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Abstract
Modeling of large rainfall events plays an important role in water resources and floodplain management. Rainfall is resulted 
from complex interactions between climate factors (air moisture, temperature, wind speed, etc.) and land surface (topogra-
phy, soil, land cover, etc.). Therefore, deriving accurate areal rainfall is not only relied on atmospheric boundary conditions, 
but also on the reliability and availability of soils, topography, and vegetation data. Consequently, uncertainties in both 
atmospheric and land surface conditions contributes to rainfall model errors. In this study, a blended technique combin-
ing dynamical and statistical downscaling has been explored. The proposed downscaling approach uses input provided 
from three different global reanalysis data sets including ERA-Interim, ERA20C, and CFSR. These reanalysis atmospheric 
data are hybridly downscaled by means of the Weather Research and Forecasting (WRF) model, which is followed by the 
application of an artificial neural network (ANN) model to further downscale the WRF output to a finer resolution over the 
studied region. The proposed technique has been applied to the third largest river basin in Vietnam, the Sai Gon–Dong Nai 
Rivers Basin; and the calibration and validation show the simulation results agreed well with observation data. Results of 
this study suggest that the proposed approach can improve the accuracy of simulated data, as it merges model simulations 
with observations over the modeled region. Another highlight of this approach is inexpensive computational demand on 
both computation times and output storage.
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1  Introduction

The modeling of large rainfall events is a fundamental and 
challenging topic in water resources and floodplain manage-
ment. Rainfall results from complex interactions between 
climate factors, such as air moisture, temperature and wind 
speed; and the land surface, such as topography, soil, and 
land cover conditions. Therefore, deriving an accurate areal 
rainfall is not only relied on the atmospheric boundary con-
ditions but also on the reliability and availability of soils, 
topography, and vegetation data. Consequently, the uncer-
tainties of both atmospheric and land surface conditions con-
tribute to rainfall model errors (Gebregiorgis and Hossain 
2012; Shepherd 2014; Reichler and Kim 2008). Wherein, 
Gebregiorgis and Hossain (2012) explored uncertainties of 
three satellite rainfall products relating to unreliable topogra-
phy and climate conditions. Shepherd (2014) found sources 
of uncertainty coming from climate boundary conditions 
and resulting in atmospheric model errors. Reichler and Kim 
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(2008) identified errors and uncertainties associated with the 
different reanalysis data sets by comparing them with a wide 
range of observations. These errors suggest the need for a 
holistic approach considering both high-resolution topogra-
phy and land surface distribution to aid in the generation of 
realistic rainfall information.

Recently, there have been attempts to model rainfall 
events by means of global atmospheric models (GCMs) 
(Krishnamurti et  al. 1997; Compo et  al. 2006; Lledó 
et al. 2013; Fuka et al. 2014). Such GCMs consider vari-
ous aspects of climate and the effect of the land surface on 
receiving surface rainfall. However, their spatial resolution, 
typically 100 km, is too coarse for use in analyzing water 
resources at the watershed or regional scale. One recommen-
dation is the use of downscaling technologies to refine coarse 
grid resolution data to desired finer spatial grid resolutions. 
Commonly, there are two different approaches, statistical 
or stochastic downscaling (SD) and dynamical downscal-
ing (DD). The SD refers to empirical relationships between 
large-scale modeled atmospheric variables and local-scale 
meteorological variables. The empirical relationships and 
inexpensive computational demands enable SD to be popular 
and widely used in many regional atmospheric studies (Bur-
lando and Rosso 2002; Fowler et al. 2007; Goyal and Ojha 
2011; Hashmi et al. 2011a, b, 2013; Pilling and Jones 2002; 
Raje and Mujumdar 2011; Wilby and Wigley 1997; Yang 
et al. 2011, 2012). Because SD methods rely on the assump-
tion of an unchanged statistical relationship, they require 
long historical climate observation data for validation, which 
is not always available for every region. DD is an alterna-
tive to SD for empirical climate downscaling that can over-
come the drawbacks of SD methods. DD works by employ-
ing a regional climate model (RCM), which is based on the 
same principles as a GCM, but has a higher resolution. A 
RCM uses large-scale GCMs’ outputs for initial and lateral 
boundary conditions to generate much finer meteorologi-
cal variables with incorporated high-resolution topography 
and land-sea distribution. This allows dynamic interaction 
between the atmosphere and land surface, thereby account-
ing for the impact of heterogeneity in the topography, veg-
etation, and soil on the local climate. DD is known as the 
most suitable technology for modeling climate information 
with complex topography at regional scales (Kavvas et al. 
2013; Kjellström et al. 2016; Jang and Kavvas 2015; Jang 
et al. 2017). In spite of recent developments in DD making 
them easily accessible, this method still requires expensive 
computational demand on both long computation times and 
large output storage.

In order to overcome the limitations in both DD and SD 
approaches, a blended technique combining dynamical and 
statistical downscaling has been explored. Recently, Liu 
and Fan (2014), Tran and Taniguchi (2018), and Walton 
et al. (2015) have applied a hybrid dynamical-statistical 

downscaling approach by incorporating a regional climate 
model (RCM) with a statistical downscaling technique to 
some regions in China, Vietnam, and the Western United 
State. However, before coupling a RCM with a statistical 
model, both models need to be calibrated and validated in 
order to verify their capability and reliability for further 
downscaling applications. Hence, ignoring the calibration 
and validation of the RCM, Liu and Fan (2014) and Tran 
and Taniguchi (2018) may obtain unreliable downscaled 
data for the estimation of atmospheric variables; particu-
larly, in mountainous regions. Furthermore, the temporal 
downscaling data obtained from Liu and Fan (2014), Tran 
and Taniguchi (2018) and Walton et al. (2015) is mainly 
focused on monthly scale, which are inappropriate for the 
analysis of floods and large rainfall events.

In this context, this study applied a regional climate 
model (RCM) coupled with machine learning algorithms 
to model and reconstruct rainfall data. This new technique, 
called hybrid downscaling (HD), first uses large-scale 
atmospheric conditions as determined by a GCM for its 
lateral boundary conditions before being downscaled by 
a RCM model, then applies ANN model to further down-
scale from selected RCM outputs to a finer spatial resolu-
tion. The HD also includes the influences of terrain factors 
and physical interactions between atmosphere and land 
surface conditions. Another highlight of this technology is 
that it improves the accuracy of simulated data as it merges 
model simulations with observations over the modeled 
region. The proposed downscaling technique uses input 
provided from three different global reanalysis datasets; 
ECMWF—Atmospheric Reanalysis coarse climate data of 
the twentieth century (ERA-20C, https://​rda.​ucar.​edu/​datas​
ets/​ds626.0) (Poli et al. 2013, 2016), ECMWF—Reanaly-
sis Interim (ERA-Interim, https://​rda.​ucar.​edu/​datas​ets/​
ds627.0) (Berrisford et al. 2009; Dee et al. 2011), and Cli-
mate Forecast System Reanalysis (CFSR, https://​rda.​ucar.​
edu/​datas​ets/​ds093.0) (Saha et al. 2010; Wang et al. 2011). 
These three datasets provide three-dimensional data and 
uniformly cover the globe at a spatial resolution of 1.25° 
(ERA20C), 0.75° (ERA-Interim), and 0.5° (CFSR). These 
coarse scale atmospheric data are hybrid downscaled by 
means of the Weather Research and Forecasting model 
(WRF, Skamarock et al. 2005), then followed by the appli-
cation of an artificial neural network (ANN) model to fur-
ther downscale from the WRF output to a finer resolution 
over the studied watershed. First, the WRF and ANN mod-
els are calibrated and validated against existing ground 
observation data, then hybrid method is evaluated through 
time series and spatial analyses. The Sai Gon–Dong Nai 
Rivers Basin is selected as a case study for the application 
of the hybrid technique. Due to its important location and 
complicated physical processes causing severe rainfall in 
this area, it is necessary to apply advanced technologies to 

https://rda.ucar.edu/datasets/ds626.0
https://rda.ucar.edu/datasets/ds626.0
https://rda.ucar.edu/datasets/ds627.0
https://rda.ucar.edu/datasets/ds627.0
https://rda.ucar.edu/datasets/ds093.0
https://rda.ucar.edu/datasets/ds093.0
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investigate severe rainfall processes, and model realistic 
historical rainfall events for this region.

2 � Description of the study region

The selected watershed, the Sai Gon–Dong Nai (SG–DN) 
Rivers, ranks third-largest in country after the Mekong and 
Red River water systems, but it is the largest inland river in 
Vietnam. The SG–DN Rivers have become an important 
source of hydropower, with many hydropower plants and 
large amounts of water resources used for all southern prov-
inces of Vietnam. Natural impacts from meteorological fac-
tors have caused many difficulties for socio-economic devel-
opment activities in the basin. The SG–DN Rivers Basin 
has a complex terrain system including mountainous and 
delta regions with tropical heavy rainfall experienced from 
summer monsoon (SMS) and tropical cyclone (TC) systems 
(Nguyen-Thi et al. 2012; Yokoi and Matsumoto 2008).

The SG–DN Rivers Basin shown in Fig. 1 covers the 
provinces of Lam Dong, Binh Phuoc, Binh Duong, Dong 
Nai, Dak Nong, Long An, Tay Ninh, and Ho Chi Minh City, 
and parts of Ninh Thuan, Binh Thuan, and Ba Ria-Vung Tau 
with a total catchment area of about 44,500 km2. SG–DN 
Rivers Basin includes the two main river system including 
Sai Gon and Dong Nai Rivers. This area is a complex terrain 

region including mountainous and delta regions with eleva-
tions from 2 to 2291 m. Along with an important source of 
hydropower, the SG–DN Rivers Basin also include a num-
ber of important industrial zones. The region’s atmospheric 
condition falls in a tropical monsoon climate experiencing a 
wet summer from late May through early November with an 
average annual rainfall of about 1800 mm, and humidity of 
78–82%. The land use condition of the watershed is various 
land types including agricultural, forested, and urban areas.

3 � Methodology and implementation

This study introduces a blended technique to model 
rainfall events by coupling physically based numerical 
atmospheric and machine learning models. The required 
atmospheric data used to set up the initial and bound-
ary conditions in WRF simulations over SG–DN basin 
are taken from the three reanalysis datasets, including 
ERA-20C, ERA-Interim, and CFSR. These datasets were 
selected because they provide three-dimensional data at 
6-h time increments for the required atmospheric and 
surface variables. They are also long enough to be reli-
able in a statistical sense and consistently cover the entire 
globe uniformly (Rossi et al. 2007). The WRF model is 
utilized as the physically based numerical atmospheric 

Fig. 1   Plan view of the Sai Gon–Dong Nai Rivers Basin in Vietnam
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model, while the ANN model is selected as the machine 
learning model, as shown in Fig. 2. There are five main 
steps in developing this hybrid rainfall model:

1.	 Implementation of the physically based numerical 
atmospheric model, WRF, over the target watershed for 
the three different reanalysis datasets.

2.	 Calibration and validation of the WRF model over the 
target watershed for the three different reanalysis data-
sets.

3.	 Implementation of the ANN model with its input pro-
vided from WRF’s outputs.

4.	 Training and validation of the ANN model over the tar-
get watershed for the three different reanalysis datasets.

5.	 Provision of hybrid downscaling model for the target 
watershed.

In-depth description of each steps is presented in the 
following sections.

3.1 � Implementation of the physically based 
numerical atmospheric model

The WRF model was employed for dynamical downscaling 
with inputs from the three reanalysis datasets. The WRF 
model is able to simulate vertical and horizontal air motions 
with multiple physics options for moisture dynamics, micro-
physics processes, cumulus cloud parameterizations, plan-
etary boundary layer (PBL) schemes, radiation schemes, and 
surface schemes. A number of studies successfully applied 
the WRF model for precipitation analysis on regions in Viet-
nam (Ho et al. 2019, 2020; Cuong and Toan, 2019; Raghavan 
et al. 2016; Minh et al. 2018) with encouraging performance 
when compared to the recent rainfall observation data. Thus, 
WRF is selected herein, although other numerical models 
can be implemented for regional atmospheric modeling. In 
this study, a series of three nested domains for WRF simu-
lations are implemented, as shown in Fig. 3. The largest 
domain (D1) covers the southern half of Vietnam and parts 
of Thailand, Laos, Cambodia, and Malaysia, having a spa-
tial resolution of 81 km (21 × 18 horizontal grid points). 
D2 is the second largest domain with a resolution of 27 km 
(27 × 24 horizontal grid points), and D3 is the innermost 
and smallest domain with spatial resolution of 9 km (48 × 33 

Fig. 2   Methodology for hybrid modeling rainfall data
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horizontal grid points). It is noted that WRF is implemented 
based on all 3 domains only for ERA20C data, while the 
ERA-Interim and CFSR were used only on D2 and D3.

3.2 � Calibration and validation of WRF model 
over the target watershed for the three 
different reanalysis datasets

After successful implementation of WRF for SG–DN, the 
model was calibrated and validated against the observation 
rainfall data. Recently, the Vietnam Gridded Precipitation 
(VnGP) dataset was developed, and has been widely used 
for reliable observation (Nguyen-Xuan et al. 2016). The 
VnGP is daily gridded rainfall dataset that was interpolated 
by means of the Sphere-map interpolation technique from 
481 rain gauges. This dataset has the resolution of 0.1°, 
and covers the whole Vietnam (Nguyen-Xuan et al. 2016). 
The validation of VnGP was carried out by comparing with 

gauge observations through correlations, mean absolute 
errors, root mean square errors, and spatial distribution. 
The validation results show that the VnGP is matched well 
with rainfall observation rather than different interpolation 
techniques. VnGP is currently available at the Data Inte-
gration and Analysis System (DIAS) (https://​diasjp.​net/​
en). The spatially-distributed daily rainfall data of VnGP 
are available from Jan 1980 to December 2010. This data 
was compared with the model’s precipitation simulations 
over SG–DN. First, the WRF model’s configurations are 
selected based on comparisons between downscaled rainfall 
data and the VnGP dataset. Table 1 shows 12 combinations 
of parameterization schemes based on previous studies in 
Vietnam (Ho et al. 2020; Ho et al. 2019; Cuong et al. 2019b; 
Raghavan et al. 2016; Minh et al. 2018; Trinh et al. 2020). 
The best parameterization scheme was selected based on the 
correlation coefficient for simulated daily basin average pre-
cipitation and VnGP data between 1 January, 1994 and 31 

Fig. 3   The three nested WRF 
domains for dynamical downs-
caling over DN-SG River Basin

https://diasjp.net/en
https://diasjp.net/en
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December, 1995. Water years 1994–1995 were selected for 
comparison due to their inclusion of historical extreme flood 
events. Note that D3 is primarily used in these comparisons.

The results shown in Table 2 indicate that simulation 
No. 1, which uses WSM3 Hong et al. (2004, MWR) as the 
microphysics schemes and New SAS (Han and Pan 2011) 
for cumulus parameterization, shows the highest correlation 
coefficient for the ERA-Interim and ERA-20C reanalysis 
datasets at the target watershed. Simulation No. 6 uses SBU-
YLin, Lin and Colle (2011) as the microphysics schemes and 
New SAS Han and Pan (2011) for cumulus parameterization, 
and shows the highest correlation coefficient for the CFSR 
reanalysis dataset. The selected WRF’s parameterization 
options for each reanalysis dataset are shown in Tables 3 
and 4.  

The selected configurations for ERA20C, ERA-Interim, 
and CFSR are applied to the WRF model for the validation 
period. Figures 4a, b, 5a, b, and 6a, b show the time series 

Table 1   Twelve combinations 
of physics parameterizations for 
WRF configuration

Simulation no Microphysics Cumulus param-
eterization

Planetary bound-
ary layer

Radiation physics

1 WSM3 New SAS BouLac New Goddard
2 Eta (Ferrier) New SAS BouLac New Goddard
3 Goddard New SAS BouLac New Goddard
4 Milbrandt 2-mom New SAS BouLac New Goddard
5 CAM 5.1 New SAS BouLac New Goddard
6 SBU-YLin New SAS BouLac New Goddard
7 WSM3 Kain-Fritsch BouLac New Goddard
8 WSM3 Grell-Freitas BouLac New Goddard
9 WSM3 Grell-3 BouLac New Goddard
10 WSM3 New SAS MYNN2 New Goddard
11 WSM3 New SAS YSU New Goddard
12 WSM3 New SAS UW New Goddard

Table 2   Correlation coefficient for basin averaged daily precipitation 
between WRF simulations and VnGP using three different reanalysis 
datasets during January 1, 1994 to December 31, 1995 (D3 is primar-
ily used in these comparisons)

Simulation no ERA-Interim ERA-20C CFSR

1 0.72 0.65 0.61
2 0.64 0.57 0.56
3 0.61 0.52 0.53
4 0.60 0.51 0.55
5 0.62 0.502 0.51
6 0.69 0.61 0.69
7 0.59 0.51 0.51
8 0.58 0.50 0.62
9 0.63 0.55 0.65
10 0.63 0.59 0.63
11 0.68 0.62 0.62
12 0.65 0.60 0.61

Table 3   WRF model 
configuration for ERA20C and 
ERA-Interim

WRF model configuration Selected option

Microphysics processes WSM3 (Hong et al. 2004, MWR)
Cumulus parameterization New SAS (Han and Pan 2011, Wea. Forecasting)
Planetary boundary layer scheme BouLac scheme (Bougeault and Lacarrere 1989)
Radiation scheme New Goddard scheme (Chou and Suarez 1999)
Surface scheme RUC Land Surface Model (Benjamin et al. 2004)

Table 4   WRF model 
configuration for CFSR

WRF model configuration Selected option

Microphysics processes SBU-YLin (Lin and Colle 2011, MWR)
Cumulus parameterization New SAS (Han and Pan 2011, Wea. Forecasting)
Planetary boundary layer scheme BouLac scheme (Bougeault and Lacarrere 1989)
Radiation scheme New Goddard scheme (Chou and Suarez 1999)
Surface scheme RUC Land Surface Model (Benjamin et al. 2004)
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Fig. 4   a Time series of WRF simulations using ERA-Interim at D3 
and VnGP for 1-, 3-, 5-, and 7-day basin-average precipitation dur-
ing 1986–1995 over the SG–DN. b Correlation coefficients between 

the WRF simulations using ERA-Interim in D3 and VnGP for 1-, 3-, 
5-, and 7-day basin-average precipitation during 1986–1995 over the 
SG–DN
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Fig. 5   a Time series of WRF simulations using ERA-20C in D3 and 
VnGP for 1-, 3-, 5-, and 7-day basin-average precipitation during 
1986–1995 over the SG–DN. b Correlation coefficients between the 

WRF simulations using ERA-20C in D3 and VnGP for 1-, 3-, 5-, and 
7-day basin-average precipitation during 1986–1995 over the SG–DN
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Fig. 6   a Time series of WRF simulations using CFSR in D3 and 
VnGP for 1-, 3-, 5-, and 7-day basin-average precipitation during 
1986–1995 over the SG–DN. b Correlation coefficients between the 

WRF simulations using CFSR in D3 and VnGP for 1-, 3-, 5-, and 
7-day basin-average precipitation during 1986–1995 over the SG–DN
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comparisons of ground observations and model-simulated 
1-, 3-, 5-, and 7-day basin-averaged rainfall using the three 
different reanalysis datasets over SG–DN Basin during 
1986–1995 (10-year period).

Visual comparison between the WRF simulation and cor-
responding observations in D3 show good agreement for 
the 1-, 3-, 5-, and 7-day basin-averaged comparisons for 
the three datasets. Although, the simulated peak discharges 
occasionally underestimate the observed data, the differ-
ences are not significant. Tables 5, 6 and 7 list the statistical 
test values of the WRF-simulated results versus the VnGP 
data with WRF’s inputs from ERA-Interim, ERA-20C, and 
CFSR, respectively; whereby Goodness of fit of the modeled 
simulation to the corresponding observations is shown based 
on the mean, standard deviation, and correlation coefficient 
(R). A correlation coefficient (R)’s value of 1 corresponds 
to a perfect match of the modeled simulation to the observed 
data. A correlation coefficient larger than 0.6 can be con-
sidered acceptable for validation periods at daily time step.

3.3 � Implementation of ANN architecture 
with back‑propagation algorithm

In the early 1970s, the model output statistic (MOS) was an 
efficient technique widely used in atmospheric research to 
improve forecasted variables from the Numerical Weather 
Prediction (NWP) models (Glahn and Lowry 1972). MOS 
aims to establish an empirical relationship between the 
large-scale atmospheric predictors simulated from numeri-
cal models and local climatic variables (predictands). The 
formulation of empirical relationships is fundamentally 
based on either linear or nonlinear transfer functions. 
Empirical relationships based on linear transfer functions 
often apply multiple linear regressions or similar formulas. 
For example, the Statistical Downscaling Model (SDSM) 
is a hybrid statistical downscaling method incorporating 
the weather generator and the multiple linear regression 
techniques (Wilby et al. 2002). Nonlinear transfer func-
tions are commonly applied through machine learning 

methods that employ nonlinear transfer functions to con-
nect the predictors and predictands. There are a number 
of nonlinear transfer functions, for instance, Genetic 
Programing (GP) that exhibits reasonable downscaling 
of daily extreme temperatures (Coulibaly 2004); Gene 
Expression Programming (Hashmi et al. 2011a, b) that 
is a variant of GP; and artificial neural networks. In this 
research, one of the most popular and simplest artificial 
neural network architectures, which is the feed-forward 
multilayer perceptron using error back-propagation weight 
update rule (hereafter referred to as the ANN model), is 
employed for downscaling precipitation simulated by the 
WRF model. The ANN model is commonly used in sta-
tistical downscaling. It was reported that the ANN model 
is generally observed to have a better learning ability than 
other regression-based downscaling techniques (Schoof 
and Pryor 2001).

The selected ANN architecture is comprised of three lay-
ers (input layer, hidden layer, and output layer) that are inter-
connected by synapse weights (see Fig. 7). The number of 
nodes of the hidden layer was selected ranging from (2n + 1) 
to (2n0.5 + m), where n is the number of input nodes and m 
is number of output nodes (Fletcher and Goss 1993).

The training phase of the ANN model serves to adjust 
the weights to minimize the difference between the 

Table 5   Statistical test values of WRF-simulated results based on 
ERA-Interim and VnGP for 1-, 3-, 5-, and 7-day basin-average pre-
cipitation during 1986–1995 over the SG–DN

Precipitation statistics ERA-INTERIM

1 day 3 day 5 day 7 day

Mean by observation (mm) 4.63 13.91 23.18 32.46
Mean by simulation (mm) 4.60 13.80 23.01 32.20
Standard deviation by observation 

(mm)
5.88 15.29 23.62 31.69

Standard deviation by simulation (mm) 6.36 16.49 25.17 33.31
Correlation coefficient 0.67 0.77 0.82 0.85

Table 6   Statistical test values of WRF-simulated results based on 
ERA-20C and VnGP for 1-, 3-, 5-, and 7-day basin-average precipita-
tion during 1986–1995 over the SG–DN

Precipitation statistics ERA-20C

1 day 3 day 5 day 7 day

Mean by observation (mm) 4.63 13.91 23.18 32.46
Mean by simulation (mm) 5.27 15.81 26.35 36.89
Standard deviation by observation 

(mm)
5.88 15.29 23.62 31.69

Standard deviation by simulation (mm) 6.84 17.87 27.41 36.37
Correlation coefficient 0.63 0.74 0.79 0.82

Table 7   Statistical test values of WRF-simulated results based on 
CFSR and VnGP for 1-, 3-, 5-, and 7-day basin-average precipitation 
during 1986–1995 over the SG–DN

Precipitation statistics CFSR

1 day 3 day 5 day 7 day

Mean by observation (mm) 4.63 13.91 23.18 32.46
Mean by simulation (mm) 3.85 11.51 19.95 28.79
Standard deviation by observation 

(mm)
5.88 15.29 23.62 31.69

Standard deviation by simulation (mm) 6.38 16.17 24.25 31.63
Correlation coefficient 0.60 0.70 0.75 0.79
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network outputs (predictands) and the expected outputs. 
For each node at a given layer, the outputs of n neurons in 
the previous layer provide the inputs to that node. These 
outputs are multiplied by the respective weights of con-
nections between nodes and then the summation function 
adds together all these products to produce the value at 
that node. Approximation used for the weight change is 
given in Eq. (1) by the delta rule.

where η is the learning rate parameter, w is the weights, and 
E2 is the squared error (Brierley 1998).

The selection of input variables is crucial for any data-
driven methods. Based on that convention, the study area is 
characterized by the South-western monsoon regime, so that 
the low-level movement of the cloud mass is favorable for 
wet season over the region. Changes in wind fields (meridi-
onal and zonal wind velocities, vertical pressure velocity) 
at low altitudes (700, 810, and 910 hPa) together with the 
precipitation flux on the surface are candidate predictors for 
the input layer of the ANN model, as presented in Table 8 
below. However, additional predictor screening “stepwise 
regression” was then applied to remove the less significant 

(1)w
new

= w
old

− �
�E2

�w

predictor variables that may contribute to overfitting during 
ANN model learning processes.

3.4 � Training and validation of ANN model 
over the target watershed for the three 
different reanalysis datasets

In this study, a gridded (0.1° daily precipitation dataset 
(VnGP) is used for the ANN model training and validation. 
It is ideal to divide the entire data duration into portions for 
training, validation, and testing. Most statistical downscal-
ing exercises use two-thirds of the data duration for training 
and the remaining duration for calibration. Both training and 
calibration are examined at grid- and basin-average-scale for 
sensitivity assessment of spatial influences. A Fortran code 
is developed to train and calibrate the ANN model.

After successful implementation of the ANN model for 
the three downscaled datasets, the 10-year period from 1986 
to 1995 of VnGP data is used for calibration and valida-
tion. Figure 8a–c show the calibration results for the period 
of (1986–1992) in comparing the basin-averaged daily 
precipitation dataset (VnGP) with the ANN simulations 
using the downscaled ERA-Interim, ERA-20C, and CFSR, 
respectively. Validation results for the period of (1993–1995) 
are exhibited in Fig. 9a–c. Generally, the calibration and 
validation showed a good agreement between the simula-
tion results and observations. Statistical criteria supporting 
the agreement of the simulation results to VnGP data are 
shown in the Tables 9, 10 and 11. Statistical criteria, such 
as the correlation and Nash Sutcliffe efficiency coefficients, 
show that the simulation performance for the simulated pre-
cipitation is in the “satisfactory” range (0.83 ≤ R2 ≤ 0.9 and 
0.63 ≤ NSE ≤ 0.78) based on the 7 day precipitation compari-
sons (Moriasi et al. 2015).

Fig. 7   The sketch of ANN 
model
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Table 8   Candidate predictors for the input layer of the ANN model

a These are large-scale atmospheric variables simulated by the WRF 
model for domain D2

Variablesa Unit Pressure layer (hPa)

Precipitation flux (mm/day) Surface
Meridional wind velocity (m/s) 700, 810, 910
Zonal wind velocity (m/s) 700, 810, 910
Vertical pressure velocity (Pa/s) 700, 810, 910
Total Variables 10
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Fig. 8   a Time series of ANN calibrations using ERA-Interim at D2 
and VNGP for 1-, 3-, 5-, and 7-day basin-average precipitation dur-
ing 1986–1992 over the SG–DN. b Time series of ANN calibrations 
using ERA-20C at D2 and VNGP for 1-, 3-, 5-, and 7-day basin-aver-

age precipitation during 1986–1992 over the SG–DN. c Time series 
of ANN calibrations using CFSR at D2 and VNGP for 1-, 3-, 5-, and 
7-day basin-average precipitation during 1986–1992 over the SG–DN
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4 � Results and discussion

In comparison between three selected reanalysis datasets, 
the ERA-20C and ERA-Interim datasets are come from 
the same sources, the European Centre for Medium-Range 
Weather Forecasts (ECMWF); while the CFSR dataset is 
from National Center for Atmospheric Research (NCAR, 
USA). Regarding data resolution, the order ranging from 
coarse to fine among the three selected datasets are the ERA-
20C (1.25°), then ERA-Interim (0.75°) and CFSR (0.5°). 
Since ERA-Interim has a better resolution than ERA-20C, 
so it is more reliable in connection to the surface measure-
ments. In addition, the temperature and precipitation data 
of ERA-Interim are based on a reanalysis of precipitation 
fields generated with a meteorological model (Berrisford 
et al. 2009; Dee et al. 2011). On the other hand, ERA-
Interim dataset is obtained by successive linearisations of 
the model and observation operator (Courtier et al. 1994; 
Veerse and Thepaut 1998). The ability of the observation 
operator to accurately model observations affects the qual-
ity of the analysis; errors or inaccuracies in the observation 
operator result in incorrect or suboptimal interpretation of 
the available data. While the temperature and precipitation 
data of CFSR (Saha et al. 2010) are based on meteorological 
model in combination with data from satellite-based observ-
ing systems and surface observation. The direct assimilation 
of observations represents one of the major improvements 

of the CFSR dataset. However, substantial biases exist when 
observations are compared to those simulated. These biases 
are complicated and relate to instrument calibration, data 
processing, and deficiencies in the radiative transfer model. 
Therefore, the combination with remote sensing data and 
surface observations may accumulate more errors in CFRS 
dataset than using ERA-Interim dataset. Eventually, the best 
calibration and validation results were obtained from the 
ERA-Interim dataset. Under the ERA-Interim dataset, the 
HD technique provided quite satisfactory correlation coef-
ficients, ranging from 0.89 to 0.90, and Nash–Sutcliffe effi-
ciencies, from 0.76 to 0.78 based on the 7-day precipitation 
(Table 9). The HD technique simulations using ERA-20C 
also gave good validation results with correlation coef-
ficients ranging from 0.65 to 0.86. Model calibration and 
validation results under the ERA-Interim and ERA-20C 
were closer to the VnGP dataset than the CFSR results were.

In addition, the comparison between the simulation 
results obtained from the WRF model and HD technique 
with the VnGP dataset is carried out not only for temporal 
distribution, but also for spatial distribution.

Figure 10a–d presents the spatial distribution map of 
the largest difference in 1-, 3-, 5-, and 7-day precipitation 
between the WRF model results and the VnGP dataset dur-
ing the period from 1980 to 2010. Figure 11a–d presents the 
spatial distribution map of the largest difference in 1-, 3-, 5-, 
and 7-day precipitation between the HD model and VnGP 

Fig. 8   (continued)
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Fig. 9   a Time series of ANN validations using ERA-Interim at D2 
and VNGP for 1-, 3-, 5-, and 7-day basin-average precipitation dur-
ing 1993–1995 over the SG–DN. b Time series of ANN validations 
using ERA-20C at D2 and VNGP for 1-, 3-, 5-, and 7-day basin-aver-

age precipitation during 1993–1995 over the SG–DN. c Time series 
of ANN validations using CFSR at D2 and VNGP for 1-, 3-, 5-, and 
7-day basin-average precipitation during 1993–1995 over the SG–DN
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dataset during the period from 1980 to 2010. It is noted 
that the HD technique significantly improved the precipita-
tion spatial distribution compared to the WRF results. After 
applying the ANN simulations, the estimated precipitation 
is more representative of the observation values as shown in 

Figs. 10 and 11; hereby the details of the improvement can 
be seen through the color distribution. The light-yellow area, 
which indicates that the simulated data match closely to the 
VnGP high-resolution observation data, is larger for the HD 
technique results (Fig. 11) than for the WRF model results 

Fig. 9   (continued)

Table 9   Statistical test values of 
ANN-simulated results, based 
on ERA-Interim-simulation 
at D2, and VnGP for 1-, 3-, 
5-, and 7-day basin-average 
precipitation during 1986–1995 
over the SG–DN

Precipitation statistics ANN calibrations ANN validations

1 day 3 day 5 day 7 day 1 day 3 day 5 day 7 day

Mean by observation (mm) 4.56 13.7 22.10 32.02 4.77 14.3 23.8 33.4
Mean by simulation (mm) 4.01 11.80 19.77 28.10 4.45 13.3 22.1 31.4
Standard deviation by observation (mm) 5.80 15.20 23.61 31.66 6.05 15.4 23.6 31.5
Standard deviation by simulation (mm) 5.01 13.69 20.11 26.21 5.61 14.2 21.9 29.6
Correlation coefficient 0.71 0.810 0.85 0.89 0.73 0.83 0.87 0.90
Nash coefficient 0.47 0.651 0.70 0.76 0.50 0.68 0.75 0.78

Table 10   Statistical test values 
of ANN-simulated results, 
based on ERA20C-simulation 
at D2, and VnGP for 1-, 3-, 
5-, and 7-day basin-average 
precipitation during 1986–1995 
over the SG–DN

Precipitation statistics ANN calibrations ANN validations

1 day 3 day 5 day 7 day 1 day 3 day 5 day 7 day

Mean by observation (mm) 4.56 13.7 22.10 32.02 4.77 14.3 23.8 33.4
Mean by simulation (mm) 4.01 12.11 20.11 28.77 4.15 12.5 18.5 28.7
Standard deviation by observation (mm) 5.80 15.20 23.61 31.66 6.05 15.4 23.6 31.5
Standard deviation by simulation (mm) 5.51 12.59 19.87 26.11 4.35 11.5 18.3 25.7
Correlation coefficient 0.65 0.79 0.83 0.86 0.65 0.78 0.79 0.83
Nash coefficient 0.40 0.57 0.66 0.71 0.42 0.56 0.61 0.65
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(Fig. 10). Tables 12, 13, 14, 15, 16, 17, 18 and 19 contain 
the percent of coverage area associated with the difference 
(mm) between the precipitation estimates and correspond-
ing observations. The light-yellow areas of HD simulations 
under the CFSR dataset are 96.7%, 90.09%, 86.29%, and 
80.19% for 1-, 3-, 5-, and 7-day precipitation, respectively; 
while the light-yellow areas of the WRF simulations under 
the CFSR dataset are smaller at 88.04%, 71.89%, 67.05%, 
and 65.29% for 1-, 3-, 5-, and 7-day precipitation, respec-
tively. These results also confirm the improvement obtained 
after applying the proposed technique. Utilizing a combina-
tion of dynamical and statistical downscaling, it is possible 
to simulate and reconstruct precipitation data in both time 
series and spatial map over the selected watershed. This 
technique can apply not only for the simulation of precipi-
tation, but also for other relevant atmospheric variables; such 
as temperature, wind speed, humidity, pressure, and radia-
tion. Furthermore, this approach is useful to reconstruct and 
forecast weather risks, such as floods and droughts, because 
the results are produced at different time resolutions (Trinh 
et al. 2016, 2017) (i.e., hourly, daily, and monthly).

Eventually, the HD technique also is inexpensive com-
putational demand with respect to computer resources and 
time consumption. Table 20 shows a comparison of compu-
tational resources and time consumption between the DD 
and HD techniques on a workstation with the same configu-
ration of Intel® Xeon® Processor E5 v4 Family, Processor 
E5-2687WV4, 3.00 GHz, 24 cores. It shows the computation 
time and output storage are significantly reduced.

5 � Conclusions

This study applies a new technique by means of coupling 
dynamical and statistical downscaling in order to overcome 
the limitations in both dynamic and statistical downscaling 
approaches. This new technique called hybrid downscaling 
(HD) not only incorporates the impacts of terrain factors and 
physical interactions between atmosphere and land surface 
conditions, but also improves the accuracy of simulated data, 
as it merges model simulations with observations over the 
modeled region. First, precipitation data were dynamical 

downscaled by a regional climate model, WRF, through 
the three domains (D1, D2, D3 for ERA-Interim and ERA-
20C; D2, D3 for CFSR) with an inner domain (D3) of 9 km 
resolution under the three selected global reanalysis data-
sets (ERA-Interim, ERA-20C, and CFSR). After success-
ful implementation and validation of the WRF model, the 
downscaled precipitation data were merged with the local 
observation data by means of the ANN model with back-
propagation algorithm. The ANN utilizes the VnGP data 
from 1986 to 1992 for model training and calibration, and 
from 1993 to 1995 for model validation. Note that the cali-
bration and validation are independent processes. This study 
demonstrated that the blended technique combining dynami-
cal and statistical downscaling not only provides better data 
estimates in time series, but also in spatial distribution.

Among the three selected reanalysis datasets, the best 
calibration and validation results were obtained from the 
ERA-Interim dataset. Under the ERA-Interim dataset, the 
HD technique performance correlation coefficient (rang-
ing from 0.89 to 0.90) and the Nash–Sutcliffe efficiency 
(0.76–0.78) are quite satisfactory (Table 9) based on the 
7 day precipitation comparisons. These results are closer 
to the observation data than those using the CFSR data-
set. However, the spatial difference of precipitation esti-
mates using the CFSR dataset is lower than those under 
ECMWF—Atmospheric Reanalysis data (ERA-Interim 
and ERA-20C). One explanation is that the grid resolution 
of CFSR (0.5°), is finer than that of ERA-Interim (0.75°) 
and ERA-20C (1.25°).

Lastly, this technique can apply to simulate not only for 
precipitation but also for other relevant atmospheric varia-
bles; such as temperature, wind speed, humidity, pressure, 
and radiation. Furthermore, the new approach of this study 
can be applied widely in many parts of the world where 
the local observation data are available.

Future study will focus on modeling hydrologic condi-
tions with inputs provided from the three hybrid down-
scaled datasets. Once a hydrologic model is implemented, 
it is possible to reconstruct and assess hydrologic condi-
tions over the target region. In addition, the calibrated and 
validated WRF and ANN models for SG–DN can be uti-
lized for the projection of future precipitation and stream 

Table 11   Statistical test values 
of ANN-simulated results, 
based on CFSR-simulation 
at D2, and VnGP for 1-, 3-, 
5-, and 7-day basin-average 
precipitation during 1986–1995 
over the SG–DN

Precipitation statistics ANN calibrations ANN validations

1 day 3 day 5 day 7 day 1 day 3 day 5 day 7 day

Mean by observation (mm) 4.56 13.7 22.10 32.02 4.77 14.3 23.8 33.4
Mean by simulation (mm) 3.81 11.61 17.88 25.42 3.79 11.4 19.1 27.0
Standard deviation by observation (mm) 5.80 15.20 23.61 31.66 6.05 15.4 23.6 31.5
Standard deviation by simulation (mm) 4.88 12.49 19.22 26.71 4.89 11.5 18.8 24.8
Correlation coefficient 0.64 0.76 0.80 0.83 0.68 0.79 0.84 0.88
Nash coefficient 0.33 0.52 0.59 0.63 0.42 0.57 0.64 0.70
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Fig. 10   a Spatial maps of the largest 1-day precipitation changes 
between simulation (WRF) and observation (VnGP) data during 
1980–2010, top (ERA-Interim and VnGP; ERA-20C and VnGP), bot-
tom (CFSR and VnGP). b Spatial maps of the largest 3-day precipi-
tation changes between simulation (WRF) and observation (VnGP) 
data during 1980–2010, top (ERA-Interim and VnGP; ERA-20C 
and VnGP), bottom (CFSR and VnGP). c Spatial maps of the largest 

5-day precipitation changes between simulation (WRF) and observa-
tion (VnGP) data during 1980–2010, top (ERA-Interim and VnGP; 
ERA-20C and VnGP), bottom (CFSR and VnGP). d Spatial maps of 
the largest 7-day precipitation changes between simulation (WRF) 
and observation (VnGP) data during 1980–2010, top (ERA-Interim 
and VnGP; ERA-20C and VnNGP), bottom (CFSR and VnGP)
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Fig. 10   (continued)



2731Modeling high‑resolution precipitation by coupling a regional climate model with a machine…

1 3

Fig. 11   a Spatial maps of the largest 1-day precipitation changes 
between ANN simulation and observation (VnGP) data during 1980–
2010, top (ERA-Interim and VnGP; ERA-20C and VnGP), bottom 
(CFSR and VnGP). b Spatial maps of the largest 3-day precipitation 
changes between ANN simulation and observation (VnGP) data dur-
ing 1980–2010, top (ERA-Interim and VnGP; ERA-20C and VnGP), 
bottom (CFSR and VnGP). c Spatial maps of the largest 5-day pre-

cipitation changes between ANN simulation and observation (VnGP) 
data during 1980–2010, top (ERA-Interim and VnGP; ERA-20C and 
VnGP), bottom (CFSR and VnGP). d Spatial maps of the largest 
7-day precipitation changes between ANN simulation and observa-
tion (VnGP) data during 1980–2010, top (ERA-Interim and VnGP; 
ERA-20C and VnGP), bottom (CFSR and VnGP)
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Fig. 11   (continued)
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Table 12   Percent coverage areas with respect to the difference of the 
largest 1-day precipitation estimates under the three different reanaly-
sis datasets ERA-Interim, ERA-20C, CFSR from the one correspond-
ing to the VnGP during 1980–2010

Difference (mm) ERA-Interim (%) ERA-20C (%) CFSR (%)

− 35 to − 25 7.48 4.76 0.20
− 25 to 25 78.11 87.68 88.04
25 to 35 8.70 5.48 5.92
35 to 100 5.71 2.09 5.84

Table 13   Percent coverage areas with respect to the difference of the 
largest 3-day precipitation estimates under the three different reanaly-
sis datasets ERA-Interim, ERA-20C, CFSR from the one correspond-
ing to the VnGP during 1980–2010

Difference (mm) ERA-Interim (%) ERA-20C (%) CFSR (%)

− 100 to − 50 0.22 0.23 0.00
− 50 to − 35 14.88 9.88 4.71
− 35 to 35 59.58 63.56 71.89
35 to 50 10.46 10.59 5.24
50 to 100 13.64 14.32 16.33
> 100 1.22 1.42 1.82

Table 14   Percent coverage areas with respect to the difference of the 
largest 5-day precipitation estimates under the three different reanaly-
sis datasets ERA-Interim, ERA-20C, CFSR from the one correspond-
ing to the VnGP during 1980–2010

Difference (mm) ERA-Interim (%) ERA-20C (%) CFSR (%)

− 140 to − 75 0.69 2.05 0.00
− 75 to − 45 12.67 14.01 0.51
− 45 to 45 55.08 50.08 67.05
45 to 75 14.46 13.47 12.84
75 to 140 17.09 18.83 17.48
> 140 0.01 1.57 2.13

Table 15   Percent coverage areas with respect to the difference of the 
largest 7-day precipitation estimates under the three different reanaly-
sis datasets ERA-Interim, ERA-20C, CFSR from the one correspond-
ing to the VnGP during 1980–2010

Difference (mm) ERA-Interim (%) ERA-20C (%) CFSR (%)

− 160 to − 80 0.04 0.33 0.49
− 80 to − 50 12.44 17.72 3.55
− 50 to 50 59.99 46.66 65.29
50 to 80 10.94 10.58 9.60
80 to 160 14.50 19.56 17.76
> 160 2.09 5.14 3.32

Table 16   Percent of coverage area, associated with difference magni-
tude (mm), of the largest 1-day precipitation estimates between the 
three different reanalysis datasets ERA-Interim, ERA-20C, CFSR 
using ANN simulation and the one corresponding to the VnGP dur-
ing 1980–2010

Difference (mm) ERA-Interim 
(%)

ERA-20C (%) CFSR (%)

− 100 to − 25 7.6 8.76 3.30
− 25 to 25 92.4 91.24 96.7
25 to 35 0.00 0.00 0.00
35 to 100 0.00 0.00 0.00

Table 17   Percent of coverage area, associated with difference magni-
tude (mm), of the largest 3-day precipitation estimates between the 
three different reanalysis datasets ERA-Interim, ERA-20C, CFSR 
using ANN simulation and the one corresponding to the VnGP dur-
ing 1980–2010

Difference (mm) ERA-Interim (%) ERA-20C (%) CFSR (%)

− 100 to − 50 0.31 1.67 0.11
− 50 to − 35 19.55 21.33 9.8
− 35 to 35 80.14 77.00 90.09
35 to 50 0.00 0.00 0.00
50 to 100 0.00 0.00 0.00
> 100 0.00 0.00 0.00

Table 18   Percent of coverage area, associated with difference magni-
tude (mm), of the largest 5-day precipitation estimates between the 
three different reanalysis datasets ERA-Interim, ERA-20C, CFSR 
using ANN simulation and the one corresponding to the VnGP dur-
ing 1980–2010

Difference (mm) ERA-Interim (%) ERA-20C (%) CFSR (%)

− 140 to − 75 1.33 2.11 1.15
− 75 to − 45 25.45 28.56 16.56
− 45 to 45 73.22 69.33 82.29
45 to 75 0.00 0.00 0.00
75 to 140 0.00 0.00 0.00
> 140 0.00 0.00 0.00

Table 19   Percent of coverage area, associated with difference magni-
tude (mm), of the largest 7-day precipitation estimates between the 
three different reanalysis datasets ERA-Interim, ERA-20C, CFSR 
using ANN simulation and the one corresponding to the VnGP dur-
ing 1980–2010

Difference (mm) ERA-Interim (%) ERA-20C (%) CFSR (%)

− 160 to − 80 3.24 4.54 3.22
− 80 to − 50 27.67 31.66 20.59
− 50 to 50 69.09 63.8 76.19
50 to 80 0.00 0.00 0.00
80 to 160 0.00 0.00 0.00
> 160 0.00 0.00 0.00
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flow under future atmospheric inputs from the global cli-
mate models’ future climate projections.
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