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Abstract
Abrupt climate change has an important impact on sustainable economic and social development, as well as ecosystem. 
However, it is very difficult to predict abrupt climate changes because the climate system is a complex and nonlinear sys-
tem. In the present paper, the nonlinear local Lyapunov exponent (NLLE) is proposed as a new early warning signal for 
an abrupt climate change. The performance of NLLE as an early warning signal is first verified by those simulated abrupt 
changes based on four folding models. That is, NLLE in all experiments showed an almost monotonous increasing trend as 
a dynamic system approached its tipping point. For a well-studied abrupt climate change in North Pacific in 1976/1977, it 
is also found that NLLE shows an almost monotonous increasing trend since 1970 which give up to 6 years warning before 
the abrupt climate change. The limit of the predictability for a nonlinear dynamic system can be quantitatively estimated by 
NLLE, and lager NLLE of the system means less predictability. Therefore, the decreasing predictability may be an effective 
precursor indicator for abrupt climate change.

Keywords Abrupt climate change · Tipping point · Nonlinear local Lyapunov exponent · Predictability · Early warning 
signal

1 Introduction

Abrupt climate change is an important and special form 
of climate change, which has an important impact on the 
ecological environment, sustainable economic and social 
development, and the extinction of species (Alley et al. 
2003; Boers 2018; Clements et al. 2019; Roberts et al. 2019; 

Rothman 2017). However, due to the human limited under-
standing of the climate system at present, it is still difficult 
for us to predict abrupt changes in the climate system using 
dynamical and statistical methods. Therefore, it is crucial 
to develop the theories and methods of early warning for 
abrupt climate change which will help us to monitor and 
warn of an impending abrupt change in the climate system 
or ecosystem in the future (Dakos et al. 2008; Lenton 2011; 
Scheffer et al. 2001).

In recent years, early warning of an abrupt climate change 
has becomes an international problem of great concern, as 
well as in other disciplines, including medicine, ecology, 
marine science, life science, seismology (Boulton et al. 
2014; Clements and Ozgul 2016; Di Genova et al. 2017; 
Ding et al. 2016; Gottschalk et al. 2015; Henry et al. 2016; 
Klus et al. 2019; Liu et al. 2019; McSharry et al. 2003). 
Many kinds of early warning signals for abrupt change 
have been presented. For example, when a dynamic system 
approaches its tipping point, three early warning signals can 
be founded which can be explained by the phenomenon of 
critical slowing down, including slower recovery from per-
turbations, a marked increase in variance and autocorrelation 
(Carpenter and Brock 2006; Dakos et al. 2012; Scheffer et al. 
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2009). The changing skewness and kurtosis coefficient have 
also been proposed as an early warning signal for abrupt 
change in ecosystems (Guttal and Jayaprakash 2008; Xie 
et al. 2019a, b). Prettyman et al. (2018) introduced an indi-
cator on the basis of the power spectrum (PS) and found 
that the indicator may be used to provide an early warning 
signal for anticipating tropical cyclones. Climate memory 
could increase the chance of abrupt climate change and has 
previously been used in anticipating a dynamical bifurca-
tion in advance (Livina and Lenton 2007; van der Bolt et al. 
2018). In addition, some other early warning signs have also 
been proposed, such as critical speeding up, eigenvalues of 
the covariance matrix, and self-organized patchiness (Chen 
et al. 2019; Titus and Watson 2020; Venegas et al. 2005). 
However, due to the complexity of the actual system, vari-
ous methods have some flaws to some extent. For example, 
the autocorrelation function and climate memory can pro-
vide an effectively early warning for artificial data; how-
ever, they fail to warn the tropical cyclones (Prettyman et al. 
2018). The skewness indicator as well as PS is found to fail 
to give an early warning in some artificial model (Guttal 
and Jayaprakash, 2008). So, it is still crucial to devise new 
indicator to effectively warn of an abrupt climate change.

Predictability usually refers to an upper limit on the time-
liness of weather forecasting or climate prediction, and it is 
generally believed that predictability is mainly related to 
the uncertainty exist in climate model and the limited error 
of the initial conditions (Ding et al. 2008, 2015; Duan and 
Mu 2009; Hou et al. 2018; Huang and Fu 2019; Li and Ding 
2013; Shukla and Gutzler 1983). In fact, the predictability 
of a system is also closely related to its dynamic character-
istics (Ding et al. 2008). In view of this, the present study 
intends to investigate some general rules of the predictability 
of a dynamic system when the system approaches its tip-
ping point, and then develop a new early warning indicator 
for abrupt climate change based on the predictability of the 
climate system.

The remainder of this paper is organized as follows. In 
Sect. 2, the algorithm of nonlinear local Lyapunov exponent 
(NLLE) is briefly described, and then four folding models 
and data used in this study are also presented. In Sect. 3, the 
performance of NLLE as an early warning signal is validated 
in artificial time series and North Pacific sea-level pressure 
records. The conclusions and discussion are provided in 
Sect. 4.

2  Method and models

2.1  Nonlinear local Lyapunov exponent

Most of traditional theories and methods of the predictability 
are designed based on the tangent linear model. However, 

the climate system is a complex and nonlinear dynamic 
system. Thus, the traditional methods of the predictability 
have some limitations in dealing with nonlinear problems. 
To make up for the shortcomings of the existing theories 
and methods of the predictability, NLLE is presented based 
on the theoretical saturation level of error growth, and then 
the limit of predictability for a nonlinear dynamic system 
can be quantitatively estimated (Ding et al. 2008; Li and 
Ding 2011, 2013). Here, we briefly describe the algorithm 
of NLLE. A nonlinear dynamic system can be described as 
follows (Eq. (1)):

In Eq. (1), F stands for mathematical operator of the non-
linear system, and the state vector is denoted byx , namely, 
x =

[
x1(t), x2(t),… , xn(t)

]T . For a given initial error superim-
posed on a state x , � =

[
�1(t), �2(t),… , �n(t)

]T , the dynamic 
equation of the error can be written as follows (Eq. (2)):

Here, J(x) is obtained by tangent linear approximation to 
the error � , and the function G(x, �) are the nonlinear terms. 
Traditionally, linear approximations are used to solve non-
linear problem, which usually assume that the tangent linear 
model of the error � could be used to describe approximately 
the error evolution equation with sufficiently small initial 
perturbations. This linear approximation obviously has 
inherent limitations. To deal with the nonlinear problem of 
the error growth, NLLE is developed which does not need to 
conduct a linear approximation. Based on NLLE, the solu-
tions of the dynamic equation of the error can be written as 
follows (Eq. 3):

Here, � is the length of time of the error evolution, and 
�
(
x
(
t0
)
�
(
t0
)
, �
)
 is the nonlinear error propagation operator. 

Thus, NLLE can be written mathematically as Eq. (4).

In Eq. (4), �
(
x0, �0, �

)
 is a function of the initial error �0 

and evolution time � as well as the initial state x0 . Based on 
this, we used NLLE to quantitatively estimate the predict-
ability of a dynamic system in this study.

In this study, we defined a standardized NLLE as follows,

(1)
d

dt
x = F(x).

(2)
d

dt
� = J(x)� + G(x, �).

(3)�1 = �
(
x0, �0, �

)
�0.

(4)�
�
x0, �0, �

�
=

1

�
ln

‖�1‖
‖�0‖

.

(5)

Standardized NLLE =

N∑

i=1

𝜆
(
xi, �0, 𝜏

)
− �̄�

𝜎
, i = 1, 2, 3… ,N.
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In the Eq. (5), �̄� is the mean of the series of the�
(
xi, �0, �

)
 , 

and� is the standard deviation of the NLLE.

2.2  Models and data

Many dynamic systems in nature can exhibit a folding bifurca-
tion. For example, with the increase of a surface fresh water 
perturbation in North Atlantic, Atlantic Meridional Overturn-
ing Circulation could be interrupted abruptly in a way of a 
folding bifurcation (Boulton, 2014). Some well-studied exam-
ples of abrupt change include ecological systems, coral reefs, 
lake eutrophication, financial crises, climate system, Arctic 
sea ice, and so on (Fraedrich 1978; Guttal and Jayaprakash 
2008; Knowlton 1992; Steele 1996; Scheffer et al. 2001, 2009; 
Daskalov et al. 2007; Diks et al. 2019), and all of them can 
present a classical folding bifurcation. Therefore, it is impor-
tance to investigate the general rules before a dynamic system 
approach its critical points in such folding bifurcations.

In this study, a generalized logistic equation is first used to 
test the performance of NLLE as a new early warning indica-
tor for an abrupt change. The generalized logistic equation 
is a one-dimensional model which is often used to describe 
the evolution of vegetation system. The model can be written 
mathematically as follows (Guttal and Jayaprakash 2008).

In Eq. (6), V is the biomass density of the vegetation sys-
tem, and K is a parameter which represents the carrying capac-
ity of environment and is kept as a constant of 10 in our study. 
The parameter r is the growth rate of vegetation, which is a 
constant with a value of r = 1. The maximum grazing rate is 
denoted by the parameter c, which ranges from 1 to 3. The 
parameter V0 is 1 in this study. �V (t) is a stochastic variable, 
and �V is the standard deviation of the stochastic variable 
which ranges from 0 to 1:

Another vegetation model used in this study is two-
dimensional stochastic differential equations, which is often 
used to simulate the affection of the rainfall rate on the veg-
etation biomass density in a semi-arid region (Guttal and 
Jayaprakash 2008; Xie et al. 2019a, b). This model is presented 
in Eqs. (8–9).

(6)
dV

dt
= rV

(
1 −

V

K

)
− c

V2

V2 + V2

0

+ �V�V (t).

(7)⟨�V (t)�V (t�)⟩ = �(t − t�).

(8)
dw

dt
= R − �w − �wB + �w�w(t)

(9)
dB

dt
= �B

(
w −

B

Bc

)
− �

B

B + B0

+ �B�B(t).

The parameter R is rainfall rate, and the variables w and B 
are the vegetation biomass density, soil water, respectively. 
The value of each parameter in the second model is shown 

Table 1  Description of parameters in Eq. (13)

Parameters Values and physical meaning of parameters

c A constant thermal inertia, c = 0.05
� Effective emissivity, � = 0.69

� Stefan Boltzmann constant, � = 5.67 × 10−8

�
T

The standard deviation of external noise, �
T
= 0.003

�
T

Uncorrelated Gaussian noise, i.e. ⟨�
T
(t)�

T
(t�)⟩ = �(t − t

�)

I0 The solar constant, I0 = 1360
b A linear feedback between albedo and temperature, 

b = 0.009
a A linear feedback between temperature and ice, a = 2.8
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Fig. 1  The NLLE results for one-dimensional ecosystem model. a 
The bifurcation diagram for the generalized logistic model (Eq. (6)); 
b NLLE as a function of the grazing rate c when the ecosystem 
approaches the tipping point of c* = 2.6 for different evolutionary 
times; c same to Fig. 1b, but for the standardized NLLE.



3902 W. He et al.

1 3

here: � = 1.0 , � = 0.12 , � = 1 , Bc = 10 , � = 2 , and B0 = 1 . 
�w and �B are two stochastic variable with the standard devia-
tion �w and �B , respectively.

Equations (10–12) are often used to simulate the eutroph-
ication process of lakes (Guttal and Jayaprakash, 2008). 
Phosphorus concentrations in water and sediments are 
denoted by the two variables P and M, respectively. The 
parameter nutrient l is input rate which can vary from 0.5 to 
1.0. �l and �r are two stochastic variables which can be used 
to describe the uncertainty of phosphorus uptake in water 
and sediments. The standard deviations of the two stochastic 
variable are both 0.01, namely, �l = 0.01 and �r = 0.01 . The 
values of the remaining parameters in the lake model are 
provided as follows: h = 0.15,s = 0.7 , r = 0.019 , b = 0.001 , 
P0 = 2.4 , and q = 8 . More detailed describes about those 
parameters in the above three models can be found in the 
literature (Guttal and Jayaprakash 2008).

(10)
dP

dt
= l − (h + s)P +

[
r + �r�r(t)

]
MR(P) + �l�l(t)

(11)
dM

dt
= sP − bM − [r + �r�r(t)]MR(P).

(12)R(P) =
Pq

P
q

0
+ Pq

The climate model is a simplified climate system which 
can be used to investigate the effect of infrared emission and 
solar heat input on the global average surface temperature. 
The geometrical dimension of the climate system is zero in 
the model, and thus Fraedrich (1978) called it a zero-dimen-
sional climate model. The stochastic differential model is 
provided in Eq. (13).

The average temperature T is subjected to radiative heat-
ing in Eq. (13). The parameter � ranges from 0.963 to 1 
which is the relative radiative forcing. Table 1 provides the 
parameters in this model, and more detailed description of 
the climate model can be found in the literature (Fraedrich 
1978).

Itô formula and Euler algorithm are used to numerically 
solve stochastic differential models. In order to examine the 
stability of the performance of NLLE, we study the ensem-
ble mean of NLLE of the 100 time series obtained from 
an identical stochastic dynamic model with an identical 
set of parameters. Furthermore, we consider a well-studied 
abrupt climate change in North Pacific which is an observed 
interdecadal climate changes (Trenberth 1990). In order 
to determine whether NLLE of a time series can exhibit 
some general characteristics prior to an abrupt change in 

(13)

dT

dt
=

1

c

{
−��(T + �T�T )

4 +
1

4
�I0b(T + �T�T ) +

1

4
�I0(1 − a)

}
.
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Fig. 2  The box charts of NLLE for such 100 experiments for different lengths of time of the error evolution in the tests shown in Fig. 1b. a The 
lengths of time of the error evolution, � = 40; b � = 60; c � = 80; and d � = 100.
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observational data, we applied NLLE to analyze the monthly 
North Pacific sea-level pressure records (https ://rda.ucar.
edu/datas ets/ds010 .1/).

3  Results

Many nonlinear models for oceanic circulation (e.g., Atlan-
tic Meridional Overturning Circulation) and climate model 
often show folding bifurcations (Boulton et al. 2014; Frae-
drich 1978). So, it is an effective way to use some simplified 
models to check the performance of a new early warning 
signal. On the basis of this, four simple folding models are 
firstly used to verify the effectiveness of NLLE as a new 

early warning indicator for an abrupt change. The bifurca-
tion diagram of the one-dimensional vegetation model is 
shown in Fig. 1a. Two tipping points of the vegetation model 
are c* = 1.8, and 2.6, respectively. For c < 1.8, the system is 
in vegetated state, and a bare state will occur for c > 2.6. A 
bistable state will exist for 1.8 < c < 2.6. Thus, the vegetated 
state and bare state could be interchanged abruptly when 
the vegetation system crosses one of the two tipping points.

First, a classic case of abrupt change is considered, 
namely, we linearly increase the grazing rate c at a very slow 
speed so that the vegetation system gradually approaches the 
critical tipping point (c* = 2.6). In this case, other param-
eters in this model are kept unchanged, and the 2000 time 
units for the first folding models were used to calculate the 
NLLE. In tests, the drift rate of the grazing rate c is 0.05. It 
is found that NLLE shows an almost monotonous increas-
ing trend for different evolution times used for estimating 
NLLE as the grazing rate c approaches the tipping point 
(c* = 2.6) (Fig. 1b). In order to compare the trend of NLLE 
under different evolution times, NLLE is standardized. The 
results indicate that all of the standardized NLLE present an 
almost consistent evolutionary trend for different evolution 
times (Fig. 1c). The box charts of NLLE are also presented 
in Fig. 2 for such 100 experiments for different lengths of 
time of the error evolution. It can be found that the computed 
NLLE shows some relatively small fluctuations (Fig. 2). 
However, the overall increasing trend has been maintained 
before the system approaches its tipping point. It means that 
the increasing NLLE can provide a precursor signal prior to 
an abrupt change in the one-dimensional vegetation system 
(Eq. (6)).

The two-dimensional stochastic model also shows a fold-
ing bifurcation (Fig. 3a). The two critical tipping points of 
the model are R* = 1.06 and R* = 2.0, respectively. If the 
system crosses one of the critical points, and the state of the 
vegetation model will shift from a vegetated state to bare 
one, or shift from a bare state to a vegetated state. In this 
study, sample size used to calculate the NLLE is exactly 
the same as the first stochastic model, and the rainfall rate R 
ranges from 2.4875 to 1.1875 with the drift rate of 0.0075 
in all of numerical tests. The rainfall rate R is linearly and 
slowly decreased along the upper branch of the bifurcation, 
and other parameters in the two-dimensional stochastic 
model are kept unchanged. It is found that NLLE of the veg-
etation model has shown an almost monotonous increasing 
trend for different evolution times when the two-dimensional 
vegetation model is far away from the critical threshold of 
the rainfall rate R* = 1.06 (Fig. 3b). This increasing trend is 
clearer for the standardized NLLE, namely, an almost con-
sistent evolutionary trend can be found for different evolu-
tion times used to calculate NLLE (Fig. 3c). Figure 4 pre-
sents the box charts of NLLE for such 100 experiments for 
the four different lengths of time of the error evolution. The 
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Fig. 3  The NLLE results for the two-dimensional stochastic model. 
a The bifurcation diagram for the two-dimensional stochastic model; 
b the NLLE as a function of the rainfall rate R when the vegetation 
model approaches the tipping point of R* = 1.06 for different evolu-
tionary times; c same to Fig. 3b, but for the standardized NLLE.
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computed NLLE’s fluctuations are relatively small, and all 
of them present an increasing trend before the second sto-
chastic vegetation approaches its tipping point.

The stochastic lake model also showed a typical folding 
bifurcation (Fig. 5a). Two critical tipping points of the phos-
phorus loading rate are l* = 0.5 and l* = 0.975, respectively. 
The lake system has two distinct states, namely, an oligo-
trophic state for l < 0.5 and a eutrophic state for l > 0.975. 
The bistable state can occur for the lake system when the 
phosphorus loading rate l ranges from 0.5 to 0.975. If the 
lake system crosses its tipping point, the state will undergo 
an abrupt change between the two stable states. First, inte-
grate this stochastic lake model for 7000 steps in the study 
with the integration step of 0.01. The initial values of the 
integration are M(t = 0) = 800 , and P(t = 0) = 1 , respec-
tively. The first 1000 integral values are discarded as tran-
sient, and the phosphorus loading rate l ranges from 0.785 to 
0.95 with the drift rate of 0.015. Along the lower branch of 
the bifurcation (Fig. 5a), we linearly increase the phosphorus 
loading rate l so that the lake system slowly approaches the 
tipping point of l* = 0.975. The NLLE of the time series of 
phosphorus concentrations shows a slow increasing trend 
before about l = 0.725, and then the increasing trend become 
significant (Fig. 5b). The standardized NLLE obtained by 
different evolution times shows an almost consistent evolu-
tionary trend which presents a more clearly increasing trend 
than that of NLLE (Fig. 5c). Different from the previous two 
models’ experimental results, the computed NLLE based the 
stochastic lake model shows a relatively large fluctuations in 

some cases for all four different lengths of time of the error 
evolution, including � = 40, 60, 80, and 100 (Fig. 6).

The geometrical dimension of the fourth stochastic model 
(Eq. (13)) used in this paper is zero, so it is usually called 
a zero-dimensional climate model. The simplified climate 
model can be used to simulate the energy flux balance 
between solar heat input and infrared emission from the 
globally averaged perspective. The solutions depend on the 
parameters in the climate model, and the relative radiative 
forcing � has an important effect on the average tempera-
ture T. The simplified climate model has two stable climatic 
states. If the relative radiative forcing � passes the tipping 
point ( �* = 0.97), an interglacial climate will be interrupted 
and then abrupt shift to the “deep freeze” climate (Fraedrich 
1978).

Figure 7a shows the average temperature T as a func-
tion of the relative radiative forcing � , and it is found that 
the average temperature T presents a diminishing trend with 
a decrease of the parameter � . A relatively warm climate 
was abruptly replaced by a cold climate when the aver-
age temperature T is decreased to the critical threshold of 
T* = 266.67 K at �* = 0.97 with the fixed drift of 7.4*10−6 
(Fig. 7a). The integration step is 0.1 in the zero-dimensional 
climate model, and the sliding windows size used to calcu-
late the NLLE is 1000 data points. We found that NLLE 
of the average temperature T presents an abruptly increas-
ing trend prior to the abrupt change in the climate model 
(Fig. 7b). It means that NLLE can provide an effective early 
warning signal for an upcoming abrupt climate change in the 
zero-dimensional climate model. It is worth pointing out that 

Fig. 4  Same to Fig. 2, but for 
the tests based on the second 
stochastic vegetation model, 
namely, the NLLE as a function 
of the rainfall rate R. a The 
lengths of time of the error evo-
lution, � = 40; b � = 60; c � = 80; 
and d � = 100.
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the increasing trend of NLLE does not seem obvious for a 
relatively short evolution time (e.g., evolution time � = 40 ). 
However, the increasing trend in the standardized NLLE is 
almost the same for different evolution times (Fig. 7c).

Decadal shifts of the sea-level pressure are observed in 
North Pacific (Fraedrich 1978). Namely, there is an abrupt 
decreasing change after 1976 for North Pacific mean sea-
level pressure for the winter period (Fig. 8a), averaged from 
27.5° N to 72.5° N, 147.5° E to 122.5° W. The observed 
interdecadal climate changes in North Pacific provide a good 
test bed for determining if NLLE can provide an effective 
precursor signal prior to an abrupt climate change in obser-
vational data. We calculate the NLLE by using the North 

Pacific mean sea-level pressure for the winter period during 
1946 to 1976 which is prior to this abrupt climate change. 
The sliding windows size is 24 years in which the NLLE is 
estimated. For example, the NLLE of the winter sea-level 
pressure observed in North Pacific in 1960 can be calculated 
from 1946 to 1959. In order to investigate the influence of 
the length of time of the error evolution � , four different 
cases are considered in this study, including � = 2 months, 
4 months, 6 months, and 8 months. Figure 8b presents the 
time series of the standardized NLLE of North Pacific aver-
age sea-level pressure for the winter period. For all of four 
different lengths of time of the error evolution, an increasing 
trend of the standardized NLLE can be clearly identified and 
occurred around 1970 years which is far away from the time 
point of the interdecadal climate changes in North Pacific, 
1976/1977.

4  Discussion and conclusions

At present, abrupt climate change is no longer just a subject 
of scientific research, and it has gradually become a major 
concern for society and government. Paleoclimate records 
such as ice cores, stalagmites, loess, lake deposits and spo-
ropollen have shown that an abrupt climate change is an 
indisputable fact (Alley et al. 2003), which can have some 
adverse effects on the ecological environment, and even lead 
to species extinction and dynasties subrogation. So, it has 
important scientific significance and application value to 
investigate the precursor signal for abrupt climate change. 
Based on several simple fold models, this study disclosed 
that during a dynamic system approaches its critical tip-
ping point, NLLE will exhibit an increasing trend when the 
system is far away from its tipping point. Moreover, NLLE 
of the North Pacific sea-level pressure shows an obvious 
increasing trend from 1970 to 1976, which is prior to the 
abrupt climate change point of 1976/1977. The evolution 
time used to calculate NLLE has varying degrees of influ-
ence on the calculation of NLLE. However, the effect on 
the standardized NLLE is almost negligible which can be 
found from the results of the standardized NLLE. It indicates 
that changing NLLE can be used as a precursor signal of an 
upcoming abrupt climate change.

It is important to devise some new early warning signal 
because different indicators have different sources of uncer-
tainty and limitations. NLLE is designed to quantitatively 
estimate the upper limit of predictability for a nonlinear 
dynamic system (Ding et al. 2008). Therefore, an important 
contribution of this study is that we found that the changing 
predictability may be an effective indicator for early warning 
of an abrupt climate change. We also explained why the pre-
dictability of a dynamic system can be regarded as an early 
warning signal for an abrupt change. As a dynamic system 

0 0.2 0.4 0.6 0.8 1 1.2
Nutrient input rate l

0

2

4

6
W

at
er

 P
ho

sp
ho

ru
s 

P
Oligotrophic
Eutrophic
Unstable

0.5 0.6 0.7 0.8 0.9 1
Nutrient input rate l

-0.005

0

0.005

0.01

0.015

N
LL

E

 = 40
 = 60
 = 80
 = 100

0.5 0.6 0.7 0.8 0.9 1
Nutrient input rate l

-2

0

2

-2

0

2

St
an

da
rd

iz
ed

 N
LL

E

 = 40
 = 60
 = 80
 = 100

a)

b)

c)
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approaches its tipping point, the stability of the system is 
gradually decreased and the instability increases. Thus, 
for the identical initial errors, a greater error growth rate 
would be found when the system is close to the tipping point, 
comparing that of the case when the system is far from the 

Fig. 6  Same to Fig. 2, but for 
the tests based on the stochastic 
lake model, namely, the NLLE 
as a function of the phosphorus 
loading rate l. a The lengths 
of time of the error evolution, 
� = 40; b � = 60; c � = 80; and d 
� = 100.
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tipping point. Therefore, the predictability of a system would 
be reduced as the dynamic system approaches its tipping 
point. Moreover, there are many quantitatively estimation 
methods for the predictability of a dynamic system, such 
as signal-to-noise ratio (Shukla and Gutzler 1983; Li et al. 
2013). Thus, one of future research works is to compare 
the performance of different estimation methods on predict-
ability as a precscuor signal of an abrupt climate change, 
as well as the influence of sample size, nonlinearity, and 
statistical significance of changing trends. The present study 
only considers a limited sample size to validate the perfor-
mance of NLLE, and the dynamic system in nature may be 
more complicated than the folding model used in this study. 
So, more work is needed to find out how robust the NLLE 
indicator is in more complex dynamic systems. Moreover, 
the threshold to determine the warning time can be identified 
by abrupt change-point methods, and we will systematically 
study this problem in future work.
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