A, Wu P, Qi W, Fu G, Yue G, Liu X (2019) Uncertainty 
impacts of climate change and downscaling methods on future 
runoff projections in the Biliu River Basin. Water 11(10):2130. 
https://​doi.​org/​10.​3390/​w1110​2130

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1023/B:CLIM.0000044622.42657.d4
https://doi.org/10.1023/B:CLIM.0000044622.42657.d4
https://doi.org/10.1080/07055900.2018.1514579
https://doi.org/10.1080/07055900.2018.1514579
https://doi.org/10.1080/07055900.2012.755610
https://doi.org/10.1080/07055900.2012.755610
https://doi.org/10.1177/030913339702100403
https://doi.org/10.1016/S1364-8152(01)00060-3
https://doi.org/10.1016/S1364-8152(01)00060-3
https://doi.org/10.1016/j.envdev.2012.04.002
https://doi.org/10.1029/2005JD006181
https://doi.org/10.1029/2005JD006181
https://doi.org/10.3390/w11102130

	Evaluating the impact of climate change on extreme temperature and precipitation events over the Kashmir Himalaya
	Abstract
	1 Introduction
	2 Study area
	3 Materials and methods
	3.1 Observed data
	3.2 Climate Forecast System Reanalysis (CFSR) data
	3.3 GCMNCEP data
	3.4 Description of SDSM model
	3.4.1 Screening of predictors
	3.4.2 Calibration and validation
	3.4.3 Generation of future scenarios

	3.5 Calculation of extreme climatic indices
	3.6 Trend analysis of extreme indices

	4 Results
	4.1 Screening of predictors
	4.2 Calibration and validation
	4.3 Projected changes in the temperature
	4.4 Projected changes in the precipitation
	4.5 Trends in the extreme temperature indices
	4.6 Trends in extreme precipitation indices
	4.7 Trends in the regional average indices

	5 Discussion
	6 Conclusions
	Acknowledgements 
	References




