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Abstract
The Colorado River is one of the most important rivers in the southwestern U.S., with ~ 90% of the total flow originating 
from the Upper Colorado River Basin (UCRB). The UCRB April–July streamflow is well-correlated to the UCRB spring 
precipitation. It is known that the UCRB precipitation is linked to an El Niño-like sea surface temperature (SST) pattern, but 
the causal effect of the tropical Pacific SST on the UCRB spring precipitation is still uncertain. Here, we apply a Granger 
causality approach to understand the causal effect of the tropical Pacific averaged SST in previous three seasons (winter, fall, 
and summer) on the UCRB averaged precipitation in spring in observations and two climate models. In observations, only 
the winter SST has Granger causal effect (with p-value ~ 0.05) on spring precipitation, while historical simulations of the two 
climate models overestimate the causal effect for winter and fall (with p-value < 0.01 and < 0.05, respectively) due to model 
biases. Moreover, future projections of the two climate models show divergent causal effects, especially for the scenario with 
high anthropogenic emissions. The divergent projections indicate that (1) there are large uncertainties in model projections 
of the causal effect of the tropical Pacific SST on UCRB spring precipitation and (2) it is uncertain whether climate models 
can reliably capture changes in such causality. These uncertainties may result in large uncertainties in seasonal forecasts of 
the UCRB hydroclimate under global climate change.

Keywords  Upper Colorado River Basin precipitation · Seasonal predictability · Sea surface temperature · Granger 
causality · Climate change · Global climate model

1  Introduction

The Colorado River is one of the most important rivers in 
the southwestern U.S. It provides water for nearly 40 million 
people, irrigates ~ 20,000 km2 of land, and generates more 
than 4,200 megawatts of hydroelectric power per year (U.S. 
Bureau of Reclamation 2012). The Upper Colorado River 
Basin (UCRB), defined as the catchment area upstream of 
the U.S. Geological Survey stream gauge at Lees Ferry, Ari-
zona, provides ~ 90% of the streamflow for the Colorado 
River (Jacobs 2011). The streamflow during April–July has 
large contribution to the annual total flow and mountain 

snowpacks accumulated from previous fall to spring pro-
vide major sources for the streamflow (e.g., Aziz et al. 2010; 
Bracken et al. 2010; Werner and Yeager 2013; Xiao et al. 
2018).

Recently, a significant negative trend of April–July 
streamflow was observed over the UCRB (e.g., Xiao et al. 
2018). The negative trend could be attributed to sustained 
drought conditions (Reynolds et al. 2015; Woodhouse et al. 
2016; Xiao et al. 2018; Hoerling et al. 2019; Hobbins and 
Barsugli 2020; Milly and Dunne 2020). Warm-season tem-
perature also has negative effects on the UCRB streamflow 
and such effects will become more evident and problem-
atic as warming continues (McCabe et al. 2017). The cli-
mate change impacts on the UCRB streamflow have been 
widely investigated (e.g., Barnett et al. 2005; Alley et al. 
2007; Harding et al. 2012; Ficklin et al. 2013; Vano et al. 
2014; Vano and Lettenmaier 2014; Ayers et al. 2016; Udall 
and Overpeck 2017; Solander et al. 2018). For example, 
Solander et al. (2018) found that more severe changes in 
streamflow for Colorado River Basin (CRB; including both 
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upper and lower basins) watersheds with high elevations will 
probably occur in a warmer climate in the future. Under 
global warming, regions where water supply is dominated 
by melting snowpacks tend to have decreasing snowfall and 
increasing rainfall in winter and early melting time of winter 
snowpacks (Barnett et al. 2005). Such changes will poten-
tially lead to a shift in the peak of streamflow from spring 
to early spring or winter and likely influence future water 
availability.

Given that regional precipitation, snowpack, among other 
climate data (such as temperature) have direct impact on the 
streamflow, those variables have been used for short-lead 
(lead time shorter than four months) operational hydrologic 
and water supply seasonal forecasts for the Colorado River 
(e.g., Franz et al. 2003; Pagano et al. 2009; Werner 2011; 
Najafi et al. 2012; Werner and Yeager 2013; Fleming and 
Goodbody 2019). For example, the Colorado Basin River 
Forecast Center (CBRFC) produces both seasonal flood and 
seasonal water supply forecasts. Especially, the CBRFC pro-
vides monthly updates of seasonal forecasts of the UCRB 
streamflow starting in January using an ensemble stream-
flow prediction approach (e.g., Werner and Yeager 2013). 
The U.S. Department of Agriculture’s Natural Resources 
Conservation Service provides seasonal water supply fore-
casts in the western U.S. adopting a probabilistic nonlinear 
regression technique, which includes supervised and unsu-
pervised machine learning, nonparametric statistical mod-
eling, ensemble modeling, and evolutionary optimization 
(Fleming and Goodbody 2019). For long-lead (lead time 
longer than four months) seasonal forecasts of the UCRB 
streamflow, Pacific sea surface temperatures (SSTs) have 
been widely used (e.g., Regonda et al. 2006; Switanek et al. 
2009; Bracken et al. 2010; Lamb et al. 2011; Oubeidillah 
et al. 2011; Sagarika et al. 2015, 2016). Recently, Zhao et al. 
(2021) derived Pacific SST Predictors (PSP) from a dipole 
pattern over the Pacific (30° S–65° N) that is correlated with 
the lagging UCRB streamflow. The long-lead prediction 
skills shown in their study are probably associated with the 
emergence of strong PSP–streamflow correlations in recent 
decades.

The role of the Pacific SST (predictor for long-lead 
streamflow prediction) in modulating the CRB precipitation 
(predictor for short-lead streamflow prediction) has been 
evaluated (e.g., Hidalgo and Dracup 2003; Kim et al. 2006). 
The SST variability associated with the El Niño–Southern 
Oscillation (ENSO; Cai et al. 2015a) provides dominant 
interannual variability in the equatorial Pacific. A warm 
phase of the ENSO leads to increasing precipitation in 
summer over the upper basin, while the cold phase of the 
ENSO leads to decreasing precipitation in winter over the 
lower basin (Wang and Ting 2000; Kim et al. 2006). For the 
UCRB, warm season precipitation was found to be more 

strongly linked to the El Niño (Niño 3 index) than cold sea-
son precipitation did (Hidalgo and Dracup 2003).

Global climate models (GCMs) were applied to under-
stand the trend, variability, and other properties of the 
UCRB precipitation. For example, Gautam and Mascaro 
(2018) evaluated nineteen models from Fifth Phase of the 
Coupled Model Intercomparison Project (CMIP5) and found 
that these models tend to overestimate the climatological 
mean of the annual precipitation over the CRB up to 140% 
and slightly underestimate the interannual variability of the 
annual precipitation. Ayers et al. (2016) compared projected 
hydrologic conditions over the UCRB between CMIP3 and 
CMIP5 models. They found that 57% of the UCRB region 
shows a significantly increasing trend in precipitation 
throughout the twenty-first century in CMIP5 models, but 
only 5% in CMIP3 models. By applying U.S. Bureau of Rec-
lamation’s climate projection datasets, Udall and Overpeck 
(2017) argued that an increase in precipitation will probably 
moderate the decline of the Colorado River streamflow due 
to a temperature increase, while there is no model agreement 
on future projections of precipitation changes.

In addition, GCMs have been widely used to study char-
acteristics and potential changes of the Pacific SST vari-
ability (e.g., Deser et al. 2012; Sheffield et al. 2013; Cai 
et al. 2015a, b, 2018; Newman et al. 2016). Cai et al. (2014, 
2015b) found that both El Niño and La Niña events may 
increase under greenhouse warming in both CMIP3 and 
CMIP5 models. Their results showed that high frequency 
of El Niño events is probably due to projected warmer east-
ern equatorial Pacific than the surrounding ocean waters and 
high occurrence of atmospheric convection in the east basin. 
On the contrary, high frequency of La Niña events is likely 
due to projected faster warming of the Maritime continent 
(i.e., lands between Indian and Pacific Oceans, including 
countries of Indonesia, Philippines and Papua New Guinea, 
etc.) than the central Pacific and increased upper ocean verti-
cal temperature gradients. However, there is no agreement 
on future projections of ENSO variability (e.g., Stevenson 
2012; Power et al. 2013; Kim et al. 2014; Chen et al. 2017).

Despite of aforementioned studies, the linkage between 
the Pacific SST and UCRB precipitation remains unclear, 
especially the linkage under different climate scenarios. 
A Granger causality approach has been applied to study 
the causality between two fields. For example, Wang et al. 
(2004) and Mosedale et al. (2006) applied Granger causal-
ity approach to understand the causal effect of preceding 
SST anomalies on the wintertime North Atlantic Oscilla-
tion (Wang et al. 2004; Mosedale et al. 2006). McGraw and 
Barnes (2018) applied Granger causality to ENSO and land 
surface temperature and suggested that Granger causality 
approach is superior to traditional lagged regression/correla-
tion approach when one or more datasets have large memory.
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Previous studies have not paid adequate attention on 
the UCRB spring precipitation. Its influence on the UCRB 
streamflow during April–July is somewhat overlooked due 
to the great impact of mountain snowpacks on streamflow. 
In fact, the correlation coefficient between the spring pre-
cipitation averaged over the UCRB and total natural flow 
during April–July at Lees Ferry (the downstream gauge of 
the UCRB) is 0.60 from 1950 to 2014 (significant at the 
0.001 level according to Student’s t test) (see the text and 
Fig. S1 in the Supplementary Material). This result indicates 
that in addition to mountain snowpacks, the UCRB spring 
precipitation is also well-correlated to the UCRB streamflow 
during the runoff season. Therefore, the goal of this study is 
to investigate the causal effect of the previous-season Pacific 
SST on the UCRB spring [March–May (MAM)] precipita-
tion in observations and in historical and Shared Socioeco-
nomic Pathway (SSP; Meinshausen et al. 2020) simulations 
of two CMIP6 models using the Granger causality approach.

2 � Data and methodology

2.1 � Observational datasets

The monthly averaged precipitation is from National Oce-
anic and Atmospheric Administration (NOAA) Climate Pre-
diction Center (CPC) Unified Gauge-Based Analysis with a 
resolution of 0.25° from 1949 to 2014 (Chen et al. 2008). 
The data after 2014 are not included in order to be consistent 
with CMIP6 models’ historical simulations. The monthly 
averaged SST is from the Hadley Centre Sea Ice and Sea Sur-
face Temperature (HadISST) with a resolution of 1.0° from 
1949 to 2014 (Rayner et al. 2003). The monthly mean zonal 
and meridional winds and geopotential height come from 
National Centers for Environmental Prediction–National 
Center for Atmospheric Research (NCEP–NCAR) reanaly-
sis with a resolution of 2.5° and 17 pressure levels in the 
vertical ranging from 1000 to 10 hPa from 1949 to 2014 
(Kalnay et al. 1996). The daily mean zonal and meridional 
winds and specific humidity are also from NCEP–NCAR 
reanalysis. We choose the NCEP–NCAR data because it has 
long temporal coverage. The monthly total natural flow data 
for the stream gauge at Lees Ferry is obtained from Bureau 
of Reclamation (Prairie and Callejo 2005).

2.2 � CMIP6 model simulations

Following Zhao et al. (2017), two state-of-the-art models 
of CMIP6 archives—the NCAR Community Earth System 
Model version 2 (CESM2; Danabasoglu et al. 2020) and the 
NOAA Geophysical Fluid Dynamics Laboratory Earth Sys-
tem Model version 4 (GFDL-ESM4; Dunne et al. 2020)—
are analyzed in this study. The two models are widely used in 

the U.S. for climate assessment and have relatively high res-
olutions (around 1-degree spatial resolution and a minimum 
of 3-hourly temporal output). Historical simulations (for the 
period of 1949–2014) from the two models are analyzed 
and then compared with parallel observational analyses. 
The external forcings of historical simulations include well-
mixed greenhouse gases, anthropogenic sulfate aerosol, vol-
canic aerosol, ozone, land-use change, organic carbon, black 
carbon, etc. Pre-industrial control (piControl) simulations 
with non-evolving pre-industrial conditions are used to com-
pare with historical simulations and to detect the influence 
of external forcings versus model biases. Since the length 
of piControl simulations is 500 years, we divide the 500-
year simulations into seven members (a total of 462 years 
are used). Each member has length of 66 years, consistent 
with the length of historical simulations (1949–2014; total 
of 66 years).

Three main SSP simulations (for the period of 
2035–2100) from the two models are also used, including 
the SSP245, SSP370, and SSP585 scenarios (Meinshausen 
et al. 2020). The SSP245 represents a “middle of the road” 
scenario, with the radiative forcing level of 4.5 W m−2 by 
2100. The SSP370 is a medium–high scenario within the 
“regional rivalry” socio-economic family. The SSP585 
indicates a high reference scenario within the “fossil-fueled 
development” family. Since available ensemble member is 
very limited for piControl and SSP simulations, here we only 
include one ensemble for each simulation. The details of 
these simulations are summarized in Table 1.

2.3 � Granger causality

Granger causality approach is applied to determine the 
causal effect of the tropical Pacific SST on the UCRB pre-
cipitation. Granger (1969) defined causality as follows: if the 
history of an independent variable X has causal effect on the 
future state of a dependent variable Y and such causal effect 
is stronger than that using the history of Y itself, then X has 
Granger causal effect on Y. We establish the direction of 
the Granger causal pathway, i.e., from SST to precipitation. 
We examine three lead seasons: winter [December–Febru-
ary (DJF)], fall [September–November (SON)], and summer 
[June–August (JJA)], separately. For each lead season, we 
calculate the time series of the UCRB averaged spring pre-
cipitation, the time series of UCRB averaged precipitation 
in the lead season, and the time series of domain averaged 
SST anomaly over the tropical Pacific (15° S–15° N/90° 
W–170° W) in the lead season. Since the Granger causal-
ity approach requires processes to be linear and stationary 
(e.g., Mosedale et al. 2006; McGraw and Barnes 2018), we 
assume that the relationship between the Pacific SST and 
spring precipitation is linear and remove the linear trend of 
the above time series.
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Following Wang et al. (2004) and Mosedale et al. (2006), 
we derive the relationship between SST and precipitation 
using a vector autoregressive model with exogenous vari-
ables, which can be expressed as:

where �
()
,�

()
 , and �

()
 are regression coefficients, �

()
 is the error 

term (also called residual), and � is the lead time. In Eq. 1, to 
predict precipitation at time t , only one lead time (i.e., t − � ) 
is applied for the past precipitation and SST. Such setting 
is different from that in previous studies (e.g., Wang et al. 
2004; Mosedale et al. 2006) that apply lead times from t − 1 
to t − � (where � ≥ 1 ). In our study, we will determine the 
causality for each lead time separately. Then, we estimate the 
restricted form of Eq. 1 where the causal variable ( SSTt−� ) 
is eliminated, which is done statistically by restricting �1 to 
zero:

Next, we apply both F-test and Chi-squared ( �2 ) test to 
examine whether the restricted estimates (i.e., Eq. 2) are 
significantly different from the unrestricted estimates (i.e., 
Eq. 1). The F-test and Chi-squared test are statistical hypoth-
esis tests in which the test statistic has an F-distribution 
and Chi-squared distribution, respectively, under the null 
hypothesis. We calculate the F statistic as follows:

In Eq. 3, RSS
()
 is the sum of residual (�) squares; the sub-

scripts r and u refer to the restricted (Eq. 2) and unrestricted 
(Eq. 1) forms, respectively; NY  is the number of observa-
tions (the number of total years); m is the number of coeffi-
cients that are restricted to zero (i.e., �1 ) and m = 1 here; and 
n is the number of coefficients in the unrestricted form of the 
equation and n = 3 . The Chi-squared statistic is as follows:

(1)Precipt = �1 + �1Precipt−� + �1SSTt−� + �1,

(2)Precipt = �2 + �2Precipt−� + �2.

(3)S =

(RSSr − RSSu)∕m

RSSu∕(NY − n)
.

where ||
|
Ω

()

||
|
 is the determinant of the covariance matrix of the 

residuals. Since the residuals are a vector here, ||
|
Ω

()

||
|
 is also 

equal to RSS
()
 . Finally, the test statistics are evaluated against 

the F and Chi-squared distribution, respectively, and p-value 
is computed. The null hypothesis is that the independent 
variable eliminated from Eq. 1 (i.e., the past value of SST) 
does not have causal effect on the dependent variable (i.e., 
spring precipitation). To reject the null hypothesis of no cau-
sality between the two variables at 95% confidence interval, 
the p-value of the statistic should be less than 0.05. We also 
detect the causality in the opposite direction, i.e., from pre-
cipitation to SST. To do so, the “Precip” and “SST” in Eqs. 1 
and 2 are substituted with “SST” and “Precip”, respectively. 
Finally, caveats to the Granger causality approach are dis-
cussed in Sect. 4.

3 � Results

3.1 � UCRB spring precipitation and preceding Pacific 
SST

Figure 1a shows the climatological mean of the spring pre-
cipitation over the UCRB in the observation. Precipitation 
with large values (> 1.5 mm day–1) occurs over mountainous 
regions. Lower latitudes generally have low precipitation 
(< 0.5 mm day–1). Figure 1b, c shows that large variability 
and positive trend of the precipitation occur over moun-
tainous regions. For the two climate models (CESM2 and 
GFDL-ESM4), historical simulations are compared with 
the observation for the same period (1950–2014) but with 
lower spatial resolutions (Fig. 1d–i). The two models well 
capture the spatial pattern of the climatological mean spring 

(4)S = NY

(

log
|
|Ωr

|
|

||Ωu
||

)

,

Table 1   The details of the 
CESM2 and GFDL-ESM4 
models

Model abbr. Simulations Ensemble 
number

Period Atmosphere grids 
(lon × lat)

Ocean 
grids 
(lon × lat)

CESM2 Historical 1 1949–2014 288 × 192 384 × 320
SSP245 2035–2100
SSP370 2035–2100
SSP585 2035–2100
piControl 1–462 years

GFDL-ESM4 Historical 1 1949–2014 288 × 180 720 × 576
SSP245 2035–2100
SSP370 2035–2100
SSP585 2035–2100
piControl 1–462 years
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precipitation, but overestimate the magnitude, especially for 
the GFDL-ESM4. In addition, there are some discrepan-
cies between the climate models and observations for the 

precipitation variance. For example, the CESM is unable to 
capture the large variance over the western boundary of the 
UCRB, while the GFDL-ESM4 overestimates the variance 

Fig. 1   a–c Climatological mean (mm day–1), variance ((mm day–1)2), 
and trend (regression coefficient; mm day–1 per year) of precipitation 
during spring over the UCRB in the observation. d–i Same as a–c, 

but for historical simulations of two models. Dots denote regression 
coefficients significant at 0.05 level (according to Student’s t test)
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over lower latitudes (e.g., around 37°–38° N). The two mod-
els fail to capture the trend shown in the observation for the 
period of 1950–2014.

Figure 2a shows the climatological mean of monthly 
mean domain averaged precipitation in both observation 
and historical simulations of the two climate models. It 
is noted that the spring precipitation in the observation is 
slightly higher than that of the annual mean, while mod-
eled spring precipitation is much higher than modeled 
annual mean precipitation. This result further indicates 
an overestimation of the UCRB spring precipitation in the 

two climate models. Figure 2b shows the empirical prob-
ability distribution function (PDF) of the UCRB domain-
mean spring precipitation for years between 1950 and 
2014 in both observation and two models. The most fre-
quent value of the spring precipitation (1.0 mm day–1 in 
observation) is overestimated by the two models (1.3 and 
2.3 mm day–1 in the CESM2 and GFDL-ESM4, respec-
tively). Previous studies have documented the bias of the 
model-simulated precipitation (e.g., Zhao et  al. 2016, 
2017; Gautam and Mascaro 2018). We correct the bias 
by calculating the ratio of the climatological mean spring 

Fig. 2   a Climatological mean 
of monthly mean (solid lines) 
and annual mean (dashed 
lines) precipitation (mm day–1) 
averaged over the UCRB in 
both observation and historical 
simulations of the two models. 
b PDF (%) of the UCRB 
domain-mean spring precipita-
tion for 1950–2014 in observa-
tion and historical simulations 
of the two models. c Same as b, 
but for bias-corrected modeled 
precipitation
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precipitation between climate model and observation (i.e., 
Fig. 1a–c) and then applying the ratio to modeled spring 
precipitation in each year (Zhao et al. 2016, 2017). The 
resultant modeled precipitation shares similar values and 
PDF with those in the observation (Fig. 2c). We notice that 
such bias-correction approach has very small impact on 
the results of correlation/causality in following sections.

We calculate the variance of previous winter, fall, and 
summer Pacific SST in both observation and two climate 
models. In general, large-variance region shifts from the 
eastern Pacific to central Pacific from summer to win-
ter, and such characteristics are well captured by the two 
models, especially the CESM2 (Fig. 3). However, the two 
models overestimate the SST variance, especially dur-
ing winter. In addition, discrepancies of the SST trend 
are shown between the climate models and observation 
(Fig. S2). The misrepresentation of the trend is probably 
due to the insufficiency of climate models to represent the 
real physical world. Nevertheless, we do not need to worry 
about the trend because it is completely removed in the 
following analyses.

3.2 � Causal effect of SST on precipitation 
with historical data

In this section, we assess the casual effect of the Pacific SST 
on the UCRB spring precipitation in both observation and 
historical simulations of the two climate models. We com-
pute correlation coefficients between the detrended UCRB 
domain-mean spring precipitation and detrended Pacific SST 
in the previous winter, fall, and summer, separately. Fig-
ure 4a shows the SST–precipitation correlation map, which 
reveals that an El Niño-like SST pattern during winter is 
significantly (at the 0.05 level according to Student’s t test) 
linked to the following UCRB spring precipitation in the 
observation. Note that the correlation between spring pre-
cipitation and spring SST is similar to that between spring 
precipitation and winter SST (Fig. S3 vs Fig. 4a), indicating 
that the lagged correlation signal in previous winter per-
sists into spring. The correlation drops rapidly when the 
lead time extends to the previous summer (Fig. 4b, c). Both 
models’ historical simulations can capture the El Niño-like 
correlation pattern and the weaker correlation with longer 

Fig. 3   a–c Variance ((°C)2) of previous winter, fall, and summer SST in observation. d–i Same as a–c, but for historical simulations of the two 
models
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lead times (Fig. 2d–i). However, modeled correlation coef-
ficients are overestimated for winter and fall, especially over 
the equatorial Pacific, and the spatial pattern of the coeffi-
cients is either spatially shifted (GFDL-ESM4) or distorted 
(CESM2) for summer.

To understand whether the difference between histori-
cal simulations and observation is from external forcings 
or model biases, we calculate correlation coefficients 
between the two fields for each member (each has the data 
of 65 years) of the piControl simulations. Figure 5 shows 
the averaged correlation coefficients among the seven mem-
bers of each model. In general, the correlation patterns agree 
with those of historical simulations, but with an even larger 
overestimation of the correlation. Such result suggests that 
piControl simulations have larger biases than historical 
simulations and external forcings in historical simulations 
reduce the model biases.

Next, we apply the Granger causality approach to deter-
mine the causal effect of three lead-season (winter, fall, and 

summer) tropical Pacific SST on spring precipitation (see 
Sect. 2.3 for the methodology). For each lead season, the 
three detrended time series applied are: the UCRB aver-
aged spring precipitation, UCRB averaged precipitation in 
the lead season, and high-correlation domain averaged SST 
anomaly over the tropical Pacific (within the purple box in 
Fig. 4) in the lead season. Figure 6a shows the scatter plot of 
the correlation coefficient (between the time series of win-
ter SST and that of spring precipitation) versus p-value of 
the F-test of the Granger causality. For the observation, the 
p-value of Granger causality is significant at 0.05 level, indi-
cating that the winter SST has causal effect on UCRB spring 
precipitation. For historical simulations of the two models, 
the p-value (< 0.01) is smaller than that of the observation 
(Fig. 6a), consistent with the overestimation of the correla-
tion between the two fields in the climate models (Fig. 4d, 
g). For the lead time of previous fall, the p-value of the 
F-test in the observation is greater than 0.1, which is not 
as significant as those in the two models (p-values < 0.05) 

Fig. 4   a–c Correlation coefficients (shading) between the UCRB 
domain-mean spring precipitation and the previous winter, fall, and 
summer SST from observation. b, c Same as a but for previous fall 
and summer SST, respectively. d–i Same as a–c, but for historical 
simulations of the two models. Contours denote correlation coeffi-

cients significant at 0.05 level (according to Student’s t test). The pur-
ple box shows the domain selected for calculating the tropical Pacific 
averaged SST. The blue curve over North America shows the domain 
of the UCRB



949Causal effect of the tropical Pacific sea surface temperature on the Upper Colorado River Basin…

1 3

(Fig. 6b), indicating that the causal effect of SST on precipi-
tation is insignificant in the observation but significant in the 
two models. For the previous summer, the p-values of the 
observation and two models are greater than 0.1, indicating 
no causality at 90% confidence level (Fig. 6c). The p-values 
of the Chi-squared test are slightly smaller than those of the 
F-test (Fig. 6d–f). Therefore, the tropical Pacific SST has 
causal effect on UCRB spring precipitation with lead time 
of one season in the observation and up to two seasons in 
the two models.

The causal effect (measured by the p-value) in piControl 
simulations is even stronger than that in historical simula-
tions, especially for summer (Fig. 7). Such result further 
suggests that piControl simulations have larger biases than 
the historical simulation and external forcings in historical 
simulations reduce these biases. In addition, we show the 
causality in the opposite direction, i.e., from previous-sea-
son precipitation to spring SST. As expected, no causality 
could be detected in observation and historical simulations 
of the two models (Fig. S4). It is interesting to note that 
even though the correlation between fall precipitation and 
spring SST is significant at the 0.05 level, the p-value of the 
Granger causality is insignificant (Fig. S4b, e). This result 
confirms the finding in a previous study that lagged correla-
tion is likely to overestimate the relationship when the vari-
able has large memory (McGraw and Barnes 2018).

To find out the circulation pattern linked to the casual 
effect of SST on precipitation, we calculate correlation coef-
ficients between the UCRB spring precipitation and previ-
ous-season streamfunction (computed by monthly zonal 

and meridional winds) at 500 hPa. Note that here we do 
not expect to find any causality among the three variables 
(precipitation, SST, and streamfunction). In the observa-
tion, the correlation pattern during winter exhibits a dipole 
structure over the North Pacific, with strong negative cor-
relation over the mid-latitude North Pacific and positive cor-
relation over the tropical North Pacific (Fig. 8a). In addi-
tion, the correlation between winter streamfunction and 
tropical Pacific averaged (the purple box in Fig. 4) winter 
SST shows a similar spatial pattern albeit with larger magni-
tudes (Fig. S5). This result suggests that the tropical Pacific 
winter SST and UCRB spring precipitation can be linked 
by a dipole circulation pattern over the North Pacific. This 
dipole pattern disappears in fall and summer and changes to 
a negative correlation pattern over the North Pacific (Fig. 8b, 
c), associated with no causal effect of SST during fall and 
summer on spring precipitation (Fig. 6). The modeled pre-
cipitation–streamfunction correlation in winter are similar 
to the observation, but with stronger magnitudes (Fig. 8d, g), 
accompanied by overestimations of the causal effect (Fig. 6) 
and the variance of streamfunction (Fig. S6) during winter. 
Large discrepancies in the spatial pattern of the precipita-
tion–streamfunction correlation could also be seen with 
longer lead times (Fig. 8e, f, h, i).

3.3 � Future projections of the causality

In this section, we investigate the change of the causal-
ity under different climate scenarios. The long-term 
(2036–2100) domain averaged UCRB spring precipitation 

Fig. 5   a–f Same as Fig. 4, but for the averaged correlation coefficients of seven members of piControl simulations of the two models
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in SSP scenarios is generally similar to that in historical 
simulations for both models (Fig. 9a). When anthropogenic 
emissions increase (from SSP245 to SSP585), the variance 
of the UCRB spring precipitation increases for CESM2 but 
decreases for GFDL-ESM4 (Fig. 9b), consistent with the 
finding that models do not have agreement on the change of 
precipitation projections (Udall and Overpeck 2017). For 
previous-season SST, the variance increases as anthropo-
genic emissions increase in the two models (Fig. 10). The 
westward shift of the peak variance from summer to winter 
is more apparent in CESM2 than GFDL-ESM4.

Figure  11 shows correlation coefficients between 
the detrended UCRB averaged spring precipitation and 
detrended previous-season Pacific SST in future projec-
tions. Since the trend of SST (Fig. S7) has been removed, 
the SST warming due to anthropogenic emissions will not 
influence the relationship between SST and precipitation. 

The two climate models exhibit divergent projections of the 
SST–precipitation correlation. For example, the correlation 
in SSP585 scenario is the strongest among the three sce-
narios in the CESM2 model, but the weakest in the GFDL-
ESM4 model. When the lead time is longer, both models 
show a weaker correlation, consistent with the results in 
observation and historical simulations. The Granger causal-
ity agree with the correlation result, that is, a very large dif-
ference between the two models’ SSP585 scenario (Fig. 6). 
The p-value of the Granger causality for the CESM2 
(GFDL-ESM4) in the SSP585 scenario is < 0.001 (> 0.05) 
for winter, < 0.01 (> 0.1) for fall, and < 0.05 (~ 1.0) for sum-
mer. Such divergent projections indicate that (1) there are 
large uncertainties in model projections of the causal effect 
of the tropical Pacific SST on UCRB precipitation and (2) 
it is uncertain whether GCMs can reliably capture changes 
in such causality.

Fig. 6   a–c Scatter plot for correlation coefficient versus p-value of 
the F-test from the Granger causality in the observation and historical 
and SSP simulations of the two models. The correlation is for tropi-
cal Pacific domain-mean winter, fall, and summer SST and UCRB 

domain-mean spring precipitation. The direction of the Granger 
causality is from SST to precipitation. d–f Same as a–c, but for the 
Chi-squared test of the Granger causality. The dashed lines denote the 
thresholds significant at 0.05 level
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The divergent causal effects in the SSP585 scenario could 
be due to the different nature of the projected UCRB spring 
precipitation and tropical Pacific SST. As shown in Figs. 9 
and 10, some basic characteristics (e.g., variance and mean) 
of the precipitation and SST are different between CESM 
and GFDL-ESM4 and such differences may lead to different 
causal effects. Another reason may arise from model rep-
resentations of atmospheric circulation anomaly. Figure 12 
shows correlation coefficients between the detrended UCRB 
spring precipitation and previous-season streamfunction at 
500 hPa under three SSP scenarios in the two models. Simi-
lar to historical simulations, the dipole circulation pattern 
over the North Pacific is pronounced in winter for all three 
scenarios, corresponding to the El Niño-like SST pattern. 
Consistent with the results of the causal analysis, the precipi-
tation–streamfunction correlation in the SSP585 scenario 
is the largest in magnitude among the three scenarios for 
the CESM2 model but the smallest for the GFDL-ESM4 
model. This result indicates that the difference in the causal 
effect may also result from the different representations of 

the dipole circulation pattern in the SSP585 scenario. We 
also notice that if the dipole circulation pattern is captured 
by the model, the resultant causal effect of SST on precipita-
tion can also be captured. This suggests that the model’s skill 
in representing such causality is positively correlated with 
its capability in representing the dipole circulation pattern.

4 � Discussion

In this study, we assume the relationship between the Pacific 
SST and spring precipitation is linear and thus apply the 
linear vector autoregressive model with exogenous variables. 
As suggested by previous studies (e.g., Wu et al. 2005; Hsieh 
et al. 2006; Fleming and Dahlke 2014), the relationship 
between precipitation/streamflow and ENSO can be nonlin-
ear (e.g., quadratic or parabolic) over some regions of North 
America (e.g., U.S. and southern Canada). Such nonlinear 
relationship is worth exploration in the future (see Attanasio 

Fig. 7   Same as Fig. 6, but for historical simulations and seven members of piControl simulations of the two models
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and Triacca 2011; Attanasio et al. 2013 for nonlinear and 
nonstationary processes).

In addition, the Granger causality approach has its own 
limitations (e.g., McGraw and Barnes 2018; Runge et al. 
2019a). The current format of the Granger causality could 
only be applied to two variables, i.e., independent and 
dependent variables X and Y, and does not consider effects 
of a third or more variables. For example, the dependent 
variable Y is caused by another variable Z that is caused by 
independent variable X (X → Z → Y). In this case, Granger 
causality may state that X has causal effect on Y without 
considering the potential influence from Z. Similarly, in our 
study, we only detect the casual effect of SST on precipita-
tion or precipitation on SST without including the potential 
influence of mediating variables such as atmospheric circu-
lations. To understand the effect of mediating variables, one 
might need to apply other approaches such as Bayesian net-
works (Ebert-Uphoff and Deng 2012), causal effect networks 
(Kretschmer et al. 2016, 2020), PC momentary conditional 
independence (PCMCI; Runge et al. 2019a, b), temporal 
information partitioning networks (TIPNets; Goodwell and 

Kumar 2017), etc. Another caveat of the Granger causality 
approach is that removing the SST term from Eq. 1 may 
not remove the causal effect of the lead-season SST on 
spring precipitation. For example, if the lead-season SST 
is reflected in the lead-season precipitation, then removing 
SST as a predictor does not necessarily remove its causal 
effect, which could be expressed indirectly via the lead-sea-
son precipitation term in the autoregressive model (Eq. 2).

The observational analyses in this study confirm the 
results of previous studies that the tropical Pacific SST 
from previous winter is significantly linked to the UCRB 
hydroclimate (e.g., Regonda et al. 2006; Switanek et al. 
2009; Bracken et al. 2010; Zhao et al. 2021). As suggested 
in Figs. 8a and S5, the tropical winter SST and UCRB spring 
precipitation can be linked by atmospheric circulations. We 
further examine this dynamic pathway by computing the 
composite anomalies of SST and large-scale circulations 
during previous winter for anomalous years in the obser-
vation (Fig. S8). Anomalous years are those with normal-
ized UCRB spring precipitation outside the ± 1 standard 
deviation. Composite anomalies are the difference between 

Fig. 8   Same as Fig. 4, but for correlation coefficients between UCRB domain-mean spring precipitation and previous-season streamfunction at 
500 hPa
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positive anomalous years and negative anomalous years. In 
general, the composite anomalies (Fig. S8) are consistent 
with the patterns of correlation (Figs. 4a and 8a), suggesting 
that anomalous years of the precipitation largely contribute 
to such correlation. Figure S8a shows a central Pacific El 
Niño-like SST pattern (within the Niño 3.4 region), indicat-
ing that the anomalous UCRB spring precipitation is linked 
to ENSO events. A persistent extended subtropic Pacific jet 
appears at around 30° N (Fig. S8a), accompanied by a low 
pressure over mid-latitude North Pacific (Fig. S8b). The low 
pressure favors the moisture transport from the extratropi-
cal Pacific to the western U.S. through vertically integrated 
horizontal water vapor flux (see the supplementary mate-
rial for its calculation). Such moisture transport in previous 
winter can provide a wetter condition for the UCRB, leading 
to more precipitation in the following spring. Note that this 
analysis shows only evidence of the mechanism between 
winter SST and UCRB spring precipitation. A formal proof 
of the mechanism, such as prescribing the tropical SST in 
GCMs, is encouraged for future studies.

This study also reveals divergent projections of the causal 
effect of the tropical Pacific SST on the UCRB spring pre-
cipitation, especially for the high emission scenario SSP585. 
This finding indicates great challenges in ongoing pursuit of 

reliable projections associated with ENSO variability (e.g., 
Stevenson 2012; Power et al. 2013; Kim et al. 2014; Chen 
et al. 2017). As the predictability provided by oceanic sig-
nals is still uncertain in future projections, such uncertain-
ties may result in large uncertainties in seasonal forecasts 
of the UCRB hydroclimate system (e.g., precipitation and 
streamflow) with global climate change. Future work may 
consider investigating those uncertainties by analyzing more 
climate models.

5 � Summary

This study investigates the causal effect of the tropical 
Pacific SST in summer, fall, and winter on the UCRB pre-
cipitation in following spring using observations and climate 
model simulations. The climatological mean, variability, 
and trend of the UCRB spring precipitation are assessed in 
the observation, and large values occur over mountainous 
regions. In historical simulations, the CESM2 and GFDL-
ESM4 models well capture the spatial pattern of the climato-
logical mean, but misrepresent the magnitude of the climato-
logical mean and both the spatial pattern and the magnitude 
of variability and trend (for the period of 1950–2014). The 

Fig. 9   Climatological mean 
(mm day–1) and variance 
((mm day–1)2) of the UCRB 
domain-mean spring precipita-
tion in historical simulations 
and future projections of the 
two models
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Fig. 10   Same as Fig. 3, but for future projections of the two models
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Fig. 11   Same as Fig. 4, but for future projections of the two models
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Fig. 12   Same as Fig. 8, but for future projections of the two models
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SST–precipitation correlation in the observation exhibits an 
El Niño-like pattern for all the three lead seasons, with much 
lower correlation coefficients for longer lead times, while the 
correlation coefficients in two climate models are overesti-
mated, especially during winter and fall.

The Granger causality approach is applied to the UCRB 
averaged precipitation in spring, and the UCRB averaged 
precipitation and the tropical Pacific averaged SST in pre-
vious three seasons. The linear trend of the time series is 
removed, and p-values of F-test and Chi-squared test are 
used to examine if the causal effect is significant. Results 
show that only the tropical Pacific SST in previous winter 
has causal effect (with p-value ~ 0.05) on the UCRB spring 
precipitation in the observation, while the two climate mod-
els overestimate the causal effect of previous winter (p-value 
< 0.01) and fall (p-value < 0.05) SST on precipitation. The 
comparison between historical and piControl simulations 
suggest that disparities between climate models and obser-
vation are likely due to model biases and external forcings 
in historical simulations reduce the disparities. Additional 
analyses show that during winter the causal effect of SST 
on precipitation is linked to a dipole atmospheric circula-
tion pattern.

Finally, the Granger causality approach is applied to 
future projections of CESM2 and GFDL-ESM4 models 
and the results show divergent casual effects in the future. 
For the scenario with the highest anthropogenic emissions 
(SSP585), the p-value of the Granger causality for the 
CESM2 model is much smaller than that for the GFDL-
ESM4 model, indicating a much stronger causal effect of 
SST on precipitation in the CESM2. The different causal 
effect in the SSP585 scenario between the two models could 
be attributed to two reasons. One is the different nature (e.g., 
variability and climatological mean) of the projected UCRB 
spring precipitation and tropical Pacific SST between the 
two models, and the other is associated with the differences 
in representing the precipitation–circulation connection 
between the two models.
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