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Abstract
High resolution regional climate models are needed to understand how climate change will impact extreme precipitation. 
Current state-of-the-art climate models are Convection Permitting Models (CPMs) at kilometre scale grid-spacing. CPMs 
are often used together with convective parameterised Regional Climate Models (RCMs) due to high computational costs 
of CPMs. This study compares the representation of extreme precipitation events between a 12 km resolution RCM and a 
2.2 km resolution CPM. Precipitation events are tracked in both models, and extreme events, identified by peak intensity, 
are analysed in a Northern European case area. Extreme event tracks show large differences in both location and movement 
patterns between the CPM and RCM. This indicates that different event types are sampled in the two models, with differences 
extending to much larger scales. We visualise event-development using area-intensity evolution diagrams. This reveals that 
for the 100 most extreme events, the RCM data is likely dominated by physically implausible events, so called ‘grid-point 
storms’, with unrealistically high intensities. For the 1000 and 10,000 most extreme events, intensities are higher for CPM 
events, while areas are larger for RCM extreme events. Sampling extreme events by season shows that differences between 
RCM and CPM in intensity and area in the top 100 extreme events are largest in autumn and winter, while for the top 1000 
and top 10,000 events differences are largest in summer. Overall this study indicates that extreme precipitation projections 
from traditional coarse resolution RCMs need to be used with caution, due to the possible influence of grid-point storms.
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1  Introduction

Climate change is likely to impact the magnitude and fre-
quency of extreme precipitation (IPCC 2012). With a 
warmer climate, the atmosphere is able to hold more mois-
ture, which is expected to increase the intensity of extreme 

precipitation events (Trenberth et al. 2003). This is well 
aligned with findings from previous studies, which have 
found an increase in the intensity of extreme precipitation 
events (Christensen and Christensen 2003; Kendon et al. 
2014; Prein et al. 2017c). Less certain is it how climate 
change will impact the frequency and duration of extreme 
precipitation events, as many factors are controlling these, 
including large-scale circulation patterns (Trenberth et al. 
2003). Information on future extreme precipitation is needed 
to adapt to climate change, including building resilient cities 
and minimising flood risk, and to inform mitigation deci-
sions (Semadeni-Davies et al. 2008; Urich and Rauch 2014; 
Rosenzweig et al. 2019).

Climate models are the main tool to project and under-
stand changes in future climate, including extreme precipi-
tation (Frei et al. 2006), with the scale at which changes 
occur being of great importance. Extreme precipitation at 
small temporal and spatial scales can have major impacts on 
society and cause pluvial flooding (Archer and Fowler 2015; 

 *	 Emma D. Thomassen 
	 edth@env.dtu.dk

1	 Department of Environmental Engineering, Technical 
University of Denmark, Kongens Lyngby, Denmark

2	 Danish Meteorological Institute, Copenhagen, Denmark
3	 Met Office Hadley Centre, Exeter, UK
4	 School of Engineering, Newcastle University, 

Newcastle‑upon‑Tyne, UK
5	 Visiting Scientist at Met Office Hadley Centre, Exeter, UK
6	 iClimate, Department of Environmental Science, Aarhus 

University, Roskilde, Denmark

http://orcid.org/0000-0001-8693-4645
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-021-05854-1&domain=pdf


3030	 E. D. Thomassen et al.

1 3

Thorndahl et al. 2017). Due to the importance of short-dura-
tion rainfall extremes and the scale on which the processes 
leading to extreme precipitation occur, very high resolution 
climate models are needed to provide reliable future pro-
jections (Kendon et al. 2012; Ban et al. 2014; Chan et al. 
2014b; Sunyer et al. 2017).

Regional changes in extreme precipitation can be inferred 
from three types of climate models; high resolution Global 
Circulation Models (GCMs) with grid-spacing ~ 50 km or 
less, Regional Climate Models (RCMs) with a grid-spacing 
of ~ 10–50 km, with examples down to 5 km (Lucas-Picher 
et al. 2012), and Convection-Permitting Models (CPMs) 
with a grid-spacing < 5 km. While CPMs are also regional 
climate models, in the sense that they span a limited area 
domain, they also differ from traditional RCMs by resolv-
ing convection explicitly as outlined below. Throughout 
this study we use the terminology RCM to describe coarser 
resolution regional models and CPM to describe higher 
resolution convection-permitting models. Both RCMs and 
CPMs are currently used together, as there is often limited 
availability of CPM datasets and high computational costs 
associated with running CPMs (Rummukainen 2010; Prein 
et al. 2015). As convective precipitation has a spatial scale 
smaller than the RCM grid scale, a convective parameterisa-
tion scheme is needed, which aims to represent the average 
effects of convection on the model grid. In contrast, CPMs 
represent convection explicitly, often using no convective 
parameterisation scheme, due to the very high resolution 
(e.g. Kendon et al. 2012). In particular, deep convective 
parameterisation is typically not used in CPMs, whilst the 
use of shallow convection parameterisation varies between 
studies (Kendon et al. 2017). Several studies have found that 
the CPMs perform better than RCMs in terms of the diurnal 
cycle of rainfall and the intensity, frequency and duration of 
sub-daily extreme precipitation (Kendon et al. 2012; Prein 
et al. 2013; Chan et al. 2014b; Ban et al. 2014). Extreme 
precipitation simulated in some RCMs has also been shown 
to be impacted by grid-point storms, which are physically 
implausible events that occur when the scale of convection 
approaches the model grid-scale and the assumptions of the 
convective parameterisation break down (Chan et al. 2014b). 
RCMs with a grid-scale of approximately 10 km are within 
the so-called “grey-zone”, where the assumptions underlying 
the convective parameterisation become invalid (Molinari 
and Dudek 1992). We note, however, RCMs using scale-
aware convective schemes designed to operate in the grey 
zone would not be expected to have grid-point storms (Ken-
don et al. 2021).

A tracking algorithm can provide information on the 
characteristics and evolution of precipitation events, which 
is extremely valuable in assessing the underlying processes 
for rainfall generation; yet few studies have applied track-
ing algorithms to long continuous CPM simulations (Caine 

et al. 2013; Prein et al. 2017a, b; Purr et al. 2019; Li et al. 
2020; Caillaud et al. 2021). Prein et al. (2017a) found an 
increase in both the intensity and size of future mesoscale 
convective systems (MCS) over North America analysing a 
CPM, indicating a doubling in the risk of flooding. While 
Caine et al. (2013), Prein et al. (2017b), Purr et al. (2019), 
Li et al. (2020) and Caillaud et al. (2021) analysed how 
well precipitation events are simulated in CPMs compared 
to observations, none of the studies compared results from 
the analysed CPMs with RCM simulations. Few studies to 
date have applied tracking algorithms to both CPMs and 
RCMs to identify differences in extreme precipitation event 
characteristics and evolution across model resolution (Crook 
et al. 2019).

In this study we explore and quantify the differences in 
extreme event characteristics between a CPM and an RCM, 
from the UK Met Office, over a northern European region. 
We examine the difference in the tracked extreme events 
(consecutive rainfall areas with intensities above 1 mm/h) 
between the CPM and RCM and develop a new method to 
simplify area-intensity evolution in diagrams. This method 
enables us to represent the typical event evolution across 
many events with different durations and allows comparison 
of the representation of extreme events between models or 
different time periods. Due to the lack of high-resolution 
(temporal and spatial) gridded precipitation observations, 
it is not possible to provide an observational reference for 
event evolution and thus we focus on the differences between 
the models. In particular, E-OBS, ERA5, IMERG satellite 
data and radar products were all considered, but not used due 
to them being of too coarse resolution, not continuous and/
or of low data quality over the study area.

2 � Methods

2.1 � Climate model data

Two models are compared in their representation of extreme 
events, an RCM with a 12 km horizontal resolution, referred 
to as “RCM12” and a CPM with a 2.2 km grid spacing, 
referred to as “CPM2”. The RCM12 and CPM2 are configu-
rations of the Met Office Unified Model (UM), developed 
by the UK Met Office and are described further in Berthou 
et al. (2018). Key differences between the two models are 
as follows:

–	 The RCM12 (UM version 10.3) is based on a climate 
version of the UM (Williams et al. 2018) and uses a con-
vection parameterisation based on Gregory and Rowntree 
(1990). The RCM12 has a model time step of 4 min and 
uses a prognostic cloud fraction and condensate scheme 
(Wilson et al. 2008).
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–	 The CPM2 (UM version 10.1) is based on the operational 
UKV Met Office model for numerical weather predic-
tions (Clark et al. 2016) and runs without any convection 
parameterisation (both shallow and deep are switched 
off). The CPM2 has a model time step of 1 min and uses 
the diagnostic (Smith 1990) cloud scheme. The CPM2 
includes prognostic graupel, which is a second category 
of ice that has higher fall speeds and is typically found 
in convective clouds (unlike the RCM12 which just has 
a single category of ice). The CPM2 uses a new blended 
boundary-layer parameterization (Boutle et al. 2014a, b).

The RCM12 and CPM2 are in this analysis driven by the 
ERA-Interim reanalysis (Dee et al. 2011) and both mod-
els directly downscale the driving model, hence the CPM2 
model is not nested in the RCM12. Both model simulations 
span a pan-European domain: the RCM12 and CPM2 model 
domains are shown in Fig. 1. For both models, precipita-
tion output is available at hourly resolution. 10 years of data 
from 1999 to 2008 is analysed. All analyses are carried out 
with model output regridded to a common 12 km grid (with 
mass conservation) for a direct comparison of results. Fur-
thermore, all analyses are performed also for model output 
regridded to a common 25 km grid, results from these analy-
ses are found in Supplementary Sect. 4.

2.2 � Tracking algorithm DYMECS

The DYMECS tracking algorithm was applied to output 
from both models at 12 km resolution to identify precipita-
tion events and is described in detail in Stein et al. (2014). 
The algorithm was developed for UK radar and Met Office 
convection-permitting forecast model precipitation data 
and has subsequently been applied to climate model data 

by Crook et al. (2019). The algorithm was applied to rain-
fall fields within the common part of the dataset (Tracking 
Domain, Fig. 1), removing 90 grid points (12 km reso-
lution) from each side of the boundaries, still covering 
a large part of Europe. Events are defined as continuous 
rainfall fields above a certain threshold and labelled based 
on “local table method” (Haralick and Shapiro 1992). 
Here an intensity threshold of 1 mm/h was used and with 
no areal threshold, allowing an event to be as small as 
one grid cell. Events are tracked between two consecu-
tive images (t and t + 1) by displacing tracked elements in 
time t into time t + 1 using the velocity field V(t, t−1). The 
velocity field is based on windowed cross-correlations, 
dividing each image into 18 × 18 grid box windows (Rine-
hart and Garvey 1978). Analysing the overlapping areas 
between the advected image of t and the image of t + 1 
tracks are identified using an overlap criterion of 0.6 (Stein 
et al. 2014). Settings for the algorithm are similar to the 
settings Crook et al. (2019) used for precipitation tracking, 
though with a slight adjustment of the size of the grid box 
window (18 × 18 instead of 20 × 20, to fit the number of 
grid points in the analysed domain).

The tracking algorithm considers birth, death, split-
ting and merging of events. Splitting describes the situa-
tion where an event in time step t overlaps sufficiently with 
two events in time step t + 1, hence the event splits into two 
events. When two events at time step t both overlap suf-
ficiently with one event in time step t + 1, the events are 
considered to have merged. In both splitting and merging, 
the event with the largest overlap keeps the original event 
ID, while a new event ID is given in case of splitting (Crook 
et al. 2019). Splitting and merging of events are kept track 
of by marking which event IDs are linked to a given event 
ID. In this study, an event is defined by the period where it 
has the same ID in order not to account for the same part of 
an event twice.

The following event specific variables are extracted from 
the tracking algorithm and used to quantify extreme precipi-
tation from the two models:

•	 Centroid Location [lat, lon, t]: Centroid of fitted box 
around event area for each time step. Parenthesis giving 
description and dimensions of variable.

•	 Maximum Location [lat, lon, t]: Location of the single 
maximum intensity cell for each time step.

•	 Maximum Intensity [mm/h, t]: The maximum intensity 
of a single cell within the event for each time step.

•	 Mean Intensity [mm/h, t]: Average intensity over grid 
cells within the event (only grid cells with intensities 
above 1 mm/hr are considered) for each time step.

•	 Peak Maximum Intensity [mm/h]: Lifetime maximum 
intensity, based on the Maximum Intensity variable for 
each event.

2.2km Domain

12km Domain

Tracking Domain

Case Area

20°N

30°N

40°N

50°N

60°N

70°N

40°W 20°W 0° 20°E 40°E 60°E

Fig. 1   Overview of data domain. Pink domain: 12 km RCM12 data 
domain. Orange domain: 2.2 km CPM2 data domain. Blue domain: 
Domain where tracking of events has been done. Red box: Case area 
for this study
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•	 Peak Mean Intensity [mm/h]: Maximum mean inten-
sity over the lifetime of each event, based on the Mean 
Intensity variable.

•	 Area [number of grid cells, t]: Number of grid cells 
which are included in the event (only grid cells with 
intensities above 1 mm/h are considered) for each time 
step.

•	 Maximum Area [number of grid cells]: Lifetime maxi-
mum area for each event.

•	 Box [lat min., lon min., n lat, n lon, t]: A rectangular 
box fitted around all grid cells (> 1 mm/h) within the 
event at each time step [t]. The box is used only to iden-
tify the location of the event (used for merging of events, 
Sect. 2.5), but not used in the tracking. The size and loca-
tion of the box fitted around each event, is given by the 
bottom left corner [lat min, lon min] and size of the box 
[n lat, n lon].

2.3 � Extreme event definition

Extreme events are sampled from a Northern European case 
area in order to be able to compare seasonality and move-
ment of sampled extremes without mixing up different cli-
matic zones. The Northern European case area is defined 
between 12° W to 20° E and 49 to 60° N (see Fig. 1). An 
event is considered within the case area if its Maximum 
Location is inside the case area at any time within the life-
time of the event. These events are all kept. The entire life-
time of the event is then treated as an event within the case 
area despite the possibility that the Maximum Location at 
some time steps is outside the case area. Extreme events 
which start and end at the boundary of the tracking area are 
included, even though these may suffer from boundary arte-
facts impacting the event evolution at the beginning or end 
of their lifetime. This is done to maintain the best possible 
extreme distribution in the case area.

Extreme events are sampled from the population of events 
within the case area for further analysis. Here, extreme 
events are defined based on their Peak Maximum Intensity 
(1-h intensity) within the case area, and the 10,000 most 
intense events are sampled in three bins, Top 100 (rank 
1–100), Top 1000 (rank 1–1000), and Top 10,000 (rank 
1–10,000). Extreme events are furthermore sampled and 
analysed within each season.

2.4 � Event characteristics

Event characteristics are analysed for the Top 100 events in the 
RCM12 and CPM2 datasets considering four variables: Area, 
Maximum Intensity, Mean Intensity and Volume. To study 
the evolution in event characteristics for events with different 

lifetimes, the method proposed in Brisson et al. (2018) is used. 
Event lifetimes are normalised to a range between 0 and 1 
and the event characteristic for each time step in the event 
is extracted. A second order polynomial is fitted to the event 
characteristic data for each of the Top 100 events. Brisson 
et al. (2018) also suggested a normalisation of the variables, 
introducing the term var′:

where var is either Area, Maximum Intensity, Mean Inten-
sity or Volume, vart is the variable at the given time step 
and var is the mean value of the variable for the given event. 
Results with no normalisation of the variables (only normal-
isation of lifetime) are presented in Sect. 3.3, while results 
with normalisation of the variables are presented in the Sup-
plementary Sect. 3.

2.5 � Merging of events

Merging of events is applied as a post processing step based 
on the results of the tracking algorithm. Events are merged if 
the Box around two or more events are spatially overlapping or 
within a distance of 48 km (4 grid points) from each other at a 
single time step. Events are then merged for the entire lifetime 
of the events. The merged event is given the event ID of the 
event with highest Peak Maximum Intensity, and information 
from both events is merged. Area still only considers grid cells 
with intensities above 1 mm/hr. Centroid Location is calcu-
lated based on the new Box fitted around the merged event. 
The merging is done recursively (due to updating of the Box 
around the merged event), until no further events are merged.

2.6 � Event volume

The total volume [m3] of rainfall associated with each event 
i, is defined as:

The Event volume is calculated over the course of the 
entire event period, t = 1…life_i, defined as the period where 
the event has the same ID, disregarding splitting and merging 
with events of other IDs. For events within the case area the 
entire lifetime of the event is considered. The accumulated 
volume associated with events for a given area is defined as:

var
�

t
=

var
t

var

Event volume
i
=

lifei
∑

t=1

Mean Intensity
i,t ⋅ Areai,t

Accumulated volume =

nTracks
∑

i=1

Event volume
i
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2.7 � Simplified event evolution (SEE)

Area-intensity evolution diagrams have been used to 
describe the life cycle of the events, as seen in the case from 
numerical weather predictions (Keat et al. 2019). In this 
study, we suggest a method to simplify the evolution dia-
gram across event durations, making it possible to create an 
average event evolution across numerous events and there-
fore suitable in a climate context. Here the metric is used 
to describe event representation in the two models. From 
the tracking algorithm the Area, Maximum Intensity and 
Mean Intensity time series are used to visualise the evolu-
tion of an event (see Fig. 2b, d). There are large variations in 
the event evolution between events and for longer lifetimes 
the event evolution can be more complex (shown in Sup-
plementary Sect. 1). In order to compare event evolutions 
across datasets, the evolution is simplified into four points 
(see Fig. 2b, d):

1.	 Birth: Size and intensity when the event is first detected.
2.	 Peak intensity: Size and intensity at the point where the 

event reaches its peak intensity.

3.	 Maximum area: Size and intensity when the event 
reaches its largest size (defined as the horizontal area 
identified with the event [number of grid cells above 
threshold]).

4.	 Death: Size and intensity at the last time step the event 
is detected.

The simplified event evolution (SEE) is performed 
based on both Peak Maximum Intensity SEEmax (Fig. 2b) 
and Peak Mean Intensity SEEmean (Fig. 2d). Maximum 
Intensity is the maximum intensity of a single grid cell 
within the event for each time step, whereas Mean Inten-
sity is the mean intensity for all grid cells included in the 
event for each time step.

The median SEE is calculated to compare the event 
evolution between different ranks of extreme events or 
between models. First a simplified event evolution is fit-
ted to each event in a sample of extreme events. Then a 
median event evolution figure is created by finding the 
median of each of the four points (1. birth, 2. peak inten-
sity, 3. maximum area and 4. death) within the individual 
fitted simplified event evolution figures, both for intensity 
(y-axis) and area (x-axis).
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Fig. 2   Event evolution over time an event in the CPM2 dataset 
(2002-06-19 14:00—2002-06-20 07:00). a: Storm track with indica-
tion of area of the event over time. c: Accumulated rainfall over the 
event duration (footprint). b: Event evolution over time in maximum 
intensity and area (dots indicate hourly time steps and colour indicate 

time proceeding), with simplified event evolution based on maximum 
intensity in black. d: Event evolution over time for mean intensity and 
area (dots indicate hourly time steps and colour indicate time pro-
ceeding), with simplified evolution for mean intensity in black
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3 � Results and discussion

3.1 � Sampled extreme events

A total of 4,219,064 events were tracked in the RCM12 data-
set and 6,456,733 events were tracked in the CPM2 dataset 
for the entire tracking domain (see Fig. 1). Events which 
did not reach a larger area than 1 grid point were removed, 
resulting in 2,494,326 RCM12 and 4,333,758 CPM2 events. 
Of these, 701,475 events (28%) were located in the case 
area in the RCM12 dataset and 1,457,943 events (34%) in 
the CPM2 data (see Fig. 1, red box). This corresponds to 
approximately 192 events per day in the RCM12 dataset and 
399 events per day in the CPM2 dataset. Due to the defini-
tion of events as consecutive rainfall areas, events in this 
study must be considered distinctly different from large scale 
rainfall descriptions such as storms. The difference in num-
ber of events between the two models is further discussed 
in Sect. 3.2.

Ranks were chosen to sample extreme events, in order 
to accommodate the different number of tracked events 
between the two models. The 10,000 most intense events 
(based on the variable Peak Maximum Intensity) were sam-
pled in three categories, Top 100 (rank 1–100), Top 1000 

(rank 1–1000), and Top 10,000 (rank 1–10,000). Here an 
equal sample size is obtained between the two models, in the 
same way as sampling a specific number of events per year. 
Based on the pool of events from each of the two models, 
the Top 100, Top 1000 and Top 10,000 events correspond to 
percentiles ranging from 99.993 to 98.574 (Table 1). While 
the RCM12 dataset has largest maximum intensity for Top 
100, the CPM2 dataset show larger intensity for Top 1000 
and Top 10,000.

3.2 � Merging of events

Due to the different representation of rainfall in the two mod-
els, the number of events in the two models is not expected 
to be the same. Furthermore some of the expected difference 
between models can be explained purely by the difference in 
resolution. When comparing the same RCM12 and CPM2 
simulations as studied here against observations, Berthou 
et al. (2018) found no clear signal of a better performance 
of one of the two models in terms of mean daily and hourly 
precipitation. Both models showed areas of better and worse 
performance compared to the other over the analysed areas 
of the UK, Germany and Spain. Results here, showing a very 
different number of events between the models (2,494,326 
events in the RCM12 vs. 4,333,758 events in the CPM2), 
suggest a difference in how the tracking algorithm is able 
to define and track events in the two models. We note that 
this difference is not reduced when regridding to a coarser 
grid at 25 km resolution (Supplementary Sect. 4). Analys-
ing periods with high intensity rainfall between the two 
models shows that rainfall is more scattered in the CPM2 
dataset (see examples in Fig. 3). As the event definition in 
the tracking algorithm is based on a continuous area of rain-
fall (> 1 mm/h), this can lead to splitting events, which by 
eye could be classified as the same event. Here tracking is 
done using precipitation, while outgoing longwave radia-
tion (OLR) is another well used method for tracking and 
detection of especially MCSs (e.g. Morel and Senesi 2002; 
Crook et al. 2019). OLR is smoother in space which would 

Table 1   Percentile related to the sampled extreme events (> 1 mm/h) 
and corresponding maximum intensities in mm/h, after merging 
Top100 events. Maximum intensities represent the maximum inten-
sity located inside the case area, lower ranked events can have higher 
intensities outside the case area

CPM2 RCM12

Percentile Max intensity 
(mm/h)

Percentile Max 
intensity 
(mm/h)

1st – 61.5 – 116.5
100th 99.993 37.2 99.985 40.3
1000th 99.931 25.2 99.857 23.3
10,000th 99.314 13.6 98.574 10.2
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Fig. 3   Footprint (accumulated rainfall) of periods with high intensity rainfall. a, b: Event 1 from 18:30 10/08-2007 to 18:30 11/08-2007 for 
RCM12 and CPM2 data, respectively. c, d: Event 2 from 05:30 19/09-2006 to 16:30 22/09-2006 for RCM12 and CPM2 data respectively
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be likely to reduce the difference in the number of tracked 
events between the two models, but OLR tracking gives 
problems with false alarms as OLR is not a direct measure-
ment of precipitation.

A scheme of merging events, as a post-processing step 
based on the tracking algorithm was tested on both model 
datasets. Events which at a certain time step were spatially 
very close to each other were merged with the aim of giv-
ing a better estimate of the number of independent events 
and reducing differences in the number of tracked events 
between the two models. However, the merging resulted in 
very large events and unrealistic event tracks due to rain-
fall often being spatially scattered over a large part of the 
domain. Therefore it was decided to only apply merging to 
events contributing to the sampled Top 100 set, in order to 
ensure that the 100 most extreme events are not spatially 
overlapping or in close proximity and therefore cannot be 
considered the same event. The process of merging Top 
100 events was done recursively until none of the selected 
100 events could be further merged. A total of 14 Top 100 
CPM2 events and 19 Top 100 RCM12 events were merged. 
After the merging the Top 100 CPM2 events consists of 89 
independent days while the RCM12 Top 100 events con-
sists of 98 independent days.1 The merging of the Top 100 
events ensures a more similar sample of events are compared 
between the two models. While sampling by rank is expected 

to give a fairer comparison of extreme events between the 
CPM2 and RCM12, some CPM2–RCM12 differences might 
be explained by the fewer events tracked in the RCM12. 
This will be discussed in the following sections along with 
the results.

3.3 � Event characteristics

Evaluating the characteristics of the Top 100 most intense 
events by Area, Maximum Intensity, Mean Intensity and 
Volume shows that the two models represent the Top 100 
extreme events very differently. The RCM12 Top 100 
extreme events have higher peak values for Area and Volume 
compared to the CPM2 Top 100 events, while the opposite 
is the case for Mean Intensity (Fig. 4). No large differences 
are seen in the evolution of Maximum Intensity for the Top 
100 most intense events between the two models. The larg-
est difference between the RCM12 and CPM2 events is seen 
when comparing the Area and Volume of the Top 100 most 
intense extreme events. Although we note that, if variables 
were normalised, no differences between the models would 
be detected (see Supplementary Fig. 6). This suggest that 
the difference is scaled with the mean value e.g. the differ-
ence in the Area variable between the RCM12 and CPM2 is 
due to the difference in mean Area over the lifetime of the 
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Fig. 4   Evolution of Area (a), Maximum Intensity (b), Mean Intensity (c) and Volume (d) for Top 100 most intense events in the CPM2 dataset 
(black) and RCM12 dataset (grey). Event durations are normalised. The 99% Confidence Interval (CI) are shown with dashed lines

1  Unique days Top 1000: 483 (CPM2), 582 (RCM12). Unique days 
Top 10,000: 1678 (CPM2), 2107 (RCM12).
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events. Differences between CPM2 and RCM12 Top 100 
events in Mean Intensity are more modest, but show higher 
Mean Intensity for CPM2 Top 100 throughout the lifetime 
of the events (Fig. 4c). The larger areas for RCM12 events is 
somewhat expected, and could be explained by the convec-
tive scheme smoothing out precipitation leading to fewer 
individual events (Fig. 4a). More surprising is it that the 
CPM2 events do not have higher Maximum Intensity com-
pared to the RCM12 events, despite the convective scheme 
and higher original grid point resolution (Fig. 4b). The total 
Volume for the RCM12 Top 100 events are higher than for 
the CPM2 Top 100 events, which can be seen to mainly 
be influenced by the large difference in event area between 
the two models (Fig. 4d). Comparing these results to those 
where tracking has been applied to data regridded to 25 km 
shows only small differences (Supplementary Fig. 8). In par-
ticular, model differences in the evolution of event charac-
teristics are in general the same for the 25 km data, although 

with smaller differences in Area and Volume, compared to 
those seen in Fig. 4 for the 12 km data.

3.4 � Volume

The Accumulated volume of all tracked events within the 
tracking domain (see Fig. 1) is approximately 11% higher in 
the CPM2 dataset than in the RCM12 dataset (Table 2). In 
contrast, for events within the Case area (Northern Europe—
see Fig. 1) the total Accumulated volume is similar (only 
2% larger in CPM2 dataset compared to the RCM12 data-
set, Table 2). Considering only extreme events, the picture 
changes: the Accumulated volume for RCM12 extreme 
events is larger than for CPM2 extreme events, with increas-
ing difference for more extreme events (Table 2). For Top 
100 events, the Accumulated volume for the CPM2 events 
is approximately 30% of the volume of RCM12 events 
(Table 2). The increasing difference in accumulated vol-
ume between the RCM12 and CPM2 for the most intense 
extreme events, suggests that this difference is not simply 
explained by the different number of tracked events between 
the two models. The same tendency is seen in the 25 km 
data (Supplementary Table 2), although with smaller dif-
ferences between RCM12 and CPM2 events for the most 
severe extreme events.

Considering all events in the case area, the contribution 
to the accumulated volume increases faster with maximum 
intensity in the CPM2 dataset compared to the RCM12 data-
set (Fig. 5a), which is also seen for the 25 km data (Sup-
plementary Fig. 9). This shows that the most intense events 
sampled with the tracking algorithm contribute a smaller 

Table 2   Total volume accumulated for events in the CPM2 and 
RCM12 dataset (after removing single cell events). Definition of 
Tracking area and Case area are seen in Fig. 1. For all cases the entire 
lifetime of the event is considered in the total volume

Accumulated 
volume

CPM2 [109 m3] RCM12 [109 m3] Ratio 
[CPM2/
RCM12]

Entire tracking area 52,483 47,183 1.11
Case area 22,332 21,894 1.02
Top 10,000 5342 8659 0.62
Top 1000 1013 2616 0.39
Top 100 199 637 0.31

Fig. 5   The contribution of events of increasing peak maximum 
intensity to the total accumulated volume (measured as the cumula-
tive fraction) for all events (a) and for the 10,000 events with highest 

maximum intensity (b). Events are ranked by Peak Maximum Inten-
sity. CPM2 dataset (black) and RCM12 dataset (grey). Marks indicate 
the rank 100, 1000 and 10,000 event for each of the datasets
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fraction of the total volume in the CPM2 dataset compared 
to the RCM12 dataset. As the CPM2 extreme events in gen-
eral have smaller areas than the RCM12 events (Fig. 4a), this 
explains the lower total volume in the extreme events for the 
CPM2 compared to the RCM12 (Table 2). The 10,000 events 
with the highest maximum intensity represent a bit less than 
40% of the total volume in the CPM2 dataset, while for the 
RCM12 dataset these events represents more than 55% of 
the total volume in the dataset (Fig. 5b).

3.5 � Storm tracks

Tracks of the extreme events in the Northern European 
case area (Fig. 1, red box) are very different between the 
CPM2 and RCM12 (see Fig. 6). In the CPM2 dataset, 
the extreme events mostly occur over central Europe and 
southern Scandinavia (a–c) and tend to have a south to 
north (northward: 315–45°) direction of motion (Supple-
mentary Fig. 4). By contrast, many of the extreme events 
in the RCM12 are located over the Atlantic Ocean and 
the British Isles (Fig. 6d–f) with a west to east (eastward) 
moving direction (Supplementary Fig. 4). Focussing on 
the maximum location inside the case area (Fig. 6c, f), 

CPM2 extreme events are mostly in the eastern part, whilst 
there is additionally a cluster of events in the western part 
in the RCM12. This indicates that some of the extreme 
events in the RCM12 are distinctly different from those 
in the CPM2. To understand these differences, the most 
intense extreme events in the CPM2 dataset are compared 
with tracks on the same day, with similar location and 
intensity, in the RCM12 dataset, and vice versa (see Sup-
plementary Sect. 2). From comparisons of tracks between 
the two models, we find:

•	 Extreme events from one dataset are rarely replicated by 
the other dataset, indicating completely different sets of 
extreme events in the two models.

•	 Long event tracks in the RCM12 extreme set seem to 
be replicated well by the CPM2, though with notably 
lower intensities, indicating that the RCM12 extreme set 
includes a group of events, which according to the CPM2 
are not extreme due to lower intensities.

•	 CPM2 extreme events are largely absent in the RCM12, 
with no tracks in the RCM12 with a similar location and 
intensity on that day.
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Fig. 6   Storm tracks of Top 100 (rank 1–100, (a, d)) and Top 1000 
(rank 1–1000 (b, e)) most severe events within the Northern Euro-
pean Case area. CPM2 dataset (a–c) and RCM12 dataset (d–f). c, f: 
Location of the Peak Maximum Intensity within the case area for the 

selected Top 100 most severe events. Colours distinguish different 
event tracks, plotted by rank in reverse order: least intense plotted first 
(dark colours), most intense plotted last (light colours). Note: Only 
events which have high intensities within the case area are shown
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If events were instead sampled by their Peak Maximum 
Area (sampling of spatially large, but not necessarily intense 
events), there would be no visible difference in storm tracks 
between the two models (results shown in Supplementary 
Sect. 3). The storm tracks of the spatially largest events 
have a large density of tracks over the British Isles and an 
eastward direction in both models. These tracks have very 
similar characteristics (both in terms of location and move-
ment direction) as the tracks for events with the highest Peak 
Maximum intensity in the RCM12. Nevertheless, there is 
little overlap in events sampled by Peak Maximum intensity 
and Peak Maximum Area in the RCM12 dataset (4, 13 and 
23% for Top 100, Top 1000 and Top 10,000), though this 
overlap is larger than in the CPM2 dataset (0, 3 and 14% for 
Top 100, Top 1000 and Top 10,000). The better agreement 
in location between models for the spatially largest events 
compared to the most intense events, and the larger overlap 
between large and intense events in the RCM12 dataset, sug-
gest that the group of extreme intense events in the RCM12 
not seen as intense by the CPM2 are large events. Analysing 
the size of the events in the western cluster in the RCM12 
data shows that the events in this cluster are on average dou-
ble the size of the events in the eastern cluster. One plausible 
explanation for this group of extreme events in the RCM12 
data, could be that the high intensities come from grid-point 
storms, occurring within large area events, which is a well-
known problem in some RCMs (Chan et al. 2014a).

3.6 � Seasonal distribution

The seasonal distribution in the occurrence of extreme 
events shows a different pattern between the CPM2 and 
RCM12 dataset, again with largest differences for the most 
severe extreme events (Fig. 7a). The CPM2 dataset shows 
an increasing ratio of summer events on considering more 
extreme events (i.e. moving from Top 10,000 to Top 100, 
significant with a chi-square homogeneity test, p-value 
= 5.6 × 10−12 ) which is not found in the RCM12 dataset. 
While the sample of CPM2 extreme events are highly dom-
inated by summer events, RCM12 extreme events have a 
higher ratio of events from other seasons. Sampling extreme 
events by Maximum Area shows no difference in the sea-
sonal distribution in occurrence between the CPM2 and 
RCM12 (see Fig. 7b). This confirms that similar events 
are sampled in the two models when selecting by Maxi-
mum Area, whereas this is not the case when selecting by 
Maximum Intensity. Analysing characteristics of MCSs over 
Europe, Morel and Senesi (2002) found a larger density of 
MCSs over land than sea, with a clear concentration in the 
eastern part of the case area. This suggests that the repre-
sentation of tracking location is closer to observations in the 
CPM2 dataset compared to the RCM12. MCSs in Northern 
Europe were found to have the highest frequency between 

May and August (Morel and Senesi 2002) which is in agree-
ment with the seasonal distribution in both models, although 
more apparent in the CPM2. Morel and Senesi (2002) define 
MCSs as events reaching an area above 10,000km2, while 
an areal threshold of 288km2 (excluding single cell events) 
is used in this study with no attempt to distinguish between 
MCSs and non-MCSs. Yet Top 100 extreme events still 
reach an average area of 750 grid cells (108,000km2) for 
RCM12 events and 200 grid cells (28,000km2) for CPM2 
events (Fig. 4).

3.7 � Median simplified event evolution

When comparing the median Simplified Event Evolu-
tion (SEE) of the extremes for the RCM12 and CPM2, it 
is clear that the event evolutions between the two models 
are very different (see Fig. 8). For Top 100 SEEmax the 
RCM12 extreme events reach higher intensities than the 
CPM2 events, while for Top 1000 the median Peak Maxi-
mum Intensity is almost similar between the two models 
(Fig. 8a). When including more events (e.g. Top 10,000) the 
CPM2 extreme events reach higher median Peak Maximum 
Intensity than the RCM12 events (Fig. 8a). This somewhat 
surprising higher Peak Maximum Intensity in the RCM12 
dataset for the most severe extreme events is most likely 
caused by grid-point storms. These grid-point storms often 
occur within large scale areas of heavy precipitation, where 
the convective parameterisation breaks down, resulting 
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in intensities above 100 mm/hr and a very low param-
eterized convective rainfall fraction for one or a few grid 
cells compared to surrounding grid cells. These grid-point 
storms are a known problem in some RCMs, which oper-
ate at grid scales smaller than those for which the convec-
tive parameterisation scheme was designed (see e.g. Chan 
et al. (2014b)). Both in size and intensity it is clear that the 
Top 100 extreme events in the RCM12 data have a very dif-
ferent event evolution than the Top 100 extreme events in 
the CPM2 data. These differences between models, both in 
terms of shape and values, become smaller for the median 
SEEmax for Top 1000 and Top 10,000 events. While the area 
is still larger for the RCM12 events, the Maximum Intensity 
becomes higher for the CPM2 events (Fig. 8a). For Top 1000 
and Top 10,000 SEEmax the difference in area between the 
two models could reasonably be described by the difference 
in how rainfall is modelled between the two models (convec-
tion being parameterised or not) and by the difference in the 
original resolution of the models. The Top 100 SEEmax con-
firms that a large part of the extreme events in the RCM12 
dataset are very large events, and that these are not found 
in the CPM2 dataset. Together with findings from Sect. 3.5 
and Sect. 3.6, we deduce that the RCM12 is overestimating 
the Maximum Intensity of these very large events due to 
the presence of grid-point storms (supported by an analysis 
of the convective fraction of rainfall above 100 mm/h in 
RCM12 events, Supplementary Sect. 5). Regridding data 
to 25 km shows similar intensities between models for Top 
100 SEEmax while higher intensities for CPM2 Top 1000 

and Top 10,000. Areal differences follow the pattern seen in 
the 12 km data with much larger arears for RCM12 Top 100 
SEEmax compared to CPM2 Top 100 SEEmax.

For median SEEmean the CPM2 extreme events have 
higher Mean Intensities than the RCM12 events, for all per-
centiles (Fig. 8b). As CPM2 extreme events are approxi-
mately half the size of corresponding RCM12 extreme 
events, the CPM2 extreme events can be characterised as 
small and intense compared to the RCM12 extreme events. 
For the CPM2 Top 100 events, which by Maximum Intensity 
are less intense than RCM12 events, the higher Mean Inten-
sities indicate that the CPM2 events overall are more intense 
than the RCM12 events, while the RCM12 events seem to 
have a more peaked intensity distribution (again consistent 
with these being associated with grid-points storms in some 
cases).

For the seasonal median SEE the Top 100, Top 1000 and 
Top 10,000 events for each season are sampled. Seasonal 
median SEEmax for Top 100 shows the largest difference 
between the RCM12 and CPM2 dataset for autumn and win-
ter events (Fig. 9a, d). By contrast spring and summer events 
are less different for the Top 100 events (Fig. 9b, c). The 
same pattern is observed for the seasonal SEEmean for Top 
100 events (Fig. 9e–h). For each seasons’ Top 100 events, 
the CPM2 exhibits lower intensity in the SEEmax compared 
to the RCM12, which corresponds well with the results 
found in Fig. 8a. Analysing seasonal SEEmax and SEEmean 
for Top 1000 and Top 10,000 show the largest difference 
between datasets for summer events with higher intensities 
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in the CPM2 dataset and larger area in the RCM12 dataset 
(Fig. 9). Interestingly SEEmax winter events in Top 1000 and 
Top 10,000 have larger intensities in the RCM12 data than 
the CPM2 data, as opposed to the other seasons (Fig. 9a). 
The absence of the convective parameterisation scheme in 
the CPM2 is expected to result in a large difference in sum-
mer events between the two models, as it is in this season 
most convective events develop in the case area. The low 
winter intensities and small areas of the CPM2 compared 
to the RCM12 (mostly for Top 100 and Top 1000) could 
indicate that the difference in rainfall modelling in the two 
models also plays a large role for winter events.

4 � Conclusion

The difference in the representation of extreme events 
between an RCM12 and a CPM2 was analysed by apply-
ing a storm tracking algorithm to the two datasets. Extreme 
events in the Northern European case area were found to 
have very different storm tracks, both in terms of location 
of the tracks, location of the peak maximum intensity, and 

movement direction. The largest differences were found for 
the most severe extreme events, indicating completely dif-
ferent sets of extreme events between the two models. This 
corresponds well with a recent ensemble study of CPMs 
and RCMs, which found the greatest improvements in the 
performance of CPMs for heavy precipitation events (Ban 
et al. 2021). It is also consistent with earlier studies showing 
the improved representation of hourly precipitation extremes 
in CPMs, due to the improved representation of convection 
(Kendon et al. 2014). For the most intense RCM12 events, 
these were to a large extent captured in the CPM2 but with 
lower intensities, whilst the most intense CPM2 events were 
largely absent in the RCM12. The most intense events in 
RCM12 are considered unphysical, and likely due to grid 
point storms (Chan et al. 2014b). Seasonal differences also 
illustrate the differences between the models. Here it was 
found that the RCM12 data have a larger fraction of non-
summer events in the extreme event set compared to the 
CPM2 data. These differences between models were not 
found when sampling events by maximum area, i.e. events 
that are spatially large but not necessarily intense. Analysing 
the coincidence of large and intense events showed a larger 
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fraction of the events sampled as both intense and spatially 
large in the RCM12 dataset compared to the CPM2 dataset. 
In summary, the extremes of the two models have low cor-
respondence with each other.

Analysing time series of area, volume, maximum inten-
sity and mean intensity for the Top 100 most extreme 
events over the lifetime of the event, showed large differ-
ences between the models. Large differences in the area 
of the extreme events explained the model differences in 
event volume. The CPM2 produces a larger total volume of 
rainfall within the case area compared to the RCM12 due 
to higher mean intensities. In the RCM12, extreme events 
contribute proportionally more to the total volume than in 
the CPM2, due to their larger spatial size. These differences 
are again consistent with the expected different character 
of heavy rainfall in convection-permitting models (which 
tends to be more intense, Ban et al. (2021)) compared to 
convection-parameterised models (where heavy rain events 
are not heavy enough, but tend to be too persistent and wide-
spread, Kendon et al. (2012)). Crook et al. (2019) found an 
improved contribution to total rainfall volume from MCSs in 
convection-permitting simulations, compared to convection-
parameterised simulations over West Africa.

In this study we have developed a method of simplifying 
area-intensity diagrams to allow the typical event evolution 
to be visualised across many events with different durations. 
This makes the method suitable in a climate context and is 
valuable in assessing differences in the underlying processes. 
Using the median Simplified Event Evolution showed large 
differences between RCM12 and CPM2 extreme events. The 
differences were again largest for the most intense events 
(Top 100). The Top 100 RCM12 extreme events had higher 
maximum intensities and areas than CPM2 extreme events, 
and these events in the RCM12 dataset are likely to be influ-
enced by grid-point storms. For less extreme indices, i.e., 
the Top 1000 and Top 10,000 events, extreme events in the 
CPM2 data were more intense. In general, on the basis of 
the results here, we conclude that we should have low con-
fidence in the most (Top 100) extreme precipitation events 
on hourly timescales in convection parameterised RCMs.

Sampling extreme events by season showed the larg-
est differences between models in autumn and winter for 
Top 100 events. For Top 1000 and Top 10,000 large dif-
ferences between models were found for summer events, 
which was expected due to the differences between the 
models in how convection is represented, and convection 
having greatest impact in this season. The large difference 
in winter extreme events was less expected, with lower 
intensities for the CPM2 events compared to the RCM12. 
This indicates that the difference in the representation of 
convection between models does not only affect events 
in summer. In addition to the representation of convec-
tion, the finer grid spacing of the CPM2 may allow it to 

better represent mesoscale structures within fronts, thereby 
impacting frontal events in winter.

The analysis performed on coarser resolution data 
(regridding model data to 25 km resolution before track-
ing) did not explain differences in event track location and 
event evolution found between models in the 12 km data. 
We conclude that the difference between the models in 
how they represent rainfall strongly influences the event 
characteristics reported here.

While no suitable observational dataset was found to ana-
lyse the entire region for hourly data, comparing the location 
of storm tracks and their seasonal distribution against previ-
ous observational studies (Morel and Senesi 2002) suggests 
a better performance of the CPM2 compared to the RCM12. 
This work emphasises the large difference in representation 
of extreme events between convection-permitting and con-
vection-parameterised models. Using results from a tracking 
algorithm gives the advantage of analysing the difference in 
extreme precipitation from an event perspective, which is 
here explored with a simple visual method, the Simplified 
Event Evolution. The influence of grid-point storms in the 
RCM12 dataset shows that analysing and comparing extreme 
events from the RCM12 dataset should be treated with care. 
Overall there are indications that the CPM2 is more reliable 
in representing hourly extremes than the RCM12, based on 
previous studies comparing with observations. The methods 
used in this study could additionally be used to compare 
differences in the representation of extreme events between 
models in future projections.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00382-​021-​05854-1.
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