
Vol.:(0123456789)1 3

Climate Dynamics (2020) 54:5065–5088 
https://doi.org/10.1007/s00382-020-05272-9

Extreme climate indices in Brazil: evaluation of downscaled earth 
system models at high horizontal resolution

Alvaro Avila‑Diaz1   · Gabriel Abrahão1   · Flavio Justino1   · Roger Torres2   · Aaron Wilson3 

Received: 18 July 2019 / Accepted: 24 April 2020 / Published online: 30 April 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
This study evaluated the performance of 25 earth system models (ESMs), statistically and dynamically downscaled to a 
high horizontal resolution (0.25° of latitude/longitude), in simulating extreme climate indices of temperature and precipita-
tion for 1980–2005. Datasets analyzed include 21 statistically downscaled ESMs from the National Aeronautics and Space 
Administration (NASA) Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) and dynamically downscaled 
Eta Regional Climate Model simulations driven by 4 ESMs generated by the Brazilian National Institute for Space Research 
(INPE). Downscaled outputs were evaluated against observational gridded datasets at 0.25° resolution over Brazil, quantify-
ing the skill in simulating the observed spatial patterns and trends of climate extremes. Results show that the downscaled 
products are generally able to reproduce the observed climate indices, although most of them have poorest performance over 
the Amazon basin for annual and seasonal indices. We find larger discrepancies in the warm spell duration index for almost 
all downscaled ESMs. The overall ranking shows that three downscaled models (CNRM-CM5, CCSM4, and MRI-CGCM3) 
perform distinctively better than others. In general, the ensemble mean of the statistically downscaled models achieves better 
results than any individual models at the annual and seasonal scales. This work provides the largest and most comprehensive 
intercomparison of statistically and dynamically downscaled extreme climate indices over Brazil and provides a useful guide 
for researchers and developers to select the models or downscaling techniques that may be most suitable to their applications 
of interest over a given region.
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1  Introduction

The attention of global climate change impacts is progres-
sively moving from the assessments of mean (or climatol-
ogy) patterns to assessments of present and future trends of 
climate extreme events, such as the warmest day of the year, 

heat/cold waves, heavy or very heavy precipitation events, 
consecutive dry or wet spells (Burger et al. 2011; Alexander 
and Arblaster 2017; Avila-Diaz et al. 2020). In this sense, 
the Expert Team on Climate Change Detection and Indices 
(ETCCDI) have been developing and publicizing a set of 
internationally-accepted indices based on daily measures 
of air temperature and precipitation (Alexander et al. 2006; 
Donat et al. 2013; Sillmann et al. 2013a, b).

Many studies around the world have applied the ETCCDI 
climate indices to analyze the risk of climate extremes to 
human and natural systems, for past events using observed 
historical data (e.g., Aguilar et al. 2005; Santos et al. 2017), 
and for future trends in extremes using climate models pro-
jections (e.g., Debortoli et al. 2017; Mysiak et al. 2018; 
Alexander and Arblaster 2017). Despite all efforts, investi-
gations on future climate extremes have been frequently con-
strained by coarse resolutions in climate models, that lead to 
results that can not be assumed to reproduce local weather 
extremes. For instance, using General Circulation Models 
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(GCMs) from the Coupled Model Intercomparison Project 
Phase 3 (CMIP3), Rusticucci et al. (2010) and Marengo 
et al. (2010b) found that those models exhibit a higher fre-
quency of some climate extremes compared to observations 
over South America. Additionally, Sillmann et al. (2013a) 
evaluated the CMIP3 and CMIP5 models over the South 
American region and noted that many models overestimate 
the total precipitation in wet days, underestimate the maxi-
mum consecutive dry days and generally overestimate tem-
perature extremes.

In light of an increasing need for finer resolution infor-
mation of climate change projections (horizontal resolution 
less than 100 km), statistical and dynamical downscaling 
techniques provide more details of climatic patterns over 
a particular region, improving the accuracy and relevance 
of simulations and projections for climate impact studies 
(Burger et al. 2011; Ambrizzi et al. 2019; Bozkurt et al. 
2019). Although such research efforts are relatively rare in 
Brazil, several regionally/locally downscaled projections 
have been developed using various methodologies in recent 
years (Boulanger et al. 2006, 2007; Marengo et al. 2010a, 
2012; Thrasher et al. 2012; Chou et al. 2014a; Valverde and 
Marengo 2014; Avila-Diaz et al. 2020). For example, Val-
verde and Marengo (2014) and Chou et al. (2014a) assessed 
regional climate simulations applying dynamical downscal-
ing using the Eta model and noted that the model reproduced 
reasonably well the extreme climatic events; although, simu-
lations contain more extreme values than the observations.

The Brazilian economy has been highly vulnerable to 
climatic variability, especially to climate extremes of air 
temperature and precipitation, that can lead to considerable 
losses in agricultural activities and problems in the manage-
ment of water resources (Tomasella et al. 2013; Ray et al. 
2015; Debortoli et al. 2017; Marengo et al. 2017). In this 
way, current climate change projections are likely to have 
negative socio-economic impacts on the country, increas-
ing the number of natural disasters in regions where climate 
change will be more pronounced (Torres and Marengo 2014; 
Darela-Filho et al. 2016).

In recent years, impactful natural hazards related to cli-
mate extremes have affected Brazil, such as droughts in the 
Northeast from 2012 to 2016 (Marengo et al. 2017, 2018; 
Brito et al. 2018) or dry and warmer summers (Decem-
ber–March) in 2014 and 2015 in Southeast Brazil (Coe-
lho et al. 2016a, b). However, at the same time, unprec-
edented floods were reported in the summer of 2014 in the 
southwestern Amazon Basin (Espinoza et al. 2014). The 
frequency of such catastrophes spurs the need for reliable 
simulations of climate extremes on local to regional scales 
that can inform the development of public policies, proper 
management of hydrological resources, and the mitigation 
of their impacts on human activity and the environment 
(Marengo et al. 2009).

Therefore, current impact projections rely on climate 
models with coarse resolutions (> 100 km), thus lacking the 
detail needed for regionally relevant impact assessments. 
The main goal of this work is to evaluate how well the 
current climate model downscaling products can simulate 
variability and trends of climate extremes events in Bra-
zil. We investigate the performance of 25 statistically and 
dynamically downscaled earth system models (ESMs) to a 
high horizontal resolution in capturing the observed behav-
ior of extreme temperature and precipitation events over the 
major Brazilian watersheds. Two main downscaled ESMs 
data sources were analyzed. First, 21 statistically down-
scaled ESMs with a horizontal resolution of 0.25° × 0.25° 
of latitude/longitude (approximately 25 km × 25 km) were 
taken from National Aeronautics and Space Administration 
(NASA) Earth Exchange Global Daily Downscaled Projec-
tions (NEX-GDDP). Second, 4 dynamically downscaled 
ESMs using the Eta model at a 20-km spatial resolution 
were provided by the Brazilian National Institute of Spatial 
Research (INPE). These two data sources, with relatively 
high spatial and temporal resolutions, have greatly captured 
the observed climatic patterns and have been used in studies 
of climate change impacts on a regional/local scale (Debor-
toli et al. 2017; Missirian and Schlenker 2017; Lyra et al. 
2018; Raghavan et al. 2018; Liao et al. 2019).

The paper is organized as follows: Sect. 2 describes the 
different data sources and methodology used; results focused 
on observations and model evaluations are presented in 
Sect. 3; and finally, summaries, discussions and concluding 
remarks are presented in Sect. 4.

2 � Data and methods

2.1 � Extreme climate indices

Twenty-seven extreme climate indices are recommended 
by the ETCCDI and are calculated using daily maximum 
(TX) and minimum temperature (TN) and daily precipita-
tion (PR). In this study, some ETCCDI indices are excluded, 
because their definitions are not appropriate across Brazil. 
For instance, the index was excluded if the study area has 
few records of extremely low temperatures as frost days 
(FD), ice days (ID), cold spell duration indicator (CSDI), and 
the common magnitude of growing season length is nearly 
365 days (GSL). In addition, coldest day (TXn), warmest 
night (TNx), annual counts of daily minimum temperature 
greater than 20 °C (tropical nights–TR), the maximum tem-
perature greater than 25 °C (summer days–SU), and days 
with rainfall greater than 1/10 mm (R1 mm/R10 mm) were 
excluded from this analysis, because these thresholds are not 
relevant to describe extreme climate events in Brazil.
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We evaluate 16 extreme climate indices at the annual 
scale, 8 are associated with temperature and 8 with precipi-
tation. Detailed descriptions are provided in Table 1, and 
further details may also be found in Zhang et al. (2004) and 
Zhang et al. (2011), or at https​://etccd​i.pacif​iccli​mate.org/
list_27_indic​es.shtml​.

The extreme climate indices chosen can be calculated 
seasonally or monthly, albeit most of the impactful extreme 
events mentioned in the previous section can be described by 
annual indices (Aerenson et al. 2018). However, the seasonal 
analysis was done for the two extreme climate seasons over 
Brazil: austral summer (December, January, and February—
DJF) and winter (June, July, and August—JJA), representing 
the wet and dry seasons, respectively, for the most of the 
country (Marengo et al. 2010a; Torres and Marengo 2014; 
Rao et al. 2016; Lyra et al. 2018). For this purpose, seasonal 
analysis was carried out for selected warm extremes (TXx, 
TX90P), cold extremes (TNn, TN10P), wet extremes pre-
cipitation (PRCPTOT, RX1day, RX5day) and the maximum 
number of consecutive dry days (CDD), which is associated 
with dry conditions (Zhang et al. 2011) and also indicative 
of potential water stress (Aerenson et al. 2018).

The climate indices were chosen, because they allow the 
assessment of intensity, frequency, and duration of extreme 
climate events. Also, this set of indices has been used to 
describe hydrometeorological hazards such as droughts, 
floods, heavy rains, and heat waves in Brazilian climate 
conditions (Alexander et al. 2006; Sillmann et al. 2013a, 

b; Skansi et al. 2013; Ávila et al. 2016; Avila-Diaz et al. 
2020). Noteworthy, the ETCCDI indices are widely used to 
evaluate the capability of ESMs in simulating the observed 
climate extremes of temperature and precipitation (Marengo 
et al. 2010b; Rusticucci et al. 2010; Alexander and Arblaster 
2017; Nguyen et al. 2017; Avila et al. 2019; Dosio et al. 
2019; Loaiza et al. 2020).

All extreme indices were calculated using gridded data-
sets (observational and reanalysis) and 25 downscaled ESMs 
that are shown in Sects. 2.2 and 2.3, respectively. The cal-
culations are performed with the climdex.pcic.ncdf pack-
age maintained by the Pacific Climate Impacts Consortium 
(PCIC), which runs on R software and is freely available at 
https​://githu​b.com/pacif​iccli​mate/climd​ex.pcic.ncdf.

2.2 � Observed datasets

We examine the daily records from two gridded datasets. The 
first observational dataset (OBS-BR) contains daily fields of 
temperature and precipitation interpolated from 9259 rain 
gauges and 735 weather stations gridded to a regular grid of 
0.25° × 0.25° latitude/longitude covering all of Brazil terri-
tory over the period 1980–2015 (Xavier et al. 2015, 2017). 
The dataset is available at https​://utexa​s.app.box.com/v/
Xavie​r-etal-IJOC-DATA​. Noteworthy, daily fields of the 
observations and simulations covered 1980–2005, because 
the historical experiment for each downscaled model are 
only available through 2005 (see Sect. 2.3). The second 

Table 1   The extreme temperature and precipitation indices used in this study recommended by the ETCCDI

More details on definitions of the core indices given at https​://etccd​i.pacif​iccli​mate.org/list_27_indic​es.shtml​
a The ETCDDI defined a wet (dry) day when precipitation ≥ 1 mm (PR < 1 mm)

Index Indicator name Indicator definitions Units

TXx Hottest day Maximum value of daily maximum temp (TX) °C
TNn Coldest nights Minimum value of daily minimum temp (TN) °C
DTR Diurnal temperature range Mean difference between TX and TN °C
TN10p Cold nights Percentage of days when TN < 10th percentile %
TN90p Warm nights Percentage of days when TN > 90th percentile %
TX10p Cold days Percentage of days when TX < 10th percentile %
TX90p Warm days Percentage of days when TX > 90th percentile %
WSDI Warm spell duration indicator Annual count of days with at least 6 consecutive days when 

TX > 90th percentile
Days

PRCPTOT Annual total wet-day precipitation Total precipitation (PR) in wet days (PR ≥ 1 mm) mm
RX1day Max 1-day precipitation amount Highest maximum 1-day precipitation mm
RX5day Max 5-day precipitation amount Highest maximum 5-day precipitation mm
R95p Very wet days Annual total precipitation from days > 95th percentile mm
SDII Simple daily intensity index The ratio of annual total precipitation to the number of wet 

daysa (≥ 1 mm)
mm/day

R20mm Number of very heavy precipitation days Number of days when PR ≥ 20 mm Days
CWD Consecutive wet days Maximum number of consecutive days with PR ≥ 1 mm Days
CDDa Consecutive dry days Maximum number of consecutive days with PR < 1 mm Days

https://etccdi.pacificclimate.org/list_27_indices.shtml
https://etccdi.pacificclimate.org/list_27_indices.shtml
https://github.com/pacificclimate/climdex.pcic.ncdf
https://utexas.app.box.com/v/Xavier-etal-IJOC-DATA
https://utexas.app.box.com/v/Xavier-etal-IJOC-DATA
https://etccdi.pacificclimate.org/list_27_indices.shtml
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dataset used is from Global Meteorological Forcing Dataset 
(GMFD) (Sheffield et al. 2006), which consists of 3-hourly, 
0.25°-resolution fields of near-surface meteorological vari-
ables for global land areas for 1948–2016, available at the 
Terrestrial Hydrology Research Group website at Princeton 
University (https​://hydro​logy.princ​eton.edu/data.GMFD.
php). The GMFD is a merge of several datasets from the 
National Centers for Environmental Prediction—National 
Center for Atmospheric Research reanalysis (NCEP-NCAR), 
the satellite-based Global Precipitation Climatology Project 
(GPCP), Tropical Rainfall Monitoring Mission (TRMM) and 
interpolated ground observations from Climatic Research 
Unit (CRU).

The OBS-BR and GMFD employ different interpolation 
methods, quality control, and station networks in their devel-
opment. GMFD was designed for pixel-scale hydrological 
consistency and has to rely on the NCEP reanalysis as the 
basis for daily weather variability (Sheffield et al. 2006). The 
use of a reanalysis product introduces an additional error 
source, and can lead to smoother meteorological series in 
comparison to what is observed in the weather stations, 
which can dampen the magnitude of extreme climate events 
(Zhang et al. 2011). OBS-BR, on the other hand, directly 
interpolates the daily observations of its larger weather sta-
tion/rain gauge network. For these reasons, we considered 
OBS-BR as the reference daily gridded dataset for mete-
orological variables (TN, TX, and PR) in Brazil. Special 
attention was given to the comparison between GMFD and 
OBS-BR datasets, because the National Aeronautics and 
Space Administration (NASA) Earth Exchange Global Daily 
Downscaled Projections (NEX-GDDP) dataset (Thrasher 
et al. 2012) used GMFD as the observational reference for 
its statistical downscaling technique. The following subsec-
tion describes the NEX-GDDP dataset.

2.3 � Earth system model data

For each dynamical and statistical dataset (see Table 2 for 
the list of models), we used the daily output of maximum 
and minimum temperature, and daily precipitation to study 
extreme climate indices from 1980 to 2005.

The 21 statistically downscaled CMIP5 ESMs were 
obtained from the NEX-GDDP dataset (Thrasher et  al. 
2012). This dataset is available at https​://nex.nasa.gov/nex/
proje​cts/1356/. It consists of the results of 21 CMIP5 mod-
els, bias-corrected and disaggregated to a grid of horizontal 
resolution of 0.25° of latitude/longitude using a spatially 
designed statistical technique that compares the model’s his-
torical runs (1950–2005) with the GMFD dataset.

On the other hand, the dynamically downscaled simula-
tions employed in our study have been generated by the ETA 
regional climate model, provided by The Brazilian Center 
for Weather Forecasts and Climate Studies—CPTEC and 

Brazilian National Institute for Space Research—INPE, 
available at https​://proje​ta.cptec​.inpe.br (Chou et al. 2014a, 
b; MCTI 2016; Lyra et al. 2018). The ETA simulations are 
based on 4 ESMs that have been downscaled to a 20-km reso-
lution (Table 2). The model domain covers South America 
and most of Central America, available from 1960 to 2005. 
Regarding to Chou et al. (2014a) and Lyra et al. (2018), the 
ETA model largely improves the seasonal cycles and precipi-
tation frequency distributions when compared to the driving 
ESM. However, they retain some of the distortions of trends 
in extreme indices present in the ESM simulations, such as 
the cooling trend in maximum and minimum temperatures 
in Eta-MIROC5, and different spatial patterns of extreme 
precipitation trends among the models (Chou et al. 2014a). 
More information on the simulations, including a detailed 
comparison between their results for some extreme indices, 
can be found in Chou et al. (2014a) and Lyra et al. (2018). 
For intercomparison purposes, the ETA 20 km grid here was 
interpolated to a common 0.25° × 0.25° grid, using a first-order 
conservative remapping technique (Jones 1999), as proposed 
in the literature (Giorgi 2006; Cheng and Knutson 2008; Sill-
mann et al. 2013a; Torres and Marengo 2014).

Besides analyzing each model separately, we test whether 
using Multi-Model Ensembles (MMEs) can improve the rep-
resentation of climate extremes. Taking the mean of a model 
ensemble is a common technique for avoiding the large spread 
found in individual model results (Knutti et al. 2010; Sillmann 
et al. 2013a; Nguyen et al. 2017). For that end, the mean of 
each index among the statistical (MME-Sta) and dynamical 
(MME-Dyn) models was calculated, and we treated those as 
separate results.

2.4 � Evaluation metrics and trend calculation

The metrics used for evaluating the simulated indices include 
Percent Bias (PBIAS), RMSE-observations standard deviation 
ratio (RSR), refined index of agreement (dr) (Willmott et al. 
(2012) and the Pearson correlation coefficient (CORR). These 
statistical parameters are calculated as follows:

(1)PBIAS =

∑n

i=1
(mi − Oi) × 100∑n

i=1
Oi

,
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https://hydrology.princeton.edu/data.GMFD.php
https://hydrology.princeton.edu/data.GMFD.php
https://nex.nasa.gov/nex/projects/1356/
https://nex.nasa.gov/nex/projects/1356/
https://projeta.cptec.inpe.br
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where Oi is the observed value, O
i
 is the mean of observed 

data, mi is the simulated value, m
i
 is the mean of simulated 

data, and n is the total observation number.
PBIAS indicates the average tendency of the simulation 

to be larger or smaller than the observed data (Gupta et al. 

(4)
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i
)(O

i
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− O
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�
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i
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i

� ,
1999); values close to 0 indicate an optimal performance in 
a given model; positive and negative values indicate a bias 
toward overestimation or underestimation, respectively. RSR 
is calculated as the ratio of the RMSE and standard devia-
tion of observed data (Moriasi et al. 2007); values closer to 
0 mean better performing simulations. The refined index of 
agreement (dr) developed by Willmott et al. (2012) varies 
between − 1 and 1. A dr of 1 indicates a perfect agreement 
and dr = − 1 indicates either a lack of agreement between 
observed and simulated values or a lack of variability in 

Table 2   Information on the 25 general circulation models used in the present analysis

(a) ESMs used for generating the NEX-GDDP dataset through statistical downscaling. (b) ESMs used as boundary conditions to generate the 
Eta-INPE dataset through dynamical downscaling
a Vertical layers

Model Modeling center Resolution (Lat° × Lon°) VLa

(a) Statistical downscaled models
 1. ACCESS1-0 Commonwealth Scientific and Industrial Research Organization and Bureau of 

Meteorology, Australia
1.875° × 1.25° 38

 2. BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration, China 2.8° × 2.8° 26
 3. BNU-ESM Beijing Normal University, China 2.8° × 2.8° 26
 4. CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada 2.8° × 2.8° 35
 5. CCSM4 National Center for Atmospheric Research (NCAR), USA 1.25° × 0.9° 27
 6. CESM1-BGC National Science Foundation, Department of Energy and NCAR, USA 1.25° × 0.9° 27
 7. CNRM-CM5 Centre National de Recherches Météorologiques and Centre Européen de 

Recherche et Formation Avancée en Calcul Scientifique, France
1.4° × 1.4 31

 8. CSIRO-MK3-6-0 Commonwealth Scientific and Industrial Research Organization, Australia 1.875° × 1.875° 18
 9. GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5° × 2.0° 48
 10. GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5° × 2.0° 24
 11. GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5° × 2.0° 24
 12. INMCM4 Institute for Numerical Mathematics (INM), Russia ~ 1.5° × 2.0° 21
 13. IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 3.75° × 1.895 39
 14. IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 2.5° × 1.27° 39
 15. MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National 

Institute for Environmental Studies, and Japan Agency for Marine- Earth Sci-
ence and Technology

1.4° × 1.4° 40

 16. MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 
Research Institute (The University of Tokyo), and National Institute for Environ-
mental Studies

2.8° × 2.8° 80

 17. MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 
Research Institute (The University of Tokyo), and National Institute for Environ-
mental Studies

2.8° × 2.8° 80

 18. MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.875° × 1.875° 47
 19. MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.875° × 1.875° 95
 20. MRI-CGCM3 Meteorological Research Institute, Japan 1.125° × 1.125° 48
 21. NorESM1-M Norwegian Climate Centre, Norway 2.5° × ~ 1.89° 26

(b) Dynamical downscaled models
 22. BESM Brazilian Earth System Model version (Version 2.3.1), Brazil 1.875° × 1.875° 28
 23. CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada 2.8° × 2.8° 35
 24. HadGEM2-ES Met Office Hadley Centre, UK 1.25° × 1.875° 38
 25. MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National 

Institute for Environmental Studies, and Japan Agency for Marine-Earth Science 
and Technology

1.4° × 1.4° 40
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the observed data (Willmott et al. 2015). Finally, CORR is 
used to describe the temporal association between observed 
data and model simulations. CORR is between − 1 and 1. 
A CORR of 1 (− 1) shows complete positive (negative) lin-
ear relation. If the CORR is 0, there is a lack of any linear 
relationship between observed (Oi) and simulated (mi) data.

Individual extreme climate index scores allow us to rank 
models based on the performance metrics (PBIAS, RSR, dr, 
and CORR). To summarize all the ranking possibilities, the 
comprehensive model rank (MR) has also been calculated 
(Jiang et al. 2015; You et al. 2017; Zhang et al. 2018). MR 
is a measure of how consistently each model is classified 
among all the ranking possibilities (indices and metrics):

where n is the total number of indices, m is the number of 
models and the Ranki indicates downscaled model’s order on 
each index in a given performance metric. Note that we also 
rank all the downscaled ESMs along with the two MMEs 
(Table 2). Therefore, the maximum value of MR is 1, indicat-
ing that the model is the best in all indices and metrics (Jiang 
et al. 2015; You et al. 2017).

(5)

M
R
= 1 −

1

n × m

n∑
i=1

(
Rank

iPBIAS
+ Rank

iRSR
+ Rank

idr
+ Rank

iCORR

)
,

The linear trends of extreme climate indices from down-
scaled ESMs are estimated and compared to two observed 
datasets using the Theil–Sen slope estimator (Sen 1968). 
The trend significance of the slope was evaluated through 
Mann–Kendall (Mann 1945; Kendall 1975) trend signifi-
cance test at the 95% confidence level. These tests have 
been broadly used in hydrometeorological studies for 
detecting trends because of their non-parametric approach 
(Yue et al. 2002; Skansi et al. 2013; Avila et al. 2019).

The performance metrics and trends were evaluated for 
each grid point and averaged across each of the eight major 
hydrological basins (Fig. 1) used by the Brazilian National 
Water Agency (ANA). The basin acronyms in Fig. 1 refer 
to Amazon River (AMZ), Tocantins River (TOC), North 
Atlantic Region (NAR), São Francisco River (SFR), Cen-
tral Atlantic Region (CAR), Parana River (PAR), Uruguay 
river (URU), and South Atlantic Region (SAR). The analy-
sis in hydrological basins was done because the perfor-
mance of each ESMs within a given hydrological basin 
is expected to be consistently representative throughout 
that specific region (Nguyen et al. 2017; Xu et al. 2019; 
Avila-Diaz et al. 2020).

Fig. 1   Geographical location of the eight hydrological basins in Brazil according to the Brazilian National Water Authority (ANA) classification
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3 � Results and discussion

For sake of brevity, we discuss the results of climatol-
ogy bias and spatial trend analysis for two indices, which 
represent extremes events of temperature (hottest days—
TXx) and precipitation (annual total wet-day precipita-
tion—PRCPTOT) as illustrative figures in the main text. 
Results for the other ETCCDI indices can be found in the 
supplementary material.

3.1 � Temperature indices

3.1.1 � Evaluation metrics

Figure 2 presents the climatology bias of the hottest day 
index (TXx). Almost all downscaled ESMs and the rea-
nalysis (GMFD) captured the spatial pattern of the TXx 
relatively well. Furthermore, the evaluation metrics (PBIAS, 
RSR, dr, and CORR) were calculated for each climate index, 
model, MMEs, and GMFD dataset in each hydrological 
basin and compared to observations during 1980–2005. 

Fig. 2   Climatology bias for the 
annual maximum of daily maxi-
mum temperature—TXx (°C) 
for 21 statically (NEX-GDDP; 
models 1–21) and 4 dynami-
cally (Eta-INPE; models 22–25) 
downscaled models, MME-Sta 
(26), MME-Dyn (27), and 
GMFD (28) from 1980 to 2005. 
Climatology for TXx in the 
observations dataset (OBS-BR; 
gray rectangle dataset 29) for 
1980–2005
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These evaluation metrics are summarized in the portrait 
diagrams shown for annual (Fig. 3) and seasonal (Fig. 4) 
results.

In general, the statistical downscaling approach captures 
well the general spatial patterns of the temperature indices 
at the annual scale. However, the statistically downscaled 
ESMs more frequently overestimate TXx above 2 °C over 

the Amazon basin (Fig. 2). Also, there are generally low 
values of PBIAS for almost all temperature indices of GMFD 
(Fig. 3a) except for TXx, coldest night (TNn), and warm 
spell duration indicator (WSDI). The greatest PBIAS values 
for TXx are found over the Amazon, Tocantins, and Parana 
basins with values larger than 12%. GMFD underestimated 
observed values for TNn except for the São Francisco River 

Fig. 3   Statistics of performance 
obtained for annual tem-
perature indices for statically 
(NEX-GDDP) and dynami-
cally (Eta-INPE) downscaled 
models, MME-Sta, MME-Dyn, 
and GMFD from 1980 to 
2005 over eight hydrological 
basins (Fig. 1). a Percent Bias 
(PBIAS); b RMSE-observations 
standard deviation ratio (RSR); 
c a refined index of model 
performance (dr); d Correlation 
coefficients (CORR; the diago-
nal lines indicate significant 
correlations at 95% level). The 
horizontal purple lines refer to 
Eta-INPE datasets. For PBIAS 
and RSR, dark colors indicate 
models that perform worse than 
others, on average, and light 
colors indicate models that 
perform better than others, on 
average. Furthermore, for dr and 
CORR, dark (light) colors show 
models that have better (worse) 
statistical metrics than others, 
on average
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and Central Atlantic basins (overestimated by slightly more 
than 1%). The worst values of PBIAS for TNn are identified 
over the Parana and Uruguay basins with − 4 and − 13%, 
respectively.

The PBIAS of TNn (Fig.  2a; second column) shows 
that some downscaled models are too cold [e.g., 

Eta-HadGEM2-ES (24) and Eta-MIROC5 (25)] or simulate 
higher values of minimum temperatures [e.g., MIROC-ESM 
(16) and MIROC-ESM-CHEM (17)] over Brazil. Further-
more, models 2, 3, 16, and 17 did not perform well for the 
TNn index over the Parana River, Uruguay River, and South 
Atlantic basins with values above 19% (Fig. 3a). In terms of 

Fig. 4   As in Fig. 2, bur for 
extreme temperature indices 
in summer (DJF) and winter 
(JJA). The nomenclature of the 
ETCCDI indices was adapted 
to Index—“S” for summer and 
Index—“W” for winter
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the RSR, dr, and correlation, higher limitations have been 
found for the majority of the 25 downscaled ESMs for TXx 
and DTR, especially for basins located in the North and 
Northeast of Brazil. It is important to note that TXx and TNn 
indices are generally underestimated in the Eta simulations 
over Brazil (e.g., models 24 and 25), in agreement with the 
results of Chou et al. (2014a).

Figure 4 displays the performance obtained for tempera-
ture indices in summer and winter. In general, the down-
scaled models underestimate the observations of the TXx 
and TNn indices in summer in almost all basins except for 
the Uruguay basin, which shows a warm bias only for TXx. 
Two of the ETA-INPE models (BESM and CanESM2) have 
the reverse behavior, tending to overestimate Txx in the sum-
mer in most basins, which offsets the strong underestimating 
bias of ETA MIROC5 in MME-Dyn. The results for winter 
show that the downscaled ESMs overestimate the TXx over 
Amazon, Tocantins, and North Atlantic basins, but strongly 
underestimate (PBIAS > 30%) over Uruguay, Parana, and 
South Atlantic basins. The TNn index, for the winter, shows 
PBIAS values lesser than 2%; however, poor performance 
in RSR, dr, and CORR. The TXx index (TNn) shows that 
GMFD has a warm (cold) bias in both seasons (bottom of 
Fig. 4a). For the rest of the metrics (RSR, dr, and CORR), 
GMFD shows better performance to reproduce TNn than the 
TXx index over the majority of basins.

The discrepancy of the majority of downscaled models is 
more evident for WSDI, which simulates higher values than 
the observations, especially over the Amazon, Tocantins, 
and Parana basins (Fig. 3b). The WSDI underestimates the 
observed values by more than 25% and 30% for the Uruguay 
River and South Atlantic basins, respectively, and for the 
other basins by more than 66%. Moreover, eight temperature 
indices have values of RSR close to zero (Fig. 3b), except 
for the TXx index. Additionally, the redefined index values 
(dr < 0.5; Fig. 3c) and correlation coefficients (CORR < 0.5; 
Fig. 2d) show the poor performance of the downscaled mod-
els to reproduce the TXx and DTR (diurnal temperature 
range), especially over the Amazon and Tocantins basins.

Evaluation metrics of the GMFD dataset demonstrate rea-
sonable skill in the representation of the temperature-based 
percentile indices at the annual scale (e.g., TN10p, TX10p, 
TN90p, and TX90p) across all hydrological basins in Bra-
zil (bottom of Fig. 3a–d). For these four extreme climate 
indices in almost all basins, PBIAS is within ± 3%, RSR < 1, 
dr ≥ 0.50, and CORR ≥ 0.54. However, it has been found that 
TX10p has particularly poor performance over the Uruguay 
River and South Atlantic basins. Similar to the annual scale, 
GMFD performs well in reproducing the summer and win-
ter patterns (Fig. 4a–d) of the selected percentile indices 
(TN10p, TX90p).

The evaluation metrics display good performance of the 
downscaled models to reproduce TN10p, TX10p, TN90p, 

and TX90p at the annual scale (see four to seven columns 
of Fig. 3). For these indices, the PBIAS varies between − 5 
to 4%, and the RSR values are close to zero. According to 
dr and correlation, models CSIRO-MK3-6-0 (8), CNRM-
CM5 (7), and MRI-CGCM3 (20) show consistent perfor-
mance over all eight basins shown in Fig. 1. The seasonal 
patterns of TN10p and TX90p are reproduced reasonably 
well by downscaled models (Fig. 4a–d). For TN10p and 
TX90p, the PBIAS varies between − 8 to 6%, and the RSR 
and dr show good accuracy with values close to 0–1 over 
the majority of basins.

The low bias found in percentile indices is similar 
to previous studies that used raw ESMs (Marengo et al. 
2010b; Rusticucci et  al. 2010; Sillmann et  al. 2013a) 
and regional climate model results over South America 
(Marengo et  al. 2009; Dereczynski et  al. 2013). The 
good performance for percentile indices is likely a con-
sequence of their construction, which includes exceed-
ance rates (in percentage) of temperatures colder than the 
10th percentile or warmer than the 90th percentile with 
respect to a base period, potentially minimizing model 
characteristics (Zhang et al. 2011). Moreover, the percen-
tile indices have less extreme features of climate variabil-
ity than absolute indices (e.g., TXx and TNn) (Sillmann 
et al. 2013a). Finally, the PBIAS magnitudes of WSDI are 
within ± 200%. The worst performance (based on RSR, dr, 
and CORR) across almost all the 25 downscaled ESMs is 
found in the basins located over the North, Northeast, and 
Central-West regions of Brazil (see Figs. 2, 3, 4).

In general, both MMEs over or underestimate the 
majority of temperature indices by less than 10%, except 
the WSDI, with PBIAS varying between − 11 to 71% and 
− 32 to 53% for MME-Sta and MME-Dyn, respectively. 
The MME-Sta display lower PBIAS and RSR and higher 
correlations and dr than MME-Dyn for nearly all tem-
perature indices. Our results suggest that MMEs-Sta can 
better reproduce the interannual variability of temperature 
extremes in Brazil than MME-Dyn. Some of the down-
scaled models show better DTR (models 2, 8, 7, 20, and 
MME-Sta) and WSDI (models 6 and 16) than the raw 
models analyzed by Sillmann et al. (2013a). This may be 
related to the quantile mapping applied to the statistical 
downscaling, which makes the probability distribution of 
the downscaled data more narrowed. As discussed by Tang 
et al. (2016), statistical downscaling is based on linear 
regression with fewer degrees of freedom with respect 
to the dynamical counterpart (Wilby and Dawson 2013). 
In terms of precipitation, the complexity in the latter 
approach is even higher due to the non-linear interaction 
between clouds, atmospheric circulation, meso-scale pro-
cesses, and land–atmosphere interaction.
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3.1.2 � Trend analysis in temperature indices

Trends are calculated for the OBS-BR and GMFD observa-
tions and for each downscaled ESMs for temperature indices 
at the annual scale for 1980–2005 (Figs. 5, 6). The OBS-BR 
dataset shows warming trends for most of the temperature 
indices in all hydrological basins of Brazil, most of which 
are significant at the 95% confidence level. The interested 
reader is referred to Fig. S8 to follow the seasonal results 
for warm extremes (TXx, TX90P) and cold extremes (TNn, 
TN10P), that also shows warming trends. The warming is 
generally larger in indices related to the warmest days (TXx) 
than in the coldest days (TNn) (Fig. 5 and see the spatial 
trends of TXx in Fig. 6).

The trend signal of percentile indices (TN10p, T90p, 
TX10p, and TX90p) is in line with observational analyses 
from Vincent et al. (2005), Skansi et al. (2013), Donat et al. 
(2013) and Avila-Diaz et al. (2020), indicating warmer con-
ditions over Brazil at annual (Fig. 5) and seasonal scales. 
Furthermore, the positive trends in TXx (Figs. 5a, 6) and a 

narrowing tendency of DTR (Fig. 5c) over southern Brazil 
by the OBS-BR are consistent with the results observed by 
Marengo and Camargo (2008) and Rosso et al. (2015) during 
1960–2002 and 1961–2011 periods, respectively. However, 
they found positive trends for the TNn index, but our results 
indicate negative trends in southern Brazil. These authors 
employed different periods and more years than the ones 
used in this study, with low-frequency features of the time 
series potentially changing the evaluated trends in TNn.

The magnitude of warming trends in cold nights, warm 
nights, cold days, warm days, and warm spell duration indi-
ces is relatively coherent across all the downscaled ESMs 
datasets and model ensembles (Fig. 5). Also, seasonal trend 
patterns in summer and winter for percentile indices (e.g., 
TN10p and TN90p) are well captured in almost all down-
scaled models. The upward trends found for most indices 
are a common feature delivered on the models evaluated 
except for MIROC-ESM-CHEM (17). This model shows 
negative (cooling) trends in several indices at annual and 
seasonal scales that are positive (warming) according 

Fig. 5   Trends per decade from 1980 to 2005 for temperature indices 
at the annual scale a–h for 21 NEX-GDDP climate models (1–21), 4 
Eta-INPE climate models (22–25), MME-Sta (26), MME-Dyn (27), 

GMFD (28) and OBS-BR over eight hydrological regions in Brazil 
(Fig. 1). Diagonal lines indicate significant trends at 95% level. The 
vertical purple lines refer to ESMs from Eta-INPE datasets
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to the observations. MIROC family of models gener-
ally has contradictory trends in many indices (e.g., TXx, 
DTR, and TX90p) compared to observations, particularly 
MIROC-ESM-CHEM.

Few downscaled models capture even moderately well 
the diurnal temperature range (DTR; Fig. 5c models 1, 2, 3, 
and 5) trends in most hydrological basins. In the case of the 
Eta-INPE models, none are able to replicate even the sign 
of the trend in all basins. In fact, the GMFD dataset also 
shows DTR trends slightly different from OBS-BR. This 
is possibly because DTR is highly affected by land surface 

characteristics, which are both transient in time and very 
heterogeneous inside the grid cells of climate models for 
both the GCMs (> 100 km of horizontal resolution) and 
Eta (20 km). This affects both the Eta-INPE models, which 
contain raw GCM output, and the NEX-GDDP models, for 
which the downscaling procedure explicitly attempts to 
conserve the GCM modeled trends (Thrasher et al. 2012). 
Maximum and minimum temperatures in GMFD are affected 
by both the underlying NCEP-NCAR reanalysis model and 
the monthly average DTR of the CRU dataset, which uses 
fewer meteorological stations in the region than OBS-BR. 

Fig. 6   Trends (°C/decade) 
in hottest days (TXx) at the 
annual scale for 21 NEX-
GDDP climate models (1–21), 
4 Eta-INPE Models (22–25), 
MME-Sta (26), MME-Dyn 
(27), GMFD (28) and OBS-BR 
(29; gray rectangle) from 1980 
to 2005. Hatching indicates 
where trends are significant at 
the 95% level
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Finally, our results suggest that the better alternative for esti-
mating the sign and magnitude of the temperature indices at 
the annual and seasonal scales is the use of the downscaled 
model ensembles (MME-Sta and MME-Dyn).

3.2 � Precipitation indices

3.2.1 � Evaluation metrics

For the annual total wet-day precipitation index (PRCP-
TOT; Fig. 7), all statistically downscaled models show 
low bias (close to zero), especially for ACCESS1-0 (1), 

CESM1-BGC (6), and NorESM1-M (21). The dynamically 
downscaled models show less precipitation in the North 
region and slightly higher in the South region respect to 
OBS-BR (Fig. 8a; first column).

Most of the downscaled models underestimate the 
observed values for intensity indices such as the annual max-
imum 1-day (RX1day) and the maximum 5-day precipitation 
amount (RX5 day), especially in the North Atlantic basin 
(Fig. 8a; second and third column). Besides, models from 
statistically downscaled models (NEX-GDDP) overestimate 
the OBS-BR values, especially for the Tocantins River basin. 
Moreover, basins located in the South and Southern regions 

Fig. 7   Climatology bias for the 
annual total wet-day precipita-
tion—PRCPTOT (mm) for 
21 statically (NEX-GDDP; 
models 1–21) and 4 dynami-
cally (Eta-INPE; models 22–25) 
downscaled models, MME-Sta 
(26), MME-Dyn (27), and 
GMFD (28) from 1980 to 2005. 
Climatology for PRCPTOT in 
the observations dataset (OBS-
BR; gray rectangle dataset 29) 
for 1980–2005
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of Brazil show good performance according to RSR and dr. 
Additionally, for the very wet days (R95p) index, all evalu-
ation metrics show poor performance for all models over 
the Amazon River basin (Fig. 8; fourth column). On the 
other hand, the dynamically downscaled models from the 
Eta-INPE dataset tend to underestimate the R95p index for 

almost all basins. We note that summer and winter indi-
ces (e.g., PRCPTOT, RX1day, and RX5day) are generally 
underestimated across all Brazil for almost all downscaled 
models except for Eta-INPE models (models 22, 23, 24, and 
25) that show wet bias in winter over most of the watersheds 
(Fig. 9a–d). Similar to the annual scale (Fig. 8a), the weak 

Fig. 8   Statistics of performance 
obtained for annual pre-
cipitation indices for statically 
(NEX-GDDP) and dynami-
cally (Eta-INPE) downscaled 
models, MME-Sta, MME-Dyn, 
and GMFD from 1980 to 
2005 over eight hydrological 
basins (Fig. 1). a Percent Bias 
(PBIAS); b RMSE-observations 
standard deviation ratio (RSR); 
c a refined index of model 
performance (dr); d Correlation 
coefficients (CORR; the diago-
nal lines indicate significant 
correlations at 95% level). The 
horizontal purple lines refer to 
Eta-INPE datasets. For PBIAS 
and RSR, dark colors indicate 
models that perform worse than 
others, on average, and light 
colors indicate models that 
perform better than others, on 
average. Furthermore, for dr and 
CORR, dark (light) colors show 
models that have better (worse) 
statistical metrics than others, 
on average
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performance of downscaled ESMs is more evident for the 
Amazon basin.

In almost all basins, the statistically downscaled ESMs 
models underestimate the simple daily intensity index (SDII) 
and the number of very heavy precipitation day (R 20 mm) 
indices (see fifth and sixth columns of Fig. 8). For these 
indices, the performance of the Eta-INPE dataset is better 

than NEX-GDDP. The PBIAS shows that the simulations 
underestimate the observed values for the Amazon River and 
overestimate in Uruguay River and South Atlantic basins. In 
general, for all downscaled ESMs, the poorest performance 
(RSR, dr, and CORR) is found over the Amazon River basin.

For the duration indices like consecutive dry days 
(CDD) and consecutive wet days (CWD) (see last two 

Fig. 9   As in Fig. 8, but for 
extreme precipitation indices 
in summer (DJF) and winter 
(JJA). The nomenclature of the 
ETCCDI indices was adapted 
to Index—“S” for summer and 
Index—“W” for winter
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columns of Fig. 8), some models show the largest disa-
greement when compared with the observed dataset, and 
thus indicate considerable uncertainty. For instance, mod-
els 8, 13, 14, and 23 are generally too dry while others too 
wet (models 2, 3, 4, 11, 13, 16, and 17) over the North 
and Northeast of Brazil. The statistically downscaled 
ESMs show worse performance over the Amazon River, 
Tocantins Rivers, and the North Atlantic basin (Fig. 8). 
On the other hand, some models such as CCSM4 (5) and 
CESM1-BGC (6) have relatively good performance in the 
Central-West, Southeast, and South of Brazil. Downscaled 
NEX-GDDP models show better skill in simulating the 
CDD index at seasonal scale than ETA-INPE models. 
Noteworthy, statistically downscaled ESMs have better 
scores (Fig. 9) in simulating CDD index in winter than 
summer (see models 8, 10, 13, 14 in Fig. 9).

Comparison between observations (OBS-BR) and the 
reanalyses shows that the GMFD dataset underestimates 
approximately all precipitation indices at the annual scale 
(see dataset 28 of Fig. 7), except for PRCPTOT as the PBIAS 
varies between 0 and 6% (see bottom of Fig. 8a–d). How-
ever, in general, the RX1day, RX5day, and R95p indices 
are overestimated for all basins (Fig. 8a). The results do not 
indicate a dominant positive or negative pattern of PBIAS 
for SDII, R20mm, CDD, and CWD. It should be noted that 
the worst performance is found over the Amazon River, 
Tocantins Rivers, and North Atlantic basins (Fig. 8). In this 
sense, the main discrepancies between OBS-BR and GMFD 
are found for several indices such as RX1day, RX5day, 
R20mm, and CWD (Fig. 8). Figure 9a shows a consistently 
dry bias in PRCPTOT, RX1day, RX5day, and CDD indices 
during the summer and low skill in reproducing intensity 
indices (RX1day, RX5day). GMFD also shows a better win-
ter precipitation indices estimation over most parts of Brazil, 
according to RSR, dr, and CORR (Fig. 9b–d). Furthermore, 
the Amazon River basin is poorly represented in GMFD for 
the annual, summer, and winter for almost all precipitation 
indices, except for PRCPTOT and CDD (see Figs. 8, 9).

The overall performance assessment (see bottom of 
Fig. 8) shows that the models from NEX-GDDP and Eta-
INPE underestimate precipitation intensity (RX1day and 
R95p) and frequency (R20mm) over the Amazon River 
basin. However, the statistically downscaled models per-
form better for the PRCPTOT and CDD indices on the both 
annual and seasonal scale (Figs. 8, 9). The relative errors 
could be because PRCPTOT and CDD are less dependent on 
fine scale phenomena than the indices that represent extreme 
precipitation events (e.g., RX1day and RX5day). Besides, 
the coarse resolution of the underlying ESMs makes them 
have special difficulties in representing the spatial and tem-
poral heterogeneity of precipitation over tropical regions 
(Marengo et al. 2010b; Rusticucci et al. 2010; Sillmann 
et al. 2013a).

Of particular importance is the fact that for several mod-
els and regions, the sign of the bias in CDD is different in 
the annual and seasonal scales. For example, most models 
show a negative PBIAS (fewer dry days) at the annual scale, 
but a positive (more dry days) PBIAS in both summer and 
winter seasons in regions more to the south (e.g., models 6, 
7 and 8). Transition seasons (spring, autumn) have a larger 
influence on the overall annual number of precipitation days 
across these higher-latitude regions of Brazil (Rao et al. 
2016). The opposite is true for some statistically downscaled 
models in other regions, and the sign of the CDD bias is 
also reversed between summer and winter in the dynami-
cally downscaled models. Since some activities such as agri-
cultural production are particularly sensitive to dry spells 
in specific seasons (e.g., da Silva et al. 2013) special care 
should be taken when selecting downscaled models for this 
kind of application.

The MMEs have weakest representation of intensity indi-
ces principally over the Amazon basin at the annual and 
seasonal levels. Multi-model ensembles generally have a bet-
ter performance than most individual models, but not all. 
Our results show that MME-Sta might be a better approach 
in precipitation indices (e.g., PRCPTOT and RX5day) over 
the Amazon River, where most models show poor perfor-
mance (Figs. 8, 9). On the other hand, the SDII, R20mm, 
and CWD values from MMEs-Dyn generally agree more 
with the observations than MME-Sta over most hydrologi-
cal basins. The MMEs-Sta and MME-Dyn overestimate and 
underestimate CWD and CDD, respectively, particularly 
over the Amazon, Tocantins, and North Atlantic basin. It 
should be highlighted that the bias is significantly smaller 
in the Eta simulations.

In general, the dynamically downscaled models simulate 
less total precipitation than OBS-BR, even for the NCEP-
NCAR reanalysis used in GMFD. This underestimation by 
the Eta-simulations discussed here is consistent with the 
results obtained by Chou et al. (2014a) and Valverde and 
Marengo (2014), especially in northern Brazil. The agree-
ment is generally much better for the statistically downscaled 
models, although the sign of the errors has a similar spatial 
pattern, with modest underestimation of total precipitation 
in northern Brazil. All downscaled models capture the main 
spatial features of extreme precipitation indices climatol-
ogy, but significant biases were found, particularly in the 
Amazon River basin (Figs. 8, 9). The systematic rainfall 
underestimation by the models can be related to many fac-
tors, such as the poor representation of cumulus convec-
tion, the biosphere–atmosphere interactions in the rainfor-
est, soil moisture, and land surface processes (Torres and 
Marengo 2013; Yin et al. 2013). For example, representation 
of aerosol-related processes is a major source of uncertainty 
on climate models (Seinfeld et al. 2016), and precipitation 
extremes are particularly affected by it (Lin et al. 2018). 
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On the other hand, there is poor data observation coverage 
in some portions of South America, mainly in the Amazon 
Basin, in which few meteorological stations are available. 
This influences the magnitude and location of the bias pat-
terns, mainly for precipitation (Torres and Marengo 2013).

3.2.2 � Trend analysis in precipitation indices

Most of the climate trend analysis in precipitation extremes 
in Brazil have focused on specific basins in southern (Donat 
et al. 2013; Skansi et al. 2013; Carvalho et al. 2014; Ávila 
et al. 2016; Murara et al. 2018) or northern and northeastern 
Brazil (Oliveira et al. 2014, 2017; Valverde and Marengo 
2014; Bezerra et al. 2019). It is quite challenging to com-
pare these studies with ours since they included small areas 
and many factors can influence trends (e.g., study period, 
weather stations, data quality control, homogeneity and 
trend estimation methods). However, our findings are in 
line with the results of the prevalence of regions with an 
upward trend in the annual (Fig. 10) and summer maximum 

daily rainfall. The interested reader should refer to Fig. S16 
to the trends for the selected indices (PRCPTOT, RX1day, 
RX5day, and CDD) at the seasonal scale. Also, the positive 
trends in consecutive dry days are generally in line with 
those of Valverde and Marengo (2014) for southern Ama-
zon, Upper São Francisco, Tocantins, and northern Paraná 
basins (Fig. 10).

Brazil-wide trends in precipitation indices are generally 
not significant for OBS-BR and GMFD (Fig. 10). Some 
hydrological basins have the same patterns, mainly show-
ing decreases in PRCPTOT and CWD and some increases 
in CDD (Figs. 10, 11), especially in northeastern, southeast-
ern, and southern Brazil. Also, results for the CDD index in 
winter and summer indicate dry trends in many downscaled 
models across the southern watersheds (e.g., PAR, URU, 
and SAR). The extreme precipitation indices display mixed 
signal trends and show less agreement between the differ-
ent datasets than the temperature indices in both annual and 
seasonal scales. The precipitation trends in GFDL-ESM2G 
(10) and Eta-HadGEM2-ES (24) are especially troublesome 

Fig. 10   Trends per decade from 1980 to 2005 for precipitation 
indices at the annual scale a–h for 21 NEX-GDDP climate models 
(1–21), 4 Eta-INPE climate models (22–25), MME-Sta (26), MME-

Dyn (27), GMFD (28) and OBS-BR over eight hydrological regions 
in Brazil (Fig.  1). Diagonal lines indicate significant trends at 95% 
level. The vertical purple lines refer to ESMs from Eta-INPE datasets
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(see Figs. 10, 11) in annual and seasonal trends, suggest-
ing a much stronger drying trend than OBS-BR and other 
downscaled ESMs. Moreover, MMEs appear to agree better 
with trends in OBS-BR than trends in GMFD precipitation 
indices.

In general, there is not a single model that is the most 
appropriate to represent the observed trends for each index 
over the basins in both annual and seasonal temporal scales 
for the period 1980–2005. Although trend patterns vary 
widely across datasets (21 NEX-GDDP climate models, 4 
Eta-INPE models, MMEs, GMFD, and OBS-BR), especially 

for precipitation indices, the multi-model ensembles are a 
good alternative to better capture observed trends.

3.3 � The comprehensive model rank (MR)

Table 3 provides the ranking for all models analyzed using 
16 climate indices at the annual scale over eight hydrologi-
cal basins throughout Brazil. In terms of temperature indi-
ces, the best models for the whole domain are, in order, 
CSIRO-MK3-6-0 (8) and CNRM-CM5 (7); these are the 
only models with MR ≥ 0.85. The models with the lowest 

Fig. 11   Trends (mm/decade) in 
annual total wet-day precipita-
tion (PRCPTOT) for 21 NEX-
GDDP climate models (1–21), 
4 Eta-INPE climate models 
(22–25), MME-Sta (26), MME-
Dyn (27), GMFD (28) and 
OBS-BR (29; gray rectangle) 
from 1980 to 2005. Hatch-
ing indicates where trends are 
significant at the 95% level
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MR are Eta-CanESM2 (23) and GFDL-ESM2M (11). When 
considering the precipitation indices, the top three mod-
els are CCSM4 (5) followed by MRI-CGCM3 (20), and 
CNRM-CM5 (7), whereas models with the worst MR are 
MIROC-ESM (16), IPSL-CM5A-LR (13) and CanESM2 
(4). Considering all climate indices over all basins, the best 
individual models are CNRM-CM5 and CCSM4, followed 
by MRI-CGCM3, and the worst on the overall ranking are 
MIROC-ESM (16), GFDL-ESM2M (11) and CanESM (4). 
Furthermore, analyzing the country as a whole (Table 3), 
the multi-model ensemble of NEX-GDDP models (MME-
Sta, MRoverall = 0.927) generally leads to better skill scores 
than individual models and ensemble of Eta-INPE models 
(MME-Dyn, MRoverall = 0.872).

Furthermore, the ranking of the downscaled ESMs 
obtained at the seasonal scale is very similar to those pre-
sented at the annual scale. For instance, the best models are 
MRI-CGCM3, CNRM-CM5, and CCSM4, using the overall 
ranking of the selected temperature (TXx, TNn, TN10p, and 

TX90p) and precipitation (PRCPTOT, RX1day, RX5day, 
CDD) indices. Also, the MMEs-Sta performed better than 
MMEs-Dyn and individual downscaled ESMs in both sum-
mer and winter. Being aware of these results, we decided to 
emphasize the ranking discussion on an annual scale. Read-
ers interested in the ranking for summer and winter can refer 
to Table S1.

It is important to note that the top three models in Table 3 
have a native horizontal resolution finer than 2° × 2°—lati-
tude/longitude (Table 1), which could indicate that a finer 
resolution allows the models to resolve better processes 
associated with climate extremes. Although models with 
coarser resolutions do tend to perform poorly, having a finer 
resolution is not necessarily a determining factor to choose 
the best performing model. For instance, the downscaled 
results of models with very fine native horizontal resolutions 
(e.g., CESM1-BGC: 0.924° × 1.250°) do not perform better 
in temperature indices than coarser resolution models such 
as BNU-ESM (2.8° × 2.8°) or BCC-CSM1-1 (2.8° × 2.8°). 

Table 3   Ranking of downscaled 
ESMs and MMEs for 
temperature and precipitation 
indices at the annual scale over 
Brazil

Downscaled models or MMEs in bold achieve a skill score ≥ 0.85. The optimal value of MR is 1.0

Overall ranking (average of MR-temperature and MR-precipitation) Temperature indices Precipitation 
indices

Models and MMEs (ID) Rank Skill score (MR) Rank MR Rank MR

MME-Sta (26) 1 0.927 1 0.956 1 0.899
CNRM-CM5 (7) 2 0.877 3 0.883 4 0.870
MME-Dyn (27) 3 0.872 4 0.877 5 0.868
CCSM4 (5) 4 0.863 8 0.827 2 0.898
MRI-CGCM3 (20) 5 0.859 5 0.844 3 0.875
MPI-ESM-MR (19) 6 0.835 6 0.832 9 0.838
MIROC5 (15) 7 0.830 10 0.810 8 0.850
CESM1-BGC (6) 8 0.823 16 0.781 6 0.865
ACCESS1-0 (1) 9 0.822 13 0.790 7 0.853
CSIRO-MK3-6-0 (8) 10 0.819 2 0.887 21 0.751
BCC-CSM1-1 (2) 11 0.797 7 0.830 17 0.763
Eta-BESM (22) 12 0.791 19 0.771 12 0.810
Eta-HadGEM2-ES (24) 13 0.786 12 0.794 14 0.779
MPI-ESM-LR (18) 14 0.786 21 0.739 10 0.834
GFDL-ESM2G (10) 15 0.780 15 0.784 15 0.775
GFDL-CM3 (9) 16 0.779 11 0.796 18 0.761
INMCM4 (2) 17 0.778 21 0.739 11 0.818
BNU-ESM (3) 18 0.774 9 0.825 24 0.723
IPSL-CM5A-MR (14) 19 0.753 18 0.773 22 0.732
Eta-MIROC5 (25) 19 0.753 23 0.736 16 0.769
NorESM1-M (21) 21 0.750 17 0.776 23 0.724
IPSL-CM5A-LR (13) 22 0.744 14 0.789 26 0.699
MIROC-ESM-CHEM (17) 23 0.741 24 0.731 20 0.752
Eta-CanESM2 (23) 24 0.736 27 0.693 13 0.780
MIROC-ESM (16) 25 0.733 20 0.751 25 0.715
GFDL-ESM2M (11) 26 0.730 26 0.707 19 0.754
CanESM2 (4) 27 0.705 25 0.724 27 0.687
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However, this association is stronger when considering 
precipitation indices, as the top three models have native 
horizontal resolutions less than 1.5° × 1.5° (Table 3), and 
the worst ones greater than 2° × 2° such as CanESM2 
(2.8° × 2.8°) and MIROC-ESM (2.791° × 2.813°). This is 
likely due to the higher spatial heterogeneity of the precipi-
tation and has also been observed with raw ESM results 
over Australia (Alexander and Arblaster 2017) and East Asia 
(Kusunoki and Arakawa 2015). The number and extent of 
vertical layers in the model does not seem to be an important 
factor for either temperature or precipitation indices, as was 
previously observed over higher altitude regions such as the 
Equatorial Andes (Campozano et al. 2017).

Although the ensembles generally perform better in 
a larger number of basins than individual models, some 
models are better than both ensembles for some particular 
basins, especially for precipitation (Fig. 12). For exam-
ple, although MME-Sta ranks better than most models 
for precipitation for the South Atlantic basin, individual 
models like CCSM4 (5), CESM1-BGC (6), and INMCM4 
(12) rank considerably better than the ensemble. Although 
an improvement over most individual dynamically down-
scaled models for precipitation in most basins, MME-Dyn 
does not rank better than the best model in half of the 
basins and ranks especially poorly in the Amazon River 
basin. For temperature indices, using MMEs more con-
sistently leads to better results than individual models, 
though not always. For example, individual models such as 
MPI-ESM-MR (19) show the highest values of MR among 
models and ensembles for the Parana River basin. It is 

important to note that MME-Dyn is considerably worse 
than MME-Sta for most basins. However, MME-Dyn ranks 
better in the South Atlantic basin at both temperature and 
precipitation indices, and in the Tocantins, Parana, and 
South Atlantic basins for precipitation indices.

Noteworthy, the most successful downscaling simula-
tions based on the Eta Regional Climate Model, are the ones 
forced by BESM (22) and HadGEM2-ES (24) (Table 3). The 
Eta-HadGEM2-ES appear to be better than Eta-BESM for 
temperature indices over hydrological basins located in the 
southern part of Brazil, and worse for precipitation indices 
over basins on the northeast of the country (Fig. 11).

The large difference in the number of models among dif-
ferent datasets used in the ensemble mean complicates a 
proper comparison between the dynamical and statistical 
downscaling techniques. Although none of the dynami-
cally downscaled models are among the best in the overall 
ranking (Table 3), they perform very well in some aspects. 
Eta-BESM, for example, is ranked the best for precipitation 
indices in the Uruguay River basin, although it is ranked the 
worst for temperature indices in the same basin (Fig. 12). 
A more useful comparison can be made using the ESMs 
that were downscaled using both techniques, CanESM2 and 
MIROC5, but also show that one technique is not neces-
sarily better than the other for evaluating climate extremes. 
Although the statistically downscaled CanESM2 is among 
the worst ranking models in all indices, the dynamically 
downscaled version performs reasonably well in all basins, 
except for the Amazon and Tocantins basins. On the other 
hand, the statistically downscaled MIROC5 is generally 

Fig. 12   Model rank (MR) value 
for temperature (a) and precipi-
tation indices (b) at the annual 
scale. Each symbol represents 
a given basin. White, gray and 
yellow areas refer to 21 NEX-
GDDP climate models, four 
(4) Eta-INPE climate models 
and multi-model ensembles 
(MMEs), respectively
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better than its dynamically downscaled counterpart, except 
for the Tocantins River basin.

4 � Summary and conclusions

This paper provides an overview of the performance of 25 
downscaled Earth System Models, generated by statistical 
(NEX-GDDP) and dynamical (Eta-INPE) downscaling tech-
niques, to evaluate extreme climate indices during historical 
climate (1980–2005) over eight hydrological basins across 
Brazil. Performance was evaluated for annual and seasonal 
indices (summer and winter) by contrasting simulations 
with an observational gridded dataset at high horizontal 
resolution.

The GMFD dataset used as reference for the statistical 
downscaling is problematic for precipitation over the Ama-
zon River basin in both annual and seasonal scale, with little 
capacity to simulate the climatology and temporal variabil-
ity of most precipitation indices, except for PRCPTOT and 
CDD. GMFD also tends to reproduce much higher TXx and 
lower WSDI than the observed values, and shows trends 
with the wrong sign (positive or negative) for several indices 
and basins. These discrepancies point to the possibility of 
improvement of statistically downscaled products for Brazil 
by using denser observational networks as reference.

Although the CNRM-CM5, CCSM4, and MRI-CGCM3 
(NEX-GDDP models) statistically downscaled products have 
the best results among individual models in an overall com-
parison for Brazil for annual, summer and winter indices, the 
results varied widely among basins. Finer horizontal resolu-
tions of the original ESMs appear to be somewhat related, 
but not determinant, to the performance of the downscaled 
product in representing extreme climate events, especially 
precipitation. The use of multi-model ensembles, although 
improving the overall representation, does not always lead 
to the best results depending on the region considered. The 
multi-model ensembles also show considerable discrepan-
cies, especially across northern Brazil, in several extremes 
climate indices, particularly ones related to the persistence 
of climate events such as cumulative wet and dry days and 
warm spell duration. These conclusions are generally valid 
at both annual and seasonal scales. However, some mod-
els and regions present conflicting behaviors at the annual 
scale and in different seasons, especially for consecutive dry 
days (CDD). Caution must be taken when selecting model 
products for applications that are particularly sensitive to 
extremes in specific seasons.

The downscaled ESMs appear to compare better with 
OBS-BR in terms of trend patterns than the GMFD dataset. 
Furthermore, downscaled product trends are much more 
spatially coherent in temperature than precipitation indices 
when compared with the observational dataset. In this sense, 

the trend pattern in most climate indices is generally better 
captured by multi-model ensembles than individual down-
scaled ESMs (especially for precipitation indices).

In conclusion, despite some models being generally bet-
ter than others, no single downscaled product or ensemble 
is the best choice for every region. The results presented in 
this paper can guide researchers in choosing the best data 
for each particular application, as well as inform climate 
modelers about the shortcomings of models and downscal-
ing approaches over Brazil.
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