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Abstract
A crucial step in the application of the Weather Research and Forecasting (WRF) model to regional climate research is the 
selection of the proper combinations of physical parameterizations. In this study, we examined the performance of various 
parametrization schemes in the WRF model in terms of precipitation and temperature over the Haihe river basin in northern 
China. The WRF experiments were integrated with 13-km horizontal resolution and driven by ERA-INTERIM reanalysis 
data over the period from 1st June to 31st August, 2016. Fifty-eight members of physics combinations derived from five 
types of physics options were assessed against the available observational temperature and precipitation data by utilizing 
the multivariable integrated evaluation (MVIE) method. Our results indicated that the best combination of physical schemes 
consisted of CAM5.1 microphysics, MRF PBL, BMJ cumulus, CAM Longwave/Shortwave radiation, and Noah Land Surface 
schemes. The optimal setup’s differences with the observational data, temporally and spatially, were much smaller than other 
setups in terms of surface air temperature and precipitation, which proves that the optimal setup showed better performance 
than the other setups. Further analysis of the sensitivities of model outputs to different types of physics options suggests 
that the microphysics, planetary boundary layer (PBL), and cumulus schemes have a more significant impact on the model 
performances than the radiation scheme and Land Surface schemes.
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1  Introduction

With advantages such as low computational cost and a range 
of output variables, applications of numerical weather pre-
diction (NWP) models have become increasingly common 
in climate research and operational weather forecasting in 
recent decades. Among these models, general circulation 
models (GCMs) provide comprehensive predictions of large-
scale climate events (Gillett and Thompson 2003; Osborn 
2004), and regional climate models (RCMs) can accomplish 
high-resolution runs over restricted areas and explore local 

circulation dynamics at lower computational cost (Dickin-
son et al. 1989; Wang et al. 2004; Giorgi 2006). Typically, 
the Advanced Research WRF model (ARW), designed to 
serve both regional operational forecasting and atmospheric 
research needs, is increasingly in use throughout the world 
as a regional climate model (Skamarock et al. 2008; Buko-
vsky and Karoly 2009; Argüeso et al. 2011).

Prior to utilizing the WRF model for climate simula-
tions, it is crucial that model outputs be analyzed against 
observational data to assess their ability to capture spa-
tial and temporal distributions. To our knowledge, vari-
ations in output from the WRF model depend on many 
factors, including the model itself (Giorgi and Bi 2000; 
Christensen et al. 2001), boundary conditions (Von Storch 
et al. 2000; Denis et al. 2002), geographic region (Seth 
and Giorgi 1998; Landman et al. 2005), and parameteriza-
tion schemes (Ratnam and Kumar 2005; Tegoulias et al. 
2017). Given these factors, the choice of parameteriza-
tion schemes in WRF is one substantial source of model 
uncertainty (Jerez et al. 2013; Mooney et al. 2013). A wide 
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range of parameterizations are available in WRF, which 
differ in their level of complexity and their representa-
tion of physical processes. However, there is no single 
configuration optimal for all locations, variables, and at 
every possible timescale (Fernández et al. 2007; Borge 
et al. 2008). It is therefore necessary to identify the opti-
mal set of schemes applicable to the domain of interest 
(Ferreira et al. 2014; Chen et al. 2014; Pieri et al. 2015).

Over the years, significant developments have been 
achieved in the methods for evaluating the sensitivities 
to WRF parameterizations or the simulations of models 
(Fernández et al. 2007; Hu et al. 2010; Evans et al. 2012; 
Crétat et al. 2012; Li et al. 2016; Giannaros et al. 2019). Fur-
thermore, a variety of measures, such as metrics (Willmott 
et al. 1985; Taylor 2001; Gleckler et al. 2008) and statistical 
approaches (Perkins et al. 2007; Quan et al. 2016; Budakoti 
et al. 2019), have been applied to calculate some key trace-
able components across different scales, such as precipita-
tion, temperature, and surface flux (Tian et al. 2017; Yáñez-
Morroni et al. 2018). Gallus and Bresch (2006) utilized 
WRF to model multiple events to compare the sensitivity of 
warm season rainfall forecasts to changes in model physics, 
dynamics, and initial conditions. They adopted statistical 
evaluation indexes, such as the equitable threat score (ETS; 
Schaefer 1990) and bias, to measure forecast accuracy and 
explore the key impacting factors of different types of rain-
fall events. Bastidas et al. (2006) carried out a comparison of 
land surface model sensitivity within a multicriteria frame-
work. Bukovsky and Karoly (2009) discussed the impacts of 
changes in convective and land surface parameterizations, 
nest feedbacks, sea surface temperature, and WRF version 
on mean precipitation in four-month-long simulations by 
utilizing a subjective evaluation. Argüeso et al. (2011) eval-
uated the WRF sensitivity to eight different combinations 
of cumulus, microphysics, and planetary boundary layer 
(PBL) parameterization schemes over southern Spain for 
the period 1990–99. Cohen et al. (2015) summarized the key 
characteristics of the various PBL parameterization schemes 
employed to simulate the southeastern USA cold season 
severe thunderstorm environment. Their method of evaluat-
ing the performance of models focused on using a frame-
work for error analysis often applied in economic forecast 
analysis. Hasan et al. (2018) made a comparison between 
observed and simulated rainfall over Bangladesh using 
19 different combinations of microphysics and cumulus 
schemes available in WRF. The study found a combination 
of the Stony Brook University microphysics schemes with 
the Tiedtke cumulus scheme was the most suitable scheme 
for reproducing these events. However, an evaluation of the 
performance of high-resolution models and a quantitative 
method for evaluating the overall performance in simulating 
multiple fields are still lacking. Additionally, the number of 
parameterizations has increased, and no robust evaluation of 

the five types of physics options is available over the Haihe 
River Basin.

The goal of this study was to evaluate the skill of different 
physics scheme combinations in reproducing precipitation 
and temperature over the Haihe River Basin. The results 
will provide useful information about the optimal param-
eterization sets over the river basin and suggestions for 
which physics options may be sensitive to simulating the 
key component. The study region is characterized by being 
the political, economic, cultural, and transport center of 
China. Also, severe shortage of water resources and related 
environmental problems in this region, have become major 
critical challenges for regional social and economic develop-
ment. Another important highlight of the present study that 
distinguishes it from others focuses on utilizing the mul-
tivariable integrated evaluation (MVIE) method (Xu et al. 
2016, 2017) to measure the overall performance of WRF 
in simulating multiple fields, The MVIE method consists 
of multiple statistics that measure model performance from 
different aspects. It provides a framework that can evaluate 
model ability to simulate individual variables and the over-
all model ability to simulating multiple fields. The MVIE 
method is particularly suitable for this study that compares 
and ranks various WRF simulations in terms of their ability 
to simulate multiple fields.

Section 2 provides the model setup and descriptions 
of the study area and the evaluation method. Section 3 
describes the evaluation process of each scheme option, and 
a brief discussion of the robustness of the optimal schemes 
is presented in Sect. 3.6. Our main conclusions are given 
in Sect. 4.

2 � Methodology

2.1 � Study site

The study area chosen was the Haihe River Basin (Fig. 1), 
located between 35°–43°N and 112°–120°E in northern 
China. The basin is surrounded by the Taihang Moun-
tains to the west, the Bohai Sea to the east, the Mongolia 
Plateau to the north, and the lower reaches of the Yellow 
River to the south. The Beijing-Tianjin-Hebei megacity 
is located in the Haihe River basin where three major 
rivers, Haihe river, Luanhe river, and Tuhaimajia river 
flow through. The mountain areas are concentrated in the 
western parts of the basin, and the central, eastern, and 
southern areas are plain areas. This entire area belongs to 
the Temperate East Asia monsoon climate zone, which is 
mainly hot and wet in summer and cold and dry in win-
ter. Additionally, this area is distinguished by an average 
annual temperature of 10.4 °C and average annual pre-
cipitation and evaporation of approximately 541.6 and 
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470 mm, respectively (He et al. 2015). Rainfall shows 
strong spatial and temporal variability in this area (Wang 
et al. 2019). Over 70% of the annual precipitation occurs 
during the summer season (June–August) in the form of 
rainstorms. The strongest evaporation was observed in the 
winter wheat-growing season (March–June), with about 
55% of the annual total. Drought often occurs in spring as 
a result of low precipitation, high evaporation, and higher 
temperatures. The Haihe river basin is the economic, 
political, and cultural center of China, with a high density 
of population and huge demands for resources. And this 
area has limited water resources and often suffers from 
drought disaster in recent decades associated the weak-
ening monsoon circulation (Wang et al. 2001; Ding et al. 
2008). Drought is one of these major weather-related dis-
asters and has serious environmental, social and economic 
impacts (Ma et al. 2006,2007). Many previous studies 
focused on the spatiotemporal characteristics of drought 
and the causes of drought information (Ding et al. 2010, 
Li et al. 2015, Duan et al. 2017). And a mesoscale climate 
model (i.e., WRF) is a powerful tool to simulate meteoro-
logical and land surface conditions relating to drought. 
However, one of the most important uncertainties of WRF 
simulation is related to the choice of optimal physical 
schemes. Only a few studies have been conducted in this 
area using the WRF model to investigate the changes in 
regional climate. Therefore, it is of importance to evalu-
ate the overall performance of WRF in this area in order 
to determine an optimal set of parameterization combina-
tions applicable to the Haihe River Basin.

2.2 � Model configuration and datasets

In this study, the numerical experiments were conducted 
using the Advanced Research WRF model version 3.9.1 
(Table 1), which is a non-hydrostatic, primitive-equation 
model providing many different physical and running 
options for a wide spectrum of applications at very differ-
ent scales, from large-eddy simulations to climate simula-
tions (see https://​www2.​mmm.​ucar.​edu/​wrf/​users). Physical 
options are composed of various parameterization schemes 
to describe sub-grid-scale processes, such as microphys-
ics, cumulus convection, near-surface physics, land surface 
physics, planetary boundary-layer physics, and atmospheric 
longwave and shortwave radiative transfer. For each physical 
option, there are many parameterization schemes available 

Fig. 1   Map of the study site: 
Haihe River Basin, China

Table 1   Overview of WRF model configurations

Model version WRF/ARW (3.9.1)
Vertical layers 51 layers (50 hPa)
Horizontal resolution 13 km
Horizontal grid 87 (E–W) × 80 (S–N)
Time step 180 s
Initial and boundary conditions ERA-interim
Simulation period June 1st–Aug 31st, 2016
Terrain and land-use data MODIS
Default parameterization schemes Cumulus–Kain Fritsch (new eta)

Microphysics–WSM6
PBL/surface layer scheme–YSU/

MM5
Radiation–CAM3
LSM–Noah

https://www2.mmm.ucar.edu/wrf/users
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in the WRF model (Table 2). For the study area, we chose 
the default combination of parameterization schemes that is 
often used for regional climates in WRF reference physical 
suits. They are WSM6 microphysics scheme, the YSU plan-
etary boundary-layer scheme, the KF cumulus scheme, the 
CAM shortwave and longwave radiation, and the Noah Land 
Surface scheme. The horizontal resolution of the simulation 
area encompassing the Haihe River Basin was set at 13 km, 
with a total of 87 points in the east–west direction and 80 
points in the north–south direction. In the vertical direction, 
there were 51 stretched vertical levels topped at 50 hPa. The 
initial and lateral boundary conditions were obtained from 
the European Centre for Medium-Range Weather Forecasts 
(ECMWF) six-hourly ERA-Interim reanalysis. Land use 
categorization in WRF 3.9.1 was determined from Moder-
ate Resolution Imaging Spectroradiometer (MODIS) data. 
The time step of the WRF model was set to 180 s, and the 
output frequency of the WRF model was 3 h. Simulations 
were carried out for the four-month period of summer (May 
1st–August 31st) in 2016. The first month was discarded for 
spin-up purpose. The other three months, i.e., June, July, and 
August 2016, were used to evaluate performance of different 
combinations of physical parameterizations. These simula-
tions were assessed in terms of temperature and precipita-
tion against hourly rainfall and daily surface air temperature 
observation from 261 stations in the Haihe River Basin.

2.3 � Experimental design and evaluation 
methodology

Use of the rule of statistical permutation and combination 
of five types of physics options to generate different scheme 
sets would have resulted in millions of experiments. There-
fore, in order to reduce the computational cost effectively, 
we analyzed the interactions between WRF parameteriza-
tion schemes and further utilized the step-wise refinement 
method to determine the optimal combination of phys-
ics parameterizations from five types of scheme options 
(Stergiou et al. 2017). As shown in Fig. 2, the first set of 
WRF simulations were kept the same as the default model 
configuration, except that the microphysics schemes were 
chosen from 19 kinds of schemes. The second set of WRF 
simulations was consistent with the default schemes, except 
that the microphysics scheme was adjusted for the optimal 
scheme, which further modified the choices for the planetary 
boundary-layer physics. A third set of experiments were per-
formed, which were consistent with the second set of simula-
tions, except that the cumulus schemes were assessed on the 
basis of the optimal PBL scheme. There was a concern that 
free combinations of all existing longwave and shortwave 
radiation schemes would not be able to run the WRF model 
successfully. Thus, some combinations of both longwave 
and shortwave radiation schemes available to begin the WRF 

model were applied to the fourth part of this study when 
the model configurations were consistent with the third set 
of simulations and the cumulus scheme was found to be 
the best option. Finally, the fifth set of experiments focused 
on sensitivity analysis of the land surface schemes in rela-
tion to selection of the other four best-performing schemes. 
Therefore, in order to carry out all the experiments for this 
study, we chose to select the best setup for runs supporting 
climate simulation enhancement over the Haihe River Basin.

To comprehensively evaluate and rank the WRF simu-
lations, we employed a multivariable integrated evaluation 
(hereafter MVIE) method developed by Xu et al.(2017). The 
MVIE framework consists of three levels of statistical met-
rics (Table 3). The first level of metrics, consists of the com-
monly used mean error (ME), standard deviation (hereafter 
SD) value, correlation coefficient (CORR), and root-mean-
square deviation (hereafter RMSD). These metrics assess 
model performance in terms of individual variables (i.e. 
temperature and precipitation). For example, the standard 
deviation (SD) measures the variance of a scalar field. Cor-
relation coefficient describes the pattern similarity between 
the two scalar fields (here referring to model outputs and 
observations). RMSD measures the overall difference of two 
scalar fields. The RMSD is a function of mean error, stand-
ard deviation, and correlation coefficient (Xu and Han 2020). 
The second level of metrics include the root-mean-square 
length (hereafter RMSL) of a vector field, the vector field 
similarity coefficient (hereafter VSC), and the root-mean-
square vector deviation (hereafter RMSVD). These metrics 
can be defined in centered or uncentered forms. In this study, 
we employed the centered statistical metrics. The centered 
RMSL (cRMSL) is analogous to standard deviation but it 
describes the variance of a vector field. The centered VSC 
(cVSC) is analogous to Pearson’s correlation coefficient but 
it measures the pattern similarity between two vector fields. 
Similarly, the centered RMSVD (cRMSVD) is analogous 
to RMSD except that it measures the overall difference 
between two vector fields. Similar to the Taylor diagram 
(Taylor 2001), one can show these vector statistics on a vec-
tor field evaluation (VFE) diagram. The VFE diagram is a 
generalized Taylor diagram, which can summarize model 
performance in simulating vector fields (Xu et al. 2016). 
The VFE diagram can intuitively reveal to what extent the 
overall RMSVD of various fields are separately attributable 
to the bias in variance (represented by the RMSL) and the 
pattern similarities (represented by VSC). The VFE methods 
were successfully applied to evaluate model performance in 
simulating vector fields (e.g. Wang et al. 2019; Huang et al. 
2018, 2020).

Based on the vector statistics, Xu et al. (2017) devised a 
MVIE method to evaluate model performance in simulat-
ing multiple fields. The general idea of MVIE is to normal-
ized various scalar fields and group them into a multiple 
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Table 2   Physics 
parameterization scheme 
assessed in this study

Physics parameterization scheme Acronym

Microphysics Kessler Scheme Kessler
Lin et al. Scheme Lin
WSM3 Single-moment 3-class Scheme WSM3_ice
WSM5 Single-moment 5-class Scheme WSM5
Ferrier Ferrier
WSM6 Single-moment 6-class Scheme WSM6_Grau
Goddard Scheme Goddard_GCE
Thompson Scheme Thompson
Milbrandt-Yau Double Moment Scheme Milbrandt-Yau
Morrison 2-moment Scheme Morrison
CAM V5.1 2-moment 5-class Scheme CAM5.1
SBU Stony-Brook University Scheme SBU_YLIN
WDM5 Double Moment 5-class Scheme WDM5
WDM6 Double Moment 6-class Scheme WDM6
NSSL 2-moment Scheme NSSL17
NSSL 2-moment Scheme with CCN prediction NSSL18
NSSL 1-moment 7-class Scheme NSSL19
NSSL 1-moment 6-class Scheme NSSL21
Aerosol-aware Thompson Scheme Thompson_aer

Planetary boundary layer 
(PBL)/Suface Layer

Yonsei University Scheme / MM5 YSU
Mellor–Yamada–Janjic Scheme / Eta MYJ
Quasi–normal Scale Elimination Scheme QSNE
Mellor–Yamada Nakanishi Niino Level 2.5/MM5 MYNN2-1
MYNN2/Eta MYNN2-2
MYNN2/MYNN MYNN2-5
Mellor–Yamada Nakanishi Niino Level 3/MM5 MYNN3-1
MYNN3/Eta MYNN3-2
MYNN3/MYNN MYNN3-5
ACM2/MM5 Asymmetric Convection Model 2 Scheme ACM2-1
ACM2/Pleim-Xiu ACM2-7
Bougeault–Lacarrere Scheme/MM5 BouLac-1
BouLac/Eta BouLac-2
University of Washington Scheme/MM5 UW-1
UW/Eta UW-2
Shin-Hong/MM5 Scale–aware Scheme Shin-Hong
MRF/MM5 MRF

Cumulus convection Kain–Fritsch Scheme KF
BMJ Betts–Miller–Janjic Scheme BMJ
GF Grell–Freitas Ensemble Scheme GFE
OSAS Old Simplified Arakawa–Schubert G3
G3 Grell 3D Ensemble Scheme Tiedtke
Tiedtke Scheme KF_PDF
NSAS New Simplified Arakawa–Schubert NSAS
New Tiedtke Scheme NewTiedtke
GD Grell–Devenyi Ensemble Scheme GD
old KF Old Kain–Fritsch Scheme oldKF

Longwave radiation CAM Longwave Scheme CAM
RRTMG Longwave Scheme RRTMG
RRTMG Fast Version Fast_RRTMG
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dimensional vector field. Then one can evaluate the mod-
elled constructed vector fields to the observed one using 
the vector statistical metrics. To summarize and rank the 
overall model performance, Xu et al. (2017) defined a mul-
tivariable integrated evaluation index (MIEI), which takes 
multiple statistics, e.g., mean error, pattern similarity, and 
variance, of multiple variables into account. In this study, 
we normalize the temperature and precipitation and group 
them into a two-dimensional vector field. Thus, the grouped 
vector field derived from model can be assessed against that 
derived from observation by using the VFE diagram and 
MIEI. The computation of three levels of metrics consists 
of the following steps:

Step 1: Prepare the two groups of datasets (the model 
data and observations) for evaluation. The original model 
field for uncentered mode is produced by interpolating WRF 
model output to the closest observational station location. In 
this study, the anomaly field for centered mode is produced 
by the original field minus the mean value.

Step 2: Calculate the first level of metrics for individual 
variables in Table 3. In centered mode, the SD, cRMSD, 
CORR, ME of the anomaly field are calculated and displayed 
in Result and discussion part. In uncentered mode, the rms, 
uCORR, RMSD of the original field are calculated and not 
showed here.

Step 3: Calculate the second level of metrics for multi-
variable integrated field in Table 3. For the centered mode in 
this study, centered RMSL (cRMSL), centered VSC (cVSC), 
centered RMSVD (cRMSVD) and VME are calculated in 

terms of anomaly fields. For the uncentered mode (not 
shown here), the RMSL, VSC, and RMSL are calculated in 
terms of the original field.

Step 4: Calculate the third level of metrics for summariz-
ing overall performance in Table 3, MIEI is calculated in 
terms of the original field to rank the performance of the 
different parameterizations.

3 � Results and discussion

3.1 � Microphysics

The other WRF parameterizations, except for the micro-
physics option, were generally held as default options in the 
present analysis, which represents a sensitivity analysis of 
the simulation results with different microphysics schemes. 
Microphysics schemes contain explicitly resolved water 
vapor, cloud, and precipitation processes. In the current ver-
sion of the ARW, microphysics is able to accommodate any 
number of mass mixing-ratio variables, and other quanti-
ties such as number concentrations. In this study, we chose 
19 commonly used microphysics parameterizations, and we 
calculated three levels of metrics for each WRF simulation 
with certain microphysics parameterizations (Table 4). It is 
immediately obvious that the option 11, CAM5.1, shows the 
minimum MIEI (0.71) which is selected as the best micro-
physics parameterization scheme.

The metrics table (Table 4) of the centered statistics 
decomposes the original field into mean and anomaly 
fields for evaluation. The anomaly fields are further eval-
uated from the perspective of variance (SD, cRMSL), 
pattern similarity (CORR, cVSC) and overall difference 
between the model and observation (cRMSD, cRMSVD). 
Note that the mean error (ME) is additionally computed 
for the centered statistics, as the centered statistics exclude 
mean error. For temperature and precipitation, the mean 
error (ME) values of CAM5.1 have the minimum values 
(− 0.96 and 1.21). Undoubtedly, the vector mean error 
(VME) of CAM5.1, measuring the difference between 
two mean vector fields, shows the minimum value (1.54) 
among 19 kinds of microphysics schemes. For the cen-
tered mode, the cRMSLs, reflecting the total standard 

Table 2   (continued) Physics parameterization scheme Acronym

Shortwave radiation CAM Shortwave Scheme CAM

RRTMG Shortwave Scheme RRTMG

RRTMG Fast Version Fast_RRTMG
Land surface 5–layer Thermal Diffusion TD5

Unified Noah Land Surface Model Noah
Noah–MP Land Surface Model NoahMP

Fig. 2   Interactions between the WRF parameterization schemes



563Evaluation of the WRF physics ensemble using a multivariable integrated evaluation approach…

1 3

deviation (SD) values across all components (includ-
ing precipitation and temperature here) of the anomaly 
field varied from 0.98 to 1.07 among the 19 different 
simulations. And it clearly indicated that which schemes 
overestimated or underestimated the amplitude error of 
anomaly field, as characterized by greater or smaller 
normalized cRMSLs, respectively. For example, some 
schemes (e.g., Kessler, Goddard_GCE) underestimated 
the overall cRMSL over the Haihe River Basin in sum-
mer. In contrast, other schemes (e.g., WSM6_Grau) over-
estimated the overall cRMSL, reaching 1.07. As for the 
second statistic, the cVSC (in terms of anomaly fields) 
reflects the pattern similarity between two vector fields. 
The CAM V5.1 2–moment 5–class Scheme (hereafter 
CAM5.1, Eaton 2011), capture the simulation of precipi-
tation and temperature, in close agreement with the obser-
vations, and the cVSC both reach a highest value of 0.78. 

All schemes show a high correlation with observations of 
surface temperature, but precipitation shows lower corre-
lations with the corresponding in situ observations, with 
a range between 0.58 and 0.64. The cRMSVD measures 
the overall cRMSDs of temperature and precipitation and 
indicates the overall difference of anomaly field in terms 
of the simulation of multiple variables. The optimal micro-
physics scheme CAM5.1 has the minimum cRMSVD of 
0.94, which reflects that the optimal one has the minimum 
overall error in terms of anomaly fields. There was a sig-
nificant difference between the cRMSDs in terms of the 
two variables, surface temperature, and precipitation. The 
cRMSD of surface temperature ranges from 1.08 to 1.14, 
and the one as regards precipitation ranges from 0.77 to 
0.91. Under these conditions, the overall differences of 
anomaly field were primarily from temperature and pre-
cipitation second. The MIEI values in Table 3 take both 

Table 3   Formulas of the statistical metrics in the multivariable integrated evaluation (MVIE) method

Here assume the vector fields (A and B) are derived from a climate model simulation and observation, respectively. Each vector field (A and B) 
consists of N dimensions (in time or/and space, here in time, j = 1, 2,…,N), and has M scalar fields (here refer to precipitation and temperature, 
i = 1,2,…,M). “a” refers to a certain scalar field of model results. “b” refers to observational field. “*” refers to normalization process. The cen-
tered statistics are the same as the uncentered statistics, except that the original field is replaced by the anomaly field

Acronyms Denotation Formula

Statistics for individual variables
 ME Mean error MEi = ai − bi , 

−
ai =

∑N

j=1
aij,

−

bi =
∑N

j=1
bij

 SD Standard coefficient
Lai =

�

1

N

∑N

j=1
a2
ij
or Lbi =

�

1

N

∑N

j=1
b2
ij

 rms Root-mean-square
 CORR Correlation coefficient

Rui =

1

N

∑N

j=1
a
ij
b
ij

�ai�bi

,
�ai =

�

1

N

∑N

j=1
a2
ij
or �bi =

�

1

N

∑N

j=1
b2
ij

 uCORR Uncentered correlation coefficient

 RMSD Root-mean-square-difference
RMSDi =

�

1

N

∑N

j=1
(aij − bij)

2

 cRMSD Centered root-mean-square difference
Statistics for multivariable integrated field
 RMSL Root mean square length

LA =

�

M
∑

i=1

L2
ai
or LB =

�

M
∑

i=1

L2
bi

 cRMSL Centered root-mean-square length
 VSC Vector similarity coefficient

Rv =
1

LALB

M
∑

i=1

�ai�biRui

 cVSC Centered vector similarity coefficient
 RMSVD Root-mean-square vector difference

RMSVD =

�

M
∑

i=1

(
1

N

N
∑

j=1

(aij − bij)
2)

 cRMSVD Centered root-mean-square vector difference
 VME Vector mean error

VME =

�

∑M

1
(ai − bi)

2

Multivariable integrated evaluation index
 MIEI Multivariable integrated evaluation index (MIEI)

MIEI =
1

M

M
∑

i=1

(L∗
ai
− L∗

bi
)2 + 2(1 − Rv),

L∗
ai
=

Lai

Lbi
or L∗

bi
=

L
bi

Lbi
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the amplitudes and pattern similarities of various variables 
into account, and can therefore provide a comprehensive 
evaluation of model performance in terms of original field. 
In general, the MIEI values of all of the schemes varied 
from 0.71 to 0.78, which suggests that the performances 
of all model simulations were sensitive to the choice of 
microphysics scheme options. For example, the CAM5.1 
scheme (option 11) show smaller MIEI values (smaller 
than 0.71) than those of the other schemes. Note that the 
default scheme (WSM6_Grau scheme, option 6) had a 
larger MIEI value (0.78) than that of the optimal scheme.

In comparison with the MIEI, the VFE diagram can pro-
vide statistics on model performance that are more com-
prehensive, and also clearly shows the differences between 
models and observations as well as the differences between 
the various models. A VFE diagram in terms of original 
field showing the overall RMSL, VSC, and RMSVD over 
the Haihe River Basin is shown in Fig. 3. It can readily 
be seen that the optimal scheme (CAM5.1 scheme, option 
11) is a better performer than the default scheme (option 
6, WSM6_Grau). The CAM5.1 scheme shows the maxi-
mum VSC (0.75), indicating that the scheme applied in the 
climate model can generally better reproduce the spatial 
pattern of the two variables relative to other models. Simi-
larly, in comparison with the default scheme (option 6), 
the optimal scheme (option 11) shows a smaller RMSVD 

(0.96) describing the overall difference between two vec-
tor fields (here referring to model field and observation 
field). However, in terms of the property of the RMSL 

Table 4   Three levels of 
statistics in MVIE in terms 
of 19 kinds of microphysics 
schemes; the lighter colors show 
which schemes performed better

The MIEI column ranks the different models according to how they performed. The RMS (RMSL) values 
here are the ratio of modeled to observed RMS (RMSL) values. The manipulation of the metrics refers to 
Table 2.

Fig. 3   Vector field evaluation (VFE) diagram for the 19 kinds of 
microphysics parameterizations over the Haihe River Basin. The pur-
ple symbol denotes the default scheme set and the red symbol denotes 
the optimal scheme set
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measuring the overall magnitude of multiple variables, the 
RMSL of the CAM 5.1 schemes is 0.94 smaller than 1.0, 
which indicates that the model simulation underestimate 
the magnitude of the vector field.

The CAM 5.1 denotes the version of 5.0 of the Commu-
nity Atmosphere Model (CAM), which contains significant 
enhancements to the representation of atmospheric process. 
Especially, the revised cloud macrophysics scheme provides 
a more transparent treatment of cloud processes and imposes 
full consistency between cloud fraction and cloud conden-
sate. A prognostic, two-moment formulation for cloud drop-
let and cloud ice, and liquid mass and number concentrations 
are included in Stratiform microphysical processes. And the 
scheme describes ice supersaturation and features activation 
of aerosols to form cloud drops and ice crystals (Eaton 2011, 
http://​www.​cgd.​ucar.​edu/​amp/​resea​rch/​model​ing.​html).

3.2 � pbl/surface layer scheme

The main objectives for developing PBL schemes are con-
cluded as follows: (1) calculating the fluxes of momen-
tum, heat, and water vapor within the atmospheric bound-
ary layer. (2) predicting the atmospheric boundary layer 
depth, the amount of cloud, and consequently the ver-
tical redistribution of heat and mass. It can be divided 
into two classes of PBL scheme (Xie et al 2012), the first 
one is turbulent kinetic energy prediction (MYJ, MYNN, 
Bougeault-Lacarrere, TEMF, QNSE, CAM UW), the sec-
ond one is diagnostic non-local (YSU, GFS, MRF, ACM2) 
[available from http://​www2.​mmm.​ucar.​edu/​wrf/​users/​

tutor​ial/​201601/​physi​cs.​pdf]. To determinate which PBL 
scheme performed best, Table 5 gives all of the statisti-
cal metrics values of various PBL schemes on the basis 
of the evaluation method. According to the monotonic 
property of MIEI values, it can readily be seen that the 
MRF scheme (option 99), followed by the ACM2-1 and 
ACM2-7 schemes, has a smaller MIEI value (0.70) than 
the other models. BouLac-1 and BouLac-2 show the worst 
performance with respect to the greatest MIEI values 
(above 0.74). Undoubtedly, the cVSC and cRMSVD val-
ues of the MRF schemes have been optimized to a greater 
or less extent than all of the other PBL schemes and the 
best microphysical schemes (CAM5.1). For example, the 
cVSC values of all PBL schemes range from 0.76 to 0.79, 
and the MRF scheme has a greatest value (0.79) among 
the others. The centered correlation coefficients (CORR) 
across the two individual variables (surface temperature 
and precipitation) show a better result. Specifically, the 
CORR values of surface temperature ranges from 0.89 to 
0.91, which implies that the models reproduce the spatial 
pattern of temperature quite well. Compared with surface 
temperature, precipitation shows weaker centered cor-
relation coefficients (CORR) ranging from 0.62 to 0.68. 
However, the MRF scheme selected for the optimal PBL 
scheme has a higher CORR value for precipitation (0.68). 
Similarly, all schemes show smaller cRMSL values, rang-
ing from 0.99 to 1.04, than the microphysics schemes. The 
cRMSL values of MRF scheme approaching a value of 
1.0, reveals the small amplitude error of the anomaly field. 
For mean field, the mean error (ME) of each individual 

Table 5   Three levels of 
statistics in MVIE in terms of 
17 kinds of PBL/Surface Layer 
schemes; the lighter colors show 
which schemes performed better

http://www.cgd.ucar.edu/amp/research/modeling.html
http://www2.mmm.ucar.edu/wrf/users/tutorial/201601/physics.pdf
http://www2.mmm.ucar.edu/wrf/users/tutorial/201601/physics.pdf
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variable in all PBL schemes shows a decreasing tendency 
relative to all microphysics schemes above. Regarding to 
the vector mean error (VME), the optimal MRF scheme 
shows a smaller mean error (0.77) of simulating multiple 
variables. And the optimal one has minimum mean error 
of temperature (− 0.35) and precipitation (0.69).

The application of the VFE diagram (Fig. 4) to the Haihe 
River Basin illustrates the overall correspondence between 
model results and observed behavior. For example, the opti-
mal PBL scheme (MRF/MM5) shows a very high value of 
VSC (0.76), which indicates that the spatial pattern of all 
scalar fields (surface temperature and precipitation) is very 
close to that of the observational field. It should be noted 
that the optimal microphysics scheme (CAM5.1) and the 
default combination of parameterizations have weaker val-
ues of VSC of 0.75 and 0.69, respectively. The RMSLs of 
all schemes, composed of the RMSs of surface tempera-
ture and precipitation, are significantly different, and are 
also not well suited to performance evaluation here. The 
RMSL of the MRF scheme (0.93) is farther from the value 
of 1.0 than that of the default scheme (1.02), which indicates 
that the optimal one indeed underestimates the amplitude 
error of multiple variables. Similarly, the RMSVDs of the 
MRF scheme (0.95) are smaller than those of all other PBL 
schemes and the default scheme (1.11), which indicates 
that the MRF scheme performs better. The MIEI serves as a 
more concise evaluation index for generating the ranking of 
all model performances in simulating surface temperature 
and precipitation, and a smaller MIEI value shows a better 
model performance. Thus, the MRF scheme, which has the 
advantages of the aspects of three statistical quantities (i.e., 

RMSL, VSC, RMSVD), has a smaller value of MIEI (0.70) 
than the default scheme (0.78) and the optimal microphysics 
scheme (0.71). This fact strongly suggests that the combi-
nation of the optimal microphysics and PBL schemes can 
enhance the predictive performance for precipitation and 
surface temperature.

The MRF scheme as the optimal scheme has been 
widely used for atmospheric numerical models because of 
its smaller computational demands and because it produces 
reasonable results. Also, the MRF scheme, on the basis of a 
nonlocal-K approach proposed by Troen and Mahrt (1986), 
substantially improves the precipitation forecast by enhanc-
ing the convective processes at the right place and by sup-
pressing abnormal rainfall events (Hong and Pan 1996; 
Balzarini et al. 2014).

3.3 � Cumulus scheme

After completing two sets of simulations, we conducted 
a third simulation group focusing on the cumulus scheme 
on the basis of the microphysics and PBL options set to 
CAM5.1 and MRF, respectively. Cumulus schemes are 
intended to represent vertical fluxes under circumstances of 
unsolved updrafts and downdrafts and compensating motion 
outside clouds. Additionally, cumulus parameterizations 
are theoretically valid only for coarser grid sizes (greater 
than 10 km), where the release of latent heat is necessary 
in the convective columns. According to the results given 
in Table 6, the BMJ scheme shows a smaller MIEI (0.68) 
relative to all other schemes, and the MIEI of all cumu-
lus schemes ranged from 0.68 to 0.75. In contrast, the GFE 
scheme had a greater MIEI (0.75) characterized by a worse 
performance of the climate model. For mean field, the VME 
(vector mean error), showing mean errors in terms of multi-
variable integrated field, ranges from 0.94 to 1.93. Regarding 
to the mean error (ME) of the optimal scheme (BMJ), both 
precipitation and temperature are in a smaller value (− 0.63 
and − 0.75). In terms of the mean error (ME) values of 
other options, either temperature or precipitation is in high 
values. For anomaly field, the centered root-mean-square 
vector difference (cRMSVD), providing a comprehensive 
evaluation of anomaly field, varied from 0.83 to 0.98. It can 
readily be seen that there are significant differences between 
the amplitudes of various variables, relative to the RMSD 
statistical quantities, among the various cumulus schemes. 
For example, the RMSD of temperature, ranging from 0.44 
to 0.56, is much smaller than that of precipitation, which 
ranges from 0.68 to 0.85. The next statistical quantity to 
discuss is the centered vector similarity coefficient (cVSC). 
The spatial patterns of all simulation results are very close 
to the observational anomaly field, which corresponds to 
very high values of cVSC (0.77–0.81). The centered root-
mean-square length (cRMSL) of all schemes ranges from 

Fig. 4   VFE diagram for the 17 kinds of PBL/Surface Layer schemes 
over the Haihe River Basin. The purple symbol denotes the default 
scheme set and the red symbol denotes the optimal scheme set
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0.89 to 01.03. And the cRMSL of the optimal one (0.99) 
is approaching 1.0, which reveals less amplitude error of 
multivariable integrated field. In general, the optimal BMJ 
scheme has smaller values of MIEI, cRMSVD, VME and 
greater values of cVSC, which suggests that the optimal one 
has improvements in model results.

The VFE diagram shown in Fig. 5 also provides some 
guidance for evaluating the original field’s performance of 
various cumulus schemes as well as the default scheme. 
As shown in Fig. 5, all cumulus schemes have improved 
model performance compared to the default combination 
of schemes. For example, the optimal BMJ scheme has a 
distinct advantage in promoting model simulation accuracy 
over the default scheme. The MIEI value of the BMJ scheme 
(0.68) is much smaller than that of the WSM6 scheme 

(0.78). Specifically, the BMJ scheme shows a smaller root-
mean-square vector difference (RMSVD,0.88) and a higher 
vector similarity coefficient (VSC, 0.78) relative to the 
RMSVD (1.11) and VSC (0.69) of the default one. However, 
it should be noted that, as regards the RMSL, the default 
scheme (1.02) approaches 1.0 more than the BMJ scheme 
(0.86). The VFE diagram can clearly illustrate that the over-
all RMSVD of the BMJ scheme is more associated with the 
improvement in pattern similarity than with the systematic 
difference in vector length.

With respect to the optimal cumulus scheme, the 
Betts–Miller–Janjic (BMJ) scheme derived from the 
Betts–Miller convective adjustment scheme has been opti-
mized in concept to the parameter values recommended by 
Janjic (1994, 2000). Furthermore, cumulus schemes fall into 
two main classes: (i) the adjustment type containing only 
one BMJ scheme and (ii) the mass-flux type containing all 
other schemes in WRF.

3.4 � Longwave/shortwave radiation scheme

The radiation scheme is responsible for atmospheric heating 
resulting from radiative flux divergence and surface down-
ward longwave and shortwave radiation for the ground heat 
budget. Longwave radiation schemes compute mainly clear-
sky and cloud upward and downward radiation fluxes. Short-
wave radiation schemes compute clear-sky and cloudy solar 
fluxes, and most schemes consider downward and upward 
fluxes in particular (Dudhia scheme only has downward 
flux). The longwave/shortwave radiation schemes simula-
tion group is assessed next (see Table 7). Because some of 
the radiation schemes were unable to start WRF success-
fully, we selected nine kinds of radiation schemes capable of 
outputting model results. There is a subtle difference among 
the MIEI values of all radiation schemes, which range from 
0.67 to 0.68. Thus, we select the optimal option by the per-
formance of mean fields and anomaly fields. For mean fields, 

Table 6   Three levels of 
statistics in MVIE in terms of 
10 kinds of cumulus schemes; 
the lighter colors show which 
schemes performed better

Fig. 5   VFE diagram for the 10 kinds of cumulus schemes over the 
Haihe River Basin. The purple symbol denotes the default scheme set 
and the red symbol denotes the optimal scheme set
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the CAM scheme, as with the default radiation scheme, has 
a minimum vector mean error (VME) value of 0.84, indi-
cating its less mean difference. For anomaly fields, most 
of the simulations in this group have greater centered vec-
tor similarity coefficient (cVSC)and smaller centered root-
mean-square difference (cRMSVD) than the earlier simula-
tion groups, which demonstrates that the process of selecting 
optimal physics schemes enhances the quality of the simula-
tions. The centered root-mean-square length (cRMSL) of 
all radiation schemes shows a steady trend exceeding 1.0. 
Specifically, the cRMSL of the optimal scheme (CAM) is 
1.00, indicating its good performance in amplitude error of 
anomaly field. And the optimal one has a larger cVSC (0.82) 
and smaller cRMSVD (0.86) among other option. The CAM 
longwave radiation schemes documented fully by Collins 
et al. (2006) are linked to resolved clouds and cloud frac-
tions and are able to handle several trace gases. Additionally, 
the CAM shortwave radiation scheme using cloud fractions 
and overlapping assumptions for unsaturated regions has a 
monthly zonal ozone climatology and can handle the optical 
properties of several aerosol types and trace gases. All in all, 
the CAM radiation scheme is especially suited to regional 
climate simulations by having an ozone distribution that var-
ies during the simulation according to monthly zonal-mean 
climatological data.

3.5 � Land surface parameterization scheme

The representation of LSM schemes results from the 
increased interest in land-use activities and the need to 

simulate regional climates more precisely. The presence of 
vegetation, orographic features, and surface heterogeneity, 
all suitably represented in LSM, all influence surface albedo 
(radiative transfer), surface roughness (momentum transfer), 
and surface hydrology (sensible and latent heat transfer; run-
off). The last simulation group focuses on the evaluation of 
the land surface schemes given in Table 8. In most runs, 
there is little difference in the MIEIs of various LSM (Land 
Surface Model) schemes, and the optimal Noah scheme has 
a relatively small MIEI value (0.68). Particularly for mean 
field, the mean error of individual variables in this group is 
superior to all other groups. For example, the mean error 
(ME) of temperature in Noah simulation is much less than 
other option and approximately approaching 0. The VFE 
diagram in Fig. 6 shows that, although not all radiation and 
LSM schemes show significant differences in modeling 
results from the optimal choice, the selection of the best 
combination of schemes optimizes model performance more 
than the default scheme.

The optimal LSM scheme selected above was the Noah 
LSM scheme, which is the successor to the OSU LSM 
scheme described by Chen and Dudhia (2001), and has a 
four-layer soil temperature and moisture model with canopy 
moisture and snow cover prediction. Additionally, the Noah 
LSM not only predicts soil ice and fractional snow cover 
effects, but also has an improved urban treatment, and con-
siders surface emissivity properties (Koren et al. 1999; Ek 
et al. 2003).

Table 7   Three levels of 
statistics in MVIE in terms of 9 
kinds of Longwave/Shortwave 
schemes; the lighter colors show 
which schemes performed better

Table 8   Three levels of 
statistics in MVIE in terms of 3 
kinds of Land Surface schemes; 
the lighter colors show which 
schemes performed better
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3.6 � Identifying the optimal parameterization 
scheme combination

The results of the test of the sensitivity of precipitation and 
surface temperature simulated by the WRF model to dif-
ferent parameterization scheme combinations have been 
determined, and the best performing scheme set consists of 
the CAM5.1 microphysics scheme, the MRF PBL scheme, 
the BMJ cumulus scheme, the CAM for shortwave/long-
wave radiation scheme, and the Noah land surface scheme. 
In order to identify the best parameterization setup with the 
overall best performance in terms of simulating temperature 
and precipitation, several approaches were utilized in this 
study. One crucial issue is selection of the VFE diagram 
providing various statistics from all groups of WRF simula-
tions (Fig. 7). Some manipulation of the statistical metrics 
is necessary to rank the model performance of all simulation 
members in the study; thus, the RMSL, VSC, and RMSVD 
statistical quantities have been integrated to access all 58 
sets of simulations shown in Fig. 7. As shown in the fig-
ure, different simulation groups are clearly separated from 
each other. The performance of members in different groups 
in the VFE diagram has been discussed before, so here we 
focus on analyzing whether the evaluation method enhances 
the performance of each option on basis of spatial mean 
values and temporal mean values in all scalar fields (i.e. 
surface temperature and precipitation). The earlier work 
involved five stages of evaluation work, and it can be seen 
from Fig. 7 that the RMSVD and VSC statistical quantities 

have been much enhanced in the process of selecting five 
kinds of physics parameterizations. The difference between 
the default model setup and the optimal set of schemes can 
also be seen from Fig. 7. Specifically, compared with the 
default scheme, the optimal scheme has a higher VSC (0.79; 
that of the default is 0.69) and a smaller RMSVD (0.87; 
that of the default is 1.11). Some analysis of the features of 
the RMS values of various scalar fields is necessary prior 
to ranking the RMSL values of the vector field here. Thus, 
relative to surface temperature, the normalized RMS of the 
optimal scheme (1.00) approaches 1.0 more closely than that 
of the default scheme (0.95). In contrast, the optimal scheme 
has underestimated the RMS of precipitation (0.72), which is 
different than the overestimate of the default scheme (1.07). 
All in all, the optimal combination of physics parameteriza-
tions is beneficial for improving the reproduction of surface 
temperature and precipitation in the WRF model over the 
Haihe River Basin.

Next, in order to identify the impact of the relative dif-
ferences between different parameterization schemes on 
the bias between model outputs and observations, we cal-
culated the spatial mean bias of the best schemes of all five 
options examined above to present the spatial bias charac-
teristics of precipitation and surface temperature (Fig. 8) 
over the Haihe River Basin. The statistic for precipitation 
and temperature is calculated as the spatial average of the 
differences in the three months’ mean fields. In addition, in 
order to identify whether the optimal physics parameteri-
zations set is optimized, we also calculated the statistics of 
the default scheme to demonstrate the improvement in the 
other model simulations. As shown in Fig. 8, we can con-
clude that the evaluation approach described above greatly 

Fig. 6   VFE diagram for the 9 kinds of radiation schemes and 3 types 
of LSM schemes over the Haihe River Basin. The purple symbol 
denotes the default scheme set and the red symbol denotes the opti-
mal scheme set. Because the optimal LSM scheme (Noah) is con-
sistent with the default scheme, we discuss the two types of physics 
options here together in the VFE diagram

Fig. 7   VFE diagram for all 58 kinds of simulation above the Haihe 
River Basin. Different colors represent the different physics options, 
and the red (purple) symbol is the best proper (default) scheme set 
over the basin
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enhances the ability of the model to simulate precipitation. 
The bias values for precipitation using the default option 
shown in the WRF model greatly overestimate rainfall. 
This overestimation of rainfall in summer is located over 
most regions in the Haihe River Basin, and overestima-
tions of up to 4–5 mm/day are located in the northeastern 
part, the southeast plain area, and the western hilly area 
of the basin. Looking at the optimal microphysics option, 
the simulation in some areas also produces overestima-
tions of more than 3 mm/day. In the optimal PBL schemes, 

there is no significant difference between the model and 
the observational data, and the positive and negative bias 
values are all distributed between − 3 and + 3 mm/day. The 
optimal cumulus scheme option has a minimum magnitude 
(between − 1 and + 1 mm/day) of bias values spread over 
the Haihe River Basin. With respect to the last simula-
tion (referring to the optimal radiation/LSM scheme, the 
optimal LSM scheme remains as the default scheme, and 
so the radiation scheme coincides with the LSM scheme), 
it can readily be seen that the remarkable bias values of 

Fig. 8   Spatial characteristics 
of the mean model deviations 
from the observational data for 
precipitation (left) and surface 
temperature (right)
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almost all models have mostly disappeared when using 
the optimal combination of schemes. The summer pre-
cipitation predictions remain poor over a very small area 
located in the southern hilly area, with a relatively small 
underestimation, while the remaining parts maintain a 
high correspondence with the optimal cumulus schemes 
characterized by no severe failures.

For the surface temperature variable (Fig. 8), the majority 
of the simulations show a magnitude of temperature biases 
with a range between − 2.5 °C and + 2.5 °C. The under-
estimate with a magnitude of − 2.5 °C is located in most 
parts of the hilly areas (the northern and western parts), 
and the model deviation in the central plateau area show a 
small overestimate (above 0.5 °C) or a small underestimate 
(above − 1 °C). There is a similar pattern to the temperature 
simulated by each physics combination (shown in Fig. 8). 
However, the trend of particular model bias in some parts 
of the Haihe River Basin shows the improvement in the tem-
perature forecast in the final simulation. For example, the 
central area shifts from a small underestimate (above − 1 °C) 
to a small overestimate (above 0.5 °C). Furthermore, the 
peak values of the overestimates in several parts of the hilly 
areas have disappeared. Although the overestimates in some 
parts have intensified in the final simulation, we can see 
that the simulation of surface temperature has improved to 
some extent as a result of using the optimal physics schemes 
combination.

We analyzed the relative differences in the impacts of 
all combinations on the temporal characteristics of surface 
temperature (Fig. 9) and precipitation (Fig. 10) by calculat-
ing the spatial averages over the Haihe River Basin at the 
daily timescale. As shown in Fig. 9, the first four plots show 
the daily spatial averages of all simulations during the study 
period. Specifically, all of the simulated temperatures show 
underestimates compared with the observed temperatures. 
Note that there is a steady trend in simulating the tempera-
ture by selecting the optimal options above, and these simu-
lated temperatures gradually approach the observed tempera-
ture data, which indicates that the evaluation method we 
have chosen is capable of selecting the best scheme set to 
further enhance the model’s prediction accuracy.

Figure 10 shows plots of regional averages for the amount 
of simulated rainfall falling on each day in summer. By 
examining each physics parameterization in Fig. 10, our 
study focuses on discussing the optimal scheme for each 
option examined above. Although there is no particular 
amplitude error among the various scheme sets, it could be 
seen that the optimal setup (red line) is in more close prox-
imity to the observational one (yellow line) than other setups 
in Fig. 10. The amount of rainfall distributed on the daily 
timescale, in Haihe river basin located in semi-arid region, 
is small and may account for the unremarkable amplitude 
errors between the model and the observational data. All in 
all, the model can simulate the overall temporal distribution 
of observational precipitation to some degree.

Fig. 9   Temporal character-
istics of the spatial averages 
of surface temperature for all 
simulations over the Haihe 
River Basin during the summer 
of 2016. The gray lines denote 
the improper schemes, and the 
other colored lines denote the 
optimal schemes for each phys-
ics option
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4 � Conclusions

According to previous studies, the simulation of rainfall 
and temperature is fundamental to climate research using 
the Advanced Research Weather Research and Forecasting 
(WRF) model, and particularly because the WRF model 
performs poorly when simulating rainfall. The selection of 
the optimal combination of schemes from a wide range of 
physical parameterization sets is beneficial for improving 
the performance of the model, even at the risk of high com-
putational cost. Given the two reasons above, in this study, 
various physics combinations have been used to simulate the 
surface temperature and precipitation during a summer sea-
son in the Haihe River Basin for the purpose of optimizing 
the performance of the WRF model. In contrast with previ-
ous studies, we chose a multivariable integrated evaluation 
(MVIE) method, which groups various scalar fields (here 
referring to temperature and precipitation) into a vector field 
in order to thoroughly identify the most appropriate combi-
nation of schemes for the WRF model for the Haihe River 
Basin. Furthermore, the 58 members of the physics com-
binations that were chosen, which were not determined by 
permutation and combination of all parameterizations from 
the five physics options because of the computational cost, 
but by utilizing a stepwise refinement method based on an 
analysis of the interactions between the WRF parameteriza-
tion schemes. In brief, this study has applied a more compre-
hensive evaluation methodology to assess more efficiently 

the existing options that the WRF model offers (here refer-
ring to the five kinds of options, MP, PBL, CU, RA, and 
LSM) with as small a computational cost as possible.

In the evaluation process, various metrics were calculated 
and integrated to produce a preferred combination of physics 
parameterizations, which contains CAM5.1 MP, MRF PBL, 
BMJ cumulus, CAM radiation, and Noah LSM schemes, 
in comparison with the default scheme set (referring to 
WSM6 MP, YSU PBL, KF cumulus, CAM radiation, and 
Noah LSM schemes). Analysis of the multivariable inte-
grated field revealed that the optimal scheme for each option 
examined above has a smaller MIEI value, which is much 
attributed to the improvement of centered vector similarity 
coefficient (cVSC) and smaller mean error. Obviously, the 
optimal setup has a higher cVSC value than other setups, 
which shows a good performance in pattern similarity of 
anomaly field. With respect to mean field, the optimal one 
for each option, in terms of both precipitation and tempera-
ture, showed a decreasing trend in mean error. Especially 
for surface temperature, the optimal scheme for each option 
reduced mean errors, gradually approaching a value of 0.

For this domain, we recommend the appropriate scheme 
set that contains the CAM5.1 MP, MRF PBL, BMJ cumulus, 
CAM radiation, and Noah LSM. To identify the advantages 
of the set of schemes selected by the MVIE approach, the 
VFE diagram with all sets of schemes clearly illustrates 
that the best set of schemes improved the pattern similarity 
and the RMS vector difference compared with the default 

Fig. 10   Temporal characteris-
tics of the spatial averages of 
precipitation for all simula-
tions over the Haihe River 
Basin during the summer of 
2016. The gray lines denote the 
improper schemes, and the other 
colored lines denote the optimal 
schemes for each physics option
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scheme set. The spatial mean bias plots of temperature and 
precipitation also demonstrate that the best scheme shows 
much smaller deviations from the observed values than the 
default scheme, and, in particular, the spatial improvement 
in the prediction of precipitation is obvious. The temporal 
plots of the spatial averages of temperature and precipitation 
show that the optimal scheme for each option has gradu-
ally improved the simulation of the spatial averages with 
the selection of successive schemes, and surface tempera-
ture matches the observational data better than precipita-
tion does. Perhaps a more robust conclusion drawn from 
the overall analysis results is that the model output is more 
sensitive to the choice of microphysics schemes and PBL 
schemes than the cumulus scheme, but the radiation and 
LSM schemes have no significant impact on the model 
results.

It should be acknowledged that there will be uncertainties 
in aspects of observation data. The in-situ observational data 
will not only contains errors from instruments and measur-
ing practices, but also should take a longer time series into 
consideration. In further work, greater advantage should be 
taken of more sets of observational data, such as Climatic 
Research Unit (CRU) gridded data, Global Historical Cli-
matology Network (GHCN) temperature data, and Global 
Precipitation Climatology Center (GPCC) precipitation data. 
Also, the results for the optimal scheme set in this study 
can increase confidence in regional modeling over the Haihe 
River Basin for subsequent studies. It is worth pointing out 
that MVIE needs to be further improved to continue to be 
used in higher resolution convection-permitting models (Liu 
et al. 2017; Li et al. 2019). Unsurprisingly, the model evalu-
ators can apply the assessment method used in this study 
to the domains of interest involved with other variables or 
extreme events.
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