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Abstract
Brazil experiences extreme weather and climate events that cause numerous economic and social losses, and according to 
climate change projections, these events will increase in intensity and frequency over this century.This study adds to the 
body of research on Brazil’s climate change by analyzing the historical patterns and projected changes in temperature and 
precipitation extremes across Brazil using the World Climate Research Program’s Expert Team on Climate Change Detec-
tion and Indices framework. This novel approach analyzes climate extreme events over the past four decades (1980–2016) 
using multiple gridded observation and reanalysis datasets. Furthermore, future changes in climate extremes are analyzed 
from 20 downscaled Earth System Models (ESMs) at high horizontal resolution (0.25° of latitude/longitude), under two 
representative concentration pathway scenarios (RCP4.5 and RCP8.5). Projected changes in the extreme indices are analyzed 
over mid-twenty-first century (2046–2065) and end-of-twenty-first century (2081–2100) relative to the reference period 
1986–2005. Results show consistent warming patterns with increasing (decreasing) trends in warm (cold) extremes in the 
historical datasets. A similar but more intense warm pattern is projected in the mid and end of the twenty-first century. For 
precipitation indices, observations show an increase in consecutive dry days and a reduction of consecutive wet days over 
almost all Brazil. The frequency and intensity of extremely wet days over Brazil are expected to increase according to future 
scenarios. Designing effective adaptation and mitigation measures in response to changes in climate extremes events depends 
on this improved understanding of how conditions have and are likely to change in the future at regional scales.
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1 Introduction

Previous studies have shown how global temperatures have 
increased, leading to changes in atmospheric patterns that 
intensify and increase the frequency of extreme precipitation 
and heat waves (Zhang et al. 2007;  IPCC 2018; Giorgi et al. 

2019). Moreover, Earth System Models (ESMs) project a 
continued upward trend in extreme temperature and precipi-
tation events over the majority of land regions throughout 
the twenty-first century (Sillmann et al. 2013; Donat et al. 
2016; Marelle et al. 2018; Bador et al. 2018; Mora et al. 
2018).

Natural hazards such as floods, landslides, and droughts 
caused damage on the order of the R$182.7 billion (about 
US $56.0 billion) in Brazil between 1995 and 2014 (CEPED-
UFSC 2016). Climate projections reveal increasing mean 
temperatures and decreasing precipitation, suggesting more 
frequent/intense episodes of droughts over northern and 
northeastern Brazil, with a large increase in the length of 
the most prolonged period of consecutive dry days (Sill-
mann et al. 2013; Marengo et al. 2017; Betts et al. 2018). 
In addition, Debortoli et al. (2017) indicate that Brazil has 
many regions that are highly vulnerable to natural disasters 
including flash flooding and landslides. Moreover, Almagro 
et al. (2017) reveals that future projections show an increase 
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in rainfall-induced erosion potential across the southern 
regions, which can affect agricultural production in this area.

In Brazil, studies of climate extremes developed over the 
last few decades (e.g., the 1990s and 2000s) have encoun-
tered some limitations in both evaluating observations and 
validating climate models, mainly due to the lack of reliable 
and continuous to meteorological data (e.g., Marengo et al. 
2009; Rusticucci et al. 2010). Presently, many researchers 
have used weather stations in specific areas to investigate 
climate extremes in present climate and found an increase 
of extreme temperature and precipitation events in the recent 
past (Dufek and Ambrizzi 2008; Skansi et al. 2013; Silva 
Dias et al. 2013; Carvalho et al. 2014; Oliveira et al. 2014, 
2017; Rosso et al. 2015; Ávila et al. 2016; Zilli et al. 2017; 
Murara et al. 2018; Bezerra et al. 2019; Xavier et al. 2020). 
Studies using climate model projections indicate additional 
increases in future climate extremes over South America, 
although ESMs with coarser resolutions (100–300 km) are 
not appropriate for climate change studies at local/regional 
scales (Marengo et al. 2009; Dereczynski et al. 2013; Sill-
mann et al. 2013; Silva et al. 2014; Valverde and Marengo 
2014; Natividade et al. 2017; Nguyen et al. 2017). In addi-
tion, Lyra et al. (2018) used climate projections from an Eta 
regional model at 5-km horizontal resolution and found that 
maximum temperatures are projected to increase by 9 °C 
in three metropolitan regions of southeast Brazil, where 
the annual precipitation could decrease by approximately 
40–50% by the end of the century in the RCP8.5 scenario 
relative to 1961–1990 period.

A more detailed study about historical and future cli-
mate extreme variability on local/regional scales using the 
most recent high resolution climate datasets over Brazil has 
not yet been carried out. Hence, the following is a com-
prehensive evaluation using new sources (e.g., reanalysis 
and downscaled climate projections) that provide relevant 
information for climate processes and natural hazards moni-
toring. In order to expand previous work and improve our 
understanding of climate extremes events in Brazil, his-
torical (1980–2016) and projected (2046–2100) changes 
in temperature and precipitation extremes are analyzed 
using the guidance defined by the Expert Team on Climate 
Change Detection and Indices (ETCCDI). To characterize 
the historical climate, datasets comprised of observations, 
reanalysis, and other merged products from 1980 to 2016 
are used. Observational uncertainty is also analyzed. Fur-
thermore, we evaluate the future climate changes using the 
National Aeronautics Space Administration (NASA) Earth 
Exchange Global Daily Downscaled Projections (NEX-
GDDP) for the period 1950–2005 (historical simulations) 
and 2006–2100 (climate projections). Section 2 describes 
the climate indices, data, and methods used in this inves-
tigation. Section 3 depicts observations and performance 
evaluations, historical trends, and future changes based on 

RCP4.5 and 8.5 scenarios. Finally, Sect. 4 provides a sum-
mary of the main results and discussion concerning how 
changes to extreme climate indices impact various aspects 
of the Brazilian population.

2  Data and methodology

2.1  Extreme climate indices

Sixteen extreme climate indices defined by ETCCDI (Zhang 
et al. 2004; Zhang et al. 2011; https ://etccd i.pacifi ccli mate.
org/list_27_indic es.shtml ) were selected for this study, eight 
each related to daily air temperature and rainfall (Table 1). 
Selected extreme temperature indices comprise absolute 
(associated with the maximum (TX) or minimum (TN) mag-
nitudes within a year) and percentile-based indices (related 
to the frequency of hot or cold extreme events). Absolute 
indices include hottest day (TXx), coldest night (TNn), and 
diurnal temperature range (DTR). Percentile-based indices 
include cold nights (TN10p), warm nights (TN90p), cold 
days (TX10p), and warm days (TX90p) indices. Addition-
ally, warm spell duration index (WSDI) describing the 
annual count of days with at least 6 consecutive days when 
the maximum temperature is above the 90th percentile was 
calculated.

The eight precipitation-related extreme indices charac-
terize intensity, frequency, and duration of precipitation 
(PR) events. The total wet-day precipitation (PRCPTOT), 
maximum 1-day precipitation (RX1day), maximum 5-day 
precipitation (RX5day), very wet days (R95p), and simple 
daily intensity (SDII) are used to characterize the intensity 
of rainfall events. The number of very heavy precipitation 
days (R20mm) expresses the frequency of extreme precipita-
tion. Finally, consecutive dry days (CDD) and consecutive 
wet days (CWD) describe persistent drier and wetter condi-
tions, respectively.

The selected climate indices have been calculated on an 
annual scale to improve knowledge and understanding of 
inter-annual extreme temperature and precipitation variabil-
ity in Brazil. Furthermore, the indices chosen were based on 
their relevance to the study area and ability to compare with 
evaluations in different parts of the world (Sillmann et al. 
2013; Skansi et al. 2013; Alexander 2016; Alexander and 
Arblaster 2017; Giorgi et al. 2019; Avila et al. 2019; Loaiza 
et al. 2020). Several studies have used ETCCDI indices to 
validate reanalyses and ESMs in simulating observed cli-
mate extremes (Dufek and Ambrizzi 2008; Zhou et al. 2014; 
Nguyen et al. 2017; de Lima and Alcântara 2019; Ongoma 
et al. 2019; Dosio et al. 2019). Similar to Aerenson et al. 
(2018), we do not include a seasonal evaluation of ETCCDI 
extreme climate indices here as many of the indices are more 
meaningful on an annual scale.

https://etccdi.pacificclimate.org/list_27_indices.shtml
https://etccdi.pacificclimate.org/list_27_indices.shtml
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2.2  Observation and reanalysis datasets

We selected four datasets to study the complexity of climate 
extremes at a high horizontal spatial resolution (Table 2) 
over the 1980–2016 period. We chose one gridded observa-
tion dataset, one reanalysis, and two merged products that 
combine satellite precipitation, reanalysis estimates, and in-
situ records and offer prolonged periods of daily records of 
meteorological variables (e.g., TX, TN, and PR). The year 
of 1980 was chosen as the beginning of our evaluation for 
the purpose of intercomparing datasets, and for the fact that 
reanalyses and merged products have improved since the 
early 1980s as more climate datasets have become avail-
able, the understanding of the climate system has advanced, 

and numerical weather prediction techniques have improved 
(Sheffield et al. 2006; Dee et al. 2014; Beck et al. 2019a). 
The daily outputs were obtained from the following data 
projects:

 I. A gridded observational dataset (OBS-BR) produced 
by Xavier et al. (2015, 2017) available for Brazil with 
a horizontal resolution of 0.25° latitude/longitude 
(~ 25 km × 25 km) over the period 1980–2016, taken 
as our reference. The temperature and precipitation 
fields are based on an interpolation of 735 and 9259 
observations sites, respectively.

 II. The fifth European Centre for Medium-Range 
Weather Forecasts (ECMWF) Reanalysis—ERA5 

Table 1  Extreme climate indices employed in this study as recommended by ETCCDI

a The full list of indices and precise definitions are provided at https ://etccd i.pacifi ccli mate.org/list_27_indic es.shtml . Abbreviations are as fol-
lows: TX (TN), daily maximum (minimum) temperature. A wet (dry) day is defined when precipitation ≥ 1 mm (PR < 1 mm)

Index—Indicator name Descriptiona Unit

1. TXx—hottest day Annual maximum value of daily maximum temperature ºC
2. TNn—coldest night Annual minimum value of daily minimum temperature ºC
3. DTR – Diurnal temperature range Annual mean difference between daily max and min temperature ºC
4 TN10p—cold nights Percentage of days when TN < 10th percentile %
5. TN90p—warm nights Percentage of days when TN > 90th percentile %
6. TX10p—cold days Percentage of days when TX < 10th percentile %
7. TX90p—warm days Percentage of days when TX > 90th percentile %
8. WSDI—warm spell duration indicator Annual count of days with at least 6 consecutive days when TX > 90th percen-

tile
Days

9. PRCPTOT—annual total wet-day precipitation Annual total precipitation (PR) in wet days (PR ≥ 1 mm) mm
10. RX1day—max 1-day precipitation amount Annual maximum 1-day precipitation mm
11. RX5day—max 5-day precipitation amount Annual maximum consecutive 5-day precipitation mm
12. R95p—very wet days Annual total precipitation from days > 95th percentile mm
13. SDII—simple daily intensity index The ratio of annual total precipitation to the number of wet days (≥ 1 mm) mm/day
14. R20mm—number of very heavy precipitation days Annual count of days when PR ≥ 20 mm Days
15. CWD—consecutive wet days Maximum number of consecutive days with daily PR ≥ 1 mm Days
16. CDD—consecutive dry days Maximum number of consecutive days with daily PR < 1 mm Days

Table 2  Characteristics of (a) gridded observations, (b) reanalyses, and (c) merged datasets

Variables are precipitation (PR), maximum temperature (TX) and minimum temperature (TN)

Variables Period Resolution; spatial coverage

(a) Gridded observation
OBS-BR https ://utexa s.app.box.com/v/Xavie r-etal-IJOC-DATA TX, TN, PR 1980–2016 0.25° (~ 28 km); Brazil
(b) Reanalysis product
ECMWF ERA5 Reanalysis (ERA5) https ://cds.clima te.coper nicus .eu/ TX, TN, PR 1979–2018 0.25° (~ 28 km); Global
Global Meteorological Forcing Dataset for Land Surface Modeling (GMFD) https ://

hydro logy.princ eton.edu/data.pgf.php
TX, TN, PR 1948–2016 0.25° (~ 28 km) Global

(c) Merging of different data sources (gauge, satellite, and reanalysis)
Multi-Source Weighted-Ensemble Precipitation (MSWEP) Version 2.2 https ://www.

gloh2 o.org/
PR 1979–2017 0.1° (~ 10 km); Global

https://etccdi.pacificclimate.org/list_27_indices.shtml
https://utexas.app.box.com/v/Xavier-etal-IJOC-DATA
https://cds.climate.copernicus.eu/
https://hydrology.princeton.edu/data.pgf.php
https://hydrology.princeton.edu/data.pgf.php
https://www.gloh2o.org/
https://www.gloh2o.org/
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(Dee et al. 2011; Hersbach et al. 2018). ERA5 is a 
global high-resolution (0.25°) reanalysis, available 
for the period between 1979 and the near-present.

 III. The Global Meteorological Forcing Dataset with a 
horizontal resolution of 0.25° covering the period 
from 1948 to 2016 was also used (GMFD; Sheffield 
et al. 2006). GMFD dataset is based on Climatic 
Research Unit (CRU) Version 3.24.01 (monthly 
precipitation and temperature observations in a hori-
zontal resolution of 0.5° × 0.5°; Harris et al. 2014), 
Global Precipitation Climatology Project—GPCC 
(daily precipitation in a 1° × 1° horizontal resolu-
tion; Huffman et al. 2001), Tropical Rainfall Meas-
uring Mission—TRMM (3 hourly precipitation data 
in 0.25º of latitude/longitude; Huffman et al. 2007, 
2010) and National Centers for Environmental Pre-
diction/National Center for Atmospheric Research 
reanalysis—NCEP/NCAR reanalysis (3 hourly mete-
orological data in a ~ 2° × 2° horizontal resolution; 
Kalnay et al. 1996).

 IV. The Multi-Source Weighted-Ensemble Precipitation 
(MSWEP) Version 2, another merged product con-
sisting of satellite data, reanalysis and rain gauges 
provides reliable precipitation estimates on a daily 
world scale (Beck et al. 2017b, 2019a), which is 
available on a horizontal resolution of 0.1° for the 
period from 1979 to 2017.

It is noteworthy to mention that OBS-BR, ERA5, GMFD, 
and MSWEP datasets have not been assessed regarding their 
temporal-spatial patterns of climate extremes over Brazil. 
Dufek et al. (2008) evaluated the performance of NCEP/
NCAR in capturing the extreme temperature and precipita-
tion indices over Brazil from 28 weather stations during the 
period 1961–1990. They found that NCEP/NCAR reanaly-
sis agrees well with observed climate extremes. However, 
we do not compare our results with Dufek et al. (2008) as 
their period and station network differ from the present study 
(1980–2016).

For intercomparison purposes, all datasets were regrid-
ded to a common 0.25° horizontal resolution grid using a 
bilinear interpolation algorithm, following analogous studies 
(Chaney et al. 2014; Zhou et al. 2014; Fotso-Nguemo et al. 
2018; Beck et al. 2019a).

2.3  Climate change projections

Climate change projections used in this study were produced 
by the NASA Earth Exchange Global Daily Downscale Pro-
jection—NEX-GDDP (Thrasher et al. 2012). This product 
was derived from ESM experiments of the Coupled Model 
Intercomparison Project Phase 5 (CMIP5). We used the 

ensemble from 20 CMIP5 ESMs statistically downscaled 
to a horizontal resolution of 0.25° of latitude/longitude 
under two future emission scenarios: RCP 4.5 and RCP 
8.5 (Table S1). According to Avila-Diaz et al. (2020), the 
observed climate extreme indices are generally well repre-
sented by the multi-model ensemble compared to individual 
ESMs from the NEX-GDDP dataset over Brazil during the 
1980–2005 period. The NEX-GDDP dataset is prepared by 
the Climate Analytics Group and NASA Ames Research 
Center using the NASA Earth Exchange, and distributed by 
the NASA Center for Climate Simulation (NCCS), which is 
available at https ://cds.nccs.nasa.gov/nex-gddp/. The NEX-
GDDP produces three daily variables, TX, TN, and PR, over 
the periods 1950–2005 (historical) and 2006–2100 (projec-
tions under RCP 4.5 and RCP 8.5 scenarios). The Bias-Cor-
rection Spatial Disaggregation (BCSD) method was used to 
downscale each CMIP5 ESM output (Thrasher et al. 2012).

The Intergovernmental Panel on Climate Change (IPCC) 
Fifth Assessment Report (IPCC AR5) based their conclu-
sions on projected changes in climate extreme events using 
the CMIP5 models for the time-slices 2046–2065 (mid-
twenty-first century) and 2081–2100 (end-twenty-first cen-
tury), relative to the reference period 1986–2005 ( Hoegh-
Guldberg et al. 2018; Collins et al. 2013). We used the same 
intervals to facilitate a comparative analysis with other stud-
ies in other locations throughout the world (Fischer et al. 
2013; Sillmann et al. 2013; Alexander and Arblaster 2017; 
Ongoma et al. 2018; Liao et al. 2019; Santos et al. 2019).

To evaluate changes in extreme climate extreme indices, 
we applied a multi-model ensemble approach (Parker 2013; 
Gulizia and Camilloni 2015) adapted from Tebaldi et al. 
(2011) that ensures robust results. This methodology has 
been widely adopted in climate change and extreme events 
studies to address the significance of the change between two 
periods and the signal agreement among the models (Sill-
mann et al. 2013; Alexander and Arblaster 2017; Almazroui 
et al. 2017; Zhou et al. 2019; Dosio et al. 2019). For this 
purpose, we filled all grid cells with the mean multi-model 
relative change through a color pattern. To assess the sig-
nificance of projected changes in annual climate extremes, 
we performed a Student’s t-test between the historical (refer-
ence) and future (RCP4.5 and RCP8.5) scenarios. We stip-
pled all grid cells where more than 66 percent of the models 
agreed on the change signal and more the 50% of the models 
showed a significant change (t test, p-value < 0.05).

The relative change between the future and the historical 
periods in each climate extreme index (CEI) was calculated 
using Eq. (1) adapted from Bador et al. (2018):

(1)Relative change in CEI =

CEIfuture − CEIhis

CEIhis

https://cds.nccs.nasa.gov/nex-gddp/
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where 
−

CEIfuture and 
−

CEIhis are 20-yr averages in a given CEI 
over the future (2046–2065 or 2081–2100) and historical 
(1986–2005) periods, respectively.

2.4  Performance and trend analysis

This study employed four metrics to evaluate the perfor-
mance of different datasets in reproducing the observed cli-
mate indices from 1980–2016 over the eight largest Brazil-
ian hydrological basins (Fig. 1). These basins are defined 
largely by their climate, precipitation and runoff intensity 
and seasonality, topography, and latitudinal position (Rocha 

and Santos 2018; and references therein). According to the 
Brazilian National Water Agency (the Portuguese acronym is 
ANA), the country is divided in the following zones: Ama-
zon River (AMZ), Tocantins River (TOC), North Atlantic 
Region (NAR), São Francisco River (SFR), Central Atlantic 
Region (CAR), Parana River (PAR), Uruguay River (URU), 
and South Atlantic Region (SAR).

The performance metrics include Percent Bias (PBIAS), 
RMSE-observations standard deviation ratio (RSR; Moriasi 
et al. (2007)), refined index of agreement  (dr;), and Pearson 
correlation coefficient (CORR). PBIAS indicates whether 
a given dataset overestimates or underestimates the obser-
vational information. The closer PBIAS and RSR are to 0, 

Fig. 1  Hydrological basins in Brazil according to the Brazilian National Water Authority (ANA)
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the better the model performs. Furthermore, the  dr varies 
between − 1 and 1, 1 being the perfect agreement (Willmott 
et al. 2012). Finally, the value of CORR 1 (− 1) indicates 
a stronger positive (negative) relationship between the two 
variables; meanwhile, 0 value indicates the absence of a 
relationship.

To detect trends in extreme climate indices, we used the 
Theil-Sen’s slope estimator (Sen 1968). The significance of 
trends is calculated at the confidence level of 95% (α = 0.05) 
using a Mann–Kendall test (Mann 1945; Kendall 1975). 
More details can be found in Yue et al. (2002). These non-
parametric tests are often used to detect trends in extreme 
climate indices, but also because this approach is less sensi-
tive to outliers than parametric methods such as the ordinary 
least squares regression method (Cornes and Jones 2013; 
Donat et al. 2013a, 2016; Skansi et al. 2013).

3  Results and analysis

To reduce the quantity of similar results (climatologies and 
spatial trends) for different extreme climate indices in each 
dataset, we only present selected indices (two each for tem-
perature and precipitation, respectively) for each subsec-
tion. Additional figures can be found in the Supplementary 
Material.

3.1  Metrics analysis of datasets performance

3.1.1  Temperature indices

Climatologies of temperature indices from two climate 
datasets (ERA5 and GMFD) were compared to gridded 
observations (OBS-BR) over Brazil for 1980–2016 using 
different performance metrics (Figs. 2 and 3). Observations 
and ERA5 climatologies are similar (Fig. 2). ERA5 reflects 
similar climatologies to OBS-BR for all variables except 
diurnal temperature range (DTR; Fig. 2b, c). For the DTR 
index, GMFD has similar magnitudes as the gridded obser-
vational dataset with values of PBIAS close to zero (Fig. 2).

PBIAS in the warmest daily temperature index (TXx; 
Figs. 2, 3a, b) reflects cooler (warmer) than observed condi-
tions in ERA5 (GMFD) for all hydrological basins. Overall, 
performance suffers over the Amazon, Tocantins, and Parana 
basins, with PBIAS overestimated by up to 14% (3 °C) com-
pared to observations. ERA5 overestimates the coldest daily 
minimum temperature (TNn; Figs. 2, 3c, d) for all basins, 
except for Uruguay and South Atlantic basins. GMFD 
reflects PBIAS of TNn (− 13%) over the Uruguay River.

ERA5 performs well compared to gridded observations 
for percentile indices (TN10p, TN90p, TX10p, TX90p, and 
WSDI; Fig. 2). GMFD underestimates the warm spell dura-
tion index (WSDI) for all hydrological basins. The highest 

values of PBIAS (> 80%) are found across the north (Ama-
zon basin) and northeast regions (e.g., Tocantins, North 
Atlantic, and São Francisco basins).

Importantly, our analysis shows that ERA5 and GMFD 
do not compare well with observations over the Amazon 
basin. There are likely two important facets to this weaker 
performance over the Amazon. First, Betts et al. (2009) 
indicate that cloud cover parameterizations are a persistent 
challenge in reanalysis models (ERA-40 and ERA-Interim), 
which implies a substantial underestimation of temperature 
indices (e.g., TXx, DTR, and TN90p) over the Amazon 
basin (Fig. 1a). Secondly, land surface properties contribute 
greatly to the performance of models. Land surface models 
and overlying boundary layer parameterizations vary in their 
sophistication and representation of temperature and mois-
ture fluxes, albedo, and near-surface turbulence, all of which 
have varying impacts on atmospheric temperature. Proper 
parameterizations of the land/soil/vegetation processes are 
challenges for modelers, especially within a complex biome 
such as the Amazon rainforest (Marengo 2005; Karam and 
Bras 2008; Fersch and Kunstmann 2014).

3.1.2  Precipitation indices

Figures 4 and 5 show the precipitation results for all data-
sets and hydrological basins. All datasets are consistent with 
observations for total precipitation of wet days index (PRCP-
TOT). PBIAS and RSR are low, and  dr and CORRs are close 
to 1. Intensity indices vary; however, PBIAS is quite large 
across all basins for RX1day, RX5day, and R95p, especially 
over the Amazon basin (Fig. 4). RSR and  dr are generally 
lower for GMFD and MSWEP compared to ERA5 (Figs. 4 
and 5).

The ERA5 and GMFD show strong ability to estimate 
the number of consecutive dry days (CDD; Figs. 4a, b, 5c, 
d). However, the GMFD dataset exhibits the weakest per-
formance for all intensity precipitation indices (e.g. RX1day 
and RX5day) compared to observations. The analysis sug-
gests that ERA5 may be useful as an alternative dataset to 
study daily temperature and precipitation indices over Bra-
zil. In general, ERA5 outperforms GMFD for temperature-
based extreme indices and ERA5 and MSWEP (only for 
precipitation-based extreme indices) capture spatial patterns 
of extreme climate indices when compared to observational 
values.

It should be noted that the GMFD dataset was produced 
from a combination of observed and reanalysis data since 
the data sets based on observations have a coarse tem-
poral resolution (Sheffield et al. 2006). A monthly grid-
ded observation-based dataset was resampled to a sub-
monthly scale using reanalysis data. GMFD differences 
with observed climate extremes may stem from the fact 
that the CRU dataset is based on the collection of data 
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from weather stations worldwide, but the density of sta-
tions varies widely (Liebmann and Allured 2006; Rozante 
et al. 2010; Xavier et al. 2015). Regions with a low den-
sity of meteorological stations, such as the Amazon basin, 
for example, can reduce the quality of the interpolation. 
Finally, the coarse resolution of NCEP-NCAR reanalysis 
can be affects the temporal precipitation estimates (Rao 
et al. 2002; de Lima and Alcântara 2019).

Noteworthy, MSWEP (a merged product) is dependent 
on the precipitation field of the ERA-Interim reanaly-
sis. Donat et al. (2014) and Beck et al. (2017a) point out 
that the ECMWF reanalyses (ERA-40 and ERA-Interim) 
tend to show agreement with the observations. ERA5 has 
demonstrated many enhancements compared to its prede-
cessor ERA-Interim, most notably increased horizontal 
and vertical resolution (∼79 km/60 levels to ∼31 km/137 

Fig. 2  Evaluation metrics for temperature indices for ERA5 and 
GMFD with respect to the observational dataset (OBS-BR) from 
1980 to 2016 over the eight hydrological basins in Brazil. a Bias in 
percentage (PBIAS); b RMSE-observations standard deviation ratio 

(RSR); c refined index of model performance (dr); d Pearson corre-
lation coefficients (CORR); diagonal black lines indicate correlation 
values statistically significant correlations at 95% confidence level
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levels; Hoffmann et al. 2019). As suggested by Beck et al. 
(2019b) and supported by our results, MSWEP can use 
ERA5 outputs to improve the accuracy of daily precipita-
tion estimates. Therefore, caution is recommended when 
using reanalyses or merged products as reference data-
sets to evaluate changes or patterns for daily precipita-
tion indices, especially in regions where station data are 
sparse (Rozante et al. 2010; Zhang et al. 2011).

3.2  Historical changes in climate extremes

3.2.1  Observed trends in temperature indices

Table 3 and Fig. 6 depict the spatial trends and regional 
patterns in all three datasets across hydrological basins, 
respectively. Nearly all datasets show warming trends for 
cold (TNn, TN10p, TX10p) and warm climate extreme 
indices (TXx, TN90p, TX90p, and WSDI) across almost 
all of Brazil from 1980 to 2016. Note that Supplementary 
Material displays additional trends for all of climate indices 
mentioned in Sect. 2.1 and Table 1.

To illustrate, the annual maximum temperature (TXx) 
shows significantly increasing trends at rates of 0.07 to 
0.64 °C/decade across much of the country (Table 3 and 
Fig.  6a). ERA5 and GMFD show weak regional cool-
ing in southern parts of the Uruguay and South Atlantic 
basins; however, the trend is not statically significant. The 
frequency of the warm nights (TN90p; 0.58–6.2 percent 
of days/decade) has increased greater than the frequency 
of warm days (TX90p; 0.17–4.63 percent of days/decade) 
in almost all basins, except in the South Atlantic basin for 
OBS-BR (Table 3). The warm spell duration indicator index 
(WSDI) has increased consistently across the country, with 
regional increases between 0.03 and 3.13 days/decade. The 
largest positive trends are found throughout many areas of 
northwest Amazon and Parana River basins (Fig. S3). Cen-
tral Atlantic and South Atlantic basins show insignificant 
decreasing trends for WSDI. Our results are consistent with 
previous studies, with increasing trends across northern 
Brazil and smaller increases across southern portions of 
the country (Gloor et al. 2015; Geirinhas et al. 2018; Feron 
et al. 2019). Additionally, we find the largest positive trends 
throughout many areas of northwest Amazon and central 
Parana River basins for DTR (Fig. S3a), TN90p (Fig. S3b), 
and WSDI (Fig. S3d). This widening between maximum and 
minimum temperatures is in response to a reduction in water 
vapor (i.e. drier air), as warming temperatures and land use 
changes transition parts of the Amazon to arid savannas 
(Marengo et al. 2018). Drier air warms and cools more effi-
ciently than during periods of increased atmospheric mois-
ture and cloud cover (Dai et al. 1999; He et al. 2015).

Cold extremes are warming as well. The coldest night of 
the year (TNn) has increased 0.07 to 0.54 °C/decade over 
the recent past in several parts of the country (Fig. 6b). On 
the other hand, gridded observations for Uruguay and South 
Atlantic basins show statically significant cooling trends of 
− 0.74 and − 0.46 °C/decade, respectively. Finally, cold 
nights (TN10p; Fig. 6b) and cold days (TX10p Fig. S3c) 
display warming trends over Brazil, but decreasing trends 
are found over Uruguay and South Atlantic basins.

Results of extreme temperature indices reveal significant 
warming trends and are broadly similar across all datasets 

Fig. 3  The 1980–2016 climatology and bias for TXx (a, b) and TNn 
(c, d) for OBS-BR (black rectangle; gridded observations), ERA5, 
and GMFD. Figures for additional temperature indices are in Supple-
mentary Material
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and with other global and regional studies (Donat et al. 
2013a, b; Skansi et al. 2013; Rosso et al. 2015; Almeida 
et  al. 2017; Natividade et  al. 2017; Soares et  al. 2017; 
Marengo et al. 2018; da Silva et al. 2019). However, there 
are some differences in the Uruguay and South Atlantic 
basins. In these regions, ERA5 and GMFD display warm-
ing trends while OBS-BR indicates a cooling trend. Also, 
over the same hydrological basins, GMFD differs with 
OBS-BR for the diurnal temperature range (DTR; Fig. S3). 
The interaction between complex topography and regional 

climate systems plays an essential role in the regulation of 
inter-annual variability over the Uruguay River and South 
Atlantic basins (Fig. 1), which are not well represented by 
ERA5 and GMFD. In this sense, Gao et al. (2012) and Cor-
nes and Jones (2013) indicated that the high-elevation terrain 
still poses a challenge for reanalyses, principally because 
the model topography used by reanalyses does not have suf-
ficient resolution to resolve the climate interaction at small 
scales. To help solve the topography-dependent problems, 
a topographic correction of reanalysis data is necessary to 

Fig. 4  Evaluation metrics for precipitation indices for ERA5 and 
GMFD with respect to the observational dataset (OBS-BR) from 
1980 to 2016 over the eight hydrological basins in Brazil. a Bias in 
percentage (PBIAS); b RMSE-observations standard deviation ratio 

(RSR); c refined index of model performance (dr); d Pearson corre-
lation coefficients (CORR); diagonal black lines indicate correlation 
values statistically significant correlations at the 95% confidence level
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reduce the bias between the estimated and observed values 
(Gao et al. 2012; Luo et al. 2019).

3.2.2  Observed trends in precipitation indices

Extreme precipitation trends show less agreement among 
the observational trends (OBS-BR) and those estimated 
by ERA5, GMFD, and MSWEP (Table 4 and Fig. 7). The 
spatial and regional precipitation trends vary considerably 
compared to the temperature trends across the different data-
sets. PRCPTOT increases from 4.43 to 12.94 mm/decade for 

the Amazon and South Atlantic regions (Table 4). However, 
negative trends are found over the northwestern and south-
eastern Amazon basin in OBS-BR, ERA5, and MSWEP 
(Fig. 7a). Tocantins, North Atlantic, São Francisco, and Cen-
tral Atlantic basins show a decrease (not statistically signifi-
cant) for all four datasets. The dry patterns, especially over 
the southeastern Amazon and Tocantins basins, are consist-
ent with Gloor et al. (2015).

Mixed trends are demonstrated in the intensity indices 
(Table 4). Similar to previous studies, RX1day, RX5day, 
and R95p indices show increased extreme rainfall events 

Fig. 5  The 1980–2016 climatol-
ogy and bias for PRCPTOT (a, 
b) and CDD (c, d) for OBS-BR 
(black rectangle; gridded obser-
vations), ERA5, and GMFD. 
Figures for additional precipita-
tion indices are in Supplemen-
tary Material
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for the North Atlantic, Central Atlantic, Parana, Uruguay, 
and South Atlantic basins (Haylock et al. 2006; Skansi et al. 
2013; Ávila et al. 2016; Zilli et al. 2017; Murara et al. 2018). 
With regard to the frequency index R20mm, our results show 
a positive trend over parts of northern and southern Brazil 
(Amazon, Uruguay, and South Atlantics basins). However, 
the northeastern part of the county (São Francisco and Cen-
tral Atlantic basins) exhibit dominantly drying trends.

Changes in duration indices (CDD and CWD; Table 4 and 
Fig. 7d) demonstrate mostly non-significant drying trends, 
with good agreement among the reanalyses and merged 
datasets (Table 4). Our results of CDD agree well with Val-
verde and Marengo (2014) who used historical rainfall sta-
tions in their assessment. The regionally-specific decadal 
trends of CWD show increasing tendencies for all basins 
and only differ from the OBS-BR product for the Amazon 
(statistically significant rate of 2.08 mm/decade), Parana, 
and South Atlantic basins (trends not significant in these 
regions). Signal differences between these datasets may arise 
due to the scarcity of long-term observations of daily rain-
fall stations for Amazon basins in both spatial and temporal 
coverage (Xavier et al. 2015).

In general, precipitation changes show non-significant 
trends, although the ERA5, MSWEP, and OBS-BR exhibit 
reasonable spatial coherency. Results indicate increasing 

trends in annual total wet-day precipitation in northern and 
southern basins and dry patterns in north and central Basins. 
Northern and central hydrological regions, such as the North 
Atlantic region, São Francisco, Central Atlantic, and central 
part of the Parana basin, show increasing trends in the more 
extreme precipitation events (RX1day) during the last four 
decades. Though the magnitudes are small and not statis-
tically significant, these results are consistent with global 
changes in extreme precipitation events and storm intensity 
(Wasko et al. 2016; Norris et al. 2019; Myhre et al. 2019) 
and may be tied to changes in jet stream position over South 
America (Pena-Ortiz et al. 2013). Southern basins (e.g., 
Parana, Uruguay, South Atlantic basins) reveal increasing 
trends in events related to intensity and frequency. Duration 
indices exhibit a reduction of CWD; meanwhile, the CDD 
index shows positive trends over the majority of Brazil.

3.3  Future projections in climate extremes

3.3.1  Changes in future temperature indices

Figures 8 and 9 illustrate the regional and spatial changes in 
temperature indices for the period 2046–2065 relative to the 
baseline period (1986–2005). Note that Fig. 8 displays the 
regional projected changes summarized in box-and-whisker 

Table 3  Decadal trends in 
temperature indices over the 
period 1980–2016

Basin Dataset
TXx TNn DTR TN10p TN90p TX10p TX90p WSDI

ºC/decade % / decade days/decade

Amazon River
OBS-BR 0.54 0.53 -0.04 -5.61 6.20 -2.09 4.63 2.57
ERA5 0.62 0.34 0.10 -2.23 2.94 -1.08 3.41 1.41
GMFD 0.40 0.41 0.01 -3.39 5.01 -3.99 2.30 0.51

Tocantins River
OBS-BR 0.59 0.26 0.13 -3.22 4.62 -2.50 3.63 1.55
ERA5 0.51 0.21 0.12 -3.32 2.79 -2.52 2.79 1.39
GMFD -0.21 0.54 0.00 -3.17 4.12 -3.41 1.93 0.53

North Atlantic
OBS-BR 0.64 0.21 0.13 -3.94 4.97 -3.23 4.31 1.89
ERA5 0.34 0.11 0.04 -2.69 2.67 -1.69 2.60 1.07
GMFD 0.07 0.14 0.00 -2.75 3.54 -2.20 1.77 0.87

São Francisco
OBS-BR 0.56 0.11 0.16 -2.27 3.47 -2.62 2.70 1.46
ERA5 0.43 0.10 0.11 -2.33 2.60 -2.09 2.32 2.01
GMFD -0.04 0.17 0.00 -2.12 2.56 -1.68 1.02 0.42

Central Atlantic
OBS-BR 0.32 0.19 -0.12 -1.24 2.12 -0.58 -0.17 -0.20
ERA5 0.59 0.06 0.18 -1.13 1.83 -1.87 2.56 1.37
GMFD 0.12 0.21 0.00 -1.38 1.54 -1.15 0.52 0.03

Parana River
OBS-BR 0.64 0.07 0.15 -0.39 2.74 -0.79 3.25 2.89
ERA5 0.59 0.39 0.13 -1.51 2.31 -1.60 2.87 3.13
GMFD -0.08 0.53 -0.01 -1.79 3.55 -2.16 1.90 0.74

Uruguay River
OBS-BR 0.53 -0.74 0.00 0.88 1.13 0.22 0.38 0.05
ERA5 0.18 0.10 0.01 -0.70 0.58 -0.81 0.17 0.07
GMFD -0.12 0.10 -0.09 -0.96 1.97 -0.62 0.51 -0.03

South Atlantic
OBS-BR 0.26 -0.46 -0.10 1.02 -0.06 0.96 -0.55 -0.27
ERA5 0.14 -0.02 0.00 -0.52 0.67 -0.82 0.32 0.26
GMFD 0.03 0.08 -0.04 -1.34 1.77 -1.07 1.01 0.00

Values in bold indicate trends are significant at the 95% confidence level. Colors signify cooling (blue), 
warming (red), or no trend (white)
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plots and presented per hydrological basins, under the rep-
resentative concentration pathway (RCP) scenarios 4.5 and 
8.5. Mean projected changes for 2081–2100 period (end-
twenty-first century) are in Supplementary Material (Figs. 
S6 and S7).

The multi-model ensemble (MME) mean projects sig-
nificant warming in annual maximum temperature (TXx; 
Figs. 8a, b, 9a, i) and annual minimum temperature (TNn; 
Figs. 8c, d, 9b, j). The magnitudes of these indices across 

the different basins vary between 1.4and 2.3 °C in RCP4.5 
and 1.9–3.1 °C in RCP8.5 by mid-twenty-first century. By 
the end of the twenty-first century, these magnitude ranges 
increase to 1.6–3.0 °C in RCP4.5 and 3.7–5.9 °C in RCP8.5 
scenarios. Figures 8 and 9 show that the maximum warm-
ing is predominantly found over the Amazon, Tocantins, 
and Parana Rivers basins. Similar results for the end of the 
twenty-first century are noted by Sillmann et al. (2013b) and 
López-Franca et al. (2016).

There are similar patterns of increasing frequency of 
warm extremes (TX90p and TN90p) and reduction of 
cold extremes (TN10p and TX10p) by the middle end of 
the twenty-first century over Brazil (Figs. 8, 9 and S5). 
Projected changes in warm indices are more pronounced 
than those for cold indices. Increases in the occurrence of 
TX90p and TN90p vary between 20 and 63% under the sce-
nario RCP4.5, and 28–69% in RCP8.5 in the mid-century 
projections. Also, by the end of the twenty-first century 
mean changes are 6–15% higher compared to the projected 
increases for mid-century under both scenarios.

In addition to stronger warming, warm spell dura-
tion index (WSDI) increases significantly for 2046–2065 
(Fig. 9) and 2081–2100 (Fig S6) under the RCPs scenarios. 
The significant increase in WSDI is projected in all basins 
with mean changes greater than 39 (56) days by the mid-
dle and end of the twenty-first century under RCP4.5 (8.5) 
scenario. Consistent with the warming patterns, fewer cold 
nights (TN10p) and cold days (TX10p) are projected. The 
TN10p (TX10p) index decreases from about 6.2% (6.6%) 
in 2046–2065 to 6.4% (7.1%) under RCP4.5 (8.5) scenario, 
with slightly negative trends by the end of the century. The 
regional changes in percentile indices by middle and end of 
the century are consistent with previous studies over South 
America (Marengo et al. 2009; Sillmann et al. 2013; López-
Franca et al. 2016; Feron et al. 2019). These results are in 
agreement with other regions throughout the globe (Zhou 
et al. 2014; Lelieveld et al. 2016; Schoof and Robeson 2016; 
Alexander and Arblaster 2017).

In summary, the most significant increases (decreases) in 
warm (cold) extremes occur in the Amazon, Tocantins, and 
North Atlantic basins. However, the smallest changes in the 
ensemble mean temperature extremes are projected in the 
Uruguay River and South Atlantic basins. The findings are 
in agreement with the results by Sillmann et al. (2013b), 
who used CMIP5 models to project extreme climate indices 
over South America.

3.3.2  Changes in future precipitation indices

Changes in precipitation indices relative to the 1986–2005 
reference period are presented in Figs.  10 and 11. For 
comparison purposes with other studies (e.g., Sillmann 
et al. (2013)), relative changes (see Eq. 1) are expressed in 

Fig. 6  Decadal trends in TXx (a), TNn (b), TN10p (c), and TX90p 
(d) during the period 1980–2016 for OBS-BR (black rectangle; grid-
ded observations), ERA5, and GMFD. Hatching indicates where 
trends are significant at the 95% confidence level. Trends for addi-
tional temperature indices are in Supplementary Material
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percentage. Mean projected changes for 2081–2100 period 
(end-twenty-first century) are in the Supplementary Material 
(Figs. S8 and S9).

The ensemble mean of PRCPTOT reflects a reduction 
over Amazon, Tocantins, North Atlantic, São Francisco, and 
Central Atlantic basins (Figs. 10a, b, 11a, and i). At the same 
time, the CDD projections indicate an increase across most 
regions of Brazil for RCP4.5 (8.5) scenario, ranging from 1 
to 18% (3–27%) by the mid-century and ranging from 1 to 
22% (3–61%) by the end of twenty-first century (Fig. 10c, d). 
CWD shows a pattern opposite to that of CDD (Figs. 10g, 
h and 11g, h, o, p). Small trends in PRCPTOT, CDD, and 
CWD are projected over southern Brazil (URU and SAR) 
in the ensemble mean. In general, future projections show 
a reduction in PRCPTOT and CWD and increases in CDD. 
This trend toward a drier future climate is consistent with 

previous findings (Amorim et al. 2014; Chou et al. 2014; 
Marengo et al. 2017; Lyra et al. 2018).

For rainfall intensity extremes (RX1day, RX5day, R95p, 
and SDII), increasing trends are projected over most of Bra-
zil under both scenarios, more pronounced by the end of 
the century (Figs. 10, 11). The largest increases of R95p 
index, on the order of 4–18% (6–29%), are expected for the 
mid-century in the RCP4.5 (8.5) scenario. By the end of 
the twenty-first century, the R95p mean increases most in 
the RCP8.5 scenario (16–45%). In general, projections of 
intensity indices indicate the weakest trends over the Cen-
tral Atlantic basin, whereas the most significant changes are 
generally found in the Tocantins, São Francisco, and South 
Atlantic basins (Fig. 11). The signal of change in intensity 
indices such as RX1day is consistent with those obtained by 
Valverde and Marengo (2014) and Bador et al. (2018), and 

Table 4  Decadal trends in precipitation indices over the period 1980–2016

Basin Dataset
PRCPTOT RX1day RX5day R95p SDII R20mm CWD CDD

mm/decade mm.day-1/10yr days/decade

Amazon River

OBS-BR 4.43 -0.05 0.64 2.38 -0.004 0.19 2.08 0.62
ERA5 8.94 6.76 8.32 84.94 0.31 2.53 -5.17 3.67
GMFD 14.55 0.08 -0.15 -3.18 0.15 -0.29 -0.16 1.26

MSWEP 62.72 2.06 4.05 38.32 0.24 1.43 0.23 0.44

Tocantins River

OBS-BR -34.32 -0.11 -1.83 -11.94 -0.08 -0.72 -1.64 4.13
ERA5 -90.88 -1.13 -4.90 -2.49 -0.07 -0.20 -5.11 7.97
GMFD -4.99 2.25 2.88 16.02 0.18 0.50 -1.78 0.85

MSWEP 17.63 2.03 0.98 25.01 0.35 0.74 -1.39 3.46

North Atlantic

OBS-BR -19.60 1.34 0.33 5.27 0.06 0.07 -1.67 1.80
ERA5 -39.83 2.75 1.27 16.41 -0.08 0.12 -4.49 1.30
GMFD 21.76 0.69 -0.08 5.78 0.26 0.21 -1.27 -5.11

MSWEP -23.20 1.96 -1.37 3.83 0.13 -0.24 -1.21 2.98

São Francisco

OBS-BR -39.52 0.75 -1.32 -5.17 0.06 -0.48 -1.33 2.80
ERA5 -73.49 -0.62 -2.35 -14.73 -0.16 -0.82 -2.06 4.93
GMFD -24.90 1.28 -1.02 2.65 0.05 -0.06 -1.23 -2.91

MSWEP -32.75 1.86 0.57 2.24 0.29 -0.25 -1.10 4.16

Central Atlantic

OBS-BR -35.26 1.73 3.14 7.07 0.14 -0.12 -1.19 1.22
ERA5 -62.87 0.32 0.22 -12.69 -0.05 -0.71 -1.47 1.75
GMFD -37.05 0.08 -1.50 -8.11 -0.03 -0.29 -0.45 0.86

MSWEP -26.64 5.17 7.37 30.54 0.63 0.15 -0.82 4.67

Parana River

OBS-BR -5.32 0.54 0.60 1.13 -0.02 -0.14 0.03 2.14
ERA5 -51.13 0.57 0.71 1.13 0.00 -0.28 -1.31 4.26
GMFD 29.29 1.09 3.09 23.25 0.47 0.93 -1.13 1.28

MSWEP 32.27 2.53 4.24 32.19 0.44 1.07 -0.63 1.78

Uruguay River

OBS-BR -7.05 0.45 3.50 15.96 -0.01 0.28 -0.13 0.48
ERA5 -48.99 -0.15 -2.38 -6.90 -0.19 -1.10 -0.36 0.55
GMFD -1.30 2.74 -0.14 24.41 0.41 1.23 -0.27 0.31

MSWEP 30.77 4.54 6.20 43.09 0.57 0.92 -0.33 0.20

South Atlantic

OBS-BR 12.94 1.02 2.97 16.19 0.01 0.29 0.02 -0.01
ERA5 -25.78 -0.96 -1.89 -12.09 -0.15 -0.55 -0.16 0.33
GMFD 14.68 2.79 4.32 40.85 0.39 1.23 -0.42 0.58

MSWEP 21.65 3.17 4.64 29.23 0.43 0.86 -0.38 0.26

Values in bold indicate trends are significant at 95% confidence level. Colors signify wetting (blue), drying (yellow), or no trend (white)
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projected increases in R20mm index over southern Brazil 
are evident over Uruguay and South Atlantic basins. These 
results are in agreement with that of Sillmann et al. (2013) 
and Lyra et al. (2018), who reported the reduction in the 
number of heavy precipitation days.

Caution must be given when interpreting the results 
of these precipitation indices. Unlike temperature indi-
ces, most models disagree with the signal of change, with 

fewer than half of the models showing a significant change. 
For example, our results point out the model agreement 
increase in both RCP4.5 and RCP8.5 scenarios compared 
to the historical (e.g., PRCPTOT, R95p, and CDD). This 
is in concert with previous studies showing similar lower 
confidence for precipitation indices over other parts of 
the world (e.g., Sillmann et al. (2013); Alexander and 
Arblaster (2017)). In this sense, Lin et al. (2018) indicated 

Fig. 7  Decadal trends in PRCP-
TOT (a), R95p (b), R20mm (c), 
and CDD (d) during the period 
1980–2016 for OBS-BR (black 
rectangle; gridded observa-
tions), ERA5, GMFD, and 
MSWEP. Stippling indicates 
where trends are significant 
at the 95% confidence level. 
Trends for additional precipita-
tion indices are in Supplemen-
tary Material
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Fig. 8  Projected changes in the hottest day–TXx (a, b), coldest night–
TNn (c, d), cold nights—TN10p (e, f) and warm days—TX90p (g, 
h) over the period 2046–2065 (white zone) and 2081–2100 (yel-
low zone) relative to the reference period (1986–2005) for RCP4.5 
(black line) and RCP8.5 (red line) scenarios. Regional mean changes 

are shown for each hydrological regions; the acronyms are defined 
in Fig.  1. The boxes indicate the variability of the ensemble of the 
downscaled models—MME (Table S1), which include the interquar-
tile range (25th–75th percentiles), median (horizontal line), mean 
(black dots), maximum and minimum values (black circles)
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Fig. 9  Future changes of multi-model ensemble in temperature 
extremes indices under the a–h RCP4.5 and i–p RCP8.5 scenarios for 
the period 2046–2065 relative to the reference period (1986–2005). 

Stippling indicates grid-points where more than 66% of the models 
agreed in change signal and in which more than 50% of the models 
show a significant change
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that the CMIP5 multimodel ensemble shows a significant 
sensitivity of precipitation extremes to aerosol forcing on 
the large-scale rainfall processes, which may be influenc-
ing the confidence in the agreement of climate projections 
across most of Brazil. To resolve the low confidence in the 

long-term projections of MMEs, Guyennon et al. (2013) 
and Yhang et al. (2017) concluded that the combination of 
dynamical and statistical downscaling of ESMs produced 
a better representation of regional precipitation, which can 

Fig. 10  As Fig. 7 but for the annual total wet-day precipitation—PRCPTOT (a, b), very wet days–R95p (c, d), Number of heavy precipitation 
days–R20mm (e, f), and consecutive dry days–CDD (h–g)
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Fig. 11  Future changes of multi-model ensemble in precipitation 
extremes indices under the a–h RCP4.5 and i–p RCP8.5 scenarios for 
the period 2046–2065 relative to the reference period (1986–2005). 

Stippling indicates grid-points where more than 66% of the models 
agreed in change signal and in which more than 50% of the models 
show a significant change
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be resulted in much improved in simulations and increased 
in the agreement of multi-model projections.

4  Discussion and concluding remarks

We investigated the changes in temperature and precipitation 
extremes in historical observations from 1980–2016 in Bra-
zil by comparing multiple gridded datasets (ERA5, GMFD, 
and MSWEP) that use various techniques and station net-
works to calculate daily gridded fields. Additionally, we ana-
lyzed projected changes in climate extremes produced by an 
ensemble of 20 downscaled ESMs under RCP4.5 and RCP 
8.5 scenarios over the periods of 2046–2065 and 2081–2100 
relative to the reference period 1986–2005.

ERA5 performs well compared to observations (GMFD 
and MSWEP less so) in capturing the spatio-temporal pat-
terns of historical climate extremes. In general, the per-
formance over 1980–2016 shows that all datasets have a 
greater ability to capture temperature extremes compared 
to precipitation extremes. Moreover, almost all precipita-
tion indices have large uncertainties over the Amazon basin. 
This study emphasizes the need to properly identify the most 
reliable datasets when estimating extreme climate events. 
This ensures that future hydrological studies and beneficial 
strategies to prevent the negative impacts of hydrological 
hazards (e.g., floods, droughts, landslides, and heat waves) 
are informed by the best possible scientific data.

Historical gridded datasets (observations, reanalysis, 
and merged datasets) analyzed during the last four decades 
(1980–2016) show statistically significant warming patterns 
for both warm (TXx, TX90, TN90, and WSDI) and cold 
(TNn, TX10, and TN10) extreme indices over almost all 
areas in Brazil. These datasets also indicate a reduction in 
consecutive wet days (CWD) and an increase in consecu-
tive dry days (CDD) since the 1980s in almost all areas of 
the study domain. Analysis of annual total precipitation 
shows negative trends over the Tocantins, North Atlantic, 
São Francisco, and Central Atlantic basins. Multi-model cli-
mate projections reveal intensified warming patterns under 
future radiative forcing scenarios (RCP4.5 and RCP8.5). 
Mid-century (end-of-century) maximum and minimum 
temperatures exceed 1.4 °C (1.6 °C) in RCP4.5 and 1.9 °C 
(3.2 °C) in RCP8.5 scenarios. Simultaneously, the frequency 
of warm days/nights increases (TX90p/TN10p) more than 
cold days/nights (TX10p/TN10p), and heat wave duration 
(greater than 56 days) is expected to increase in all basins 
over the twenty-first century.

These observed and projected changes point to a myr-
iad of regional impacts beyond just an increase in drought 
over much of Brazil (Dai 2011a, b, 2013). An increasing 
number of CDD affects economic activity over the Parana 
River Basin for instance, since it is an important region 

for agriculture production and energy generation (Abou 
Rafee et al. 2020). Furthermore, the Amazon basin (e.g., 
Mato Grosso State), Tocantins, North Atlantic Region, and 
São Francisco basins most affected by changes in climate 
extremes are in the forefront of Brazilian agricultural pro-
duction. Studies have evaluated the impact of changes in 
weather patterns and demonstrated that major crops such as 
maize, soybeans, beans and sugarcane have been affected 
and will be very likely in the future (Costa et al. 2009; Jus-
tino et al. 2013; Pires et al. 2016). Thus, continued changes 
in maximum and minimum temperatures as shown here 
will continue to compromise major crop production areas 
in Brazil.

Observed warm extremes and an increase in CDD exac-
erbate impactful events like the 2014–2015 water crisis in 
the Southeastern region (Nobre et al. 2016) and the recurrent 
dry spells in Northeast region (Marengo et al. 2017). North-
eastern Brazil (parts of Central Atlantic, São Francisco, and 
North Atlantic basins) are getting drier and the frequency of 
extreme precipitation events has been increasing since the 
1980s. The frequency of hot days has been decreasing near 
the coast. Annual precipitation amounts have been reducing 
in this region overall, as well as the extreme rainfall event 
frequency. However, the northeastern region is the driest and 
poorest region of Brazil, and projections point to the largest 
reduction of total precipitation there, threatening the sur-
vival of millions of people due to water scarcity and social 
vulnerability (Darela-Filho et al. 2016; Marengo et al. 2017).

Urban centers across Brazil are vulnerable as well. The 
intensification of temperature warm extreme events may 
increase the incidence of respiratory and cardiovascular 
diseases (Son et al. 2016) and increase heat stress vulner-
ability (Souza et al. 2020) in Brazilian capitals (Lapola et al. 
2019). Future changes show a reduction in the total amount 
precipitation, CWD, and the number of very heavy rainfall 
(R20mm) for most of the hydrological basins, except for 
Uruguay and South Atlantic basins. The extreme precipita-
tion intensity indices (RX1day, RX5day, R95p, and SDII) 
are projected to increase under future scenarios in a majority 
of areas. While total precipitation decreases, more intense 
events over spatially-limited areas are expected to increase. 
This elevates the risk of flash floods and landslides, which 
are the most common hydrological hazards over Southern 
and Southeastern Brazil (CEPED-UFSC 2013; Ávila et al. 
2016; Debortoli et al. 2017; Marengo et al. 2020). Again, 
these are densely populated and economically susceptible 
areas of the country. Future trends may bring conflicts of 
water rights and irrigation for food production in heavily 
agricultural areas (parts of Parana and Tocantins), negative 
impacts on water availability, greatly affecting the popula-
tion that depends on hydroelectricity in northern and north-
eastern basins of Brazil (Marengo et al. 2017; Jong et al. 
2018; Llopart et al. 2020).
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In other areas, like the southern part of Amazon and 
Tocantins basins, similar reductions in annual precipitation 
and increases in CDD since the 1980s are likely to continue 
throughout the twenty-first century. These drier conditions 
could fuel additional drought events and enhance the risk 
of forest fires (Aragão et al. 2007). Ultimately, all of these 
changes in climate extremes impact the people of Brazil in 
unique ways. Understanding the perceptions and the chal-
lenges in responding to these changing climate conditions 
is vital for resilience, from heavily populated cities to local 
indigenous communities (Funatsu et al. 2019).

Thus, understanding how temperature and precipitation 
extremes in Brazil have changed in the past and are likely 
to evolve over the current century improves our current lack 
of understanding with regard economic and social impacts 
throughout the country. Designing adequate adaptation 
and mitigation strategies related to climate change impacts 
hinges on improving this knowledge and limiting the many 
barriers that still exist (Di Giulio et al. 2019). Still, future 
climate projections must be interpreted with caution as 
changing climate increases the variability of climate extreme 
and the uncertainty associated with downscaled ESMs, espe-
cially for rainfall extremes.
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