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Abstract
Over time scales between 10 days and 10–20 years—the macroweather regime—atmospheric fields, including the tempera-
ture, respect statistical scale symmetries, such as power-law correlations, that imply the existence of a huge memory in the 
system that can be exploited for long-term forecasts. The Stochastic Seasonal to Interannual Prediction System (StocSIPS) 
is a stochastic model that exploits these symmetries to perform long-term forecasts. It models the temperature as the high-
frequency limit of the (fractional) energy balance equation, which governs radiative equilibrium processes when the relevant 
equilibrium relaxation processes are power law, rather than exponential. They are obtained when the order of the relaxa-
tion equation is fractional rather than integer and they are solved as past value problems rather than initial value problems. 
StocSIPS was first developed for monthly and seasonal forecast of globally averaged temperature. In this paper, we extend 
it to the prediction of the spatially resolved temperature field by treating each grid point as an independent time series. 
Compared to traditional global circulation models (GCMs), StocSIPS has the advantage of forcing predictions to converge 
to the real-world climate. It extracts the internal variability (weather noise) directly from past data and does not suffer from 
model drift. Here we apply StocSIPS to obtain monthly and seasonal predictions of the surface temperature and show some 
preliminary comparison with multi-model ensemble (MME) GCM results. For 1 month lead time, our simple stochastic 
model shows similar—but somewhat higher—values of the skill scores than the much more complex deterministic models.

1 Introduction

The Navier–Stokes equations are the core of conventional 
numerical models for atmospheric prediction. These equa-
tions are derived from general conservation laws: energy, 
momentum, mass. Nevertheless, they have an implicit scale 
invariance symmetry, which is sometimes ignored in regard 
to other conservation laws (Lovejoy and Schertzer 2013; 
Palmer 2019). In this work, we exploit this symmetry as 
the basis for stochastic modelling and prediction of global 
temperature anomalies.

From hourly to centennial time scales, atmospheric fields 
are characterized by three scaling regimes: at high frequen-
cies the weather, with fluctuations increasing with the 
time scale; there is a transition at �w ∼ 10 days to the mac-
roweather, with fluctuations decreasing with scale; and at low 
frequencies the climate, again with increasing fluctuations. 

In recent times, the anthropogenic warming induces the 
transition to the climate regime at �c ~ 15–20 years, but pre-
industrial records show 𝜏c > 100 years (the Holocene tran-
sition scale is still not well known) (Lovejoy 2014). The 
transition time, �w , is the lifetime of planetary structures 
(Lovejoy and Schertzer 1986, 2010) and is therefore close 
to the deterministic predictability limit of conventional 
numerical weather prediction models. This predictability 
threshold for the models following a deterministic approach 
is imposed by the high complexity of the system and the 
sensitive dependence on initial conditions.

To extend the predictions to weekly, monthly and sea-
sonal averages, stochasticity is incorporated at different 
levels in deterministic prediction systems. The ensemble 
approach, in which many different “random” realizations are 
obtained by integrating the model equations from slightly 
different initial conditions, is fundamentally stochastic. 
Sampling the attractor of the dynamic system is assumed 
to be equivalent to sampling the probability distribution of 
the possible outputs. Besides this implicit randomness prod-
uct of chaos, explicit stochastic parameterization schemes 
are increasingly being incorporated in prediction systems. 
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Hybrid deterministic-stochastic approaches seem to be the 
future of macroweather forecasting (Williams 2012; Chris-
tensen et al. 2017; Davini et al. 2017; Rackow and Juricke 
2020). The importance and the current state of stochastic 
climate modelling has been extensively discussed in the 
reviews: Franzke et al. (2015) and Palmer (2019).

In addition to these stochastic improvements to the deter-
ministic core of conventional Global Circulation Models 
(GCMs), purely stochastic models have evolved as a com-
plementary approach since the pioneering works of Has-
selmann (1976). For these Hasselmann-type models, the 
high frequency “weather” is treated as a driving noise of 
the low frequency components described by integer-order 
linear ordinary differential equations. The most well-known 
are the linear inverse models (LIM) (Penland and Matrosova 
1994; Penland and Sardeshmukh 1995; Winkler et al. 2001; 
Newman et al. 2003; Sardeshmukh and Sura 2009). These 
have been presented as a benchmark for decadal surface 
temperature forecasts. On the other hand, one of the main 
limitations of the LIM, is that it implicitly assumes short 
range exponential temporal decorrelations, while it has been 
shown that the true decorrelations are closer to long-range 
power laws (Koscielny-Bunde et al. 1998; Franzke 2012; 
Rypdal et al. 2013; Yuan et al. 2015). Consequently, LIM 
models underestimate the memory of the system, impos-
ing a useful limit to the forecast horizon of roughly 1 year 
(Newman 2013).

In Lovejoy et  al. (2015), the ScaLIng Macroweather 
Model (SLIMM) was introduced as an alternative stochastic 
model that respects the scaling symmetry. SLIMM general-
izes LIM to use fractional differential equations that involve 
strong, long-range memories; it is these long-range memo-
ries that are exploited in SLIMM forecasts. The solution to 
the fractional differential equation in SLIMM is a fractional 
Gaussian noise process that is used to model the natural 
temperature variability.

In a recent series of papers (Lovejoy 2019, 2021a, b; 
Lovejoy et al. 2021), the classical Energy Balance Equa-
tion (EBE) is generalized to fractional orders: the Frac-
tional EBE (FEBE). The phenomenological derivation of 
the FEBE complements derivations based on the classical 
continuum mechanics heat equation and of the more general 
Fractional Heat Equation (FHE) (Lovejoy et al. 2021), which 
is a fractional diffusion equation that has been studied in the 
statistical physics literature. When the FEBE is driven by 
a Gaussian white noise, the result is fractional Relaxation 
noise (fRn) that generalizes the classical Ornstein–Uhlen-
beck process and its high-frequency limit is a fractional 
Gaussian noise process (fGn) that generalizes Brownian 
motion (Lovejoy 2019). In that sense, the fractional differ-
ential equation and the corresponding fGn solution exploited 
in SLIMM are the high-frequency approximations of the 
FEBE and its fRn solution, respectively.

In Del Rio Amador and Lovejoy (2019) (hereafter DRAL) 
the Stochastic Seasonal to Interannual Prediction System 
(StocSIPS) was introduced and applied to the prediction of 
globally averaged monthly temperature in the macroweather 
regime. StocSIPS includes SLIMM as the core model to 
forecast the natural variability component of the tempera-
ture field, but also represents a more general framework for 
modelling the seasonality and the anthropogenic trend and 
the possible inclusion of other atmospheric fields at different 
temporal and spatial resolutions. In this sense, StocSIPS is 
the general system and SLIMM is the main part of it dedi-
cated to the modelling of the stationary scaling series. Stoc-
SIPS also improves the mathematical and numerical tech-
niques used in the original SLIMM.

In DRAL, we presented the basic theory behind Stoc-
SIPS and applied it to the prediction of globally averaged 
series showing verification skill scores in both determin-
istic and probabilistic modes. We also compared hindcasts 
with Canada’s operational long-range forecast system, the 
Canadian Seasonal to Interannual Prediction System (Can-
SIPS), and we showed that StocSIPS is just as accurate for 
1-month forecasts, but significantly more accurate for longer 
lead times.

In this paper (specifically in Sects. 2.2 and 2.3), we verify 
that the scaling symmetry, which is the basis of StocSIPS, 
also holds at the regional level for monthly surface tempera-
ture, although some modifications must be introduced in the 
pre-processing of the tropical ocean temperature anomalies. 
In Sect. 2.4, we describe these particularities together with 
some theoretical details, although we purposely placed the 
most technical aspects in Appendix 1, so the main body of 
the article remains more results-based without too many 
overwhelming technicalities. Although all the equations and 
details relevant to this paper are given in the main text or 
in Appendix 1, the interested reader could refer to the more 
detailed theoretical description given in DRAL. The applica-
bility of the model for all the regional series was confirmed 
through statistically testing in the second part of Sect. 2.4 
and by contrasting the theoretically expected skill scores 
(if the model were perfect) with actual hindcast verification 
results for the natural temperature variability in Sect. 3.1. 
Finally, in Sect. 3.2 we apply StocSIPS to obtain monthly 
and seasonal predictions of the surface temperature and 
we show some preliminary comparisons with multi-model 
ensemble (MME) GCM results.

For 1 month lead time, our simple stochastic model shows 
similar values of the skill scores than the much more com-
plex conventional models, with the advantage that it is much 
less expensive computationally and it can be easily adapted 
to direct hyperlocal prediction without need for downscal-
ing. From a forecast point of view, GCMs can be seen as 
an initial value problem for generating many “stochastic” 
realizations of the state of the atmosphere, while StocSIPS 



729Using regional scaling for temperature forecasts with the Stochastic Seasonal to Interannual…

1 3

is effectively a “past value problem” that estimates the most 
probable future state from long series of past data. The 
results obtained validate StocSIPS as a good alternative and 
a complementary approach to conventional numerical mod-
els. This complementarity is the basis for combining the two 
in a hybrid model that would bring the best of both worlds.

2  StocSIPS

2.1  Data preprocessing

In this study, the reference observational datasets are 
monthly average surface temperature (T2m) from the 
National Centers for Environmental Prediction/National 
Center for Atmospheric Research (NCEP/NCAR) Reanaly-
sis 1 (Kalnay et al. 1996; NCEP/NCAR 2020). The data 
were accessed on January 3, 2020 and it covers the period 
January 1948 to December 2019 (864 months in total). All 
data were interpolated to a 2.5° latitude × 12.5° longitude 
grid across the globe for a total of 73 × 144 = 10,512 grid 
points. Our objective is to model and predict this dataset 
using the Stochastic Seasonal to Interannual Prediction Sys-
tem (StocSIPS).

StocSIPS was presented in DRAL and applied to the 
prediction of globally averaged temperature in the mac-
roweather regime. The main idea behind it is to consider 
the temperature series at position � as a combination of three 
independent signals:

The first component, Tac(�, t) , is the periodic annual cycle 
and is obtained from the mean temperature for each month 
in some reference period (here taken as the full length of 
the temperature datasets: 1948–2019). We assume that, for 
the time scales involved in the modelling and prediction 
problems, the annual cycle is unchanged. Also, for such a 
long verification period, the differences with the anoma-
lies obtained using leave-one-out cross-validation methods 
are negligible. In Fig. 1a, we show an example of the raw 
temperature data, T  (in red), and the periodic signal, Tac (in 
blue), for the time series corresponding to the coordinates 
50.0°N, 2.5°E (near Paris, France). In the graph, only the 
period 1981–2010 is shown for visual clarity.

The second component, Tanth(�, t) , is a deterministic low-
frequency response to anthropogenic forcings. It can be 
modelled as a response to equivalent-CO2  (CO2eq) radiative 
forcing as the one used in CMIP5 simulations (Meinshausen 
et al. 2011):

(1)T(�, t) = Tac(�, t) + Tanth(�, t) + Tnat(�, t).

(2)Tanth(�, t) = �2×CO2eq
(�) log2

[
�CO2eq

(t)
/
�CO2eq,pre

]
,

where �CO2eq
 is the observed globally-averaged equiv-

alent-CO2 concentration with preindustrial value 
�CO2eq,pre

= 277 ppm and �2×CO2eq
(�) is the transient climate 

sensitivity at position � (that excludes delayed responses) 
related to the doubling of atmospheric equivalent-CO2 
concentrations. For �CO2eq

 we used the CMIP5 simulation 
values (Meinshausen et al. 2011). The definition of  CO2eq 
includes not only greenhouse gases, but also aerosols, 
with their corresponding cooling effect. The sensitivity 
�2×CO2eq

(�) is estimated from the linear regression of T(�, t) 
vs. log2

[
�CO2eq

(t)∕�CO2eq,pre

]
 . This relationship ignores mem-

ory effects, but these are not too strong during periods where 
the forcing continues to increase. The zero-mean residual 
natural variability component, Tnat(�, t) , includes “internal” 
variability and the response of the system to other natural 
forcings (e.g.: volcanic and solar). Both components, Tanth 
and Tnat , are shown in Fig. 1b (blue and red, respectively) 
for the same point as in Fig. 1a with coordinates 50.0°N, 
2.5°E. At this location, it could be argued that the anthro-
pogenic trend is insignificant compared to the amplitude 
of the natural component, but at some other locations it is 
more relevant. Besides, the cumulative effect of Tanth for all 
the grid points is highly relevant for the globally averaged 
temperature (see Fig. 5 in DRAL).

Instead of using  CO2eq, alternatively, we could have 
used the  CO2 concentration in Eq. (2) as a surrogate for all 
anthropogenic effects, avoiding various uncertain radiative 
assumptions needed to estimate  CO2eq (especially aerosols). 
Nevertheless, from the point of view of detrending, the 
residuals, Tnat , would remain almost unchanged because of 
the nearly linear relation between the actual  CO2 concentra-
tion and the estimated equivalent concentration (correlation 
coefficient > 0.993). There are more rigorous methods of 
detrending the original signal to obtain independent com-
ponents with “stationary” residuals while preserving the 
length of the time series [e.g.: empirical mode decomposi-
tion (EMD) (Zeiler et al. 2010), ensemble empirical mode 
decomposition (EEMD) (Wu and Huang 2009), LOESS 
(Cleveland and Devlin 1988; Clarke and Richardson 2021)]. 
Nevertheless, the method used here gives a direct physical 
meaning to the residual, Tnat , and to the low-frequency trend, 
Tanth . It is also accurate enough for obtaining the detrended 
temperature anomalies, whose characterization, modelling 
and prediction are the focus of the following sections. A 
more accurate method that takes into account the physics of 
the system adding memory effects to the heat balance equa-
tion, was presented in Procyk et al. (2020).

2.2  Spectra

The effects of the detrending in the frequency domain can be 
observed by comparing the spectra of the raw temperature 
series and the residual component, Tnat . In Fig. 1c we show 
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these two spectra in a log–log scale in blue and red, respec-
tively, for the grid point with coordinates 50.0°N, 2.5°E. The 
spectrum of the detrended series was smoothed by taking 
averages with logarithmically spaced bins. Notice that the 
peak corresponding to the annual cycle was removed along 
with the signal Tac , as well as the low-frequency response 
corresponding to Tanth . The frequency, � , is given in units 
of cycles per 72 years (72 years is the length of the series).

After removing the peaks corresponding to the annual 
cycle (and harmonics) and the low-frequency response, the 
only relevant feature of the spectrum of the detrended anom-
alies, E(�) , is its scale invariance (power–law behaviour):

The exponent, � = 0.20 ± 0.11 , can be obtained from 
the linear regression of the spectrum averaged over equally 
spaced logarithmic bins (shown in red). The line correspond-
ing to the best fit is shown in black in the figure. We also 

(3)E(�) ∝ �−� .

included a reference dashed line with slope 1 + 2H , where 
H is the fluctuation exponent (see next section).

The scaling is even more noticeable in the less noisy 
spectrum shown in Fig. 1d, obtained by averaging the spec-
tra of all the 10,512 grid points. Now the peaks correspond-
ing to the periodic signal and the low-frequency contribu-
tion associated with anthropogenic effects are more clearly 
visible. The value of the exponent obtained in this case is 
� = 0.42 ± 0.02 . The implications of this scale-invariance 
will be treated in more detail in the following sections.

2.3  Scaling

In DRAL, it was shown that, for the case of globally aver-
aged monthly atmospheric surface temperature, the statis-
tics of Tnat(t) are characterized by one main symmetry: the 
power-law (scaling) behaviour of the average of the fluctua-
tions, ΔT  , as a function of the time scale, Δt:

Fig. 1  Example of signal pre-processing and spectra for the grid point 
with coordinates 50.0°N, 2.5°E (near Paris, France). a Raw tem-
perature data, T  (in red), and the periodic signal, Tac (in blue). Only 
the period 1981–2010 is shown for visual clarity. b The zero-mean 
residual natural variability component, Tnat and the anthropogenic 
trend, Tanth (red and blue, respectively). c Spectra of the raw temper-

ature series and the residual component, Tnat (blue and red, respec-
tively). The exponent, � was obtained from the linear regression of 
the spectrum  averaged over equally spaced logarithmic bins. The 
reference dashed line with slope 1 + 2H was also included. d Similar 
to c, but now considering the average spectra for all the 10,512 grid 
points
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where H is the fluctuation exponent and the brackets ⟨∙⟩ 
denote ensemble averaging. For −1 < H < 0 , Haar fluc-
tuations, not differences, should be used (Lovejoy and 
Schertzer 2012a). Many examples of the low intermittency 
(“spikiness”) of the temperature fluctuations are given in 
Lovejoy and Schertzer (2013). Equivalently to Eq. (4), in 
the frequency domain the spectrum satisfies the previously 
mentioned equation: E(�) ∝ �−� , with � = 1 + 2H  for 
monofractal processes. These statistical symmetries are not 
exclusive to the globally averaged temperature. There are 
many empirical results that show a “colored noise” scaling 
behaviour in local temperature spectra as well as in many 
other atmospheric variables (Brockwell and Davis 1991; 
Blender et al. 2006; Box et al. 2008; Lovejoy and Schertzer 
2013; Varotsos et al. 2013; Christensen et al. 2015).

For globally averaged temperature at scales between 
1 month and several decades, there is a single scaling regime 
with H < 0 . If we analyze temperature time series from daily 
(or shorter) time scales, we find that, in general, there is a 
transition between two scaling regimes: from the weather, 
characterized by fluctuations increasing with the time scale 
( H > 0 ), to the macroweather regime where fluctuations 
tend to cancel out as the time scale increases ( H < 0).

This transition in the statistical properties of the atmos-
phere at scales of the order of �w ≈ 10 days, has been theo-
rized by Lovejoy and Schertzer (1986) as the lifetime of 
planetary sized structures and estimated from first principles 
from knowledge of the solar output and the efficiency of 
conversion from solar to mechanical energy (Lovejoy and 
Schertzer 2010). A similar transition at �w ≈ 1 year was 
observed for the average surface temperature over the ocean 
(Lovejoy and Schertzer 2013).

The fluctuation exponents that characterize the weather 
and the macroweather regimes for air surface temperature 
( Hw and Hmw , respectively), as well as the transition scale 
�w , are functions of position with a strong dependence on 
the latitude. In Fig. 2, we show a map of the exponents 
obtained from the Haar fluctuation analysis (Lovejoy and 
Schertzer 2012a) in the high-frequency scaling regime 
between 2 months and 2 years. In general, there is a con-
sistent difference between the macroweather exponents of 
surface temperature over the oceans and over land with 
−1∕2 < Hland

mw
< Hocean

mw
< 0 (the ocean is more persistent 

and the fluctuations cancel out more slowly). Also, for any 
position over land and for most of the ocean, we find that 
𝜏w < 1 month, so for surface temperature at monthly resolu-
tion, only the macroweather regime is observed. Only for 
the tropical ocean we do find a well-defined transition with 
�w as much as 2 years. Consequently, for this region, at time 
scales Δt < 𝜏w the statistics of the fluctuations are those of 
the weather regime with positive exponents (red in Fig. 2). 

(4)⟨�ΔT(Δt)�⟩ ∝ ΔtH ,

This longer transition in the SST corresponds to an analo-
gous “ocean weather”–“ocean macroweather” transition 
(Lovejoy and Schertzer 2012b). It corresponds to lifetimes 
of large-scale ocean gyres (and other structures) that live 
much longer than atmospheric structures.

As an example, we show the Haar fluctuation analysis of 
the time series presented in Fig. 3a. We choose a point over 
land (time series in blue in Fig. 3a) with coordinates 50.0°N, 
2.5°E (same grid point used before in Sect. 2.1) and a point 
in the tropical ocean (red in Fig. 3a) with coordinates 7.5°S, 
30°W. In Fig. 3b, we show the average fluctuation as a func-
tion of the time scale before and after removing the anthro-
pogenic trend for the point over land [red line with circles for 
the anomalies before removing the anthropogenic compo-
nent ( Tanom = Tnat + Tanth ) and blue line with empty squares 
for the detrended anomalies ( Tnat)]. The reference line with 
slope Hmw = −0.39 ± 0.02 was obtained from regression of 
the residuals’ fluctuations between 2 months and 18.5 years. 
The units for  Δt and ΔT  are months and °C, respectively.

Notice that the anthropogenic warming breaks the scaling 
of the undetrended anomalies’ fluctuations at a time scale of 
15–20 years (the fluctuations start to increase with the scale 
at ~ 200 months). The fluctuation exponent for this low-fre-
quency (climate) regime is Hc = 1.0 ± 0.1—i.e., the fluctua-
tions increase linearly with time following the almost linear 
growth of  CO2 concentration in recent epochs. The residual 
natural variability, on the other hand, shows reasonably good 
scaling for the whole period analyzed (66 years). In analy-
sis of temperature records from preindustrial multiproxies 
and GCMs preindustrial control runs (Lovejoy 2014), evi-
dence was presented showing that the range of scaling with 
decreasing fluctuations (pre-industrial macroweather) may 
extend to more than 100 years.

As we mentioned before, for this point over land, only 
one regime with fluctuations decreasing with the time 
scale (the macroweather regime) is present for the natural 

Fig. 2  Map of the fluctuation exponents obtained from the Haar fluc-
tuation analysis (Lovejoy and Schertzer 2012a), in the high-frequency 
scaling regime between 2 months and 2 years
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variability. So, we can conclude that, at this location, the 
weather–macroweather transition occurs at 𝜏w < 1 month 
(maximum resolution of the analyzed data). This was con-
firmed using 6-h resolution data. In contrast, as we show in 
Fig. 3c, if we analyze the grid point in the tropical region 
over the ocean (time series in red in Fig. 3a), there is a 
clear transition at �w ∼ 1.5 years from the weather regime 
(with fluctuations increasing with the scale) to the mac-
roweather regime (with decreasing average fluctuations). A 
further transition occurs in the undetrended anomalies at 
�c ∼ 18.5 years to the climate regime, where fluctuations 
start to increase again with the time scale. As before, this 
transition in recent epochs is induced by anthropogenic 
effects. The actual transition in the natural variability, as 
obtained from preindustrial temperature records, apparently 

occurs at time scales longer than 100 years, which is consist-
ent with the blue curves for Tnat in Fig. 3b,c after we remove 
the anthropogenic trend. The fluctuation exponent for the 
three regimes, weather–macroweather–climate, has values 
Hw = 0.18 ± 0.03 , Hmw = −0.18 ± 0.05 and Hc = 1.0 ± 0.2 , 
respectively (shown in the graph) consistent with a smooth 
low-frequency behaviour.

A visual comparison between the blue and red curves in 
Fig. 3a shows a clear difference in the temperature behav-
iour at these two grid points. While over land, consecutive 
values of temperature tend to cancel out, over the ocean the 
temperature is more persistent and only after several time 
steps the anomalies change sign. This is confirmed in the 
Haar fluctuation analysis shown in Fig. 3b,c. This differ-
ence in the statistical behaviour imply that, while a fractional 

Fig. 3  Examples of Haar fluctuation analysis for two points, one 
over land and one over ocean. a In blue, time series for a point 
over land with coordinates 50.0°N, 2.5°E (same grid point used 
before in Sect.  2.1); in red, for a point over ocean located at 7.5°S, 
30°W and in black, the series of the temperature differences, 
�Tnat(t) = Tnat(t) − Tnat(t − 1) , for the same point over ocean (incre-
ments of the time series in red). b Average fluctuation as a function 
of the time scale before and after removing the anthropogenic trend 
for the point over land (red line with circles for the anomalies before 
removing the anthropogenic component and blue line with empty 
squares for the detrended anomalies). The reference lines with slopes 
H

mw
= −0.39 ± 0.02 and H

mw
= 1.0 ± 0.1 were obtained from regres-

sion of the anomalies’ fluctuations in the respective macroweather 
and climate regimes. c Same as in b but now for the point over ocean. 
The three regimes (weather, macroweather and climate) are observed 
for this point. The corresponding transition scales and the respective 
exponents obtained from linear regression are also included in the 
graph. d Haar fluctuation analysis of the series of increments �Tnat(t) 
for the point over ocean. The dashed line included as reference has 
slope H = H

w
− 1 = −0.82 , where H

w
 is the one shown in c and the 

solid line has a slope H = −0.68 , which is the exponent obtained 
from the maximum likelihood method assuming that �Tnat is a frac-
tional Gaussian noise (fGn) process (see next section)
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Gaussian noise (fGn) model is a good fit for the extratrop-
ics, we cannot use it to describe the tropical region. Nev-
ertheless, if we take the first differences in the time series 
for the grid point over the tropical ocean, the new series 
�Tnat(t) = Tnat(t) − Tnat(t − 1) (shown in black in Fig. 3a) 
has a statistical behaviour which is clearly more similar to 
the series over land with consecutive fluctuations cancelling 
out. As we can see in the graph shown in Fig. 3d, the new 
series �Tnat(t) has a scaling regime for small Δt with nega-
tive fluctuation exponent similar to that of Fig. 3b. By taking 
first differences in the tropics, we are able to use fGn process 
everywhere to predict the time series, then we can go back 
to the original series for those places by taking cumulative 
sums.

There is still a change in the slope at �w ∼ 1.5 years, 
corresponding to the one in the original series shown in 
Fig. 3c. The dashed line included as reference has a slope 
H = Hw − 1 = −0.82 . The series �Tnat , being the increments 
of the series Tnat , should have an exponent of the dominant 
high frequencies reduced by one. We also included in solid 
black, a reference line with slope H = −0.68 , which is the 
exponent obtained from the maximum likelihood method 
assuming that �Tnat is an fGn process (see Sect. 2.4.2).

These examples—shown here for two different posi-
tions—are representative of the behaviour of the natural 
temperature variability all over the Earth. In fact, by tak-
ing the first differences of the time series in those places 
over the tropical ocean with weather regime at monthly 
resolution, we can reduce our analysis to only one case of 
self-similar time series with negative exponent in the range 
−1 < H < 0 . This simplification emphasizes the role of the 
scaling symmetry, which is sometimes ignored in regard to 
other conservation laws, in spite of being also present in 
the Navier–Stokes equations (Lovejoy and Schertzer 2013; 
Palmer 2019), which are the core of conventional numerical 
models for atmospheric prediction and hence respected by 
them. In this work, we exploit this symmetry as the basis for 
stochastic modelling and prediction of global temperature 
anomalies.

2.4  Stochastic modelling using fGn and fRn

2.4.1  Properties of fGn, fRn

Together with the scaling symmetry presented in the previ-
ous section, we also assume the Gaussianity of the natural 
temperature variability. This Gaussian hypothesis was veri-
fied in DRAL for globally averaged monthly temperature in 
the macroweather regime. Although the Gaussian assump-
tion is commonly made, it is worth underlining that it is 
somewhat surprising that it is a reasonable model for mac-
roweather time series. Recall that Gaussian statistics imply 
that macroweather in time has little or no intermittency (the 

series are mono-, not multifractal, the transitions are not 
“spiky”). This contrasts with macroweather in space, which 
is highly intermittent, as well as the existence of highly 
intermittent, nonGaussian, multifractal spatial and temporal 
statistics in the weather and climate regimes (Lovejoy 2018).

The scaling of the temperature fluctuations and spectrum 
implies that there are power-law correlations in the system 
and hence a large memory effect that can be exploited. In 
Lovejoy (2019) and Lovejoy et al. (2021), it was argued 
that the origin of this memory are the Earth’s hierarchical, 
scaling energy storage mechanisms whereby anomalies in 
energy fluxes either external (e.g. anthropogenic) or inter-
nal can be stored for long periods. It was argued that to a 
good approximation, the temperature satisfies the Fractional 
Energy Balance Equation (FEBE) that has a high-frequency 
scaling storage term and a low-frequency energy balance 
term. When the FEBE is internally forced by a Gaussian 
white noise, the temperature response is the statistically sta-
tionary fractional Relaxation noise (fRn) process (Lovejoy 
2019).

However, at time scales shorter than the relaxation time 
(of the order of a few years), the (scaling) storage term is 
dominant and, for exponents −1∕2 < H < 0 , the temperature 
response is a fractional Gaussian noise (fGn) process. This 
was the approximation made in DRAL and is empirically 
valid for all land areas and most of the oceans. The excep-
tions are some parts of the tropical ocean where 0 < H < 1 
(Figs. 2 and 4a), we return to these below.

The original idea of modelling the natural variabil-
ity using an fGn process was presented in Lovejoy et al. 
(2015) as the ScaLIng Macroweather Model (SLIMM). In 
DRAL, StocSIPS was introduced as a general system that 
includes SLIMM as the core prediction model. StocSIPS 
also improves the mathematical and numerical techniques 
of SLIMM. It was applied to the prediction of globally aver-
aged temperature series since 1880. The comparison of Stoc-
SIPS hindcasts with Canada’s operational long-range fore-
cast system, the Canadian Seasonal to Interannual Prediction 
System (CanSIPS), showed that StocSIPS is just as accurate 
for 1-month forecasts, but significantly more accurate for 
longer lead times.

In this paper we extend the globally averaged version of 
StocSIPS for the prediction of a single temperature time 
series to the prediction of the full space–time temperature 
field. The basic theory for fGn processes, used here to model 
those places where −1∕2 < H < 0 (most of the planet), is 
summarized in Appendix 1. An fGn process is fully charac-
terized by two parameters (assuming zero mean): the fluc-
tuation exponent, H , and the standard deviation, �T.

We mentioned that for most places in the tropical ocean, 
0 < H < 1 . While these may still be modelled by fRn pro-
cesses, the high-frequency approximation to fRn is no longer 
an fGn process, but rather a fractional Brownian motion 
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(fBm) process, and we must use the correlation function 
for fRn given in Appendix 1.3, Eq. (23). For those regions 
with positive H , the first differences of the temperature, 
�Tnat(t) = Tnat(t) − Tnat(t − 1) , has H values reduced by 1, 
so for �Tnat we also have −1 < H < 0 . That is, either the 
natural temperature variability itself or its first differences 
can be modelled by an fGn process. In those places where 
H > 0 for the high frequencies, it would be equivalent to 
modelling them with an fBm or fRn process. Of course, a 
true fBm would only have one scaling regime with positive 
fluctuation exponent, instead of the bi-scaling regime shown 
for the detrended anomalies in Fig. 3c. To model those series 
as an fBm process is an approximation that would work well 
for the high frequencies, but that would fail in reproducing 
the low frequency behaviour.

2.4.2  Parameter estimates and model adequacy

With the distinction in the tropical region where we take 
the first differences to adjust everything to an fGn model, 
we conclude that to model the actual temperature field for 
the globe (including the anthropogenic trend), for each grid 
point of the NCEP/NCAR Reanalysis 1 data we may esti-
mate the three parameters ( H , �T , �2×CO2eq

 ). For the first two, 
we use the maximum likelihood method described in Appen-
dix 1 of DRAL and for the sensitivity we use the regression 
described in Sect. 2.1. To verify the model adequacy, we use 
Eq. (22) to obtain the residual innovations, �(t) , then, using 
the maximum likelihood method, we obtain its variance, �� , 
and its fluctuation exponent, H� ; they should be equal to 1 
and −1∕2 , respectively (white noise processes are particular 
cases of fGn with H = −1∕2 ). The results are summarized 
in Fig. 4.

Fig. 4  Estimates of the three parameters ( H, �
T
, �2×CO2eq

 ) obtained 
for each grid point and statistics of the innovations, �(t) . a Maxi-
mum likelihood estimates of the temperature fluctuation exponent 
(compare with the estimates shown in Fig. 2). There is a discontinu-
ity from negative to positive values of H as we approach the tropi-
cal ocean, corresponding to the change in model from fGn to fBm. 
b The standard deviation, �

T
 , of the infinite ensemble fGn process. 

c Map of the transient climate sensitivity, defined in Eq. (2). The 

places marked with “*” indicate pixels where the null hypothesis, 
�2×CO2eq

= 0 , cannot be rejected with more than 90% confidence. d 
Histograms of the fluctuation exponent and the standard deviation of 
the innovations ( H� and �� , respectively) for the 10,512 grid points. 
From the histograms, we can conclude that the innovations are very 
close to white noise for the whole planet ( H� = −0.498 ± 0.003 and 
�� = 1.000 ± 0.002)
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A map of the maximum likelihood estimates of the tem-
perature fluctuation exponent is shown in Fig. 4a. These val-
ues are more accurate and give a better fit of our model than 
the high-frequency Haar estimates shown in Fig. 2. Notice 
that for most of the globe and all of the land, the values 
are in the range −1∕2 < H < 0 , which is characteristic of 
long-range memory fGn processes with nonsummable cor-
relation functions, i.e. the sum over Δt of the series with 
elements given by Eq. (17) diverges for this range of H . 
There is a discontinuity from negative to positive values of 
H as we approach the tropical ocean, corresponding to the 
change in model from fGn to fBm (or, equivalently, from the 
description as an fGn of the natural temperature variability, 
Tnat , to the description of the temperature differences, �Tnat ). 
In most of the tropical ocean (red regions in the map), the 
natural temperature variability has fluctuation exponents in 
the range 0 < H < 1∕2 , whose fBm approximation has “anti-
persistent” increments (consecutive increments are nega-
tively correlated). Only in the eastern equatorial Pacific (yel-
low region in the map), do we obtain fluctuation exponents 
in the range 1∕2 < H < 1 , whose fBm approximation has 
persistent (positively correlated) increments. It is significant 
that it is precisely this more predictable region that is asso-
ciated with the ENSO phenomenon (Trenberth 1997), the 
strongest interannual signal of climate variability on Earth.

In Fig.  4b we show the values of the parameter �T  . 
Although this is the standard deviation of the infinite ensem-
ble fGn process, for a given finite realization it does not 
coincide with the usual estimate (SDT) based on the temporal 
average:

where 
−

TN =
∑N

t=1
Tnat(t)∕N (the over-bar notation is used to 

denote averaging in time). The biased estimate SDT ignores 
correlations, that are however considered in the maximum 
likelihood estimate of �T . The relation between the two val-
ues for fGn processes depends on the length of the time 
series and the fluctuation exponent, H , and is given by:

(see Sect. 3.3 and Appendix 1 of DRAL). Notice that there 
is also a discontinuity in the map of �T for the same rea-
sons explained previously. In general, the amplitude of the 
fluctuations is larger over land than over the ocean; the sur-
face temperature over the ocean is less variable as this has a 
higher thermal inertia than land.

A map of the transient climate sensitivity, defined in Eq. 
(2), is shown in Fig. 4c. The places marked with “*” indicate 
grid boxes where the null hypothesis,�2×CO2eq

= 0 , cannot be 
rejected with more than 90% confidence. Notice that these 

(5)SD2
T
=

1

N

N∑
t=1

[
Tnat(t) − TN

]2
,

(6)SD2
T
= �2

T

(
1 − N2H

)

values depend on the reference dataset. In our case we used 
the NCEP/NCAR Reanalysis 1, which only has data since 
1948. More precise estimates of the climate sensitivity were 
obtained by Hébert and Lovejoy (2018) using five observa-
tional datasets since 1880. In this paper, we are not aiming 
at an accurate study of the climate sensitivity. We should 
consider the values of �2×CO2eq

 reported here as a parameter 
used for detrending the temperature time series related to the 
anthropogenic effects.

Finally, in Fig. 4d, we show histograms of the fluctua-
tion exponent and the standard deviation of the innova-
tions ( H� and �� , respectively) for the 10,512 grid points. 
From the histograms, we conclude that the innovations are 
very close to white noise for all the places in the planet 
( H� = −0.498 ± 0.003 and �� = 1.000 ± 0.002 ). So, with a 
high degree of accuracy, all the innovation series can be con-
sidered NID(0,1) (Normally and Independently Distributed 
with mean 0 and variance 1), and we can conclude that the 
fGn model is a good fit to the natural temperature variability 
(or its increments in the red and yellow places of the map 
in Fig. 4a).

3  Results

3.1  Natural variability forecast

3.1.1  Model validation through hindcast

In the previous section, we validated the fGn model as a 
good fit to the natural temperature variability (or to its incre-
ments) by checking the whiteness of the residual innova-
tions. The goal of this section is to further validate the model 
by using the theory presented in Appendix 1.4 to hindcast 
only the natural variability—not the anthropogenic signal 
or the annual cycle—and seeing how well it performs. We 
test the assumptions made in the model by comparing the 
theoretically expected skill scores (expected values if the 
model were perfect) with the actual scores obtained from 
hindcasts. All the verification metrics used in this paper are 
detailed in Appendix 2.

Series of hindcasts at monthly resolution, were produced 
for forecast horizons from 1 to 12 months, in the period 
of verification (POV) from December 1950 to November 
2019 (the verification starts in December in order to have 
the same number of conventional seasons: DJF, MAM, JJA, 
SON). In this 69-year verification period, each month was 
independently predicted using the information available 
m months before. For each horizon, k , we used a memory 
m = 20 months. For example, to predict the average temper-
ature for December 1950 with k = 1 month, we used the pre-
vious 21 months, including November 1950, and the same 
was done for every verification date up to November 2019 
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and for all horizons up to k = 12 months. The dependence 
with the horizon of many scores [e.g. the root mean square 
error ( RMSE)], is obtained from the difference between 
hindcasts series at a fixed k and the corresponding series of 
observations.

It is important to point out that the predictor T̂nat(t + k) 
(see Eq. 24) only depends on the previous m + 1 months, 
from Tnat(t − m) to Tnat(t) , weighted by coefficients that only 
depend on the fluctuation exponent H (see Fig. 4a). The 
estimates of H are quite robust and only small variations 
were obtained for different training periods, as long as the 
length of the training periods is larger than one third of the 
full length of the time series. Also, only small changes on 
the skill were found for small variations in H . In that sense, 
given the robustness of the estimates of the fluctuation expo-
nent, we can use almost all the observational period for veri-
fication leaving only a few months before the first initializa-
tion date to use as memory. In all cases, the observational 
and forecast anomalies used for verification were calculated 
in the leave-one-out cross-validation mode.

3.1.1.1 Root Mean Square Error (RMSE) The infinite ensem-
ble expectation of the RMSE is given in Appendix 1.4 
(Eq. 27). This analytical expression is only a function of the 
model parameters and does not include any observational 
data. It is the theoretical RMSE  value for a perfect model. 
To confirm the validity of the theoretical framework for the 
prediction of the natural variability component, we compare 
these expected values for each grid point with the actual 
verification RMSE obtained from hindcasts in the POV 
from December 1950 to November 2019. The all-month 
verification score for horizon k is obtained using Eqs. (32) 
and (33) with N = 828 months and Tnat(t + k) and T̂nat(t + k) 
being the zero mean detrended observational and predicted 
anomalies, respectively.

The comparison between the theoretical and the actual 
(obtained from hindcasts) normalized root mean square error 
( NRMSE ) is shown in Fig. 5 for horizon k = 1 month. The 
NRMSE is the RMSE normalized by the observed standard 
deviation (Eq. (5) for the natural variability). The NRMSE 
may vary from zero to infinity, with lower NRMSE values 
indicating more skillful forecasts. NRMSE values greater 
than 1 indicate that forecasts are less skillful than the cli-
matological average value of the series. As we pointed out, 
for a fixed k,  the theoretical RMSE only depends on the 
parameters �T and H . In general, there is very good agree-
ment between theory and verification results. The maximum 
difference between the two maps in Fig. 5 is lower than 0.07. 
The forecast skill is higher over ocean than over land and 
takes the highest values over the tropical ocean, which cor-
responds to the spatial distribution of H values shown in 
Figs. 2 and 4a.

The maps in Fig. 5 were obtained for k = 1 month, but 
similar maps can be obtained for all forecast horizons from 
1 to 12 months. The results of the comparison can be sum-
marized in the scatter plots shown in Fig. 6. The graphs 
include the 10,512 grid points, showing the verification 
RMSE obtained from hindcasts vs. the expected theoreti-
cal RMSE

theory

nat  predicted by Eq. (27) for each horizon. As 
expected, the agreement between the theoretically expected 
scores and the hindcasts results decreases as the horizon 
increases, but it remains quite accurate in all cases with a 
correlation coefficient larger than 0.998. For the regions 
where H > 0 , the fBm fit is less accurate; however, recall 
that in those places the actual statistics of the fluctuations are 
bi-scaling, while the fBm model assumes a perfectly scaling 
process. The accuracy of the theory decreases as the horizon 
approaches the transition time, �w.

Fig. 5  Theoretical and hindcasts NRMSE for k = 1 month. The corresponding RMSE s were obtained using Eqs. (27) and (33), respectively, and 
the normalization standard deviation from Eq. (5) for the natural variability
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3.1.1.2 Mean Square Skill Score (MSSS) Related to the 
RMSE score, the MSSS is a commonly used metric (see 
Eq. 35). The guidelines of the World Meteorological Organ-
ization (WMO) Standard Verification System for Long-
Range Forecasts (LRFs) (WMO 2010a), suggests the MSSS 
as a metric for deterministic forecasts (based on the ensem-
ble mean). For leave-one-out cross-validated data in the 
POV (WMO 2010a), the mean square error ( MSE ) of the 
reference climatology forecasts (including the deterministic 
anthropogenic trend forecast) is:

(see Eq. 34), where SDT
2 is the variance of the detrended 

anomaly series (natural variability component). The MSSS 
for horizon k for the natural variability forecast is:

where MSEnat  is obtained using Eq. (32) with 
N = 828  months and Tnat(t + k) and T̂nat(t + k) being the 

(7)MSEC =
(

N

N − 1

) 2

SD2
T

(8)
MSSSnat(k) = 1 −

MSEnat(k)(
N

N−1

) 2

SD2
T

,

zero mean detrended observational and predicted anoma-
lies, respectively.

One consequence of the memory effects in the natural 
variability is the increase of SDT

2 with the length of the 
verification period given by Eq. (6). This implies that some 
metrics, such as the MSSS or the NRMSE , will actually have 
the same dependence with the duration of the verification 
period. The longer the verification period, the higher the 
value of MSSS (lower for NRMSE ), even for a fixed pre-
diction system (with fixed RMSE). Comparisons between 
skill scores of different models should always be made for 
the same POV (or at least the same length of the POV). 
As the number of months used for verification increases, 
SDT

2
→ �T

2 and the MSSS approaches the asymptotic value 
(determined by H ). This effect is small for most values of 
H , but is significant if too short verification periods are used 
or if H is close to zero (e.g.: the bias SDT

2∕�T
2 ≈ 0.6 for 

N = 100 months and H = −0.1 ). See Fig. 9 in DRAL for an 
example in monthly globally averaged temperature.

3.1.1.3 Temporal correlation coefficient (TCC) The TCC is 
another commonly used verification score for deterministic 
forecasts (see Eq. 36). For the natural variability forecast, 
the TCC for horizon k is:

where the overbars indicate temporal average for a constant 
k.

For the natural variability forecast, the autoregressive 
coefficients in our predictor were obtained as analytical 
functions of only the fluctuation exponent, H (see Eqs. 24 
and 25). As we showed in Appendix 2.3, if our model is ade-
quate for describing the natural temperature variability, then 
the following relationship between the verification TCCnat 
and MSSSnat should be satisfied for k = 1 month:

It does not hold for all horizons in the tropical region due 
to the use of the fBm rather than fGn model.

In Fig. 7 we show maps of the TCCnat and the absolute 
difference ���TCCnat −

√
MSSSnat

��� obtained from hindcasts for 
k = 1 month. The color scale in (b) was rescaled 100 times 
with respect to (a) so the differences could be perceptible. 
They are negligible compared to the values in (a). The maxi-
mum differences in Fig. 7b is almost always lower than 0.01 
(mean value of 0.001), which strongly corroborates the 
adequacy of the fGn model to describe the natural 
variability.

(9)TCCnat(k) =
Tnat(t + k)T̂nat(t + k)

SDT

√
T̂nat(t)

2

,

(10)TCCnat(1) ≈
√
MSSSnat(1).

Fig. 6  Scatter plots for each horizon including the 10,512 grid points, 
showing the verification RMSE obtained from hindcasts vs. the 
expected theoretical RMSE

theory

nat
 predicted by Eq. (27). The graphs 

were displaced vertically by 2 °C (plus a horizontal displacement of 
8 °C for k ≥ 7 months) for visual clarity. The black line at 45° is a ref-
erence indicating perfect agreement between theory and verification. 
The blue points represent locations where H < 0 and the natural vari-
ability is modeled as an fGn process and the red points are for places 
where H > 0 and we use the fBm model
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3.1.2  Probabilistic scores and reliability

All the skill scores discussed above are recommended by the 
WMO for assessing deterministic prediction of long-range 
forecasts (WMO 2010b). These forecasts are deterministic 
in the sense that only the ensemble mean is considered, dis-
regarding the ensemble variance, or more accurately, the 
prediction of the probability distribution. In this study we 
only focus on deterministic predictions (deterministic in the 
previously mentioned sense, recall that we use a stochas-
tic model) because, given a Gaussian approximation of a 
probability distribution function, the skill of probabilistic 
forecasts is mainly dependent upon the skill of ensemble 
mean predictions and much less upon predictions of ensem-
ble variances (Kryjov et al. 2006). In fact, in DRAL it was 
shown that, assuming a Gaussian distribution for the errors, 
the Continuous Ranked Probability Score ( CRPS ) (Hers-
bach 2000; Gneiting et al. 2005), which is a commonly used 
metric for probabilistic forecasts, is related to the RMSE by:

where:

is the ensemble spread score, defined as the ratio between 
the temporal mean of the intra-ensemble variance, �2

ensemble
 , 

and the mean square error between the ensemble mean and 
the observations (Palmer et al. 2006; Keller and Hense 2011; 
Pasternack et al. 2018). The ESS is a commonly used metric 
to evaluate the reliability of the probabilistic forecast of an 
ensemble model.

(11)CRPS(k) =
RMSE(k)√

�

�√
2(1 + ESS) −

√
ESS

�
,

(12)ESS =
�2
ensemble

MSE

For the case of StocSIPS, which by definition is a Gauss-
ian model with ensemble spread �ensemble = RMSE

theory

nat  
(given by Eq. (27)), the agreement between RMSE

theory

nat  and 
RMSEnat (summarized in Fig. 6 for all horizons) implies that 
ESS ≈ 1 almost everywhere.

The graphs shown in Fig. 6 are analogous to spread-error 
scatterplots (Leutbecher and Palmer 2008). In our case, each 
point represents the ensemble spread and the temporal aver-
age RMSE for each pixel, instead of the spatially averaged 
values shown in Fig. 4 of Leutbecher and Palmer (2008). 
We could group up and average the values in equally popu-
lated bins to produce more similar spread-error plots, but as 
they all fall near to the reference diagonal, the conclusions 
would remain the same. Other measures used to assess the 
reliability [like the error-spread score (Christensen et al. 
2015)] depend on the third or higher order moments of the 
forecast probability distribution. Since the StocSIPS forecast 
is Gaussian by definition, the ESS used here (Eq. 12) gives 
enough information assuming the near Gaussianity of the 
observational probability distribution.

In Fig.  8 we show maps of the ESS of StocSIPS for 
horizon from 1 to 4 months. Notice that, from Eq. (27), 
�ensemble = RMSE

theory

nat  is a function of the forecast horizon 
and the location, following the spatial distribution of the 
model parameters �T and H , but for all pixels the ESS s are 
very close to 1, except for the tropical ocean where it tends 
to be “overdispersive” ( ESS > 1 ). The average values for 
the globe with one standard deviation are shown in brack-
ets in each map label. They increase monotonically from 
0.96 ± 0.05 for k = 1 month, 0.98 ± 0.03 for k = 2 months, 
0.98 ± 0.04 for k = 3 months, 1.00 ± 0.06 for k = 4 months, 
up to 1.09 ± 0.21 for k = 12 months (only the first four values 
are included in the maps). From Eq. (11), it can be shown 
that for a system with perfect reliability where ESS = 1 , the 
CRPS takes its minimum value CRPSmin = RMSE∕

√
� . For 

Fig. 7  Maps of TCCnat and the absolute difference ���TCCnat −
√
MSSSnat

��� obtained from hindcasts for k = 1 month. The colour scale in b was 
rescaled 100 times with respect to a so the differences could be perceptible
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any other case when we have an “overconfident” ( ESS < 1) or 
an “overdispersive” ( ESS > 1 ) system, CRPS > RMSE∕

√
𝜋 . 

In conclusion, StocSIPS is a nearly perfectly reliable system 
(except for the tropical ocean) without need of recalibration 
of the forecast probability distribution.

3.2  Hindcast verification

3.2.1  Monthly and 3‑month average predictions

The results presented in Sect. 3.1 confirm the validity of the 
stochastic model on forecasting the natural temperature vari-
ability. In this section, we show the verification scores for the 
forecast of the raw (undetrended) anomalies including the 
forecast of the  CO2eq deterministic trend. All the scores were 
computed following the definitions shown in Appendix 2.

Given the smooth variation of the  CO2eq concentration 
at monthly scales, we can use simple extrapolation in Eq. 
(2) to obtain the predictor T̂anth(t + k) from the knowledge 
of the  CO2eq concentration path up to time t . As the func-
tion Tanth(t) is almost linear in a k-vicinity of any t , the error 
of projecting the anthropogenic component is negligible 

compared to the error of the natural variability. In fact, 
as we assume the same global  CO2eq forcing affecting all 
locations, the error of predicting the anthropogenic trend 
for a given k , is proportional to the sensitivity map shown 
in Fig. 4c. It was found that this error is lower than 2% of 
the RMSE of the natural variability for all locations and for 
all horizons. In any case, the projection of the trend was still 
included in the following verification results.

3.2.1.1 Normalized root mean square error (NRMSE) Fig-
ure 9 shows maps of the NRMSE for horizons k = 1 , 2 and 
3  months (panels a–c, respectively) and for the seasonal 
forecast (including all seasons, average for k = 1–3 months) 
in panel (d). The values in brackets in the figure labels are 
the NRMSE globally area averaged over the grid points 
(see Eq. 39). In general, the skill of the forecasts is larger 
over ocean than over land, with the lower values of NRMSE 
attained over the tropical ocean. This corresponds to the dis-
tribution of H shown in Figs. 2 and 4a.

Since small NRMSE implies large skill, according to the 
global-averaged NRMSE , the seasonal skill is larger than 
that of any of the first three individual monthly forecasts. 

Fig. 8  Maps of ESS of StocSIPS for horizons k from 1 to 4 months 
(a–d, respectively). The values of the ESS are very close to 1, with 
the exception of the tropical ocean where it tends to be “overdisper-

sive” ( ESS >1). The average values for the globe with one standard 
deviation are shown in brackets in the map labels
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This is possible because although the horizon is further in 
the future, the seasonal forecast is for a longer (3 months) 
average. For scaling processes, the two effects exactly com-
pensate. For the prediction of the natural variability compo-
nent using fGn, the skill on predicting the next month using 
monthly averaged data is the same as the skill on predict-
ing the next season using 3-month averaged data. This is 
reflected in Eq. (27), where k is in units of � , which is the 
resolution (smallest sampling temporal scale) of the data. 
The similarity between the average values in the captions of 
panels (a) and (d) of Figs. 9, 10 and 11 confirms this conse-
quence of the scaling.

The values in Fig. 9a for the forecast of the raw anoma-
lies are lower than those shown in Fig. 5b for the natural 
variability because, while the RMSE of both are almost the 
same (we can neglect the error on projecting the anthropo-
genic trend), the normalization factor (standard deviation 
of the respective anomalies) is larger for the undetrended 
anomalies.

3.2.1.2 Mean Square Skill Score (MSSS) To compute the 
MSSS for the raw anomalies, the MSE of the reference cli-
matology forecasts (forecast produced using only the annual 

cycle signal without removing the anthropogenic variation) 
is in this case:

where SDanom
2 is the variance of the anomalies series with-

out removing the anthropogenic component:

(assuming that the natural and anthropogenic variabilities 
are independent).

Because SDanom
2 > SDT

2 and the MSE of the forecast of 
the raw and the detrended anomalies are almost equal, then 
from Eq. (8) we obtain that the MSSS for the undetrended 
series forecast is larger than for the natural variability.

Maps of MSSS , corresponding to those shown in Fig. 9, 
are shown in Fig. 10. The difference in skill between ocean 
and land is more evident in these maps. In many places over 
land, the MSSS is close to zero, meaning that most of the 
skill comes from the projection of the anthropogenic trend. 
The global averages shown in brackets in the map labels are 

(13)MSEC =
(

N

N − 1

) 2

SD2
anom

,

(14)SD2
anom

= T2
anom

=
(
Tanth + Tnat
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Fig. 9  Normalized root mean square error NRMSE for: (a) k = 1 month, (b) k = 2 months, (c) k = 3 months and (d) for the all-seasons mean 
(average for k = 1–3 months). The values in brackets in the figure labels represent the areal mean of global NRMSE
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computed following the guidelines of the WMO (2010a). 
Note that the maps and the average values shown in Figs. 9 
and 10 are related as MSSS ≈ 1 − NRMSE2 if the reference 
forecast for the MSSS is the climatological annual cycle.

3.2.1.3 Temporal correlation coefficient (TCC) Similarly to 
the MSSS , if the TCC is obtained for the undetrended anom-
alies (with only the annual cycle, but not with the anthro-
pogenic trend removed), then, because of the extra correla-
tion associated to the trend, higher values are often obtained 
compared to the TCC for the natural variability. For most 
of the long-term forecasts reported in the literature  only 
the annual cycle is removed: the increasing trend related to 
anthropogenic warming is kept to obtain the anomalies used 
for verification, resulting in artificially boosted skill scores.

In Fig. 11, we show maps of the TCC for the prediction 
of the raw anomalies. The number in brackets in the cap-
tion of each plot indicates the area-averaged over the globe 
of the grid-point correlation coefficients. The area average 
was computed taking the Fisher Z-transform of the correla-
tions following Eq. (42) (Fisher 1915; WMO 2010b). The 
StocSIPS predictions over the ocean are highly correlated 
with the observations and the highest correlations are in 

the tropical regions. Over land, although the skill is poorer 
(using the correlation coefficient), it is still significantly high 
for the forecast of the first 3 months. The TCC of the pre-
diction is positive almost everywhere and, compared to the 
NRMSE or the MSSS , it shows significantly larger skill. This 
“extra” skill shown in the correlations for the raw anomalies 
comes from the presence of the anthropogenic signal.

3.2.2  Global averages

To summarize, in Fig. 12 we show graphs of the area-
averaged NRMSE , MSSS and TCC for the monthly and the 
3-month average forecasts as a function of the forecast hori-
zon. In all the graphs, the red lines with circles correspond to 
the average considering the grid points for the whole planet, 
the blue lines with open squares are for places over the ocean 
and the green lines with triangles are for grid points over 
land. The corresponding dashed lines of the same colours 
represent the respective scores obtained if only the anthro-
pogenic trend is forecast. In all cases, the reference forecast 
is the climatological annual cycle. Attending to the average 
values, we can conclude that the skill over ocean is always 

Fig. 10  Mean square skill score (MSSS) for: (a) k = 1 month, (b) k = 2 months, (c) k = 3 months and (d) for the all-seasons mean (average for 
k = 1–3 months). The values in brackets in the figure labels represent the areal mean of global MSSS
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greater than over land, with the global skill in between the 
two.

As we mentioned previously, for a perfectly scaling pro-
cess, the 3-month average forecasts for k = 1–3 months would 
have the same skill as the monthly forecast for k = 1 month. 
In the same way, the seasonal for k = 4–6 months would cor-
respond to the monthly for k = 2 months, for k = 7–9 months 
to k = 3 months and for k = 10–12 months to k = 4 months. 
A comparison between panels (a) and (d) and (b) and (e) 
in Fig. 12, show that this is reasonably well satisfied for 
the NRMSE and MSSS , respectively. Of course, the actual 
comparison should be made for the forecast of the natural 
temperature variability, which is the true scaling process. 
The results shown in Fig. 12 are for the raw anomalies which 
include the anthropogenic trend, that breaks the scale invari-
ance of the fluctuations.

The difference between the curves and the dashed hori-
zontal lines (showing the skill if only the anthropogenic 
trend is forecast) corresponds to the skill on forecasting the 
natural variability using the fGn model. While the forecast of 
the natural variability is reasonably skillful for k ≤ 6 months, 
for horizons larger than 6 months, most of the overall skill 
comes from projecting the anthropogenic trend. Finally, note 

that the global and ocean averages vary monotonically with 
k , but the land averages show some oscillation that indicates 
a seasonality effect in the forecasts. This seasonality is ana-
lyzed in the next section.

3.2.3  Multiplicative seasonality

The results shown in panel (d) of Figs. 9, 10 and 11, were 
obtained for the seasonal forecast without distinguish-
ing specific seasons. In fact, StocSIPS assumes that each 
month has the same anomaly statistics. It is actually this 
month-to-month correlation that is exploited as a source of 
predictability in the stochastic model. Nevertheless, there 
is always an intrinsic multiplicative seasonality in the data 
that is impossible to completely remove without affecting 
the scaling behaviour. This seasonal interannual variability 
is shown in Fig. 13, where the standard deviation of the 
3-month averaged anomalies is shown for each conventional 
season: (a) December to February (DJF), (b) March to May 
(MAM), (c) June to August (JJA) and (d) September to 
November (SON). The difference in the variability between 
the spring and the fall seasons (panels (b) and (d)) is low. In 
comparison, the interannual variability over the land area in 

Fig. 11  Anomaly correlation coefficient ( TCC ) for: (a) k = 1 month, (b) k = 2 months, (c) k = 3 months and (d) for the all-seasons mean (aver-
age for k = 1–3 months). The values in brackets in the figure labels represent the areal mean of global TCC
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the northern hemisphere is larger during the boreal winter 
(DJF) and lower during the summer (JJA).

The largest seasonality is observed in the polar regions, 
where the winter temperatures are much more intermittent 
compared to the summer values. Conversely, during the 
summer the standard deviation of the anomalies in the poles 
is much lower compared to the other seasons. The values 
in brackets in the figure labels represent the areal mean of 
global standard deviation, ⟨SD⟩ , and the areal mean exclud-
ing the poles (between 60°S and 60°N), ⟨SD⟩+60

−60
 . Notice that 

the polar regions contribute substantially to the interannual 
variability and also, that the boreal winter season is in gen-
eral significantly more variable than the other seasons (the 
⟨SD⟩ goes from 1.16 °C for DJF to roughly 1.03 °C for the 
others). A possible explanation for this seasonality is that, 
when removing the annual cycle and the trend associated 
with the anthropogenic warming, we assumed that both were 
statistically independent. This is not completely true for the 
polar region. While for the rest of the planet the anthropo-
genic temperature response increases uniformly for every 
month following the increasing  CO2 concentrations, in the 

poles during the summer, the temperature is tied to the freez-
ing point of water. This is a shortcoming of the model that 
could be considered to improve future versions of StocSIPS.

3.2.4  Preliminary comparison with GCMs’ seasonal 
predictions

In the previous sections, we validated StocSIPS as a good 
model for describing the monthly surface temperature field 
and we assessed its skill by computing monthly and 3-month 
average scores, without distinguishing specific seasons. To 
account for the effects of the multiplicative seasonality on 
the predictions, we can stratify the observations and the fore-
casts series to show dependencies with the targeted season 
and the forecast horizon. Usually, this is the kind of forecast 
published by several major operational centers for seasonal 
prediction. In this section we show the skill scores obtained 
for stratified data and we make a preliminary comparison 
with other models’ skill to assess the relative advantages and 
shortcomings of StocSIPS.

Fig. 12  Graphs of the area-averaged NRMSE , MSSS and ACC for the 
monthly (a–c) and the 3-month average (d–f) forecasts as a function 
of the forecast horizon. In all the graphs, the red lines with circles 
correspond to the average considering the grid points for the whole 

planet, the blue lines with open squares are for places over the ocean 
and the green lines with triangles are for grid points over land. The 
corresponding dashed lines of the same colours represent the respec-
tive scores obtained if only the anthropogenic trend is forecast
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Our purpose in this paper is not to make an exhaustive 
and detailed comparison with other long-term prediction 
models’ results. This detailed comparison and also the com-
bination of StocSIPS with conventional numerical models 
to produce merged forecasts is the subject of a future paper 
currently in preparation. Those results are too extensive to 
include them in the present paper, so we limited ourselves to 
compare with already published skill scores from other mod-
els. For this purpose, we selected the multi-model ensem-
ble (MME) predictions recently published by Kim et al. 
(2020). An important aspect is that Kim et al. offer a detailed 
description of the scores and the methods used, which we try 
to closely follow here to guarantee reproducibility. The defi-
nitions of these metric are given in Appendix 2, following 
the guidelines of the WMO Standardized verification system 
for long-range forecasts (SVS-LRF) (WMO 2010a, b).

In Kim et al. (2020), the authors assess different MME 
combination methods for seasonal prediction using hindcast 
datasets of six models from five Global Producing Centers 
(GPCs) for long-range forecasts (LRFs) designated by the 
WMO (Graham et al. 2011). The six models included in 
their analysis cover 27 years of common hindcast period 

from 1983 to 2009. The selected GPCs were: Melbourne, 
Montreal (two models), Moscow, Seoul and Tokyo. Ref-
erences and details of the individual models can be found 
in Kim et al. (2020). The authors study seven experimen-
tal deterministic MME methods to merge the six seasonal 
forecast systems: simple composite method (SCM), simple 
linear regression (SLR), multiple linear regression (MLR), 
best selection anomaly (BSA), multilayer perceptron (MLP), 
radial basis function (RBF) and genetic algorithm (GA). 
Their reported scores for 2-m temperature were obtained 
for 1-month lead retrospective forecasts in a grid with a 
resolution of 2.5° in both longitude and latitude. To pro-
duce the figures in this section, we used and adapted some 
of the figures from Kim et al. (2020) (including supporting 
information).

3.2.4.1 Mean Square Skill Score (MSSS) For a better com-
parison with Kim et al. results, all the seasonal scores for 
StocSIPS were obtained for observational and forecast sea-
sonal anomalies calculated as departures from the climatol-
ogy in the leave-one-out cross-validation scheme for the 
period 1983–2009. In Fig. 14, we show maps of the MSSS 

Fig. 13  Interannual standard deviation (SD) of the temperature anom-
alies for the conventional seasons: (a) DJF, (b) MAM, (c) JJA and (d) 
SON. The values in brackets in the figure labels represent the areal 

mean of global standard deviation and the areal mean excluding the 
poles (between 60°S and 60°N)
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of StocSIPS for: (a) DJF, (b) MAM, (c) JJA and (d) SON. 
In all cases, the forecasts used data up to the beginning of 
each respective season (average for k = 1–3  months), i.e. 
including November for DJF, up to February for MAM and 
so on. The values in brackets in the figure labels represent 
the globally averaged score, ⟨MSSS⟩ , (see Eq. 40). In pan-
els (e) and (f) we reproduce maps of MSSS for DJF and 
JJA, respectively, from Figs. S1 and S2 of Kim et al. (2020) 

(supporting information) for their best MME combination 
method (GA).

In agreement with the previous results shown in Fig. 10 
for the independent months and the all-season MSSS , the 
predictions for the individual seasons in general show bet-
ter skill over the ocean than over land. The MSSS values are 
particularly high in the tropical region with the highest val-
ues obtained in the equatorial Pacific for DJF. Similar results 

Fig. 14  MSSS for: (a) DJF, (b) MAM, (c) JJA and (d) SON. In all 
cases, the forecasts used data up to the beginning of each respective 
season (average for k = 1–3 months). The values in brackets in the fig-
ure labels represents the globally averaged MSSS (see Eq. (40)). The 
maps shown in e and f for the GCMs MME predictions of DJF and 

JJA, respectively, were reproduced from Figs. S1 and S2 of Kim et al. 
(2020) (supporting information) for their best MME combination 
method (GA). Kim et al. (2020) is an open access article distributed 
under the terms of the Creative Commons CC BY license, which per-
mits unrestricted use, distribution, and reproduction in any medium
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were obtained for the GCM forecasts shown in Fig. 14e,f. 
The globally averaged scores (shown in the top right cor-
ner of each plot), are identical for StocSIPS and the MME 
results: 0.17 and 0.22 for DJF and JJA, respectively. The 
negative values of MSSS for StocSIPS near the north pole 
for JJA are associated to the multiplicative seasonality effect 
described in Sect. 3.2.3.

3.2.4.2 Temporal correlation coefficient (TCC) Similar to 
Fig. 14 for the MSSS , in Fig. 15 we show maps of the TCC 
of StocSIPS for: (a) DJF, (b) MAM, (c) JJA (d) SON and the 
best GCMs MME combination (GA) from Kim et al. (2020) 
in panels (e) and (f) for DJF and JJA, respectively. The val-
ues in brackets in the figure labels represent the globally 
averaged score, ⟨TCC⟩ , computed using Eq. (42). As before, 
the highest correlation values are achieved in tropical 

Fig. 15  TCC for: (a) DJF, (b) MAM, (c) JJA and (d) SON. In all 
cases, the forecasts used data up to the beginning of each respec-
tive season (average for k = 1–3  months). The shaded areas indicate 
the regions over the 5% significance level using two-tailed student’s 
t-test. The values in brackets in the figure labels represent the globally 

averaged score, ⟨TCC⟩ , computed using Eq. (42). The maps shown in 
e and f for the GCMs MME prediction of DJF and JJA, respectively, 
were reproduced from Figs. S5 and S6 of Kim et al. (2020) (support-
ing information) for their best MME combination method (GA)
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regions. Considering the average scores, there is no signifi-
cant reduction in the TCC for DJF compared to JJA. There 
are also no considerably low values near the north pole for 
JJA. Compared to the MSSS , the multiplicative seasonal-
ity effects are less reflected in the TCC , since the latter is a 
measure of the skill in predicting the phase (sign), so less 
dependent on the variability of the anomaly magnitudes.

3.2.4.3 Anomaly pattern correlation coefficient (ACC) The 
temporal evolution of the forecast skill can be assessed 
using the anomaly pattern correlation coefficient ( ACC ), 
which is the spatial correlation for any given date between 
the observational and forecast anomalies (see Eq. 37). This 
shows how well the model reproduces the temperature 
anomaly distribution around the globe for any given sea-
son. Figure 16 shows the evolution of the ACC for StocSIPS 
(black line with solid circles) and for each of the seven MME 
combination methods studied by Kim et al. (colored lines 
with markers) in the 27-year verification period 1983–2009. 
Graphs for each season are shown independently: (a) MAM, 
(b) JJA, (c) SON and (d) DJF. This figure was adapted from 
Fig. 3 in Kim et al. (2020) to include the StocSIPS scores. In 
the original figure, the authors also show the absolute value 
of the El Niño 3.4 index (black line without markers) to 
study the dependence of the ensemble predictions with the 
El Niño phase. The main conclusion is that the GCM MMEs 
perform better during ENSO events than during non-ENSO 
events for all seasons. A similar behaviour was not found for 
the case of StocSIPS, where the performance based on the 
ACC varies independently of the ENSO phase. The average 
scores for the POV (see Eq. 43) are shown in the right panels 
for each of the respective seasons. Comparing these values, 
we can see that StocSIPS has better overall skill than most 
of the GCM MME combinations for all seasons. Only for 
JJA, the StocSIPS score is lower than the best three MME 
(SCM, SLR and GA). For the rest of the seasons, its average 
score is almost equal (or slightly larger) than the best MME 
(using GA or SCM).

3.2.4.4 Globally averaged TCC and  RMSE Comparisons 
for globally averaged TCC and RMSE (see Eqs. (39) and 
(42)) are shown in Fig.  17a,b, respectively, for each sea-
son. The bars are for the MME combination methods in 
Kim et al. (2020), together with the mean of single model 
skills (MSMS). The scores for StocSIPS were included as 
horizontal lines with the same color code as the bars for 
each respective season. The dashed black line indicates that 
the estimated TCC is statistically significant at the 5% level 
using the one-tailed Student’s t test. The GA methods shows 
the best performance, although it is very close to the SCM 
with equal weights for each model. Most MME predictions 
show higher skill than the corresponding MSMS for all four 
seasons, although sometimes (like the TCC for MLP), the 

MME combination does not improve over the single model 
predictions. In all cases, the TCC of the StocSIPS forecasts 
is larger than the best GCM MME. Similarly, the StocSIPS 
RMSE is lower than most of the MME combinations for all 
seasons. Only the SCM, GA and SLR show lower errors 
than StocSIPS for JJA predictions. The globally averaged 
TCC does not show a large seasonal variation, but there is 
still a reduction in skill for JJA and DJF associated to the 
high variability in the poles discussed in Sect. 3.2.3. This 
multiplicative seasonality effect is clear in the average 
RMSE , which follows the average SD values in the caption 
of Fig. 13.

For an overall comparison, in Fig. 18 we show a plot of 
the 4-season-averaged RMSE vs. TCC for the six individual 
models used in Kim et al. (2020) (red crosses) and the seven 
MME combinations (letters). The StocSIPS scores were 
included as a blue asterisk. For the GCMs, the GA method 
has the best performance—very close to the SCM—with 
the highest TCC (0.51) and the lowest RMSE (0.64). The 
StocSIPS forecasts have similar RMSE (0.64), but better 
average TCC (0.55).

4  Summary and discussion

In this paper we applied the Stochastic Seasonal to Interan-
nual Prediction System (StocSIPS) to the monthly and sea-
sonal prediction of the surface temperature with a 2.5° × 2.5° 
spatial resolution. The theory and the basis of the numerical 
methods used in StocSIPS were previously presented and 
applied to the forecast of globally averaged temperature in 
Del Rio Amador and Lovejoy (2019). StocSIPS is based on 
two statistical properties of the macroweather regime: the 
near Gaussianity of temperature fluctuations and the tempo-
ral scaling symmetry of the natural variability. The model 
is a high-frequency approximation to the Fractional Energy 
Balance Equation (FEBE), a fractional generalization of the 
usual EBE.

StocSIPS models the temperature series at each grid point 
independently as a superposition of a periodic signal corre-
sponding to the annual cycle, a low-frequency deterministic 
trend from anthropogenic forcings and a high-frequency sto-
chastic natural variability component. The annual cycle can 
be estimated directly from the data and is assumed constant 
in the future, at least for horizons of a few years. The anthro-
pogenic component is represented as a linear response to 
equivalent  CO2 forcing and can be projected very accurately 
1 year into the future by using only one parameter: the cli-
mate sensitivity, itself obtained from linear regression with 
historical emissions. Finally, the natural variability is mod-
eled as a discrete-in-time fGn process which is completely 
determined by the variance and the fluctuation exponent. 
That gives a total of only three parameters for each grid 
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point for modeling and predicting the surface temperature. 
Those parameters are quite robust and can be estimated with 
good accuracy from past data. The same procedure could be 
extended to any other field assuming it satisfies the Gaussi-
anity and the scaling behaviour of the fluctuations.

Although we mentioned that the fGn with fluctuation 
exponent in the range −1∕2 < H < 0 is a good model for 

the natural variability, a distinction must be made for most 
of the tropical ocean region, for which a positive fluctuation 
exponent was found. Instead of using the fGn model there, 
we must use the general fRn model or its high frequency 
fBm approximation with 0 < H < 1 . It is significant that 
within this tropical ocean region, only in the more predict-
able region that is associated with the ENSO phenomenon 

Fig. 16  ACC for StocSIPS (black line with solid circles) and for 
each of the seven MME combination methods studied by Kim 
et  al. (colored lines with markers) in the 27-year verification period 
1983–2009 for: (a) MAM, (b) JJA, (c) SON and (d) DJF. The aver-
age scores for the POV (see Eq. (43)) are shown in the right panels 

for each of the respective seasons. The absolute value of the El Niño 
3.4 index (black line without markers) is also shown. This figure was 
adapted from Fig.  3 in Kim et  al. (2020) to include the StocSIPS 
scores
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we obtain fluctuation exponents in the range 1∕2 < H < 1 , 
whose fBm approximation has persistent (positively corre-
lated) increments.

It is surprising that by using only three parameters for 
each location (the fluctuation exponent, H , the standard 
deviation, �T , and the transient climate sensitivity, �2×CO2eq

 ), 
we can build a model that accurately describes the tempera-
ture field. The adequacy of the model was verified by test-
ing the whiteness of the residual innovations and validating 

the theoretically expected scores (if the model were perfect) 
vs. the actual hindcasts results. This also implies that, for 
probabilistic forecast, StocSIPS is a nearly perfectly reliable 
system without need of recalibration of the forecast prob-
ability distribution.

The hindcast verification results show that the skill is 
generally greater over the ocean than over land, in particu-
lar over the more persistent tropical ocean region. One of 
the implications of the scaling that was verified is that the 
3-month average forecast has the same skill as the 1 month 
ahead monthly prediction. This is possible because although 
the horizon is further in the future, the seasonal forecast is 
for a longer (3 months) average. For scaling processes, the 
two effects exactly compensate.

The seasonal predictions show a decreased skill in the 
polar regions during the summer. A possible explanation for 
this seasonality is that, when removing the annual cycle and 
the trend associated with the anthropogenic warming, we 
assumed that both were statistically independent. This is not 
true for the polar region. While for the rest of the planet the 
anthropogenic temperature response increases uniformly for 
every month following the increasing  CO2 concentrations, in 
the poles during the summer, the temperature is tied to the 
freezing point of water. This spurious seasonality introduced 
in the preprocessing of the data, can be corrected in future 
versions of StocSIPS to improve the global forecasts.

Besides this seasonality near the poles, the globally aver-
aged skill score values are also lower during the boreal win-
ter. This can be explained by the asymmetric distribution 
of land mass between the northern and the southern hemi-
spheres and the fact that the atmospheric temperature near 
the surface is more stable over ocean than over land. Further 

Fig. 17  Globally averaged TCC (a) and RMSE (b) (Eqs. (42) and 
(39), respectively) for MAM (red), JJA (blue), SON (green) and DJF 
(purple) for the period 1983–2009. The bars are for the MME combi-
nation methods in Kim et al. (2020), together with the mean of sin-
gle model skills (MSMS). The scores for StocSIPS were included as 

horizontal lines with the same color code for each respective season. 
The dashed black line indicates that the estimated TCC is statistically 
significant at the 5% level using the one-tailed Student’s t test. This 
figure was adapted from Figs. 5 and 6 in Kim et al. (2020) to include 
the StocSIPS scores

Fig. 18  4-season-averaged RMSE vs. TCC for the six individual 
models used in Kim et  al. (2020) (red crosses), the seven MME 
combinations (letters) and StocSIPS (blue asterisk). This figure was 
adapted from Fig.  7 in Kim et  al. (2020) to include the StocSIPS 
scores
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improvements in the model may be possible using recalibra-
tion of the individual forecasts for every season.

Although the purpose of this paper is not to make a 
detailed and exhaustive comparison with other long-term 
prediction models, it is important to at least show a prelimi-
nary comparison with already published skill scores from 
other models to assess the advantages and shortcomings of 
StocSIPS. The evaluation against seven different MME com-
bination methods using six models from the Lead Centers 
for Long-range forecasts published by Kim et al. (2020), 
showed that the skill scores obtained with StocSIPS are 
comparable (or better in the case of the temporal correla-
tion coefficient) than the best MME combination (which has 
larger skill than any individual ensemble member). This is in 
agreement with the previous results in Del Rio Amador and 
Lovejoy (2019) that show that StocSIPS outperformed the 
Canadian MME (CanSIPS) for all but the first month of the 
forecast. This preliminary comparison for seasonal forecast 
validates StocSIPS as a good alternative and a complemen-
tary option to conventional numerical models.

StocSIPS and GCMs are based on entirely different 
approaches. While the GCMs only take the initial state of 
the system (with perturbations to produce multiple ensem-
ble realizations), they do exploit all possible interactions 
with other atmospheric variables and other locations to pro-
duce their forecast through the integration of the dynami-
cal equations. Conversely, StocSIPS neglects all the spatial 
(and other variables) relations to produce forecasts based on 
the past states at any single location by exploiting the large 
memory of the system. Another way to view this is that 
for forecasts, GCMs are initial value models that generate 
many “stochastic” realizations of the state of the atmosphere, 
whereas StocSIPS is effectively a “past value problem” that 
directly estimates the most probable future state (conditional 
expectation).

Although there is no evident mechanism that explains 
how the distant past affects the current state of the system, 
model reduction as explained by the Mori-Zwanzig formal-
ism (Mori 1965; Zwanzig 1973, 2001; Gottwald et al. 2017) 
shows that if we only look at one part of the system (e.g. the 
temperature at a given location), memory effects arise. All 
the interactions coming from other degrees of freedom are 
embedded in the past values. Recent works (Lovejoy et al. 
2015; Lovejoy 2019; Lovejoy et al. 2021) hypothesize that, 
for the case of temperature, scaling behaviour are a result of 
a hierarchy of energy storage mechanisms acting at different 
temporal and spatial scales. In addition, it was shown that a 
scaling Mori-Zwanzig effect naturally arises even from the 
classical heat equation (Lovejoy 2021a, b).

One evident question that arises from our treatment is 
why not to exploit the teleconnections in the temperature 
field to improve the forecast instead of predicting each 
series independently. To answer this, in a recent publication 

(Del  Rio Amador and Lovejoy 2021), StocSIPS was 
extended to the multivariate case (m-StocSIPS), to include 
and realistically reproduce all the space–time cross-correla-
tion structure. By using Granger causality, it was shown that, 
although large spatial correlations exist in the temperature 
field, the optimal predictor of the temperature at a given 
location is obtained from its own past if long enough time 
series are given. These cross-correlations “were already 
used” to build that past. This means that the predictions 
given here (in the univariate StocSIPS version) are optimal 
in this stochastic framework. Improvements on the MSSS 
values of only 1–2% are possible, which is in the noise level 
of our current predictions, so in that sense, the forecast of 
the individual series is nearly optimal. Nevertheless, the fact 
that the GCMs remain “deterministic” up to approximately 
1–2 years over the oceans (mostly in the tropics) and in the 
poles, where having a dynamic sea ice model is apparently 
crucial for subseasonal to seasonal forecasts (Zampieri et al. 
2018), suggests that StocSIPS can be combined with GCM 
outputs to produce a single hybrid forecasting system that 
improves on both.

Appendix 1: Basic theory for fGn processes

Continuous‑in‑time fGn

In DRAL, the stochastic natural variability component of 
the globally averaged temperature was represented as an fGn 
process. The main properties of fGn relevant for the present 
paper are summarized in the following.

An fGn process at resolution � (the scale at which the 
series is averaged) has the following integral representation:

where �(t) is a unit Gaussian �-correlated white noise pro-
cess with ⟨�(t)⟩ = 0 and ⟨�(t)��t��⟩ = �

�
t − t�

�
 [ �(x) is the 

Dirac function], Γ(x) is the Euler gamma function, �T is the 
ensemble standard deviation (for � = 1 ) and

This is the canonical value for the constant cH that was 
chosen to make the expression for the statistics particularly 
simple. In particular, the variance is ⟨T�(t)2⟩ = �T

2�2H for 
all t  , where ⟨∙⟩ denotes ensemble (infinite realizations) 
averaging. The parameter H , with −1 < H < 0 , is the fluc-
tuation exponent of the corresponding fractional Gaussian 
noise process, the Hurst exponent, H�

= H + 1 . Fluctuation 
exponents are used due to their wider generality; they are 

(15)

T� (t) =
1

�

cH�T
Γ(H + 3∕2)

⎡⎢⎢⎣

t

∫
−∞

�
t − t

�
�H+1∕2

�
�
t
�
�
dt

� −

t−�

∫
−∞

�
t − � − t

�
�H+1∕2

�
�
t
�
�
dt

�
⎤⎥⎥⎦
,

(16)c2
H
=

�

2 cos (�H)Γ(−2 − 2H)
.
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well defined even for strongly intermittent non-Gaussian 
multifractal processes and they can be any real value. For a 
discussion, see page 643 in Lovejoy et al. (2015).

Equation (15) can be interpreted as the smoothing of 
the fractional integral of a white noise process or as the 
power-law weighted average of past innovations, �(t) . This 
power-law weighting accounts for the memory effects in the 
temperature series. The closer the fluctuation exponent is 
to zero, the larger is the influence of past values on the cur-
rent temperature. This is evidenced by the behaviour of the 
autocorrelation function:

for |Δt| ≥ � . In particular, for Δt ≫ 𝜏 we obtain:

which has a power–law behaviour with the same exponent as 
the average squared fluctuation and due to the Wiener–Khin-
chin theorem, it implies the spectrum exponent � = 1 + 2H . 
For more details on fGn processes see Mandelbrot and Van 
Ness (1968), Gripenberg and Norros (1996) and Biagini 
et al. (2008).

Discrete‑in‑time fGn

A detailed explanation of the theory for modeling and pre-
dicting using the discrete version of fGn processes was pre-
sented in DRAL; the main results are summarized next. The 
analogue of Eq. (15) in the discrete case for a finite series, {
Tt
}
t=1,…,N

 , with length N and zero mean is:

for t = 1,… ,N , where 
{
�t
}
t=1,…,N

 is a discrete white noise 
process and the coefficients mij are the elements of the lower 
triangular matrix �N

H,�T
 given by the Cholesky decomposi-

t i o n  o f  t h e  a u t o c o v a r i a n c e  m a t r i x , 
�N

H,�T
= �T

2
[
RH(i − j)

]
i,j=1,…,N

:

with mij = 0 for j > i (we assume � = 1 is the smallest 
scale in our system). The superscript T  denotes transpose 
operation.

In vector form, Eq. (19) can be written as:

(17)RH(Δt) =
⟨T�(t)T�(t + Δt)⟩�

T�(t)
2
� =

1

2

�����
Δt

�
+ 1

����
2H+2

+
����
Δt

�
− 1

����
2H+2

− 2
����
Δt

�

����
2H+2

�
,

(18)RH(Δt) ≈ (H + 1)(2H + 1)
(
Δt

�

)2H

,

(19)Tt =

t∑
j=1

mtj�t+1−j = mt1�t +⋯ + mtt�1,

(20)�N
H,�T

= �N
H,�T

(
�N

H,�T

)T

,

(21)�N = �N
H,�T

�N

Equations (19–21) can be used to create synthetic sam-
ples of fGn with a given length N  , autocorrelation func-
tion given by Eq. (17) and set of parameters 𝜎T > 0 and 
−1 < H < 0 (the mean of the series is always assumed equal 
to zero). Conversely, given an actual temperature series with 
vector �N =

[
T1,… , TN

]T , we can estimate the parameters 
�T and H using the maximum likelihood method (details 
are given in Appendix 1 of DRAL) and we can verify that it 
could be well approximated by an fGn model by inverting 
Eq. (21) and obtaining the residual vector of innovations:

If the model provides a good description of the data, the 
residual vector �N =

[
�1,… , �N

]T is a white noise, i.e. the 
elements should be NID(0,1) with autocorrelation function 
⟨�i�j⟩ = �ij ( �ij is the Kronecker delta and NID(0,1) stands for 
Normally and Independently Distributed with mean 0 and 
variance 1). It is worth mentioning that a white noise process 
is a particular case of fGn with H = −1∕2.

fRn correlation function for 0 < H < 1

The fractional Relaxation noise (fRn) process was intro-
duced in Lovejoy (2019) generalizing both fGn, fBm and 
Ornstein–Uhlenbeck processes. For short time scales (com-
pared to some characteristic relaxation time, �r ) and for 
exponents −1∕2 < H < 0 , the fRn is close to an fGn process. 
For fluctuation exponents in the range 0 < H < 1 the high-
frequency approximation to fRn is no longer an fGn process. 
In this case, to leading order, the correlation function is:

where �r is the relaxation time and AH is an H-dependent 
numerical factor [see (Lovejoy 2019)]. The same corre-
lation function was obtained by Delignières (2015) as an 
approximation to short segments of discrete-in-time frac-
tional Brownian motion (fBm) process that is the integral 
of an fGn process (but with H increased by 1). This shows 
that although fBm is nonstationary, short segments approxi-
mate (the stationary) fRn process. When 0 < H < 1 , fBm is 
a high-frequency approximation to an fRn process.

(22)�N =
(
�N

H,�T

)−1

�N .

(23)
RfRn(Δt) = 1 − AH

(
Δt

𝜏r

)2H

+ O
(

Δt

𝜏r

)3H+1∕2

; Δt < 𝜏r; 0 < H < 1
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Prediction

In DRAL it was shown that, if 
{
Tt
}
t<0

 is an fGn process, the 
optimal k-steps predictor for Tk ( k > 0 ), based on a finite 
number, m (memory), of past values, is given by:

where  the  vec tor  of  predic tor  coef f ic ients , 
�(k) =

[
�−m(k),… ,�0(k)

]T  , satisfies the Yule–Walker 
equations:

w i t h  t h e  v e c t o r 
�H(k) =

[
RH(k − i)

]T
i=−m,…,0

=
[
RH(m + k),… ,RH(k)

]T  and 
�H =

[
RH(i − j)

]
i,j=−t,…,0

 being the autocorrelation matrix 
(see Eq. 17). In those regions with consecutive values posi-
tively correlated (blue regions in Fig. 4a with −1∕2 < H < 0 
or the increments in the yellow region with1∕2 < H < 1 ), the 
elements RH(Δt) are obtained from Eq. (17). In the places 
with consecutive increments negatively correlated, where 
0 < H < 1∕2 (red in Fig. 4a), instead of forecasting the fGn 
increments, we forecast directly the fRn process and we get 
the elements RH(Δt) from Eq. (23). To use this autocorrela-
tion for fRn, we estimate the constant AH in Eq. (23) for each 
location by fitting the empirical autocorrelation function.

The root mean square error ( RMSE ) for the predictor at 
a future time k , using a memory of m values, is defined as:

Following the results presented in DRAL and using that, 
for positive H the fRn is the integral of the corresponding fGn 
process, we obtain the following analytical expression for the 
RMSE of the predictor of the natural variability component:

For a given forecast horizon, k , the RMSE only depends 
on the parameters �T and H , and the memory used, m . In 
Fig. 3 of DRAL it was shown that only a few past datapoints 
are needed as memory to obtain an error approaching—with 
more than 95% agreement—the asymptotical value corre-
sponding to m = ∞ , for all possible values of H.

The theoretical mean square skill score ( MSSS ), is 
defined as:

(24)T̂k =

0∑
j=−m

𝜙j(k)Tj = 𝜙−m(k)T−m +⋯ + 𝜙0(k)T0,

(25)�H�(k) = �H(k),

(26)RMSE(k,m) =

√⟨[
Tk − T̂k(m)

]2⟩
.

(27)RMSE
theory

nat (k) = RMSE
�
k,m, 𝜎T ,H

�
=

⎧⎪⎨⎪⎩

𝜎T

�
1 − �H(k)

T
�
�H

�−1
�H(k); for − 1∕2 < H < 0

𝜎Tk
H

�
1 − �H−1(1)

T
�
�H−1

�−1
�H−1(1); for 0 < H < 1

.

(the reference forecast is the mean of the series, assumed 
equal to zero here).

From the definition of the RMSE , Eq. (26), we obtain the 
theoretical value for fGn:

or, replacing Eq. (27) for −1∕2 < H < 0:

In Fig. 19 we show graphs of the theoretical MSSS as a 
function of H for different values of k . A memory m = 50 
was used for computing the MSSS . As expected, the skill 
decreases as the forecast horizon increases. For H = −0.5 , 
the fGn process is a white noise process and MSSS = 0 . 
The skill increases with H and (with infinite past data) the 
process becomes perfectly predictable when H → 0.

Appendix 2: Verification metrics

Definitions

The verification metrics used in this paper were defined fol-
lowing the recommendations in the Standardized verification 
system for long-range forecasts (SVS-LRF) for the practical 
details of producing and exchanging appropriate verification 
scores (WMO 2010a, b). Let xi(t) and fi(t) , ( t = 1,… ,N  ) 
denote time series of observations and forecasts, respec-
tively, for a grid point i over the period of verification (POV) 

with N time steps. Then, their averages for the POV, 
−
xi and 

−

f i 
and their sample variances sxi

2 and sfi
2 are given by:

(28)MSSS(k) = 1 −

⟨[
T(k) − T̂(k)

]2⟩
⟨
T(k)2

⟩

(29)

MSSS
theory

nat (k) = MSSS(k,m,H)= 1 −
RMSE

(
k,m, �T ,H

)2
�2
T

(30)MSSS(k,m,H) = �H(k)
T
(
�H

)−1
�H(k) = �(k) ⋅ �H(k).

(31)

xi =
1

N

N∑
t=1

xi(t), f i =
1

N

N∑
t=1

fi(t)

s2
xi
=

1

N

N∑
t=1

[
xi(t) − xi

]2
, s2

fi
=

1

N

N∑
t=1

[
fi(t) − f i

]2
.
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The mean square error ( MSE ) of the forecast for grid 
point i is:

and the root mean square error ( RMSE ) is:

For leave-one-out cross-validated data in the POV (WMO 
2010a), the MSE of climatology forecasts is:

The mean square skill score ( MSSS ) for grid point i, tak-
ing as reference the climatology forecast, is defined as:

The temporal correlation coefficient ( TCC ) is:

Both the MSEi and the TCCi are computed using temporal 
averages for a given location i, conversely, the anomaly pat-
tern correlation coefficient ( ACC ) (Jolliffe and Stephenson 
2011) is defined using spatial averages for a given time t:

(32)MSEi =
1

N

N∑
t=1

[
fi(t) − xi(t)

] 2

(33)RMSEi =
√
MSEi.

(34)MSECi =
(

N

N − 1

) 2

s 2
xi
.

(35)MSSSi = 1 −
MSEi

MSECi

.

(36)TCCi =

1

N

∑N

t=1

�
xi(t) − xi

��
fi(t) − f i

�

sxisfi
.

where n is the number of grid points, �i is the latitude at loca-
tion i, x�

i
(t) and f �

i
(t) are observation and forecast anomalies 

for the POV, respectively, and the spatial averages x�(t) and 
f �(t) are given by:

Averaged scores

To take the average of nonlinear scores, they should be trans-
formed so the corresponding variables are Gaussian. The 
spatial average RMSE (considering the area factor) is:

Similarly, the average MSSS is:

For the correlation coefficients, the Fisher Z-transform 
must be taken first. This is defined as:

The spatial average TCC is the defined as:

and the temporal average ACC is

Orthogonality principle and MSSS decomposition

The MSSS (Eq. 35), can be expanded for leave-one-out 
cross-validated forecasts (Murphy 1988). Using Eqs. (31), 
(32), (34) and (36) in (35), we obtain:

(37)

ACC(t) =

∑n

i=1
cos �i

�
x
�
i
(t) − ⟨x�(t)⟩��f �

i
(t) − ⟨f �(t)⟩�

�∑n

i=1
cos �i

�
x
�
i
(t) − ⟨x�(t)⟩� 2

�∑n

i=1
cos �i

�
f
�
i
(t) − ⟨f �(t)⟩� 2

,

(38)

�
x�(t)

�
=

∑n

i=1
cos �ix

�
i
(t)∑n

i=1
cos �i

,
�
f �(t)

�
=

∑n

i=1
cos �if

�
i
(t)∑n

i=1
cos �i

.

(39)⟨RMSE⟩ =
�∑n

i=1
MSEi cos �i∑n

i=1
cos �i

.

(40)⟨MSSS⟩ = 1 −

∑n

i=1
MSEi cos �i∑n

i=1
MSECi cos �i

.

(41)Z(r) =
1

2
ln
(
1 + r

1 − r

)
= tanh−1 r

(42)⟨TCC⟩ = Z −1
⎡⎢⎢⎣

����
∑n

i=1
Z
�
TCCi

�
cos �i∑n

i=1
cos �i

⎤⎥⎥⎦

(43)⟨ACC⟩ = Z −1

�
1

N

N�
t=1

Z[ACC(t)]

�
.

Fig. 19  Graphs of the theoretical MSSS (Eq. 46) as a function of H 
for different values of k . A memory m = 50 was used for computing 
the MSSS
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This equation gives a relation between the MSSS and 
the TCC . For forecasts with the same variance as that of 
observations and no overall bias, the MSSS is only positive 
( MSE lower than for climatology) if the TCC is larger than 
approximately 0.5.

A more simplified relation can be obtained in our case 
for the prediction of the detrended anomalies (natural vari-
ability). As we mentioned in Appendix 1.4, the predictor 
(Eq. 24) is built in such a way that the coefficients satisfy the 
Yule Walker equations, which are derived from the orthog-
onality principle (Wold 1938; Brockwell and Davis 1991; 
Hipel and McLeod 1994; Palma 2007; Box et al. 2008). 
This principle states that the error of the optimal predictor, 
ei(t) = xi(t) − fi(t) (in a mean square error sense) is orthogo-
nal to any possible estimator:

From this ensemble average condition, we get the ana-
lytical expressions for the coefficients as a function of the 
fluctuation exponent, H , for the fGn process. If the model 
realistically describes the actual temperature anomalies, then 
the condition Eq. (45) can be approximated by the temporal 
average in the POV:

or

from which:

For 
−
xi =

−

f i = 0 , dividing by the product sxi sfi and using 
Eqs. (31) and (36), we can rewrite Eq. (48) as:

Using this ratio in Eq. (44) we finally obtain:

(44)MSSSi =

⎧⎪⎨⎪⎩
2
sfi

sxi
TCCi −

�
sfi

sxi

�2

−

⎛⎜⎜⎜⎝

�
f i − xi

�

sxi

⎞⎟⎟⎟⎠

2

+
2N − 1

(N − 1)2

⎫⎪⎬⎪⎭

��
1 +

2N − 1

(N − 1)2

�
.

(45)⟨ei(t)fi(t)⟩ = 0.

(46)1

N

N∑
t=i

[
ei(t)fi(t)

]
= 0.

(47)1

N

N∑
t=i

[
xi(t) − fi(t)

]
fi(t) = 0.

(48)1

N

N∑
t=i

[
xi(t)fi(t)

]
=

1

N

N∑
t=i

fi(t)
2.

(49)TCCi =
sfi

sxi
.

A more detailed analysis gives the same expression 
with the weaker condition of overall unbiased estimates 
−
xi −

−

f i = 0 (not necessarily each of them must be zero).
In our case, for the forecast of the detrended anoma-

lies (natural variability) at monthly resolution in the POV 
1951–2019 ( N = 828 months), the N-dependent term in Eq. 
(50) is negligible:

so, with good approximation we obtain:

The orthogonality principle, Eq. (47) (or equivalently, Eq. 
(49) or Eq. (52)), is the condition that maximizes the MSSS . 
In our case, where the autoregressive coefficients in our pre-
dictor are analytical functions of only one parameter ( H ), if 
Eq. (52) is verified then our predictor is optimal in a mean 
square error sense and our model is suitable for describing 
the natural temperature variability.
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ences and Engineering Research Council of Canada (NSERC 
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