
Vol.:(0123456789)1 3

Climate Dynamics (2021) 56:3527–3540 
https://doi.org/10.1007/s00382-021-05652-9

Improved atmospheric circulation over Europe by the new generation 
of CMIP6 earth system models

Juan A. Fernandez‑Granja1  · Ana Casanueva1  · Joaquin Bedia1  · Jesus Fernandez1 

Received: 5 July 2020 / Accepted: 13 January 2021 / Published online: 30 January 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Global Climate Models (GCMs) generally exhibit significant biases in the representation of large-scale atmospheric circula-
tion. Even after a sensible bias adjustment these errors remain and are inherited to some extent by the derived downscaling 
products, impairing the credibility of future regional projections. In this study we perform a process-based evaluation of 
state-of-the-art GCMs from CMIP5 and CMIP6, with a focus on the simulation of the synoptic climatological patterns 
having a most prominent effect on the European climate. To this aim, we use the Lamb Weather Type Classification (LWT, 
Lamb British isles weather types and a register of the daily sequence 736 of circulation patterns 1861-1971. METEOROL 
OFF, GEOPHYS MEM; 737 GB; DA 1972; NO 116; PP 1-85; BIBL 2P1/2, 1972), a subjective classification of circulation 
weather types constructed upon historical simulations of daily mean sea level pressure. Observational uncertainty has been 
taken into account by considering four different reanalysis products of varying characteristics. Our evaluation unveils an 
overall improvement of salient atmospheric circulation features consistent across observational references, although this 
is uneven across models and large frequency biases still remain for the main LWTs. Some CMIP6 models attain similar 
or even worse results than their CMIP5 counterparts, although in most cases consistent improvements have been found, 
demonstrating the ability of the new models to better capture key synoptic conditions. In light of the large differences found 
across models, we advocate for a careful selection of driving GCMs in downscaling experiments with a special focus on 
large-scale atmospheric circulation aspects.
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1 Introduction

The seasonal variability of large-scale mean sea level pres-
sure patterns exerts a direct influence on the regional Euro-
pean climate. Different mechanisms explain this relation-
ship, such as the influence of the North Atlantic Oscillation 
pattern (NAO, Hurrell et al. 2003; Folland et al. 2009) or 
blockings characterized by persistent high pressure systems 
(Rex 1950; Jury et al. 2019). These are related, for instance, 
to extreme seasonal temperature events (Buehler et al. 2011; 
Barriopedro et al. 2011; Favà et al. 2015), precipitation dry/
wet spells and extremes (Busuioc et al. 2001; Casanueva 
et al. 2014; Sousa et al. 2017) or droughts (Bladé et al. 2011) 

due to their capability to disturb the predominant cyclonic 
westerly flow (Sillmann and Croci-Maspoli 2009). As a 
result, an adequate representation of atmospheric circula-
tion and high/low pressure variability becomes essential for 
a proper representation of the main regional climate features, 
although current Global Climate Models (GCMs) exhibit 
substantial errors in this sense (Vial and Osborn 2012; Daw-
son et al. 2012; Masato et al. 2013).

Circulation biases affect the centroids location and spatial 
patterns as well as the frequency and duration of the main 
Euro-Atlantic wintertime weather regimes (Dawson et al. 
2012; Fabiano et al. 2020) and Atlantic and European winter 
blocking events (Vial and Osborn 2012; Anstey et al. 2013). 
For instance, the frequency of the latter are systematically 
underestimated, also by the state-of-the-art simulations of 
the 5th Coupled Model Intercomparison Project (CMIP5, 
Taylor et al. 2012). The representation of Northern Hemi-
sphere storm tracks has improved in CMIP5 GCMs with 
respect to previous model versions (Zappa et al. 2013), but 
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they still underestimate cyclone intensity and present loca-
tion biases (Chang et al. 2012; Colle et al. 2013). Likewise, 
CMIP5 GCMs are able to capture eastern Mediterranean 
weather regimes qualitatively, although they fail in repro-
ducing quantitative features (Dawson et al. 2012; Hochman 
et al. 2019). The most recent generation of GCMs (CMIP6, 
Eyring et al. 2016) shows substantial improvements with 
respect to CMIP5 in the representation of the frequency 
and persistence of circulation types worldwide (Cannon 
2020), although more focused analyses are still needed to 
adequately assess the implications at a regional scale for 
downscaling purposes (Addor et al. 2016; Perez et al. 2014; 
Otero et al. 2018).

GCM uncertainty emerges as an important source of 
uncertainty in regional future climate projections. To date, 
coordinated downscaling experiments over Europe have 
explored uneven combinations of global and regional cli-
mate models (RCMs), favouring certain GCMs and being 
biased towards large ensembles of few RCMs (Fernández 
et al. 2019). In light of the new EURO-CORDEX activities 
(Jacob et al. 2014, 2020), decisions must be taken towards 
the implementation of an optimal experimental design, 
including the selection of driving GCMs from the CMIP6 
ensemble. GCM selection is usually a two-step process 
(McSweeney et al. 2015), requiring, first, the plausibility 
of the GCMs climate and, second, that the selected GCMs 
cover a large fraction of the climate alternatives spanned by 
the full CMIP ensemble. The selection of GCMs based on 
their ability to adequately simulate particular surface vari-
ables, such as temperatures and/or precipitation, is inade-
quate and may result in a non-optimal selection of driving 
GCMs. The idea of evaluating GCM performance by means 
of atmospheric patterns and weather types started long time 
ago (Jones et al. 1993; Hulme et al. 1993), although process-
based GCM performance assessments have recently come 
into focus particularly within the downscaling community 
(Maraun et al. 2017). Such evaluation, which relies on GCM 
variables used by subsequent downscaling, is preferred 
(Brands et al. 2013; McSweeney et al. 2015; Addor et al. 
2016). A sensible bias correction approach can substantially 
improve raw model fields from a statistical point of view, and 
it is advised for specific variables and threshold-dependent 
climate indices (see e.g. Dosio 2016; Iturbide et al. 2020). 
However, it is problematic to circumvent fundamental model 
errors, such as the misrepresentation of large-scale atmos-
pheric circulation (Addor et al. 2016; Maraun et al. 2017). 
Even though RCMs can add value in this sense by improv-
ing the misrepresentation of the driving data defining their 
lateral boundary conditions (Jones et al. 1995), this improve-
ment is incomplete, particularly when large errors are pre-
sent in the driving GCM (Diaconescu and Laprise 2013). 
Moreover, even when bias correction methods improve the 
applicability of climate simulations, in general it cannot 

improve low model credibility, and may even hide the lack 
of credibility of model outputs when applied inadequately 
(Maraun et al. 2017) resulting in ill-informed adaptation 
decisions. As a result, the selection of the driving GCM has 
a large effect on the skill of RCM simulations (as shown 
e.g. by Prein et al. 2019, in North America), which also has 
an impact on the projected signals (Turco et al. 2013), the 
GCM choice thus being an issue of paramount importance 
in GCM-RCM intercomparison experiments.

In this study, we categorize the circulation patterns of 
the new-generation CMIP6 GCMs over Europe according to 
the Lamb Weather Type (LWT) classification (Lamb 1972). 
We systematically compare each new model with respect to 
the previous CMIP5 counterpart. We focus over Europe to 
address specifically the selection of GCMs for downscaling 
exercises in the context of EURO-CORDEX. In particular, 
we aim to (1) assess the potential improvement of CMIP6 
over CMIP5 GCMs regarding the representation of the fre-
quency and transition probability between relevant circula-
tion types and (2) provide a quantitative ranking of models, 
to aid in the plausibility step of model selection over Europe. 
This work updates earlier work on the ability of GCMs to 
represent circulation types in this region (Perez et al. 2014; 
Otero et al. 2018) and introduces transition probabilities as 
a stringent test on model performance.

2  Methodology and data

2.1  Lamb weather type classification

The LWT classification is a subjective clustering approach 
where the weather type classification is based on a number 
of rules relying on meteorological expert knowledge (Lamb 
1972). This differs from objective clustering algorithms, 
which are data driven. Therefore, LWT classification is 
deterministic and it has a straightforward and well defined 
physical interpretation. This is an advantage for the aims of 
this study, since the results obtained can be interpreted in 
terms of actual meteorological conditions, and there is no 
source of added uncertainty as in stochastic clustering algo-
rithms, whose results are initialization-dependent.

Following previous studies using the LWT scheme we 
classify all days in 26 classes that are assigned to a specific 
circulation type (see e.g.: Trigo and DaCamara 2000; Brands 
et al. 2014; Ramos et al. 2014; Pereira et al. 2018). In order 
to produce the LWTs, we follow the formulation developed 
by Jenkinson and Collison (1977) and Jones et al. (1993) 
using daily mean sea level pressure (MSLP) over a grid of 
16 points, centered in the British Isles ( 55◦ N, 5◦ W) and with 
a separation of 5◦ latitude by 10◦ longitude between each 
couple of points (Fig. 1). The model grid cells corresponding 



3529Improved atmospheric circulation over Europe by the new generation of CMIP6 earth system models  

1 3

to each reference point are located using nearest neighbours 
(Jones et al. 2013; Pereira et al. 2018).

The formulation of the LWTs uses 6 parameters related 
with wind-flow characteristics: southerly flow, westerly flow, 
total flow, southerly shear vorticity, westerly shear vorticity 
and total shear vorticity. Depending on their values, the daily 
MSLP is classified in a given weather type. There are 26 
LWTs representing pure cyclonic (C) and anticyclonic (A) 
circulation over the center point, 8 pure directional types 

(N, NE, E, ..., NW) and hybrid types (mixing A or C with 
any of the directional types). As an example, Figure 1 shows 
composite MSLP maps of the 8 most common LWTs over 
an extended European domain as derived from the ERA-
Interim (Dee et al. 2011) reanalysis. These 8 LWTs gather 
74% of the days and are consistent with previous studies 
(Trigo and DaCamara 2000; Brands et al. 2014; Fealy and 
Mills 2018). In this study, we use the implementation of the 
LWTs in the R package transformeR (v1.7.3, Iturbide 

Fig. 1  Composite maps of Lamb Weather Types (LWTs) derived 
from MSLP (hPa) from ERA-Interim for the period 1981–2010. A 
subset of the 8 (out of 26) most frequent LWTs annually is displayed. 
Sub-panels are labelled with their LWT abbreviation (frequency in %) 
and sorted in decreasing frequency order from top to bottom and from 
left to right. Colorbar is centered on average sea level atmospheric 

pressure (reds are highs and blues are lows). Lamb’s grid coordinates 
are also indicated over the British Isles domain. Similar composite 
maps are calculated for the GCMs and reanalyses gathered in Table 1; 
their spatial correlations with the ERA-Interim pattern are shown in 
Fig. A17 in the Electronic Supplementary Material
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et al. 2019), illustrated in the companion paper notebook 
(see “Availability of data and materials”).

One salient feature of a weather type is its probability 
of occurrence, which can be estimated by the relative fre-
quency of occurrence in a sample. Not surprisingly for a 
mid-latitude region, the A and C types are the most common 
types in Europe (Fig. 1), followed by all westerly types (W, 
SW and NW). LWT persistence probabilities (understood 
here as the probability of staying in the same weather type as 
the previous day), or more generally, transition probabilities 
between two different LWTs are also important, since they 
determine key temporal features such as spell duration, serv-
ing as an effective tool for the assessment of the model abil-
ity to reproduce atmospheric circulation patterns (Hochman 
et al. 2019). Let the discrete random variable Xt represent 
the LWT at time step t, whose values xt ∈ {1,… ,K} , with 
K = 26 the total number of LWTs. We consider this variable 
at two consecutive days, Xt−1 and Xt , to construct the K × K 
transition probability matrix A, where Aij = p(Xt= j|Xt−1= i) , 
representing the probability of going from LWT i to LWT 
j. Hence, each row of the matrix sums to one, 

∑
j Aij = 1 . 

The transition probability matrix (TPM) thus provides a 
visual “fingerprint” on how a given model represents the 
LWT classification, which can be compared to the observa-
tional reference through specific evaluation measures (see 
Sect. 2.3).

2.2  Data

We applied the LWT methodology to classify daily MSLP 
patterns from GCMs, run under the CMIP historical experi-
ment, and from reanalyses, as quasi-observational reference. 
In all cases, we considered the 30-year period 1981-2010, 
which follows the World Meteorological Organization 
(WMO) guidelines on the calculation of climate normals 
(WMO 2017) and represents a typical historical period in 
climate projections assessments. This period leads to a sam-
ple of ca. 11000 days per data set.

2.2.1  GCM data

GCM simulations from CMIP5 and CMIP6 historical exper-
iments were used to evaluate different model generations. A 
set of 9 model pairs (Table 1) was selected to specifically 
account for model improvement as a factor in our analy-
ses. Each GCM pair was developed in a different modelling 
center, although this does not guarantee model independence 
(Boé 2018). As CMIP5 historical experiment ends in 2005, 
we used the period 2006-2010 from the RCP8.5 scenario 
run to fill the common 1981-2010 analysis period. This has 
been done in previous studies (e.g. Casanueva et al. 2020) 
and there is not an expected impact on the results, since the 
difference in the forcing across scenarios is very small for 
the filled period.

Table 1  Set of CMIP5 and CMIP6 models used in the study, their nominal resolution at the equator (in ◦ ) and modelling center (top). Reanalysis 
products used (bottom)

CMIP5 Grid ( ◦) CMIP6 Grid ( ◦) Modelling Center (CMIP5) CMIP6

CanESM2 2.81 CanESM5 2.81 Canadian Centre for Climate Modelling and Analysis
CNRM-CM5 1.41 CNRM-CM6-1 1.41 Centre National de Recherches Météorologiques - Centre Européen de Recherche et de 

Formation Avancée en Calcul Scientifique
EC-EARTH 1.13 EC-EARTH3 0.70 (Irish Centre for High-end Computing) EC-EARTH Consortium
GFDL-ESM2M 2.26 GFDL-ESM4 1.00 NOAA - Geophysical Fluid Dynamics Laboratory
HadGEM2-ES 1.59 UKESM1-0-LL 1.59 Met Office Hadley Centre
IPSL-CM5-LR 2.96 IPSL-CM6A-LR 1.98 Institut Pierre-Simon Laplace
MIROC5 1.41 MIROC6 1.41 (Japan Agency for Marine-Earth Science and Technology, JAMSTEC) JAMSTEC, 

AORI, NIES and R-CCS
MPI-ESM-LR 1.88 MPI-ESM1-2-LR 1.88 Max Planck Institute for Meteorology
NorESM1-M 2.21 NorESM2-LM 2.21 Norwegian Climate Center - Norwegian Meteorological Institute

Reanalysis Grid ( ◦) Modelling Center

ERA-Interim 0.75 European Center for Medium Range Weather Forecasts
JRA-55 0.56 Japanese Meteorological Agency
NCEP 2.5 National Centers for Environmental Prediction / National Center for Atmospheric 

Research
ERA-20C 1.13 European Center for Medium Range Weather Forecasts
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2.2.2  Reanalysis data

We used the European Center for Medium Range Weather 
Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al. 
2011) as the main quasi-observational reference to evalu-
ate the model simulations. This state-of-the-art reanalysis is 
commonly used to evaluate model performance and also pro-
vided initial and lateral boundary conditions for CORDEX 
evaluation simulations. Therefore, it is also natural to use 
it here to evaluate GCM boundary conditions over Europe.

Moreover we considered three additional reanalysis prod-
ucts (Table 1) to account for observational uncertainty: the 
Japanese Meteorological Agency 55-year reanalysis (JRA-
55; Kobayashi et al. 2015; Harada et al. 2016), the National 
Centers for Environmental Prediction / National Center for 
Atmospheric Research (NCEP–NCAR) reanalysis products 
(hereafter NCEP, Kalnay et al. 1996), and the ECMWF 
ERA-20C (Poli et al. 2016). The latter assimilated only sur-
face pressure and marine winds, so it is not exactly compara-
ble to the others, which assimilate a wider range of surface, 
upper-air and satellite observations.

2.3  Evaluation measures

In order to evaluate the accuracy of GCMs from different 
generations some indices are used such as Kullback–Lei-
bler divergence (KL), Relative Bias, Two-proportions Z-Test 
and Transition Probability Matrix Score (TPMS). With these 
metrics, we provide a direct comparison between the GCMs 
and the ERA-Interim reanalysis and a quantitative value of 
the degree of similarity/agreement between them.

Kullback–Leibler Divergence This measure (KL; Kull-
back and Leibler 1951), also known as relative entropy, is 
used to quantify the degree of disparity between the GCMs 
and the reanalysis in the representation of the different LWT 
probabilities. For this purpose, the LWT classifications 
obtained by the GCMs and reanalysis are handled as dis-
crete Probability Mass Functions (PMFs), whose dissimilar-
ity is measured through KL divergence (see e.g. Jiang et al. 
2011; Sharma and Seal 2019). The use of KL divergence 
in the comparison of two PMFs is more appropriate than 
using a distance function on a metric space (e.g. Euclidean 
distance) due to multiple facts: the PMFs may be differently 
distributed, have different sample sizes, different geometric 
centers or contain extreme probabilities that may disrupt the 
comparison negatively (Weijs et al. 2010; Jiang et al. 2011). 
Therefore, the KL divergence is not symmetric, and it is 
not affected by any biases derived from the probability of 
the samples, thus avoiding the more frequent LWTs unduly 
influencing the evaluation results.

The KL divergence of a discrete probability distribu-
tion, P(x), with respect to another, Q(x), both defined on 

the same probability space X (in our case, spanned by the 
LWTs) is defined within the Information Theory (Cover 
and Thomas 2006) as:

We use it as a measure of the statistical “distance” of the 
model distribution (P(x)) with respect to the reanalysis one 
(Q(x)), which is zero for a perfect match ( P(x) = Q(x) ∀x ∈ X 
) and takes positive values with no upper bound for increas-
ingly different distributions. Here, we use the KL divergence 
implementation of the R package phylentropy (v0.4.0, 
Drost 2018)

Relative Bias From the historical record of observed 
weather types occurr ing at discrete time steps 
X1,X2,… ,XT , with T days, the frequency of occurrence of 
the LWT � per season s is denoted as f (�, s) and calculated 
as the number of days falling in type � divided by the total 
number of days in the season s ∈ {DJF,MAM, JJA, SON} . 
Thus we consider the relative bias � to compute the devia-
tion of the LWT frequency with respect to a reference 
data set:

where fm(�, s) refers to the frequency in the model m and 
fo(�, s) is the reference observed frequency (in this case, 
derived from the ERA-Interim reanalysis). The model 
(m) can be any of the list of 21 models conformed by the 
9 CMIP5 GCMs, the 9 CMIP6 GCMs and the reanalysis 
products: JRA, ERA-20C and NCEP (Table 1). The rela-
tive bias is a non-dimensional measure, which is zero for a 
perfect agreement of frequencies.

Two-Proportions Z-Test The Two-Proportions Z-Test is 
used to assess the statistical significance in the differences 
between models and ERA-Interim. It is used for propor-
tions, which in this case arise from relative frequencies 
(proportion of days classified in a given LWT) and tran-
sition probabilities (proportion of days in LWT i with 
transition to LWT j). The test statistic takes into account 
the potentially different sample size in the model and rea-
nalysis data, and the implementation used (prop.test 
function from the R package stats (v3.6.3, R Core Team 
2020)) includes an exact test for small samples. This test 
was performed for each combination of LWT � , season s 
and model m, using a 95% confidence to establish signifi-
cant probability/relative frequency differences.

Transition probability matrix score In order to summa-
rize the TPM information (Sect. 2.1) we introduce a TPM 
score (TPMS), that allows ranking model performance 
based on its TPM fingerprint, defined as:

(1)KL(P ∥ Q) =
∑

x∈X

P(x) log
P(x)

Q(x)

(2)�m(�, s) =
fm(�, s) − fo(�, s)

fo(�, s)
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where pm and po are the transition probabilities in the model 
and in the observational reference, respectively, whose 
(absolute) difference is calculated considering the subset of 
transition probabilities A∗ from the full matrix (A), that are 
significantly different from the reanalysis, following the two-
proportion Z-Test. In order to include the “missing” tran-
sitions in the score (i.e. either transitions that exist in the 
reanalysis but are never simulated by the model, or transi-
tions that are simulated by the model but do not occur in the 
reanalysis), these are assigned a zero probability (i.e. either 
pm = 0 or po = 0 ) and included in the A∗ subset. As a result, 
the larger the departure from zero (perfect agreement), the 

(3)TPMS =
∑

p∈A∗

|pm − po| larger the dissimilarity of the TPM fingerprints between the 
GCM and the reanalysis.

3  Results

3.1  Observed LWTs

We first assay the resulting frequencies of the observed 
LWTs, as represented by the four reanalysis products. In 
Fig. 2, we show the LWT seasonal frequencies, sorted in 
decreasing order according to annual ERA-Interim LWTs. 
In general, small differences in the frequencies are found 
between the reanalysis for all seasons. The common set of 
prevailing LWTs has, however, different frequencies among 
seasons. In winter (DJF), Westerly (W) and Southwesterly 

Fig. 2  Comparison of the seasonal relative frequencies of Lamb 
Weather Types (LWTs) obtained from the four different reanalysis 
(ERA-Interim, JRA, NCEP and ERA-20C) following the LWTs def-

inition of Lamb 1972. The LWTs are sorted in decreasing order of 
their annual frequencies in ERA-Interim, indicated with horizontal 
segments as reference
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(SW) flow types are more frequent than the Cyclonic (C) 
type, and they both exceed the annual time-scale reference. 
Westerly flow decays in spring and summer, and the Anticy-
clonic (A) type becomes more prevalent in summer. Types 
A, C , W and SW are the four most frequent LWTs in all sea-
sons. Types S (South), NW (Northwesterly) and AW (Anti-
cyclonic Westerly) are among the 8 most dominant in all 
seasons. Pure-directional type N (North) is also in the top-8 
except in winter, when it is less frequent than type ASW 
(Anticyclonic Southwesterly). However, N type represents 
close to 5% of the days in all seasons and also appears among 
the first 8 LWTs for annual ERA-Interim. In light of these 
results, we consider the following LWT subset hereinafter 
for a more detailed analysis of model biases (Sect. 3.2): A, 
C, W, SW, NW, S, AW and N.

The observational uncertainty in the LWT relative fre-
quencies is small, as their magnitudes are similar among the 
different reanalysis datasets, with the exception of ERA-20C 
(Fig. 2). This reanalysis shows lower LWT relative frequen-
cies as compared to ERA-Interim, JRA and NCEP, espe-
cially in the two most frequent types (A and C), which is 
compensated mainly by an increased frequency in the S and 
SW flow types. This fact could be due to the different data 
sources of the ERA-20C reanalysis in comparison with the 
other available reanalysis products, which, in turn, might 
lead to differences in the LWTs classification. The ERA-
20C reanalysis only assimilates sea level pressure data from 
surface-only observations in order to maintain consistency 
over time (Poli et al. 2016). In contrast, the rest of the rea-
nalysis products –showing a more consistent LWT frequency 
distribution– assimilate many surface, upper-air and satel-
lite observations (Fujiwara et al. 2017). Our findings are 
in line with previous literature, which highlights the poor 

representation of upper atmospheric processes because data 
from the free atmosphere are not available in surface-only 
input reanalyses. For example, lower cyclones in the North-
ern Hemisphere (Wang et al. 2006), fewer northern high-
latitude blocking frequency (Rohrer et al. 2018), and lower 
occurrence of westerly circulation types (Stryhal and Huth 
2017) have been detected for ERA-20C and other surface-
only input reanalyses.

Figure 3 (left panel) depicts the similarity between the 
models (GCMs, ERA-20C, JRA and NCEP) with respect to 
ERA-Interim by using the KL Divergence. Again, among 
the reanalyses, ERA-20C shows the largest differences with 
respect to ERA-Interim ( KL = 0.008 ) compared to the other 
reanalyses (0.003 for both the JRA and NCEP). Given the 
good agreement in the LWTs classification regardless of the 
use of ERA-Interim, JRA and NCEP, in the following we use 
ERA-Interim as reference. Further results considering the 
other reanalyses as reference are provided in the Electronic 
Supplementary Material for a more comprehensive picture 
of the reanalysis uncertainty. Interestingly, JRA and NCEP 
present a better agreement with ERA-20C than ERA-Interim 
in terms of KL divergence (Fig. A5 in the Electronic Sup-
plementary Material). This aligns well with Chang and Yau 
(2016), who found that major storm tracks in the Northern 
Hemisphere in ERA-20C and JRA are in good agreement 
with radiosonde observations.

3.2  Modeled LWTs frequency

Model agreement with ERA-Interim reanalysis is analyzed 
first in terms of the KL divergence (Fig. 3, right panels). 
However, as annual KL divergence can hide the compensa-
tion of large biases, both annual and seasonal timescales are 

Fig. 3  Kullback–Leibler Divergence (KL) (seasonal and annual val-
ues, in columns) for the different reanalyses (left) and GCM experi-
ments (right, CMIP5 and CMIP6). The 26 LWTs are considered in 

the calculation of KL. The 26 LWTs need to be considered as the KL 
formulation expects PMFs where the sum of the probabilities of the 
samples is equal to 1
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later considered for the analysis of relative biases. Over-
all, there is a clear improvement from CMIP5 to CMIP6, 
although large KL divergences in CMIP5 in specific seasons 
only slightly diminish or move to another season in CMIP6. 
Similar conclusions hold when the other three reanalyses are 
used as reference (see Figs. A1, A3 and A5 in the Electronic 
Supplementary Material). At annual timescales, CMIP6 EC-
EARTH3 exhibits the lowest deviation ( KL = 0.007 ), fol-
lowed by UKESM1-0-LL (0.009), HadGEM2 (0.009), EC-
EARTH (0.022) and IPSL-CM6A-LR (0.026). EC-EARTH3 
shows also slightly better performance than ERA-20C at the 
annual scale, which deteriorates in the seasonal analyses 
(e.g. KL = 0.046 in DJF, KL = 0.031 in MAM) probably due 
to biases in the timing along the year and the persistence 
of the weather types. The largest KL divergences occur in 
winter for most CMIP5 and CMIP6 models, followed by 
summer and spring. To explain such differences we next 
look at the seasonal GCM biases for the main LWTs. The 
KL divergence of the CMIP5 and CMIP6 models allows 
to rank them according to their ability to reproduce synop-
tic conditions with respect to their agreement with ERA-
Interim. The general improvement of CMIP6 considering 
the annual KL divergence (Fig. 3) is also evident in terms of 
relative biases (Fig. 4). Overall, smaller biases are found for 
CMIP6, except for IPSL-CM6A-LR in winter, NorESM2-
LM and CanESM5 in spring, and NorESM2-LM in sum-
mer. All models present the worst performance for the two 
most frequent LWTs (namely anticyclonic and cyclonic) in 
winter (in agreement with Fig. 3), with opposite sign biases. 
Along the four seasons, most models overestimate cyclonic 
type frequencies whereas they simulate too few anticyclonic 
conditions. The latter might be associated with the general 
underestimation of the frequency of the European winter 
blocking, which is a well-known drawback of CMIP5 mod-
els (see e.g. Masato et al. 2013). Overall, CMIP6 GCM 

reduce biases in the frequency of the A and C types com-
pared to the CMIP5 counterparts, especially NorESM2-LM 
and GFDL-ESM4, although statistically significant differ-
ences with ERA-Interim still remain.

Results are not conclusive for the other main LWTs, 
for which different magnitude and sign of biases are found 
depending on the model. The frequency of W and SW 
types is overestimated by NorESM2-LM and CanESM5 in 
spring (also NorESM2-LM in summer), performing worse 
than their CMIP5 counterparts. AW type is underestimated 
by most models in spring, regardless of the CMIP experi-
ment. Most GCMs do not exhibit significant differences 
with respect to ERA-Interim for the least frequent weather 
types, especially in spring and autumn. GCM evaluation 
with respect to the three other reanalyses leads to similar 
conclusions and similar rankings (see Figs. A2, A4, A6 in 
the Electronic Supplementary Material).

Despite the improvement of CMIP6 models upon their 
CMIP5 predecessors, some biases still remain, which might 
be due to the limitations in simulating the most frequent 
conditions (such as A and C types) and the transitions from 
one type into another.

3.3  LWT transition probabilities

In order to shed some light on the biases found, we inves-
tigate the transition probabilities from one type to another, 
which might explain the misrepresentation of the synoptic 
conditions and their frequencies by most GCMs already 
depicted in Fig. 4. The TPM of ERA-Interim (Fig. 5a) 
provides the reference fingerprint of the transitions among 
LWTs and the persistence probability of a given LWT (diag-
onal cells). As expected, the largest probabilities of remain-
ing in the same state are associated with the most frequent 
LWTs. In particular, more than 60% (50%) of the days with 

Fig. 4  Relative Bias of LWT 
frequencies for the different 
reanalyses and GCM experi-
ments (in rows: reanalyses in 
black, CMIP5 GCMs in red, 
CMIP6 GCMs in blue) for the 
four seasons (DJF, MAM, JJA 
and SON in columns). The rows 
are sorted following the ranking 
given by the annual KL Diver-
gence in Fig. 3 (the seasonal 
rankings are given in brackets). 
Crosses indicate statistically 
significant values following a 
Z-test of proportions (Sect. 2.3)
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type A (C) stay in the same LWT, followed by persistent 
SW, W, SE and E types (all above 30%). The most frequent 
transitions to a different state are from ANE, AN and ANW 
to A type and from CSE, CS, CSW to C type, all with prob-
abilities above 40%. ASE to SE and AS to S type complete 
the picture of most common transitions. This pattern is in 
general very similar in the remaining reanalyses used as 
alternative references, with the largest deviations occurring 
in ERA-20C (see Figs. A7 and A8 of the Electronic Sup-
plementary Material).

Overall, the ability of the GCMs to reproduce qualita-
tively the reference TPM regardless of the CMIP generation 
is remarkable (see example in Figs. 5b-c and also A9-A16 
in the Electronic Supplementary Material). All GCMs fin-
gerprints are able to capture fairly well the pattern of the 
reference ERA-Interim, although there are important depar-
tures in the magnitude of their probabilities in some cases. 
As a result, most GCMs fail to achieve the high persistence 
probabilities of the most frequent cyclonic and anticyclonic 
LWTs. In particular, attending to statistical significance of 

Fig. 5  Example of transition probability matrix (A) of Lamb Weather 
Types for ERA-Interim (a), the CMIP5 model IPSL-CM5A-LR (b) 
and its new version CMIP6 IPSL-CM6A-LR (c) for the historical 
period 1981-2010. Aij = p(Xt = j|Xt−1 = i) represents the probability 
of going from LWT in row i to LWT in column j. Therefore, the per-
sistence probability of a LWT can be found by looking at the diago-
nal of the matrix. Non observed transitions have been blanked to dif-
ferentiate them from low-probability ones. Transition probabilities 

significantly different from those observed in ERA-Interim, obtained 
from a two-proportions Z-Test (Sect. 2.3), are indicated by crosses. In 
addition, LWT transitions simulated by the model but not observed in 
ERA-Interim are indicated by empty circles. Likewise, solid circles 
indicate LWT transitions not simulated by the model, but that occur 
in ERA-Interim. The corresponding TPMS values attained against 
ERA-Interim are indicated in parenthesis in the titles of panels (b) 
and (c)
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their probabilities, the high persistence probability of the 
anticyclonic LWT is only adequately reproduced by a few 
models, namely CMIP5 EC-EARTH and HadGEM2-ES 
(Figs. A9 and A10 of the Electronic Supplementary Mate-
rial), and the CMIP6 models IPSL-CM6A-LR (Fig. 5c) and 
UKESM1-0-LL (Fig. A10 of the Electronic Supplementary 
Material). The persistence probability of the purely cyclonic 
LWT (the second most frequent in the historical record) is 
significantly reproduced by the CMIP5 models EC-EARTH, 
HadGEM2-ES, MPI-ESM-LR, as well as their CMIP6 coun-
terparts (Figs. A9, A10 and A13, respectively, Electronic 
Supplementary Material), CMIP5 CanESM2 (Fig. A15, left 
panel) and CMIP6 NorESM2-LM (Fig. A14, right panel).

The TPM information of each GCM (and reanalysis) is 
quantitatively summarized with the TPMS in Fig. 6. The 
improvement in the TPMS of CMIP6 over CMIP5 is espe-
cially remarkable for IPSL-CM6A-LR and GFDL-ESM4 
models. Both GCMs are able to capture more correctly the 
transition probabilities between the principal LWTs (such 
as A, C, SW or W types) than their CMIP5 counterparts, 
but not yet the persistence probabilities of A and C types 
(Fig. 5 and A16, Electronic Supplementary Material, respec-
tively). Interestingly, the TPMS spread associated with the 
observational uncertainty is much reduced in the case of 
the CMIP6 ensemble, pointing to a better general agree-
ment in their representation of atmospheric circulation, with 
the exception of two out-lying, poor-performing models, 
namely NorESM2-LM and CanESM5, which deteriorate in 
CMIP6 (Fig. 6). Although NorESM2-LM improves on the 
persistence probability of the cyclonic type, the transitions 
from CNE to C and from ASW to SW get worse in CMIP6 
(Fig. A14, Electronic Supplementary Material), in line with 
the reduced bias of C type in winter and the large biases 

found for SW type in spring and summer (Fig. 4). Simi-
larly, CanESM5 presents too persistent C type and too high 
transition probabilities from AW and SW to W (Fig. A15, 
Electronic Supplementary Material), which might be related 
to the overestimation of the frequencies of W type in winter 
and spring (Fig. 4).

As for the LWTs frequencies (Fig. 2), very similar TPMs 
are found for JRA ( TPMS = 0.71 ) and NCEP ( TPMS = 0.76 ) 
compared to ERA-Interim and a larger TPMS for ERA-20C 
( TPMS = 1.11 , see also Fig. A7 of the Electronic Supple-
mentary Material). The improved performance of CMIP6 
with respect to CMIP5 is independent of the reanalysis 
used as reference (Fig. 6), in line with the results of Cannon 
(2020). Overall, the differences due to the reference dataset 
are smaller than model and experiment uncertainties.

4  Summary and conclusions

The present work shows an evaluation of the last two genera-
tions of global climate models (CMIP5 and CMIP6) over 
Europe, in which their ability to represent the atmospheric 
circulation is assessed by means of the Lamb Weather Type 
Classification. A set of nine GCM pairs from CMIP5 and 
CMIP6 are evaluated with respect to four reanalysis prod-
ucts, in order to analyze the sensitivity of the results to the 
observational dataset. This qualitative, process-based evalu-
ation is intended to help in the design of future downscaling 
experiments, which are constrained by the boundary condi-
tions provided by GCMs.

A general improvement of CMIP6 over CMIP5 is found 
in terms of several statistics related to the simulated fre-
quencies of the LWTs and to their temporal sequences 

Fig. 6  Transition probability matrix scores (TPMS) attained by the 
CMIP5/CMIP6 models (red/blue symbols), considering as reference 
different reanalysis products. The results are presented as CMIP5-
CMIP6 GCM pairs, in ascending order of TPMS from left to right, 

attained by CMIP5 models and ERA-Interim as reference (solid cir-
cles). Boxplots on the right summarize the results for each individual 
observational reference (see legend symbol indicating the median) 
and CMIP project (color)
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(persistence probability and transition probability from one 
type to another). Well-performing GCMs in CMIP5 (e.g. 
EC-EARTH and HadGEM2-ES) also exhibit a good perfor-
mance in CMIP6. Large improvements are found for IPSL-
CM5A-LR and GFDL-ESM4, whereas important biases 
remain or move along the year in other CMIP6 GCMs (e.g. 
NorESM2-LM). Such remaining biases relate to their inac-
curacies in representing observed transition probabilities, 
that in general tend to occur for specific seasons. Overall, 
GCMs show a remarkable ability to represent transition 
probabilities between LWTs. Despite some significant differ-
ences for particular transitions, the GCM TPM fingerprints 
are generally able to faithfully represent the pattern of most 
likely transitions as represented by the reanalysis, even for 
the worse performing models. Furthermore, these results are 
consistent across reference reanalysis products (the extended 
evaluation results considering alternative reanalysis products 
are included in the Electronic Supplementary Material).

A general recommendation about the use of specific 
GCMs is difficult to make, since it depends on the applica-
tions of interest, which are usually focused on a given season 
or might be more sensitive to some weather types (e.g. those 
leading to extreme events in a particular area). In this sense, 
based on our results, a user could identify specific seasons 
and LWTs which particular GCMs fail to reproduce. This 
application-dependent selection is feasible for statistical 
downscaling. However, for dynamical downscaling a gen-
eral performance (all LWTs, all seasons) should be seeked.

While there is a general increase in spatial resolu-
tion and an integration of more complex components in 
CMIP6, these developments take place unevenly for each 
GCM. For instance, EC-EARTH which is a skillful CMIP5 
model improves upon most CMIP6 GCMs, partly due to its 
rather high resolution (Table 1). A substantial improvement 
is found for GFDL and IPSL in CMIP6, which have been 
developed at higher resolutions than their CMIP5 prede-
cessors. Conversely, CanESM and NorESM, which keep a 
coarse resolution in CMIP6 (the only ones above 2 ◦ ), dete-
riorate their TPMS in CMIP6. All the above suggests that 
the increase of spatial resolution is a factor of improvement 
in the representation of the atmospheric circulation in the 
GCMs. Previous studies also find that increasing horizon-
tal resolution of the GCMs leads to a large improvement in 
the model simulation of the main Euro-Atlantic wintertime 
weather regimes (Dawson et al. 2012; Strommen et al. 2019) 
and, particularly, Northern Hemisphere (D’Andrea et al. 
1998) and European winter blocking (Matsueda et al. 2009; 
Berckmans et al. 2013; Davini et al. 2017). The better per-
formance of higher resolution simulations can be attributed 
to the more realistic orography (Jung et al. 2012) and more 
realistic representation of Rossby wave breaking processes, 
which are known to be important in maintaining persistent 
anomalies (Woollings et al. 2008; Masato et al. 2012). A 

recent work based on results of the PRIMAVERA project 
(Fabiano et al. 2020) shows that the weather regimes tend to 
be more tightly clustered in the increased resolution simu-
lations, thus resembling more closely the observed ones. 
However, increased resolution does not improve all aspects 
in the same way. For instance, Fabiano et al. (2020) find an 
improvement of the spatial pattern, but limited impact on 
the frequency of occurrence and persistence of the weather 
regimes. While resolution stands as a relevant factor, it is 
not decisive, since some models (here CNRM, HadGEM, 
MIROC and MPI) improve on TPMS in CMIP6 even though 
they keep the same resolution. According to Dawson and 
Palmer (2015) the simulation of spatial and temporal aspects 
of weather regimes at low resolution can be significantly 
improved by the introduction of a stochastic physics scheme, 
highlighting the importance of small-scale processes on 
large-scale climate variability. Indeed further improvements 
are needed to remove remaining biases, for instance, better 
location of the winter blocking is associated with a realistic 
Gulf Stream sea surface temperature (O’Reilly et al. 2016).

We also show that observational uncertainty stands as a 
minor source of uncertainty compared to model and experi-
ment uncertainties. With this regard, our results are robust 
to the selected reference reanalysis and the improvement of 
CMIP6 over CMIP5 is independent of this choice (in agree-
ment with Cannon 2020).

Note that we did not take into account model internal 
variability in this study and we use observational uncer-
tainty as reference for substantive changes in the ability of 
the models to represent the circulation types. Other sources 
of uncertainty related to the LWT classification remain. For 
instance, the use of other temporal granularities, 12 UTC 
(Brands et al. 2014) or 6-hourly (Jones et al. 2013), different 
from daily-mean data for the LWT classification. This stands 
as another source of uncertainty and as a very interesting 
aspect to tackle in future work. Another aspect would be 
the position of the grid of 16 points considered for the LWT 
classification, which might shed light on location biases, 
not addressed in this study. Our results might be sensitive to 
the circulation classification algorithm used and, therefore, 
rankings, model performance and even CMIP6 quantitative 
improvements are particular for the Lamb Weather Types. 
Cannon (2020) also found an overall improvement in CMIP6 
models when using two objective classification algorithms. 
Thus, a qualitative improvement of CMIP6 is noteworthy 
regardless of the classification algorithm and evaluation 
metrics.
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