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Abstract
While ocean–atmosphere coupled models play an increasingly important role in weather-climate simulation and prediction, 
the predictability theory based on an atmosphere-only model has significant limitations in interpreting prediction results 
and guiding predictability studies. Here we use a conceptual ocean–atmosphere coupled model that describes the typical 
interactions of a synoptic-scale atmosphere with a seasonally-interannually varying upper ocean as well as a deep ocean that 
varies on decadal timescales to systematically study the predictability of a coupled system. Moving from an atmosphere-
only system to an ocean–atmosphere coupled system, the initial-value predictability problem becomes a joint initial-value 
and boundary-value problem. Although the coupling process increases the uncertainties of the boundary, ocean signals with 
longer timescales are added to the atmosphere system, thus increasing its predictability. We then investigate the predict-
ability characteristics of the National Centers for Environmental Prediction coupled Climate Forecast System (CFS) and 
the uncoupled Global Ensemble Forecast System (GEFS). In the coupled CFS system, the practical predictability limit of 
the lower troposphere is significantly longer than in the uncoupled GEFS due to the contribution of low-frequency bound-
ary signals from air-sea interactions. While further deep and thorough examination is necessary for understanding ocean 
predictability in the climate system, a preliminary discussion for the predictability of the upper and deep oceans within a 
coupled ocean–atmosphere framework is also presented in this study.
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1  Introduction

Thompson (1957) and Lorenz (1963) first proposed the pre-
dictability limit of deterministic systems, and since then the 
predictability of the atmosphere has been extensively studied 

using theoretical, numerical, and statistical models (Chou 
1989; Simmons and Hollingsworth 2002). In particular, the 
study of error growth and propagation has become an impor-
tant part of predictability theory (Dalcher and Kalnay 1987; 
Farrell 1990; Palmer 2006; Li and Wang 2008). The ocean 
and atmosphere, as nonlinear dynamical systems, have com-
plex deterministic features that are sensitive to initial values 
and boundary conditions. It has long been recognized that 
the upper limit of weather predictability for the synoptic and 
larger scales is about 2 weeks (Lorenz 1965).

In previous studies, Lorenz (1969) sought to calculate the 
predictability limit by using the doubling time of an initial 
infinitesimally small error in the model, but more recent 
research has shown that such a method has a dependence 
on the numerical model used (Dalcher and Kalnay 1987; Li 
et al. 2000). The Lyapunov exponent is a physical quantity 
to measure the long-term average exponential divergence or 
convergence of initial nearby orbits in phase space, which 
can estimate the mean growth rate of the initial infinitesi-
mal error (Oseledec 1968). The nonlinear local Lyapunov 
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exponent (NLLE; Ding and Li 2007; Li et al. 2008; Li and 
Wang 2008; Li and Ding 2011) was introduced to quantita-
tively measure the predictability limits of nonlinear systems. 
Using reanalysis data, local dynamical analogs (LDA) are 
applied to study the predictability limits of the geopoten-
tial height, vector wind field, and sea surface temperature. 
(SST; Li and Ding 2011, 2013, 2015). However, the NLLE 
method cannot overcome the uncertainties associated with 
numerical prediction models. According to the definition 
of atmospheric attractors, Li et al. (2018) proposed two 
invariant statistical quantities, the attractor radius (AR) and 
the global attractor radius (GAR), to define the geometric 
characteristics, average behavior of a chaotic system and 
its error growth. Moreover, GAR measures the average dis-
tance between two randomly selected states on an attractor, 
while AR quantifies the average distance of all states on the 
attractor from the average state. Both the AR and GAR are 
intrinsic properties of a chaotic system and independent of 
the forecast model and model errors, and thus provide more 
accurate, objective threshold to assess the global predictabil-
ity limits of forecast models. Feng et al. (2019) used the AR 
and GAR to study the predictability limits of deterministic 
and ensemble mean forecasts, focusing on quantifying the 
relationship between forecast errors, especially in individual 
prediction cases.

The ocean and atmosphere are coupled dynamically 
and thermodynamically by the exchange of fluxes, includ-
ing heat, freshwater and momentum fluxes, at the air-sea 
interface (Webster and Lukas 1992; Saenko et al. 2002). 
An atmospheric general circulation model (AGCM) simu-
lates the atmosphere using a specified SST, while a coupled 
general circulation model (CGCM) couples an AGCM and 
an oceanic general circulation model (OGCM). Some pio-
neering works (Nese and Dutton 1993; Nese et al. 1996) 
recognized that the average predictability is significantly 
improved when an ocean circulation is coupled to the atmos-
phere. There is large literature discussing predictability of 
the atmosphere induced by boundary conditions, especially 
in the tropics (Charney and Shukla 1981; Shukla 1998; 
Palmer 1994; Reichler and Roads 2003; Bach et al. 2019). 
Boundary conditions can provide long-term predictability in 
the tropics, because baroclinic instability is less significant 
there (Charney and Shukla 1981). Shukla (1998) found that 
the flow and rainfall of the tropical atmosphere are more 
deeply influenced by SST than the extratropical atmosphere. 
Bach et al. (2019) used SST and low-level atmospheric vari-
ables to calculate the detailed spatial structure of ocean-to-
atmosphere predictability. The ocean improves the atmos-
phere predictability most significantly in the tropics.

Moving from an AGCM to a CGCM, the initial-value 
predictability problem becomes a joint initial-value and 
boundary-value problem, so evaluating the effect of bound-
ary conditions on the predictability limit of the atmosphere 

remains a crucial issue. This study attempts to examine 
quantitatively the practical predictability limits and decor-
relation limits of the atmosphere in a CGCM system using 
the AR and GAR, compared with an AGCM.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the methodology, including simple con-
ceptual coupled models and AR methods, as well as the 
CGCM and AGCM reanalysis and prediction data used 
in this study. Section 3 first systematically examines the 
predictability of the atmospheric and oceanic variables in 
simple conceptual coupled models using AR methods, and 
then derives the theory of the practical predictability limit of 
the ocean–atmosphere coupled system. Section 4 analyzes 
the global practical predictability limits of both the coupled 
Climate Forecast System (CFS) and the uncoupled Global 
Ensemble Forecast System (GEFS), illustrating the influ-
ence of low-frequency signals in a coupled system on the 
predictability limit. Finally, a summary and discussion are 
given in Sect. 5.

2 � Model, methodology, and data

2.1 � Conceptual coupled model

Lorenz (1963) proposed a simple model with only three vari-
ables to represent the chaotic characteristics of the atmos-
phere. The uncoupled Lorenz63 model cannot reflect the 
coupling processes between the atmosphere and the ocean. 
Zhang et al. (2011) added a slowly changing variable w, 
which is coupled with the Lorenz 3-variable (x, y, and z are 
the high frequency variables of atmosphere) chaotic model 
to simulate the interaction of the fast system with the slow 
upper ocean. We call this the 4-variable coupled model 
(4VCM):

At the same time, Zhang (2011) derived a conceptual 
pycnocline prediction model, which added the deep ocean 
pycnocline (η) on the 4VCM. We call this a 5-variable cou-
pled model (5VCM):

where setting the external forcing as Sm + Ss cos (2πt/Spd) 
simulates the constant and seasonal forcing for the “climate” 

(1)

ẋ = −𝜎x + 𝜎y

ẏ = −xz + (1 + c1w)𝜅x − y

ż = xy − bz

Omẇ = c2y − Odw + S(t)

(2)

ẋ = −𝜎x + 𝜎y

ẏ = −xz + (1 + c1w)𝜅x − y

ż = xy − bz

Omẇ = c2y + c3𝜂 + c4w𝜂 − Odw + Sm + Ss cos(2𝜋t∕Spd)

Γ𝜂̇ = c5w + c6w𝜂 − Od𝜂
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system. The ``ocean’’ can get the energy from the external 
forcing when the linear damping -Odw dissipate energy con-
tinuously. The parameters Spd, Sm and Ss define the period 
of seasonal cycle, the magnitudes of the annual mean and 
seasonal cycle of the forcing respectively  Zhang (2011). 
described the values of the model parameters in detail. 
Using a fourth-order Runge–Kutta time stepping scheme 
with Δt = 0.01 dimensionless time units (TU), where 1 TU 
is the time taken for the model to pass through an attrac-
tive lobe, the model is specified with parameter values: 
(�, �, b, c1, c2, Om, Od, Sm, Ss, Spd, Γ, c3, c4, c5, c6) = (9.95,.
28, 8∕3, 10−1, 1, 10, 1, 10, 1,10, 100, 10−2, 10−2, 1, 10−3) . 
The model is spun up for an initial 104 TU starting from 
(x, y, z, w, �) = (0, 1, 0, 0, 0).

2.2 � Attractor radius and global attractor radius

Li et al. (2018) proposed an attractor theory to measure the 
predictability of nonlinear dynamical systems. Three statis-
tical quantities are used to describe the attractor: Attractor 
radius (AR), Global attractor radius (GAR) and Global aver-
age distance (GAD). First, consider x to be the state column 
vector on a compact attractor, the average root-mean-square 
distance between any point in the attractor and the center of 
the attractor is defined as the attractor radius (AR, RE) of a 
compact attractor Θ1:

where E is the expectation of the time series and ‖·‖ is the 
L2-norm of a vector.

Second, the global attractor radius (GAR, RG) represents 
the average root-mean-square distance between any two 
points in the attractor:

where x and y are two randomly selected state vectors from 
Θ1. There is a constant proportional relationship between 
RG and RE of a compact attractor Θ1: RG=

√
2RE . It is also 

consistent with the conclusions in Kalnay (2002). Third, the 
global average distance (GAD) between two attractors can 
be calculated from the AR:

where xE (yE) is referred to as the center of the compact 
attractor Θ1 (Θ2). And d (xE, yE) is defined as the distance 
between the mean states of Θ1 and Θ2.

While the detailed and exhaustive mathematical derivations 
can be referred to the aforementioned literature (Li et al. 2018), 

(3)RE =

�
E(‖x − E(x)‖2) , x ∈ Θ1,

(4)RG =

�
E(R2

L
) =

�
E(‖x − y‖2), x, y ∈ Θ1

(5)RG(Θ1,Θ2) =

�
E(‖x − y‖2) =

�
R2
E
(Θ1)+R

2
E
(Θ2) + d2(xE, yE), x ∈ Θ1, y ∈ Θ2

thus we mainly comment on the computational implementa-
tion. For a real n-dimensional nonlinear dynamical system,

where x and F are n-dimensional nonlinear column vec-
tors. Since the forecast model error can’t be ignored, the 
dynamical system is redefined as dx(t)∕dt = F̃(x(t)) . Let Θ 
and ΘM correspond to the attractor of the real system and 
its approximate forecast model. Typically, they are different 
and thus their predictabilities are also different. x(t)and y(t) 
are fiducial orbits on Θ and ΘM, respectively. For an imper-
fect model, there are both initial error and model error in 
forecasting. And the initial value y0 = x0 + �0 , where �0 is a 
small initial error. Then, we can measure the RMSE between 
x(t) and y(t),

For global predictability, the global ensemble average of 
error growth can be defined as.

where ⟨⟩N→∞ denotes the ensemble average of all samples of 
sufficiently large number N. For the chaotic system, as the 
integral step increases, eM(�0, t) will converge to the error 
saturation.

According to the definition of GAD in Eq. (5), it’s the 
expectation of the RMS distance between two different attrac-
tors. Hence, the global ensemble RMSE between the real 
attractor Θ and the model attractor ΘM tends to the GAD with 
time. However, the GAD cannot directly be used as an objec-
tive threshold to determine the predictability limit, because the 
forecast model has associated model errors. Following the 
definition of GAD, to avoid the effect of the model errors, let 
Re = min(RE(ΘM),RE(Θ)) , and Rg = min(RG(ΘM),RG(Θ)) , 
then the global practical predictability limits ( TM

pr
 ) and decor-

relation limits ( TM
de

 ) of the forecast model are determined by.

where TM
pr

 is the time at which the error reaches the satura-
tion value Re, and TM

de
 is the time at which the error reaches 

the saturation value Rg.

(6)dx(t)∕dt = F(x(t))

(7)eM(x0, �0, t) =∥ �M(t) ∥=∥ y(t) − x(t) ∥, x ∈ Θ, y ∈ ΘM

(8)

eM(�0, t) =

√⟨
e2
M
(x0, �0, t)

⟩
N→∞

=

√

∫Θ

e2
M
(x(t0), �(t0), t)dx

(9)eM(𝛿0, t)|t<TM
pr
< Re and eM(𝛿0, t)|t=TM

pr
=Re

(10)eM(𝛿0, t)|t<TM
de
< Rg and eM(𝛿0, t)|t=TM

de
=Rg
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The global ensemble average of error growth (Eq. (8)) 
tends to a saturation value, which depend on model error. In 
most studies, the predictability limit has been defined as the 
time when the forecast error exceeds 95% of the saturation 
value. This means that the saturation value of forecast error 
depends on the used numerical model, and thus is not an 
objective threshold to quantify and compare the predictabil-
ity limits between different models. In contrast, the AR and 
GAR is calculated using the ‘perfect’ model as an objective 
threshold, which only depend on the real attractor described 
by the ‘perfect’ model and are not affected by model drift. 
Thus, the AR and GAR are more suitable metrics to measure 
the predictability limit of a forecast model.

When the forecasting error has surpassed the AR but has 
not yet reached the GAR, the single model has lost its fore-
casting skill compared with the climate mean states. Leith 
(1974) suggested that the error variance of a single deter-
ministic forecast is twice that of a climate prediction in the 
long-range forecast. The anomaly field is used to calulate 
a final best estimate of the state of the atmosphere using a 
linear regression of dynamic forecasting. Hence, the range 
of prediction error between AR and GAR is still related to 
predictability. Meanwhile, Feng et al. (2019) pointed out 
that the forecast error asymptotes to a saturation value of the 
GAR in a single forecast, while the error saturation level will 
be the AR in an ensemble forecast. This result is consistent 
with the conclusions in Leith (1974) and Kalnay (2002). In 
this work, we only use the single forecast data to study the 
deterministic forecast.

2.3 � Data for the atmosphere‑only and coupled 
model forecasts

In addition to the three simple models, the 45-day refore-
casts of the Climate Forecast System (CFS) and the 35-day 
reforecasts of the Global Ensemble Forecast System (GEFS) 
are used to study the predictability limit of earth system 
models. This makes it possible to extend the results from 
simple conceptual models to operational forecasting models. 
Details of the CFS and GEFS models are given in Table 1.

The GEFS and CFS data are the medium- and long-range 
meteorological forecasts produced by NCEP, respectively. 

CFS is produced by a fully coupled model that represents 
the interaction between the ocean and atmosphere, while the 
GEFS is produced by an uncoupled model. We use a com-
mon period (1999–2010) of the CFS and GEFS reforecast 
datasets (note that only the control forecast of the GEFS 
system is used). The prediction results are verified by using 
the 00Z initial conditions of NCEP Climate Forecast system 
reanalysis (CFSR) from Jan 1999 to Dec 2010. When we 
calculated the AR and GAR using the CFSR, the annual 
cycle of the time series has been removed.

3 � Results of the conceptual coupled model

3.1 � Uncertainties in coupled vs. uncoupled systems

AR being the expected RMSE if the mean state of the attrac-
tor is chosen as a predictor, while GAR is the expected 
RMSE if a random point is chosen. Compared with the 
standard deviation (SD), AR has the same form to measure 
the variability of variables. AR (GAR) is objective threshold 
to determine the practical predictability limits and decor-
relation limits of a forecast model. Table 2 lists the AR and 
GAR for the variables x, y, z and the vector (x, y, z) in the 
Lorenz63, 4VCM, and 5VCM perfect models. The results 
reveal that the 5VCM has the largest values of AR and GAR 
for three atmospheric variables in these models. As more 
coupling processes are added, the natural variability of the 
chaotic system gradually increase.

The predictability limit is affected by the magnitude of 
initial errors (Ding and Li 2007). Figure 1a gives the fore-
cast RMS error statistics of the vector for three atmospheric 
variables for these three simple conceptual models. Based 
on the perfect models of Lorenz63, 4VCM, and 5VCM, a 
set of initial errors with magnitudes 10–2, 10–3, 10–4, 10–5, 
10–6, and 10–7 is generated with white noise superimposed 
on the atmospheric variables (x, y, z) of the unperturbed 
run to produce a set of initial conditions (total of 2 × 107). 
Forecasts for 50 TUs are then carried out. Figure 1b shows 
the global practical predictability limit (Tpr) of these three 
perfect conceptual models. As the magnitude of the initial 
errors decreases, the practical predictability limit increases. 
For a given magnitude of initial errors, it is clear that the 
practical predictability limit of the5VCM is shorter than that 

Table 1   Some details about CFS and GEFS

CFS GEFS

Model Coupled Uncoupled
Frequency 6 h Once a week
Period 1999.01–2010.12 1999.01–2016.12
Variable Geopotential Height in 850-hPa, 500-hPa, 

200-hPa
Forecast days 45 days 35 days

Table 2   The AR (GAR) of the variables x, y, z and the vector (x, y, z) 
in different simple conceptual models

Model x y z x–y–z

Lorenz63 7.92(11.21) 9.01(12.74) 8.62(12.19) 14.78(20.90)
4VCM 11.63(16.45) 14.48(20.47) 13.90(19.65) 23.19(32.80)
5VCM 12.07(17.07) 15.26(21.58) 14.61(20.67) 24.33(34.41)
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of the 4VCM, and the Lorenz63 model has the maximum 
predictability limit. In the 4VCM and 5VCM, the initial 
error superimposed on the atmospheric variable is gradu-
ally introduced into the ocean through a forcing term from 
the ‘atmosphere’ (c2y). In return, the error growth of the 
ocean component accelerates the error amplification of the 
atmosphere component. Finally, the practical predictability 
limit decreases with the increase of variables.

According to the AR theory, the global practical predict-
ability limit Tpr can be regarded as the objective criteria to 
measure the time when model forecasts have skill. Meehl 
et al. (2014) point out that predictability is the ability that 
a system signal can be predicted rather than the ability of 

current human being to predict some feature or quantity. 
Hence, we also use the NLLE (Ding and Li 2007; Li and 
Ding 2011) method to calculate the intrinsic predictability 
limits of those three perfect conceptual models based on 
their chaotic error growth. The intrinsic predictability limit 
is defined as the timescale on which the error reaches 98% 
of its saturation level (Li and Ding 2011). Figure 2 shows 
the intrinsic predictability limit of vector (x, y, z) using the 
NLLE method, which is consistent with the Tpr in Fig. 1. The 
5VCM has the maximum error saturation, while the Lor-
enz63 has the minimum error saturation. The predictability 
limits for the Lorenz63, 4VCM, and 5VCM models of the 
vector (x, y, z) are 13.69, 10.07, and 9.50, respectively, while 

Fig. 1   a Time series of global 
ensemble mean RMSE of vector 
(x, y, z) in different simple mod-
els and the magnitude of initial 
errors. The magnitudes of initial 
perturbation are 10–2, 10–3, 10–4, 
10–5, 10–6, and 10–7, from left 
to right with same color. The 
solid line and the dashed line 
represent the corresponding 
GAR and AR of each model. b 
Global practical predictability 
limit Tpr of those three models 
with respect to initial error. The 
red, blue and green colors cor-
respond to the Lorenz63, 4VCM 
and 5VCM models

Fig. 2   a Time series of the 
error growth of vector (x, y, z) 
in different simple models as 
estimated by NLLE. b Predict-
ability limit of those three 
models of Lorenz63, 4VCM and 
5VCM. The red, blue and green 
colors correspond to these three 
models
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the average initial error of those three models are 10–2,10–1 
and 10–1.

It is of great significance to objectively measure the 
forecasting skills of operational forecast systems and pro-
vide guidance for their development. As stated by Li et al. 
(2018), the AR method is more suitable than the NLLE to 
quantitatively measure the time when model forecasts have 
skill. And compared with the asymptotic value (AV), the 
AR method has the advantage that it can objectively use a 
criterion to measure the practical predictability limit instead 
of using forecast models that have a strong dependence on 
model errors. Hence, we will only use the AR method to 
measure the time when model forecasts have skill in the 
following research.

3.2 � Predictability of coupled vs. uncoupled systems

When an uncoupled model is developed as a coupled model, 
the initial-value predictability problem becomes a joint ini-
tial-value and boundary-value problem. Here we assume that 
the 5VCM includes ‘perfect’ coupling processes between 
the ‘atmosphere’ and ‘ocean’ of the ‘real world.’ Let Θ and 
ΘM correspond to the attractor of the perfect 5VCM and its 
imperfect model with missing one or more coupling pro-
cesses. Then, we’ll measure how well the imperfect model 
can predict the 5VCM.

To compare the effects of coupling processes on the pre-
dictability limit, several sets of experiments are designed, 
as listed in Table 3. By changing the equations of both w 

and η in 5VCM, the first four experiments are designed to 
study the impact of the coupling mechanism on the predict-
ability limit of the vector (x, y, z). The interaction between 
the slab ocean and the deep ocean pycnocline is ignored 

Table 3   The control equations of simple models from Case1 to Case7

Model Equations for low frequency 
variables

Equations for high fre-
quency variables

Case1 w = 11.3854

� = 0

ẋ = −𝜎x + 𝜎y

ẏ = −xz + (1 + c
1
w)𝜅x − y

ż = xy − bz
Case2 ẇ = (c

2
y + c

3
𝜂 + c

4
w𝜂 + odw

+Sm + Ss cos(2𝜋t∕Spd))

𝜂 = 0

Case3 ẇ = (c
2
y + c

3
𝜂 + c

4
w𝜂 + odw

+Sm + Ss cos(2𝜋t∕Spd))∕Om

𝜂 = 0

Case4 ẇ = (c
2
y + c

3
𝜂 + c

4
w𝜂 + odw

+Sm + Ss cos(2𝜋t∕Spd))∕Om

𝜂 = (c
5
w + c

6
w𝜂 − Od𝜂)Γ

Case5 ẇ = (c
2
y + c

3
𝜂 + c

4
w𝜂 + odw

+Sm + Ss cos(2𝜋t∕Spd))∕Om

𝜂 = 0

Case6 ẇ = (c
2
y + c

3
𝜂 + c

4
w𝜂 + odw

+Sm + Ss cos(2𝜋t∕Spd))∕Om

𝜂 = c
5
w + c

6
w𝜂 − Od𝜂∕Γ

Case7 ẇ = (c
2
y + c

3
𝜂 + c

4
w𝜂 + odw

+Sm + Ss cos(2𝜋t∕Spd))∕Om

𝜂̇ = c
5
w + c

6
w𝜂 − Od𝜂∕Γ

ẋ = −𝜎x + 𝜎y

ẏ = −xz + (1 + c
1
w)𝜅x − y

ż = xy − bz

Fig. 3   Time series of (a) the 
upper-ocean variable w (black 
line) and (b) the deep ocean 
pycnocline depth anomaly η 
(black line) in the 5VCM. The 
red dashed line represents the 
corresponding mean value of 
each variable
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in experiment Case1, where w is regarded as a mean value 
of the time series (w = 11.3854), calculated by the ‘perfect 
model’ (Fig. 3a). This experiment represents an atmosphere 
forced by constant bottom boundary conditions in an uncou-
pled model. In Case2, we retain the interaction between the 
high-frequency variables and the slab ocean, but neglect 
the impact of the deep ocean pycnocline. Based on Case2 
(η = 0), the η value is replaced by the climatological mean 
11.5196 to form Case3 (Fig. 3b). Case4 is a series of pertur-
bation experiments, with initial errors of magnitudes from 
10–2 to 10–7 superimposed on the initial conditions of the 
control run (or ‘truth’ run) to calculate the growth of forecast 
RMSEs, as in Sect. 3.1.

Figure 4a shows the forecast RMS error statistics of the 
vector for three atmospheric variables between perturbed 
runs and the control run. The global practical predictability 
limit (Tpr) of the forecast model is shown in Fig. 4b. The 
first three experiments represent the influence of boundary 
conditions on the predictability limit. The global practi-
cal predictability limits for three atmospheric variables in 
Case1, Case2, and Case3 are 0.84, 3.73, and 6.43, respec-
tively. As the boundary conditions become more and more 
accurate, the global practical predictability limit of the non-
linear dynamical system increases significantly. The Case4 
experiments reflect the impact of initial errors with differ-
ent magnitude. From Case4-1 to 4–6, the global practical 
predictability limits for three atmospheric variables are 
4.44, 6.05, 7.68, 9.29, 10.94, and 12.55, respectively. When 
the magnitude of the initial error is smaller than 10–3, the 

predictability limit of the initial-value is longer than that of 
the boundary-value.

The last three experiments (Case5, Case6, and Case7) 
in Table 3 are designed to study the predictability of the 
slab ocean w. In Case5 and Case6, the equations of high-
frequency variables are different from the ‘real model’ 
since we set c1wκx = 0, meaning that the atmosphere is not 
affected by the bottom boundary condition. Consequently, 
the ‘ocean’ components in these two experiments look like 
an ocean-only model which has forcing from the atmosphere 
but without feedback to the atmosphere. In Case5, we ignore 
the influence of the deep ocean pycnocline by setting η = 0, 
while the interaction between the slab ocean and the deep 
ocean pycnocline is retained in Case6. Case7 is designed as 
the coupled model to study the initial-value predictability 
for w, just as in Case4.

Figure 5a shows the forecast RMS error statistics of w 
for the imperfect model relative to the ‘real model’, and the 
global practical predictability limit of the forecast model is 
shown in Fig. 5b. The global practical predictability limit of 
the variable w is 1.92 in Case5 and 1.94 in Case6. Compared 
with the Case7, the predictability limit of the initial-value 
problem is longer than that of the boundary-value problem 
when the upper boundary forcing is closed.

From an atmosphere-only system to an ocean–atmos-
phere coupled system, the initial-value predictability prob-
lem becomes a joint initial-value and boundary-value. Both 
boundary conditions and initial conditions can affect the 
predictability of the system. Improving the accuracy of the 

Fig. 4   a Time series of global 
ensemble mean RMSE of vector 
(x, y, z) between the 5VCM 
‘real model’ and imperfect 
model. The yellow, green, red, 
and blue lines correspond to 
the Case1, Case2, Case3, and 
Case4. Especially the magni-
tudes of initial perturbation are 
10–2, 10–3, 10–4, 10–5, 10–6, and 
10–7, from left to right with 
blue color. The solid line and 
the dashed line represent the 
corresponding GAR and AR 
of the 5VCM ‘real model’. b 
Global practical predictability 
limit Tpr of the vector (x, y, z) 
with respect to model errors 
or initial errors. The Case1, 
Case2 and Case3 represent the 
influence of model errors, while 
the Case4 reflect the impact of 
initial errors. The magnitudes 
of initial perturbation are 10–2, 
10–3, 10–4, 10–5, 10–6, and 10–7 
from Case4-1 to Case4-6
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boundary conditions and reducing the initial errors of the 
models are key to improving forecasting skills in the future.

4 � Results of CGCM predictions system

4.1 � Practical predictability limit of CFS vs. GEFS

From the results of simple conceptual models, we learned 
that the predictability limit of coupled models is longer than 
that of uncoupled models. However, we still need to examine 
operational forecasting systems to further validate conclu-
sions and understand the mechanisms. We first compare the 
CFS and GEFS data to verify the conclusions and use CFSR 
data to verify the forecasts and calculate the AR. According 
to the AR theory, first, we assume that the "true" state is 
described by the NCEP CFSR. Then the prediction results 
are verified by using CFSR to get the global mean RMSE. 
In the following, the AR and GAR are calculated using the 
CFSR. And the AR is an objective threshold to determine 
the practical limits of different models, where AR is inde-
pendent of the model errors and initial errors.

Figure 6 illustrates the spatial distribution of the AR of 
the geopotential height (GHT) at 850-hPa, 500-hPa, and 
200-hPa from Jan 1999 to Dec 2010. The AR of CFSR 
appears to have a regional characteristic on various pressure 
levels, with a maximum over mid-latitudes in the Southern 
Hemisphere (SH), and the lowest values over the tropics. 
Meanwhile, the spatial distribution of the AR is consistent 
with the trough and ridge positions in the Northern Hemi-
sphere (NH). The centers of the maximum AR are observed 

at the positions of the East Asian trough, the North Ameri-
can trough, and the European trough. Baroclinic instability 
is generally negligible in the tropics, where barotropic and 
convective instabilities and their interactions are dominant. 
In the midlatitudes, baroclinicity is the dominant instability 
responsible for the growth of small errors at the synoptic 
(weather) scales. The existence of storm tracks over the 
midlatitudes explains the higher variability in these regions.

Theoretically, the model attractor radius should be cal-
culated using the model long free forecasts. But we can-
not get sufficiently long free forecast time-series of the 
model. Considering that the reforecast frequency of GEFS 
is once a week, we use the first 7 days of each forecast 
case to form a continuous time series as the model long 
free forecasts to calculate the model attractor radius. And 
the model attractor radius for CFS is calculated similarly. 
The model attractor radius of CFS and GEFS are greater 
than the real AR in most areas on these three levels (not 
shown).

Figure 7 shows the spatial distribution of the mean prac-
tical predictability limit of CFS and GEFS at three pres-
sure layers. In Fig. 7a, the practical predictability limits of 
the CFS at 850 hPa appear to have a regional characteris-
tic; there are many maximum or minimum centers, with a 
maximum of 11–13 days over the Western Pacific Warm 
Pool area and a lowest limit of 2–3 days in the Andes, the 
Tibetan Plateau, and the Sahara. However, the practical pre-
dictability limits of the GEFS at 850 hPa have a significant 
difference (Fig. 7b), with 9–11 days over the North Pacific 
and of 3–7 days over the tropics. The zonal mean variation 
of practical predictability limits with latitude shows that the 

Fig. 5   Same as in Fig. 4, but 
for the variable w in the Case5, 
Case6, and Case7. The yellow, 
green, and blue lines correspond 
to the Case5, Case6, and Case7. 
The magnitudes of initial 
perturbation are 10–2, 10–3, 
10–4, 10–5, 10–6, and 10–7 from 
Case7-1 to Case7-6
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practical predictability limits of CFS over the tropics are 
significantly longer than those of GEFS (Fig. 7c).

As shown in Fig. 7d, the practical predictability limits of 
500 hPa GHT in CFS appear to have a zonal distribution. 
The practical predictability limits of 500 hPa GHT in CFS 
appear to be highest over the NH midlatitudes. However, rel-
atively low predictability of GHT is observed over the trop-
ics between 10°S and 10°N. In contrast, the practical pre-
dictability limits of the GEFS have a significant difference 

(Fig. 7e), with 10–12 days over the tropics, especially in 
the central equatorial Pacific. Over the NH mid–high lati-
tudes, the practical predictability limits can reach 9–11 days. 
Predictability limits of geopotential height on 200 hPa are 
markedly longer than those on 500 hPa over the middle-east 
equatorial Pacific Ocean.

Figure 8 shows the difference in the practical predict-
ability limit of GHT between CFS and GEFS. CFS has 
longer practical predictability limit than GEFS at 850 hPa 

Fig. 6   Spatial distribution of 
(left) the AR of the GHT from 
Jan 1999 to Dec 2010 and 
(right) their zonal mean profiles. 
Upper, middle, and lower panels 
are for 850-hPa, 500-hPa, and 
200-hPa, respectively
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over the tropics (Fig. 8a), while GEFS is more predictable 
than CFS at 500 hPa and 200 hPa (Fig. 8b, c). From 500 to 
200 hPa, the difference between GEFS and CFS increased 
significantly in the tropics, especially over the middle-east 
equatorial Pacific Ocean. However, coupling process has a 
limited effect on the practical predictability limit in mid-
high latitudes.

The spatial distribution of practical predictability limits 
on 200 hPa varies with the season (Fig. 9). In the boreal 
spring, the practical predictability limit of both GEFS and 
CFS in the Northern Hemisphere is significantly longer 
than in the southern hemisphere. The situation in the boreal 
autumn is the reverse of that in the boreal spring. For those 
four seasons, there is little difference in the practical predict-
ability limit of the zonal mean between CFS and GEFS over 
the mid-high latitudes. But GEFS is more predictable in the 
tropics than CFS, especially in boreal spring. In the boreal 
spring, the 200-hPa practical predictability limits over the 
middle-east equatorial Pacific Ocean of GEFS can be more 
than 22 days. And the seasonal difference of the practical 

predictability limits between CFS and GEFS are shown in 
Fig. 10. The practical predictability limits of GEFS have 
similar distributions to those of CFS, but with much higher 
values over the tropics, especially over the middle-east equa-
torial Pacific Ocean. It is worth noting that the difference 
in the practical predictability between two models over the 
tropics varies with the seasons: increasing in the winter and 
reaching its peak in spring, then decreasing and achieving 
its minimum in autumn finally.

As shown in Figs. 7 and 9, the CFS has longer practical 
predictability limit than GEFS at 850 hPa over the tropics, 
while it is opposite at higher levels. The tropical oceans 
are crucial for large-scale ocean–atmosphere interactions, 
and have a profound impact on global climate variability. 
As the bottom boundary conditions of the atmosphere, the 
low-frequency signals generated by the ocean–atmosphere 
interaction can extend the predictability limits.

Previous studies have shown that the ocean has an 
important effect on the predictability of the lower atmos-
phere (Bach et al. 2019; Kumar et al. 2013; Peña et al. 

Fig. 7   Spatial distribution of the practical predictability limit of GHT 
for CFS (left panel) and GEFS (right panel). The black and red lines 
in the middle panels of zonal mean profile are practical predictability 

limit of CFS and GEFS, respectively. Upper, middle, and lower pan-
els are for 850-hPa, 500-hPa, and 200-hPa, respectively
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2003; Wu and Kirtman 2007). Bach et al. (2019) found 
that the ocean improves predictions of the low-level 
atmosphere most significantly in the tropics, which is con-
sistent with our results on 850 hPa. As Pegion et al. (2019) 
pointed out, the uncoupled atmosphere model could have 
higher predictability than a coupled atmosphere model 
with the ocean if the atmosphere model itself has a larger 
model error. They compared the 2-m temperature and pre-
cipitation with five coupled models and two uncoupled 
models using sub-seasonal prediction experiments. Their 
results show that the prediction skill of 2-m temperature 
of GEFS is better than that of all other models. Thus, we 
believe that there are two reasons for the difference in the 
predictability between CFS and GEFS over the tropics: 

coupling processes and atmosphere model. We will discuss 
these two points in details next.

First, the CFS is a coupled model. A complete reforecast 
of CFS have been made with the T126L64 GFS with half-
hourly coupling to the ocean (MOM4 at 1/4° equatorial, 1/2° 
global) (https​://www.ncdc.noaa.gov/data-acces​s/model​-data/
model​-datas​ets/clima​te-forec​ast-syste​m-versi​on2-cfsv2​). 
But GEFS is an uncoupled model. In the Environmental 
Modeling Center (EMC)-GEFS forecast system, SSTs are 
specified by relaxing the SST analysis to a combination of 
climatological SST and bias-corrected SST from operational 
NCEP-CFSv2 forecasts. The longer the lead time, the more 
weight given to the bias-corrected NCEP-CFSv2 forecast 
SST (Pegion et al. 2019).

Fig. 8   Difference (CFS–GEFS) 
in the practical predictability 
limit of GHT (left panels) 
between CFS and GEFS and 
their zonal mean profiles (right 
panels). Upper, middle, and 
lower panels are for 850-hPa, 
500-hPa, and 200-hPa, respec-
tively

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
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Second, the GEFS atmosphere model has better perfor-
mance than the CFS atmosphere model. The 35 days refore-
casts of GEFS used the new operational Global Ensemble 
Forecast System version (GEFS; version11). In contrast to 
the atmospheric component of the CFS, there are several 
advantages in version11 (Zhou et al. 2017), including: (1) 
improved initial perturbations using an ensemble Kalman 
filter (EnkF) data assimilation system; (2) increased hori-
zontal resolution to TL574(34 km)L64 in the first 192 h for 
weather, to better represent the interaction around multiple 
scales; (3) Eulerian dynamics is replaced with two time-
level semi-implicit semi-Lagrangian dynamic  Zhou et al. 
(2017). found that the RMSE of 500-hPa geopotential height 
in the new GEFS version (v11) is significantly smaller in the 
Northern Hemisphere than the old version.

Although the new GEFS version (v11) outperformed the 
T126L64 GFS in the geopotential height, the coupling process 
in the lower atmosphere results in a higher predictability limit 
of CFS than GEFS, especially in equatorial regions. However, 
in the middle and upper atmosphere, the coupling process has 
a smaller impact on the atmosphere, while the atmosphere 
model errors play an important role in the forecasting. As a 
result, at 200 hPa and 500 hPa, the practical predictability 
limit in GEFS over the tropics is longer than that of CFS.

4.2 � Influence of low‑frequency signals 
on predictability limit

The AR and GAR are introduced to quantitatively estimate 
the predictability limit of strange attractors. According to 
the attractor theory, error growth curves will converge to 

Fig. 9   Spatial distribution of the seasonal mean practical predict-
ability limit of GHT at 200-hPa for CFS (left panel) and GEFS (right 
panel). The black and red lines in the middle panels of zonal mean 

profile are seasonal mean practical predictability limit of CFS and 
GEFS, respectively. First, second, third, and lower panels are for 
spring, summer, autumn and winter, respectively
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Fig. 10   Difference (CFS–
GEFS) in the practical predict-
ability limit of GHT (left 
panels) between CFS and GEFS 
and their zonal mean profiles 
(right panels). First, second, 
third, and lower panels are for 
spring, summer, autumn and 
winter, respectively
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the GAR. Over the 200-hPa central-east equatorial Pacific of 
the GEFS, GAR is obviously larger than the error saturation, 
which leads to the long predictability limits in this region. 
What causes the contradiction between this result and attrac-
tor theory? Compared with the atmosphere, the ocean var-
ies slowly. The ocean can suppress the fast-varying signals 
and enhance the low-frequency signals in the climate system 
through air–sea interaction, thus lengthening the predictabil-
ity limit. The ocean influence on atmospheric components 
may cause the changes in the properties of the attractors. We 
will use 5VCM to explore the mechanism.

For atmospheric components x, y, and z in the 5VCM, we 
add a low-frequency term in the x equation to simulate the 
effects of the periodic signals, so the conceptual pycnocline 
prediction model becomes

We simply set Tl(t) = T0 + A sin(2�t∕Tpd) to simulate a 
low-frequency forcing, where Tpd and T0 are set as 10 and 
20, respectively. To compare the effects of signal magni-
tudes, we run three experiments: the magnitude of A is set 
to 10 in Case9 and 70 in Case10, while Case8 is defined as 

(10)

ẋ = −𝜎x + 𝜎y + Tl(t)

ẏ = −xz + (1 + c1w)𝜅x − y

ż = xy − bz

Omẇ = c2y + c3𝜂 + c4w𝜂 − Odw + S(t)

Γ𝜂̇ = c5w + c6w𝜂 − Od𝜂

the control experiment, in which atmospheric components 
are not affected by the low-frequency signal.

For these three experiments, projections on the x–z plane 
in the phase space of the 5VCM are presented in Fig. 11. 
In Case8 the atmospheric components are not affected by 
the low-frequency signals and the attractors are distributed 
symmetrically on the x–z plane. By adding a low-frequency 
forcing to the variable x, the spatial distribution of attractor 
described by Case10 is significantly different from that of 
Case8 (Fig. 9a, e). Figures 11b,d,f give the forecast RMS 
error statistics of the vector for three atmospheric variables 
in these three experiments. The GAR in Case10 is larger 
than the error saturation, unlike in Case8 and Case9. This 
phenomenon is consistent with the situation in the GEFS 
over the middle-east equatorial Pacific. Compared with the 
results of the standard 5VCM, the low-frequency forcing of 
the chaotic system has an important effect on the properties 
of the atmospheric attractors. The addition of an external 
periodic forcing causes long-term trajectories to be closer 
than any two random points on the attractor (i.e., for the 
GAR to be higher than the error saturation), since the forcing 
can cause the trajectories to experience similar ‘weather’.

The distribution of the practical predictability limits of 
GHT at 200 hPa shows that both the CFS and GEFS have 
the longest predictability limit over the middle-east equa-
torial Pacific compared with other regions in the tropics. 
This phenomenon varies seasonally, and the practical pre-
dictability limits in spring show larger spatial variability 

Fig. 11   Projections (a) Case8, 
(c) Case9, and (e) Case10 on 
the x–z plane in the phase space 
of the 5VCM. 1 × 105 points are 
plotted. Time series of global 
ensemble mean RMSE of vector 
(x, y, z) in different experi-
ments (b) Case8, (d) Case9, 
and (f) Case10 in the 5VCM 
with respect to the magnitude 
of initial error. The magnitudes 
of initial perturbation are 10–2, 
10–3, 10–4, 10–5, 10–6, and 10–7, 
from left to right. Blue and red 
dashed lines are the AR and the 
GAR​
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than in autumn. Compared with other tropical regions, the 
middle-east equatorial Pacific Ocean has very long predict-
ability limits, but these long predictability limits are not seen 
over the midlatitudes. We use the Ensemble Empirical Mode 
Decomposition (EEMD) to investigate this phenomenon 
further. We analyze the effect of significant low-frequency 
signals for three regions: A (155°W–135°W, 10°S–10°N), 
B (120°E–140°E, 10°S–10°N), and C (170°E–170°W, 
30°N–50°N), and find the significant low-frequency signals 
lengthen the predictability limits. Those three regions have 
been drawn in Fig. 7g, h.

The Ensemble Empirical Mode Decomposition (EEMD; 
Wu and Huang 2008) is a method of separating data into 
different components by their scales. Each component is 
defined as an intrinsic mode function (IMF). Compared with 
the Empirical Mode Decomposition (EMD), it overcome 
the scale mixing problem through a new noise-assisted data 
analysis method. It can be seen in Fig. 7 that the AR and 
GAR are calculated by CFSR from Jan 1999 to Dec 2010. 
However, in order to calculate the significant periods, we 
use both the CFSR (Jan 1979 to May 2011) and CFSv2 (Apr 
2011 to Dec 2017).

Figure 12 shows the significant period calculated by the 
EEMD method. At the 200 hPa level, the low-frequency 
signals in regions A and B play a dominant role compared 

with region C, especially those in region A. The quasi-bien-
nial oscillation (QBO) and quasi-4-year period contribute a 
greater variance than the seasonal oscillation. In contrast, the 
quasi-2-week period is the most significant period in region 
C. However, in the lower troposphere the main periods in 
the three regions are all intra-seasonal oscillations (ISO), 
where the largest variance contribution is greater than 20%.

To determine the influence of low-frequency signals on 
the predictability limits, a high-pass Butterworth filter of 
order 1 is used to filter signals longer than two years. A 
Butterworth filter can extract the significant period of a 
timeseries and obtain its main modes. Murakami (1979) 
first used the band-pass Butterworth filter to study the Mad-
den–Julian oscillation (MJO), which is the largest element of 
intraseasonal (30–90 day) variability in the tropical atmos-
phere. Since then, it has been widely used in meteorology. 
Here, we define AR2 as the attractor radius obtained by fil-
tered data, while AR1 is the attractor radius calculated with 
the original data, shown in Fig. 13. There is a very small 
difference between AR1 and AR2 for region C at 200 hPa 
and 850 hPa, while AR2 is significantly smaller than AR1 
over regions A and B at 200 hPa. The results indicate that 
the low frequency signals in the atmosphere have an impor-
tant influence on the attractor radius. When we use AR2 as a 
criterion to measure the global practical predictability limits, 

Fig. 12   Periods through 95% 
significance level, obtained 
using EEMD method. The 
periods of mean GHT from 
Jan 1979 to Dec 2017 for 
CFSR averaged region A 
(155°W–135°W, 10°S–10°N) 
in (a) 850-hPa and (d) 200-
hPa, region B (120°E–140°E, 
10°S–10°N) in (b) 850-hPa 
and (e) 200-hPa, and region C 
(170°E–170°W, 30°N–50°N) in 
(c) 850-hPa and (f) 200-hPa
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both CFS and GEFS have significantly shorter predictability 
limits over regions A and B in 200 hPa. Comparing regions 
of A, B, and C, we find that the low-frequency signals have 
a greater impact on the global practical predictability limits 
at 200 hPa over the tropics than those over the mid-latitude 
regions, especially for GEFS.

Some previous studies have shown that the variability 
and predictability of the 200-hPa seasonal mean GHT can 
be divided into external and internal variability (Kumar et al. 
2003). The seasonality of internal variability depends on the 
seasonality of the atmospheric mean state alone, while the 
seasonality in the external variability depends further on the 
seasonality of the SST forcing, especially the tropical SST 
variability associated with the El Niño–Southern Oscillation 
(ENSO) (Hoerling and Kumar 2002). In addition, Baldwin 
et al. (2003) reported that persistent circulation anoma-
lies in the lowermost stratosphere could affect the tropo-
sphere through changes in waves in the upper troposphere. 
Abnormal signals in the stratosphere can travel down to the 

troposphere and influence its weather and climate. Because 
the general circulation of the stratosphere has a long time-
scale, it may enhance the forecast skill in the troposphere.

5 � Summary and discussion

We compared the difference in the global practical predict-
ability limits of coupled and uncoupled models, using the 
attractor radius (AR), the global attractor radius (GAR), and 
the nonlinear local Lyapunov exponent (NLLE). We first 
used three simple models to systematically study the charac-
teristics of predictability of a coupled system. Starting from 
the Lorenz butterfly model (Lorenz63), a slab ‘ocean’ vari-
able and a ‘pycnocline’ variable are combined with the Lor-
enz63 through coupling processes (the 4VCM and 5VCM 
models). The coupling processes include the air-sea interac-
tion and the coupling between the upper and deep oceans. 
Compared with the Lorenz63 model, the 4-variable coupled 

Fig. 13   Time series of mean RMSE from Jan 1999 to Dec 2010 of 
GHT at 850-hPa and 200-hPa for CFS and GEFS operational fore-
cast data averaged the Region A (155°W–135°W, 10°S–10°N) (left 
panel), the Region B (120°E–140°E, 10°S–10°N) (middle panel), 
and the Region C (170°E–170°W, 30°N–50°N) (right panel). Upper 
and lower panels are for GHT at 850-hPa and 200-hPa, respectively. 

Black and red solid lines respectively represent the RMSE of the CFS 
and GEFS. Green dashed lines are AR1 calculated by CFSR, while 
blue lines are AR2 where the signals over 2 years are filtered by high 
pass Butterworth filter of order 1. Green and blue solid lines are GAR​
1 and GAR​2
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model (4VCM) and 5-variable coupled model (5VCM) have 
larger natural variability due to the low-frequency boundary 
signals from air-sea interactions. The 5VCM has the maxi-
mum AR and GAR. From an atmosphere-only system to an 
ocean–atmosphere coupled system, the initial-value predict-
ability problem becomes a joint initial-value and boundary-
value problem. The results show that both boundary condi-
tion errors and initial condition errors play important roles 
in growing forecast errors.

We performed quantitative analysis of the spatiotem-
poral distributions of the practical predictability limits of 
geopotential height (GHT), comparing the coupled Climate 
Forecast System (CFS) and the uncoupled Global Ensemble 
Forecast System (GEFS) at 850 hPa, 500 hPa, and 200 hPa. 
Retrospective forecasts of the CFS and GEFS were used to 
evaluate the practical predictability limit. In the low-level 
atmosphere, the ocean improves prediction of the atmos-
phere most significantly in the tropics. The practical pre-
dictability limits of the CFS at 850 hPa appear to have a 
regional characteristic, with many maxima and minima, 
with a maximum of 11–13 days over the Western Pacific 
Warm Pool and 3–5 days over the Antarctic. In contrast, the 
practical predictability limits of the GEFS at 850 hPa have 
a significant difference, with a maximum of 9–11 days over 
the North Pacific and 3–7 days over the tropics. Note that 
the predictability limits of coupled models at 850-hPa geo-
potential height are higher than those of uncoupled models, 
especially in the tropics.

CFS has longer practical predictability limit than GEFS 
at 850 hPa over the tropics, while GEFS is more predictable 
than CFS at 500 hPa and 200 hPa. From 500 to 200 hPa, the 
difference between GEFS and CFS increased significantly in 
the tropics, especially over the middle-east equatorial Pacific 
Ocean. Moreover, it is worth noting that the difference in 
the practical predictability at 200 hPa between two mod-
els over the tropics varies with the seasons: increasing in 
the winter and reaching its peak in spring, then decreasing 
and achieving its minimum in autumn finally. The tropical 
oceans are crucial areas where large-scale air–sea interac-
tions occur that have profound impacts on global climate 
variability. Using air–sea interactions as the atmospheric 
bottom boundary conditions could extend the predictability 
limits for geopotential height in lower troposphere. In addi-
tion, based on the 5VCM, we find that low-frequency forcing 
of atmospheric components has an important effect on the 
properties of atmospheric attractors, which may enhance the 
forecast skill in the upper troposphere.

We believe that there are two reasons for the difference 
in the predictability between CFS and GEFS over the trop-
ics: coupling processes and atmosphere model. The coupling 
process in the lower atmosphere results in a higher predict-
ability limit of CFS than GEFS, especially in equatorial 
regions. However, in the middle and upper atmosphere, the 

coupling process has a smaller impact on the atmosphere, 
while the atmosphere model errors play an important role 
in the forecasting. As a result, at 200 hPa and 500 hPa, the 
predictability limit in GEFS over the tropics is longer than 
that of CFS.

We have only taken the first step in predictability stud-
ies for the coupled system. Compared with an uncoupled 
system, we find that a coupled system has longer practical 
predictability limits in the lower troposphere. However, fur-
ther studies are required to clarify the physical processes at 
the air–sea interface on different temporal and space scales 
that extend the predictability limits in the coupled system. 
In addition to its application to the atmosphere within a 
coupled system, the concept of predictability limits can 
be extended to the ocean, land, and sea ice. In this paper, 
the retrospective forecasts of geopotential height in both 
the CFS and GEFS were used to evaluate predictability of 
atmospheric systems. In the future, more coupled models 
need to be employed to further explore the predictability 
limits of other components of coupled systems.
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