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Abstract
Dynamical prediction of monsoon rainfall has been an important topic and a long-standing issue in both research and opera-
tional community. This paper provides a comprehensive evaluation of the subseasonal-to-seasonal (S2S) prediction skill of 
the East Asian summer monsoon (EASM) rainfall using the hindcast record from the Beijing Climate Center Climate System 
Model, BCC CSM1.1m, during the period 1983–2019. The model exhibits reasonable skills for predicting the EASM rainfall 
at all lead times with the skill dropping dramatically from the shortest lead time of about 2 weeks (LM0) to 1-month lead 
(LM1), and then fluctuating remarkably throughout 2-month to 12-month lead times. Over the EASM domain, the rapid 
decline of the S2S rainfall prediction skill from LM0 to LM1 is mainly caused by the inferior skills over Central China in 
July and over Northeast China in August. Composite analysis based on hindcast records suggest that these inferior skills are 
directly tied to the model’s difficulties in capturing above-normal precipitation over eastern Central China and Northeast 
China in the respective months, which are further shown to be associated with anomalous weakening and meridional move-
ment of the Northwestern Pacific subtropical high and the activity of large-scale teleconnection pattern hard to be predicted 
over northeastern Asia in summer, respectively. These findings inform the intrinsic limits of the S2S predictability of the 
EASM rainfall by a dynamical model, and strongly suggest that the level of confidence placed upon S2S forecasts should 
be stratified by large-scale circulation anomalies known to significantly affect the prediction skill, e.g., the subtropical high 
and high-latitude teleconnection patterns for summer monsoon rainfall prediction in this region.
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1 Introduction

The East Asian monsoon features a distinct annual reversal 
of surface winds and the associated rainy summer and dry 
winter (Ramage 1971; Trenberth et al. 2000). Because of 
the Tibetan-Iranian Plateau, the strong anthropogenic forc-
ing from aerosol emissions and the intricate teleconnection 
with adjacent ocean basins, etc., the East Asian monsoon 
has its own characteristics including the onset, S2S evolu-
tion and variability across longer timescales (Tzeng and 
Lee 2001; Liu et al. 2018; Dong et al. 2019; Li et al. 2019; 
Son et al. 2019). Additionally, the East Asian summer mon-
soon (EASM) rainfall is the life blood of over one-fifth of 
the world’s population, and also plays an essential role in 
regulating regional atmospheric circulation and hydrologi-
cal cycle. Since the variabilities of summer monsoon rain-
fall impose major impacts on the occurrence probability of 
natural disasters (e.g., floods and droughts), agricultural 
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productivity and water resources in East Asia, the enhanced 
accuracy of predicting the EASM rainfall and the tailored 
operational application are of great scientific and socioeco-
nomic significance.

During the past several decades, substantial efforts 
have been devoted to improving seasonal prediction 
skill of dynamical models. In comparison to the incipi-
ent atmospheric models (Charney and Shukla 1981; 
Shukla 1998), the current state-of-the-art coupled atmos-
phere–ocean–land–cryosphere models exhibit consider-
able enhancement of the forecast performance for monsoon 
regions, and have gradually become an indispensable tool 
of summer monsoon rainfall prediction (Kug et al. 2008; 
Ma and Wang 2014; Park et al. 2018). In 2013, the World 
Weather Research Program (WWRP) and the World Cli-
mate Research Program (WCRP) jointly established the 
Subseasonal-to-Seasonal (S2S) prediction project to bridge 
the gap between medium-to-long range weather forecast and 
seasonal climate prediction, and to deepen the understand-
ing of the sources of S2S predictability and bring together 
the weather and climate research communities to improve 
forecast skill on the timescales of particular relevance to 
the Global Framework for Climate Services (GFCS) (Vitart 
and Robertson 2018; de Andrade et al. 2019; Wang et al. 
2020c). At present, the studies of annual variability of sum-
mer monsoon and intraseasonal process of monsoon system 
are conducted in parallel and complement each other, bring-
ing about the new challenge and opportunity for the dynami-
cal prediction of the EASM rainfall (Jie et al. 2017; Li et al. 
2020; Son et al. 2020; Zhou et al. 2020).

The world’s key climate research and operational institu-
tions now provide real-time predictions by the latest models 
covering subseasonal-to-interannual time ranges as well as 
the related retrospective records. For instance, the 9-month, 
7-month and 13-month lead time predictions of climate 
variables, important phenomena and predominant modes 
are produced by the CFSv2 model at the National Centers 
for Environmental Prediction (NCEP; Saha et al. 2014), by 
the SEAS5 model at the European Centre for Medium-range 
Weather Forecasts (ECMWF; Johnson et al. 2019) and by 
the BCC_CSM1.1m model at the Chinese National Climate 
Center (NCC; Wu et al. 2014). Middle-to-high level skilled 
predictions for 2-m temperature, precipitation, monsoon 
systems, and El Niño-Southern Oscillation, etc., made by 
these models have been reported in many studies (e.g., Liu 
et al. 2015, 2021; Liu and Ren 2015, 2017; Park et al. 2018; 
Keane et al. 2019; Wang et al. 2020b).

Due to the large uncertainty of climate models, derived 
from the imperfect representations of diverse physical pro-
cesses (e.g., cloud microphysics, momentum and energy 
transport between stratosphere and troposphere, etc.) and 
forcings (e.g., aerosol, land-use, volcano, etc.), dynamical 
prediction of summer monsoon rainfall variability remains 

a challenging task. Higher prediction skills of precipitation 
and circulation are mostly found over the equatorial central-
eastern Pacific and tropical regions, respectively, while the 
performance is much less satisfying over monsoon domains 
and extratropical regions, even at the shortest lead time (Liu 
et al. 2015; Singh et al. 2019). In terms of BCC_CSM1.1m, 
its S2S prediction skill of the EASM rainfall has yet to be 
systematically examined. In this study, efforts are made to 
address the following specific questions: (1) How does the 
model’s performance in the EASM rainfall prediction vary 
across different lead times? (2) What limits the subseasonal 
rainfall predictability over the EASM domain? (3) What pro-
cesses are responsible for the rapid drop of prediction skill 
with the increase of lead time?

The remainder of this paper is organized as follows. 
Model, datasets and analysis methods used are described 
in Sect. 2. Predictability evaluation of the EASM rainfall is 
reported in Sect. 3. In Sect. 4, we demonstrate how the skill 
of subseasonal rainfall prediction varies according to the 
large-scale circulation anomalies present over the EASM 
domain. Summary and additional discussion are provided 
in Sect. 5.

2  Model, data and methodology

2.1  Model, hindcast and observational data

The upgraded version of the Beijing Climate Center Cli-
mate System Model version 1.1 with a moderate atmos-
pheric resolution (BCC_CSM1.1m; Wu et  al. 2014) is 
assessed. The atmospheric component in this coupled 
model is BCC_AGCM2.2 with a horizontal resolution of 
T106, approximately 1° × 1° in longitude and latitude, and 
26 hybrid sigma/pressure levels in the vertical direction 
(Wu et al. 2010). The ocean and sea-ice components are the 
Geophysical Fluid Dynamics Laboratory (GFDL) Modular 
Ocean Model version 4 and the GFDL Sea Ice Simulator, 
respectively, with a tripolar grid 1° × 0.33° in the horizontal 
direction and 40 vertical levels (Winton 2000; Griffies et al. 
2005). The land model is the BCC Atmosphere and Vegeta-
tion Interaction Model version 1.0 with the same horizontal 
resolution as the atmospheric component (Ji et al. 2008). 
The different components are coupled without any flux 
correction.

The model hindcasts cover the period 1983–2014, initi-
ated on the first day of each calendar month with 13-month 
forecast outputs that include the initial month and the next 
12 months covering subseasonal-seasonal-annual timescales. 
The real-time forecast using this model was started in 2015. 
The atmospheric initial values are initialized from the four-
time daily NCEP/NCAR Reanalysis 1, and those of the 
oceans are from the ocean temperature of the Global Oceanic 
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Data Assimilation System, through a nudging scheme with a 
relaxation timescale of 2 days. The BCC_CSM1.1m ensem-
ble system includes nine empirical singular vector scheme 
members (Cheng et al. 2010) and 15 lagged average forecast 
scheme members of which the atmospheric and oceanic ini-
tial conditions on 5 days and 3 days preceding the first day of 
each month are combined to generate 15 perturbations (Ren 
et al. 2017). The 24 members of each variable are used to 
obtain the ensemble mean used for evaluating the model’s 
prediction performance in this study.

Observational product of precipitation used for model 
assessment is the monthly precipitation from the Global 
Precipitation Climatology Project version 2.3 (GPCP; Adler 
et al. 2018) provided by the NOAA Physical Sciences Lab-
oratory (https:// psl. noaa. gov/ data/ gridd ed/ data. gpcp. html). 
The circulation and sea surface temperature datasets are 
the fifth generation of the ECMWF atmospheric reanalyses 
(ERA5; Hersbach et al. 2020) obtained from the Climate 
Data Store (https:// cds. clima te. coper nicus. eu/ cdsapp# !/ 
search? type= datas et).

Both model and observational datasets cover the period 
from January 1983 to December 2019. Summer refers to 
June–July–August (JJA) in the Northern Hemisphere (NH) 
and December–January–February (DJF) in the Southern 
Hemisphere (SH), and winter refers to DJF in NH and JJA in 
SH, respectively. For the model’s 13-month forecast outputs, 
the runs at the first time (i.e., the prediction for the initial 
month) are extracted monthly between 1983 and 2019 and 
combined as the 0-month lead (LM0) forecasts; the data at 
the second time (i.e., the prediction for the month following 
the initial month) are extracted monthly and combined as the 
1-month lead (LM1) forecasts; and so forth until the outputs 
at the thirteenth month are extracted and recombined as the 
12-month lead (LM12) forecasts. It is worth noting that at 
a given lead, e.g., LM0, the initial months for summer rain-
fall and those for monthly rainfall in June, July, and August 
are different. Considering the systematic error, the model 
climatology is calculated at each lead time and is a function 
of the initial calendar and lead month.

2.2  Metrics of prediction skill evaluation

Predictability of the EASM rainfall is evaluated with two 
skill metrics recommended by the World Meteorological 
Organization: the temporal correlation coefficient (TCC, 
Eq. 1), representing the predictability of each spatial grid so 
that we could obtain a spatial distribution of prediction skill; 
the spatial correlation coefficient (SCC, Eq. 2), measuring 
the level of spatial pattern similarity between prediction and 
observation.

Define xi,j and pi,j as the anomalies for observation and 
prediction in space (i) and time (j); M is the number of space 
samples and N is the number of time samples.

The TCC is calculated as

where xi=
1

N

∑N

j=1
xi,j , pi=

1

N

∑N

j=1
pi,j.

The SCC is calculated as

where xj=
1

M

∑M

i=1
xi,j , pj=

1

M

∑M

i=1
pi,j.

The range of the TCC and SCC are from − 1.0 to 1.0, and 
a large positive (negative) value indicates a highly similar 
(opposite) correlation between prediction and observation.

2.3  Definition of the East Asian summer monsoon 
domain

The definition of monsoon domains evolved during the past 
hundreds of years of research. Traditionally, the monsoon 
region is delineated by surface winds (Ramage 1971). Fur-
ther refinements of the definition of monsoon climate con-
sidered the reversal of wind direction, the features of diver-
gence fields and vertical air movements (Wang et al. 2008). 
Li and Zeng (2002, 2003) introduced a unified dynamical 
index of monsoon, the dynamical normalized seasonality, to 
study the issue of monsoons. All of the tropical, subtropical, 
and temperate-frigid monsoons over the EASM domain are 
shown by this definition. Considering the essential role of 
monsoon rainfall relate latent heating and key parameters 
in hydrological cycle also led to the modern definition of 
monsoon domain emphasizing precipitation characteris-
tics. Here, we adopt the objective definition for the global 
monsoon precipitation domain by the annual range and the 
annual precipitation (Wang and Ding 2006) to identify the 
EASM domain. The annual range is defined by the local 
summer-minus-winter precipitation and used to measure 
monsoon precipitation intensity. The EASM domain is 
defined by the land region in which the annual range exceeds 
180 mm and the local summer precipitation exceeds 35% of 
the annual precipitation. This definition is in excellent agree-
ment with the monsoon domain of Li and Zeng (2005), and 
previously defined through more complex criteria (Wang 
and Ho 2002).

Overall, BCC_CSM1.1m realistically reproduces the 
global climatologies of the annual range and the annual 
precipitation from 0 to 12-month lead times as their cor-
relation coefficients (CCs) with observations are from 0.72 
to 0.76 for the annual range and are from 0.86 to 0.92 for 
the annual precipitation, which is critical for the further 
definition of monsoon domains in the model. As shown in 
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Fig. 1, the Asian monsoon domain is effectively captured 
by LM0. However, overestimated annual range (Fig. 1a, b) 
and annual precipitation (Fig. 1c, d) are showed over the 
tropical Northwest Pacific, causing an eastward stretch of the 
Asian monsoon domain to the central North Pacific. Here, 
we set the longitude of 95° E as the western boundary of the 
EASM domain which is slightly narrowed and more north-
ward extended in the model compared with the observation. 
These biases are found across multiple lead times. Kim et al. 
(2012) and Kitoh et al. (2013) discussed similar biases in 
the hindcasts of the ECMWF System 4 and NCEP CFSv2 
and the simulations from the CIMAP5 models, suggesting 
potential intrinsic limits in these dynamical models.

3  Prediction skill assessment for the East 
Asian summer monsoon rainfall

CCs for the climatologies of summer rainfall between the 
prediction at each lead month and the GPCP observation 
have values ranging from 0.76 to 0.78 over the EASM 
domain. The model captures the general distribution of 
summer rainfall but tends to overestimate the rainfall over 
the tropical Northwest Pacific and underestimate the rain-
fall over the EASM domain (Fig. 2a, b). Similar biases also 
exist in the ECMWF System 4, NCEP CFSv2 and CIMAP6 
models (Kim et al. 2012; Wang et al. 2020a).

The prediction skill of EASM rainfall is measured by 
TCC between model rainfall hindcasts and observation. 
Prediction at LM0 shows considerable skill over most mon-
soon domain except rarely negative values (Fig. 2c). While 
at LM1, the unskillful areas occupy the northeast China and 
the sparse central and southern Asia (Fig. 2d), and expand 

(a) (b)

(c) (d)

Fig. 1  The climatological mean for the annual range of precipitation 
(a, b) and the annual mean precipitation rate (c, d). The bold lines 
delineate the Asian monsoon domain and the dashed lines delineate 

the western boundary of the East Asian summer monsoon domain. a, 
c Observation and b, d 0-month lead of model
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(a) (b)

(c) (d)

(e)

(f)

Fig. 2  a, b Same as Fig.  1. a, b But for the summer mean precipi-
tation rate. Spatial distribution of temporal correlation coefficients 
(TCCs) for summer rainfall over the East Asian summer monsoon 
domain based on the observation and the model outputs at 0-month 
lead (LM0) (c), 1-month lead (d) and averaged 2-month to 12-month 

lead (LM12) (e); stipple areas represent the statistical significance at 
the 0.2 level. f The regionally averaged TCCs for summer rainfall at 
LM0 to LM12 over the Asian (red line) and the East Asian (blue line) 
monsoon domain; the two gray dashed lines represent the statistical 
significance at the 0.1 and 0.2 levels



2812 N. Wang et al.

1 3

further at longer lead times (Fig. 2e). We display the aver-
aged results of LM2-12 here, given that long-lead predic-
tions become more similar to each other due to the dominant 
role played by the slowly varying components in the model. 
The regionally averaged TCCs over the Asian and the EASM 
monsoon domain at 0 to 12-month lead times are calculated 
and plotted in Fig. 2f. Generally speaking, skills decrease 
gradually throughout LM0 to LM5 and remain nearly flat at 
longer lead times over the Asian monsoon domain and the 
skills drop rapidly from LM0 to LM1 with remarkable fluc-
tuations throughout LM2 to LM12 over the EASM domain.

The EASM rainfall prediction is characterized by a rapid 
deterioration of skill from LM0 to LM1 in BCC_CSM1.1m, 
demanding a more detailed examination of factors affecting 
such skills across subseasonal timescales. Figure 3 shows 
the model’s prediction skills of monthly rainfall in June, July 
and August over the EASM domain. At LM0 (Fig. 3a, d, g), 
the significantly skillful areas are located over the southern 
Asia in June, central China in July and eastern China in 
August, respectively. Prediction performance for these three 
months commonly suffer from reduced skill and expanded 
unskillful areas throughout LM1 to LM12 (Fig. 3b, c, e, f, 

Fig. 3  Spatial distribution of temporal correlation coefficients for 
monthly rainfall over the East Asian summer monsoon domain 
between the observation and the model outputs at 0-month lead (a, d, 

g), 1-month lead (b, e, h) and averaged 2-month to 12-month lead (c, 
f, i) in June (a, b, c), July (d, e, f) and August (g, h, i); stipple areas 
represent the statistical significance at the 0.2 level
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h, i). The major differences in the unskillful areas at LM1 
compared to LM0 are situated over Northeast China in June 
and August, and over South China in July.

The regionally averaged TCCs drop dramatically from 
LM0 to LM1, especially in July and August, and gradually 
decrease or fluctuate at LM2 to LM12 (Fig. 4i). The dif-
ferences in the TCC between LM1 and LM0 clearly mark 
regions of rapid declining skills: most notably over North-
east China throughout all LM1 to LM12 (Fig. 4a, e) and two 
smaller areas over Central China and from Southwest China 
to Southeast Asia. More specifically, the inferior skills over 
Central China in July (Fig. 4c, g) and over Northeast China 
in August (Fig. 4d, h) account for majority of the degrada-
tion of the S2S prediction skill over the EASM domain. For 
rainfall in June (Fig. 4b, f), the prediction skill also rapidly 
drops at LM1 over Northeast China, but not as pronounced 
as that for rainfall in August.

4  Identification of factors affecting skills 
of subseasonal rainfall prediction 
over the East Asian summer monsoon 
domain

We now confirm that the reduced skill of EASM rainfall 
prediction at LM1 is largely associated with the drop of 
skills over Central China in July and over Northeast China in 
August. These two locations are marked in Fig. 5a. Region-
ally averaged TCCs in each month of summer indicate that 
the predictions are most skillful in July over Central China 
(Fig. 5b) and in August over Northeast China (Fig. 5c) at 
LM0, but become much less skillful at LM1.

SCC is employed to further examine the predictions skills 
over these two regions at LM0 and LM1 (Fig. 5d, e). The 
multi-year averaged SCCs at LM0 and LM1 are 0.14 and 
0.02 over Central China in July, and 0.35 and 0.27 over 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Fig. 4  Spatial distribution of the difference of temporal correlation 
coefficient (TCC) at 1-month lead minus that of 0-month lead (LM0) 
(a–d), and averaged 2-month to 12-month lead (LM12) minus that 
of 0-month lead (e–h) in summer (a, e), June (b, f), July (c, g) and 
August (d, h); stipple areas represent the statistical significance at 

the 0.2 level. i The regionally averaged TCCs for June (red line), July 
(yellow line) and August (blue line) rainfall at LM0 to LM12 over 
Asian land monsoon domain; the two gray dashed lines represent the 
statistical significance at the 0.1 and 0.2 levels
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Northeast China in August, respectively. Compared with 
LM0, there are 27 years and 25 years when the SCCs at 
LM1 are smaller over Central China and over Northeast 
China, respectively. The time series of SCC are charac-
terized by pronounced interannual variations, suggesting 
substantial year-to-year variability in the subseasonal pre-
diction skills over these two regions. We take advantage of 
this interannual variability to identify and understand what 
factors might contribute to the rapid decline of prediction 
skill from LM0 to LM1. Specifically, we separate the record 
(LM0–LM1) into reduced skill years and comparable skill 
years based on the differences of SCC between LM1 and 
LM0 in each year. For both Central China and Northeast 
China, the respective 8 years with SCCs at LM0 greater than 
0.1 and with the largest absolute values of SCC differences 
(LM1 − LM0) are defined as the reduced skill years; the 

respective 8 years with SCCs at LM0 and LM1 both greater 
than 0.1 and the smallest absolute value of SCC differences 
(LM1 − LM0) are defined as the comparable skill years. 
Here, we set one of the criteria as the SCC equals 0.1, which 
is not considered statistically significant. However, this will 
not be a major factor in our analysis given (1) the well-
known low predictive skill of rainfall for East Asia in warm 
season, (2) the sensitivity of the correlations to the choice 
of the analysis domain, and (3) most importantly, the fact 
that these correlation coefficients are used only to classify 
forecasts into groups of “reduced skill” and “comparable 
skill” over two different forecast lead times with the absolute 
values of “skill/correlation” being of secondary importance. 
The 8 years in each group for Central China (Table 1) and 
for Northeast China (Table 2) are identified and used in the 
composite analysis that follows.

Fig. 5  a Locations of Central China and Northeast China (red rectan-
gles) and the grids of GPCP data inside of them (purple stipples); two 
blue curve lines represent the Yangtze River and the Yellow River. 
The regionally averaged temporal correlation coefficients for June 
(red line), July (yellow line) and August (blue line) rainfall at 0 to 
12-month lead times over Central China (b) and Northeast China (c), 

respectively. The time series of spatial correlation coefficients for 
rainfall over Central China in July (d) and Northeast China in August 
(e) at 0-month lead (LM0) (blue line) and 1-month lead (LM1) (yel-
low line), and the differences of those at LM1 minus those at LM0 
(red dashed line). The gray dashed lines represent the statistical sig-
nificance at the 0.1 and 0.2 levels



2815Understanding the causes of rapidly declining prediction skill of the East Asian summer monsoon…

1 3

4.1  Central China

The composite pattern of the observed rainfall anomaly 
over Central China in July is characterized by above-normal 

(below-normal) rainfall over the eastern (western) portion 
of the region in reduced skill years (Fig. 6a), meaning the 
prediction of the rainfall in July over eastern Central China 
is more skillful at LM0 than that at LM1. This pattern is 
reversed in comparable skill years and the model exhibits 
the capability to predict the rainfall over western Central 
China at both LM0 and LM1 (Fig. 6b). In other words, 
BCC_CSM1.1m shows higher capability to forecast rainfall 
in July over western Central China compared to that over 
eastern Central China.

Figure 7 shows the counterpart composites of the July 
500-hPa geopotential height and 850-hPa vector wind based 
on the ERA5 reanalysis and the BCC_CSM1.1 outputs. 
According to the ERA5 (Fig. 7a–c), the rainfall distribution 
over Central China are largely modulated by the intensity 
and location of the Northwestern Pacific subtropical high 
(NWPSH) (southeasterly winds alone the southern edge of 
NWPSH) and westerly winds over South China Sea in lower 
troposphere. Compared with the comparable skill years, 
the observed NWPSH appears less intense and displaced 
slightly northward and westward in reduced skill years. 
Additionally, a positive geopotential height anomaly is seen 
over the Yellow Sea at about 40° N, facilitating the north-
ward transport of moisture from the southern ocean to the 
east part of Central China.

In the reduced skill years, the model shows reasonable 
skill in predicting the intensity and location anomalies of 
the NWPSH and the positive geopotential height anomaly 
around 40° N, 120° E at LM0 (Fig. 7d). While at LM1, the 
model has difficulty in reproducing the NWPSH anomaly 
realistically, and the intensity of the positive geopoten-
tial height anomaly over the Yellow Sea is much weaker 
(Fig. 7g). In the comparable skill years, the model fails to 
predict the westward movement of the NWPSH at both 
LM0 (Fig. 7e) and LM1 (Fig. 7h) but captures the negative 
geopotential height anomaly north of the NWPSH, restrict-
ing northward movement of the NWPSH. Besides, one 

Table 1  Composite reduced skill years and comparable skill years 
based on the differences of the spatial correlation coefficients of the 
rainfall anomaly over Central China in July between 1-month lead 
and 0-month lead of the BCC_CSM1.1m, as well as the correspond-
ing differences

Reduced skill Comparable skill

Difference (LM1 − 
LM0)

Year Difference (LM1 − 
LM0)

Year

− 0.59 1991 − 0.05 2014
− 0.54 2001 − 0.04 2006
− 0.52 1985 − 0.02 1999
− 0.48 1994 − 0.02 1995
− 0.47 1998 0.00 1988
− 0.43 2010 0.01 1992
− 0.43 2000 0.02 1990
− 0.41 2017 0.04 2012

Table 2  Same as Table 1 but over Northeast China in August

Reduced skill Comparable skill

Difference (LM1 − 
LM0)

Year Difference (LM1 − 
LM0)

Year

− 0.41 1993 − 0.08 2016
− 0.34 2013 − 0.07 2015
− 0.31 2017 − 0.06 1996
− 0.31 2009 − 0.02 2005
− 0.31 1998 − 0.01 2011
− 0.30 1987 0.07 1988
− 0.28 2012 0.09 2000
− 0.26 1986 0.09 1990

(a) (b)

Fig. 6  Observational composite patterns of rainfall anomaly (mm) based on the reduced (a) and comparable (b) skilled years over Central China 
in July; stipple areas represent the statistical significance at the 0.2 level
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distinction about the NWPSH is the much weaker intensity 
in the reduced skill years than that in the comparable skill 
years (Fig. 7c). Although the model could not reproduce it 
accurately at LM0 (Fig. 7f), we can see that in contrast to 
the observation, the model forecasts a stronger NWPSH at 
LM1in the reduced skill years (Fig. 7i). Liu et al. (2014) 
and de Andrade et al. (2019) also found that in CFSv2 and 
S2S models, the middle-to-high latitudes circulation hind-
cast quality, including that of the NWPSH, is low after the 
second week of lead time, likely due to the inherent unpre-
dictability of the extratropical variability and the resulted 
errors in representing teleconnections.

4.2  Northeast China

The observed August rainfall over Northeast China is above-
normal in reduced skill years (Fig. 8a) and below-normal 
in comparable skill years (Fig. 8b). This indicates that the 

model shows reasonable skills in less rainfall prediction at 
both LM0 and LM1, but performs higher skills in predicting 
above-normal rainfall at LM0 than those at LM1. In other 
words, the model is more difficult in predicting rainfall in 
this region across subseasonal timescales.

The counterpart observed circulation composites show 
the establishment of a tripolar East Asia–Pacific (EAP) tel-
econnection pattern (also referred to as the Pacific-Japan 
wave train) along the East Asia coasts from tropics to high 
latitudes (Fig. 9c). EAP pattern is a dominant mode of vari-
ability in the summer atmospheric circulation, strongly influ-
ences climate variations around East Asia and the North-
western Pacific, and yet hard to be captured faithfully in 
dynamic models (Nitta 1987; Li et al. 2012; Lin et al. 2018; 
Park et al. 2018). In the reduced skill years, the EAP appears 
as an anomalous positive–negative–positive alternating pat-
tern in 500-hPa geopotential height and an anomalous anti-
cyclone-cyclone-anticyclone pattern in 850-hPa wind field 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7  Composite and difference patterns of 500-hPa geopotential 
height anomaly (gpm) and the 850-hPa vector wind (m   s−1), corre-
sponding with Central China. a–c ERA5 reanalysis, d–f 0-month lead 
and g–i 1-month lead of model. Shades represent the geopotential 
height anomaly; vectors represent composite wind (a, b, d, e, g, h) 

and differences of anomalous wind (c, f, i); purple solid lines and red 
dashes represent the climatology and composite 5880 gpm of obser-
vation and 5760 gpm of model; black, green and red dots represent 
the statistical significance at the 0.2 level for geopotential height, 
eastward and northward component of wind, respectively
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approximately at 120°E between 20° N and 80° N (Fig. 9a), 
and vice versa in the comparable skill years (Fig. 9b).

At LM0, the model reproduces the EAP pattern in the 
reduced skill years and the positive geopotential height 
anomaly over Northeast China in the comparable skill years, 
although the positive anomaly west of the NWPSH is weaker 
than the observation in the reduced skill years (Fig. 9d, e). 
For LM1 in the reduced skill years, this EAP teleconnec-
tion pattern is absent and a negative-west versus positive-
east dipole anomaly appears over the high latitudes instead 
(Fig. 9g). However, the positive geopotential height anomaly 
over Northeast China is still predicted in the comparable 
skill years at LM1 (Fig. 9h). The BCC_CSM1.1m model 
captures the differences of the EAP pattern between the 
reduced and comparable skill years at LM0 (Fig. 9f), such 
that the positive height anomaly over subtropical North-
west Pacific and the negative anomaly over Northeast China 
jointly provide moisture and cold air to Northeast China in 
reduced skill years, contributing to the formation of rainfall.

Earlier studies have revealed that summer rainfall over 
Northeast China is collectively affected by monsoon and 
synoptic-scale transients named Northeast China cold vortex 
(Lian et al. 2016; Sun et al. 2016; Fang et al. 2018). Here 
we construct composites for such transients in August based 
on the variance of the 2.5–6 day band-pass-filtered 500-hPa 
geopotential height of the ERA5 reanalysis. It is clear that in 
reduced skill years, cold vortex activities are elevated over 

Northeast China giving rise to rainy Augusts (Fig. 10a, b). 
These synoptic transients likely originate around Novaya 
Zemlya, move southeastward with diminishing intensity, and 
re-strengthen near Lake Baikal and continuously moving 
eastward until arrive at Northeast China (Fig. 10c). Dur-
ing this process, the EAP teleconnection pattern plays a 
critical role as the large-scale steering flow for these tran-
sients. Therefore, the model’s failure to predict EAP at LM1 
in reduced skill years propagates to rainfall biases partly 
through the interaction between EAP and the activity of 
Northeast cold vortex.

5  Summary and discussions

In this study, the skills of S2S prediction of the EASM rain-
fall are evaluated using hindcast records from the BCC_
CSM1.1m, the operational S2S model in China. Specifically, 
we made an attempt to identify and understand the factors 
responsible for the rapid decline of the prediction skill for 
summer rainfall from LM0 to LM1 over this domain.

The model exhibits considerable fidelity in capturing the 
climatological EASM rainfall, with the TCC prediction skill 
dropping rapidly from LM0 to LM1 and then fluctuating 
remarkably throughout LM2 to LM12. Skillful predictions 
of the EASM rainfall are seen over most domain at the short-
est lead time (LM0, about 2 weeks) but become unskillful 

(a) (b)

Fig. 8  Same as Fig. 6 but over Northeast China in August
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over the northeast China and the sparse central and southern 
Asia at LM1.

The dramatic decline of the EASM rainfall predic-
tion skill from LM0 to LM1 is mainly associated with 
the inferior skills over Central China in July and North-
east China in August. Further composite analysis taking 
advantage of interannual variations of the S2S prediction 

skills reveals the model’s difficulties in predicting above-
normal precipitation over the eastern Central China and 
over Northeast China in the respective months and the 
associated extratropical large-scale circulation anomalies 
at longer lead time (i.e., LM1). For Central China in July, 
the reduced skill is tied to the model’s inability to capture 
the anomalous meridional displacement and intensity of 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9  Same as Fig. 7 but corresponding with Northeast China

Fig. 10  Observational composite patterns of the synoptic-scale transients (dagpm) corresponding with Northeast China, constructed by the vari-
ance of the 2.5–6 day band-pass-filtered 500-hPa geopotential height; stipple areas represent the statistical significance at the 0.2 level
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the NWPSH. For Northeast China in August, model fails 
to forecast the establishment of the EAP teleconnection 
pattern in one-month advance, which modulates moisture 
and cold air transport into Northeast China and steers syn-
optic transients to create rainfall in this region. The dif-
ficulties in predicting the large-scale circulation anomalies 
come from multiple factors. These include the spontaneous 
excitation of atmospheric teleconnection patterns (as inter-
nal modes of low-frequency variability), the model biases 
in faithfully reproducing the mean atmospheric state that 
supports the growth and decay of teleconnection patterns, 
the model deficiencies in capturing aspects of extratropical 
air-sea interactions, and finally, potential mis-representa-
tions of remote forcing such as those originated from the 
tropics and/or nearby monsoon regions (e.g., errors asso-
ciated with the problems in simulating Indian monsoon 

precipitation and thus the resulted thermal forcing (Son 
et al. 2021)).

Air-sea interaction is known to be an essential feature of 
interannual variability in the monsoon rainfall. Composites 
of sea surface temperature anomaly (SSTA) (Fig. 11) fol-
lowing the classification of reduced and comparable skill 
years offer a quick glimpse of the probable ocean footprints 
related to the atmosphere circulation anomalies discussed 
before. The difference of the SSTA composite correspond-
ing to Central China shows significant positive anomaly over 
North Pacific at 40° N (Fig. 11e), a region also characterized 
by positive 500-hPa geopotential height anomaly and 850-
hPa anticyclonic wind anomaly (Fig. 7c). The difference of 
the SSTA composite based on the Northeast China classifi-
cation shows an anomalous positive–negative–positive tripo-
lar pattern along the East Asia coasts (Fig. 11f), consistent 

Fig. 11  Observational composite and difference patterns of the sea surface temperature anomaly (℃) corresponding with Central China (a, c, e) 
and Northeast China (b, d, f); stipples represent the statistical significance at the 0.2 level



2820 N. Wang et al.

1 3

with the atmospheric circulation anomalies (Fig. 9c). Since 
downdraft, associated with the positive geopotential height 
and anticyclonic wind anomalies in lower-to-middle tropo-
sphere favors the formation of warm SSTA, the compos-
ite results suggest that SSTA seen here are likely forced by 
atmospheric circulation anomalies. These findings hint that 
the decline of subseasonal prediction skill of summer rainfall 
over East Asia from LM0 to LM1 may be largely attributed 
to model’s inability to capture modes of atmospheric inter-
nal variability (including subtropical highs and EAP), not to 
model problems in simulating the correct temporal-spatial 
evolution of SST in adjacent ocean basins.

Results reported here have informed the skill of S2S pre-
diction of the EASM rainfall by the BCC_CSM1.1m model, 
and specifically, revealed factors limiting such skills. The 
identification and understanding of these factors suggest 
that more skillful predictions could be expected with the 
continuous improvement of the dynamical models used; 
nonetheless, it is of equal importance to note that standing 
on the present prediction capability, the level of confidence 
we might place upon S2S predictions by dynamic models 
should be effectively be stratified by large-scale circulation 
anomalies known to significantly affect the prediction skill.
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