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Abstract
The second empirical orthogonal function mode (EOF2) of winter surface air temperature (SAT) over 0°–180° E, 40°–90° 
N during 1979–2005 is defined as warm Arctic-cold Eurasia (WACE) pattern. The present study evaluates the performance 
of 25 Coupled Model Inter-comparison Project Phase 5 (CMIP5) models in simulating the WACE pattern based on histori-
cal runs. There exist large inter-model spreads in the simulation of the WACE pattern. Analyses show that the ability of 
a CMIP5 model in capturing the WACE pattern is connected with the model’s performance in representing the observed 
atmospheric circulation anomalies related to the winter sea ice concentration (SIC) variation over Barents–Kara Seas. Sea 
ice loss over Barents–Kara Seas can induce significant positive geopotential height anomalies over Arctic region and nega-
tive geopotential height anomalies around the Baikal Lake, resulting in warm anomalies over Barents–Kara Seas and cold 
anomalies over Eurasia. Further analysis shows that CMIP5 model’s performance in representing the SAT anomalies related 
to the WACE pattern is partly due to simulation of the amplitude of winter SIC variability over Barents–Kara Seas. Larger 
standard deviations of winter SIC over Barents–Kara Seas can instigate stationary wave-train more easily, which further 
induces the SAT anomalies.
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1 Introduction

Despite an increasing trend in the global annual mean 
temperature, in the recent years apparent cooling trends 
are observed over central Siberia during the boreal winter 
months (Cohen et al. 2012a, b). It is accompanied with the 
recovery of Siberian High (Jeong et al. 2011) and re-ampli-
fication of the East Asian winter monsoon since the mid-
2000s (Wang and Chen 2013). Moreover, in the past decade 
severe winters have occurred frequently over the Eurasian 
continents (Liu et al. 2012; Tang et al. 2013; Mori et al. 
2014). Simultaneously, Arctic has experienced rapid warm-
ing and sea-ice loss in the past few decades (Polyakov et al. 
2002; Johannessen et al. 2004; Screen and Simmonds 2010a, 

b; Serreze and Barry 2011; Screen et al. 2012). The pattern 
of this Northern Hemispheric (NH) temperature signal is 
often referred as “Warm Arctic, Cold Continents” (Overland 
et al. 2010; Cohen et al. 2013, 2014).

In some recent papers, it is a topic of great debate whether 
the Eurasian cooling is caused by the Arctic sea ice loss 
and Arctic warming or not (Francis and Vavrus 2012; Liu 
et al. 2012; Tang et al. 2013; Sun et al. 2016; Liang et al. 
2020; Warner et al. 2019). For example, Sun et al. (2016) has 
attributed the Eurasian cooling to the natural variability or 
the pre-existing atmospheric patterns. However, it has been 
speculated that the occurrence of cold SAT anomalies over 
Eurasia is due to the impact of Arctic sea ice loss and warm-
ing based on the observed coincidence of trends or statistical 
correlations (Francis and Vavrus 2012; Hopsch et al. 2012; 
Inoue et al. 2012; Liu et al. 2012; Tang et al. 2013). Some 
model simulations also find a connection between Arctic sea 
ice loss and cooling over midlatitude continents (Honda et al. 
2009; Liu et al. 2012; Mori et al. 2014; Kug et al. 2015). 
Some studies indicated that cold Eurasian winters could have 
been instigated by Arctic sea-ice decline through excitation 
of negative Arctic Oscillation (AO)-like structure circulation 
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anomalies (Honda et al. 2009; Liu et al. 2012; Screen et al. 
2013; Peings and Magnusdottir 2014). Mori et al. (2014) has 
extracted the two leading modes governing winter surface 
air temperature (SAT) anomalies over Eurasia by applying 
empirical orthogonal function (EOF) analysis to winter sur-
face air temperature (SAT) over 0°–180° E, 20°–90° N. The 
first mode (EOF1) represents a pattern of uniform warming 
over the entire Eurasian continent and associated principal 
component (PC1) is highly correlated with the AO index. 
The second mode (EOF2) is defined as warm Arctic-cold 
Eurasia (WACE) pattern, which is characterized by warm 
anomalies over Barents–Kara Seas and cold anomalies over 
central Eurasia at its positive phase. It is found that this pat-
tern represents SAT variation associated with the wintertime 
sea ice variation in the Barents–Kara Seas and is likely to be 
more responsible for the recent increase in the frequency of 
severe winters than AO (Mori et al. 2014).

Climate models are widely applied to understand and 
improve the predictions of climate systems over the globe. 
The Coupled Model Inter-comparison Project Phase 5 
(CMIP5) is an efficient data source to study global climate 
change (Taylor et al. 2012). Some previous studies have 
been carried out to evaluate the capacity of CMIP5 models 
in simulating the Eurasian SAT variability in winter (Miao 
et al. 2014; Guo et al. 2016; Xu et al. 2016). Miao et al. 
(2014) assessed the performance of the CMIP5 models in 
simulating the intra-annual, annual and decadal temperature 
over Northern Eurasia from 1901 to 2005. Guo et al. (2016) 
evaluated the capacity of CMIP5 models in capturing the 
dominant modes of winter SAT variations over China. Xu 
et al. (2016) investigated change in the first two EOF modes 
of boreal winter SAT variations over East Asia (0°–60° N 
and 100°–140° E) under global warming. According to the 
recently published review article by Cohen et al (2020), not 
all CMIP5 models support the link between Arctic warm-
ing and severe winter weather over mid-latitude Eurasia, 
implying their diverse ability in capturing the WACE pat-
tern. Therefore, the present study will investigate the ability 
of the CMIP5 coupled models in capturing the present-day 
(1979–2005) WACE pattern. Furthermore, we will also find 
out the key factors responsible for CMIP5 model’s perfor-
mance in reproducing the WACE pattern. The remainder of 
the paper is organized as follow: Sect. 2 describes the rea-
nalysis datasets, CMIP5 models and the analysis methods. 
Section 3 shows the assessments of the present-day climatol-
ogy pattern and interannual variability of winter SAT. The 
performance of the CMIP5 models in simulating the WACE 
pattern is examined in Sect. 4. A brief summary is provided 
in Sect. 5. The discussion is finally given in Sect. 6.

2  Data and methods

2.1  Data

The atmospheric variables employed in this study were 
obtained from ERA-Interim reanalysis with a horizontal 
resolution of 2.5° × 2.5°, which is available from 1 Janu-
ary 1979 to 31 August 2019 (Dee et al. 2011). The ERA-
Interim reanalysis is widely applied for investigating the 
Arctic climate variability (Wang et al.2019; Park et al. 
2015; Mori et al. 2014) due to its good representation of 
Arctic climate (Lindsay et al. 2014; Zygmuntowska et al. 
2012). The sea ice concentration (SIC) data were obtained 
from Met Office Hadley Centre for Climate Prediction and 
Research, which is available from 1870 on a horizontal 
resolution of 1° × 1° (Rayner et al. 2003). For convenience, 
the observational and reanalysis datasets are all defined 
as “observations” (OBS) in remaining of the study. This 
study uses outputs of 25 climate models from the CMIP5. 
Table 1 presents brief descriptions of these CMIP5 mod-
els, including their horizontal resolutions, institutions, and 
model names. Since several CMIP5 models only have one 
realization of the historical experiments, to maintain con-
sistency the first standard run from each model has been 
analyzed in this study. In addition, the period from 1979 to 
2005 of the historical experiment is employed to compare 
against the observations. The results obtained in this study 
would not change much based upon the base period selec-
tion. The atmospheric variables derived from the CMIP5 
historical are converted to a standard 2.5° latitude–longi-
tude grid, and SIC from model outputs are converted to a 
standard 1° latitude–longitude grid.

2.2  Methods

In this study, the multimodel ensemble (MME) is calcu-
lated by averaging the variables over all the models with 
equal weighting. The Taylor diagram is used to analyze 
the performance of the CMIP5 models in simulating the 
spatial pattern of any variable in terms of the spatial cor-
relation coefficient, root mean square error, and ratio of 
their standard deviation (STD) (Taylor 2001). Different 
from Mori et al. (2014), the present study focuses on ana-
lyzing the interannual variations. Therefore, except for the 
analyses of climatology and standard deviation of winter 
SAT, all the data are linearly detrended over the period 
1979–2005, both for observations and CMIP5 models. 
Based on Mori et al. (2014), an empirical orthogonal func-
tion (EOF) analysis used to extract the WACE pattern. 
Prior to the EOF analysis, the detrended DJF-mean SAT 
anomalies are weighted by cosine of latitude so that the 
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individual grid points have equal weightage (North et al. 
1982). Then the EOF analysis of DJF mean SAT anomalies 
was conducted within the domain 0°–180° E and 40°–90° 
N by computing eigenvalues and eigenfunctions of the 
covariance matrix. The sum of explained variation by the 
two leading EOFs obtained from ERA-interim reanalysis 
datasets is ~ 57.83%. The present study estimates the con-
fidence level according to the two-tailed Student’s t test.

3  Climatology and standard deviation

In this section, we first evaluate the capability of the CMIP5 
models in reproducing the climatology and the standard 
deviation of winter SAT during the period of 1979–2005. 
Figure 1 displays the observations (OBS), multi-model 
ensemble mean (MME), i.e. the mean of all available 25 
models from Table 1 and the difference between MME and 

OBS for the climatology and standard deviation of winter 
(December–January–February; DJF) SAT. In OBS, rela-
tively low climatological winter SAT can be observed north 
of about 40° N, with the lowest values located over the north 
Siberia and the Far East over Russia (Fig. 1a). Large stand-
ard deviation of winter SAT appears over the Barents–Kara 
Seas region and northern Siberia (Fig. 1b). In general, the 
MME captures the spatial distribution of climatological win-
ter SAT considerably well. In particular, the MME gener-
ally captures the location of the cold center over the north 
Siberia and the Far East over Russia (Fig. 1b). However, 
MME tends to underestimate the climatological winter SAT 
in Arctic, especially over Barents Sea, and overestimate 
over and around the Caspian Sea and eastern part of Rus-
sia, which can be seen more clearly in the difference map 
(Fig. 1c) between the observed and simulated climatological 
winter SAT. Difference maps show that the climatological 
winter SAT over eastern part of Russia is overestimated by 

Table 1  Information of the CMIP5 models used in this study

Models masked with an asterisk are the high correlation (HC) models, whiles those in bold text are the low correlation (LC) models

Model name Modeling center Resolution (lat, lon)

ACCESS1-0 Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology, Aus-
tralia

144 × 192

ACCESS1-3 Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology, Aus-
tralia

64 × 128

bcc-csm1-1-m Beijing Climate Center, China Meteorological Administration, China 160 × 320
CanESM2* Canadian Centre for Climate Modeling and Analysis, Victoria, BC, Canada 192 × 288
CCSM4 National Center for Atmospheric Research (NCAR) Boulder, CO, USA 192 × 288
CESM1-BGC Community Earth System Model contributors 192 × 288
CESM1-CAM5 Community Earth System Model contributors 96 × 144
CESM1-WACCM* Community Earth System Model contributors 240 × 480
CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici 96 × 193
CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland 

Climate Change Centre of Excellence, Australia
60 × 128

FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of Sciences, China 108 × 128
FGOALS-s2 Institute of Atmospheric Physics, Chinese Academy of Sciences, China 64 × 128
FIO-ESM First Institute of Oceanography, State Oceanic Administration, China 90 × 144
GFDL-CM3* NOAA, Geophysical Fluid Dynamics Laboratory 90 × 144
GISS-E2-H-CC NASA Goddard Institute for Space Studies 90 × 144
GISS-E2-R-CC NASA Goddard Institute for Space Studies 120 × 180
inmcm4 Institute for Numerical Mathematics, Russia 143 × 144
IPSL-CM5A-MR Institute Pierre Simon Laplace, Paris, France 96 × 96
IPSL-CM5B-LR Institute Pierre Simon Laplace, Paris, France 64 × 128
MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute, 

and National Institute for Environmental Studies, Japan
320 × 640

MIROC4h Atmosphere and Ocean Research Institute (University of Tokyo), National Institute for Environmen-
tal Studies, and Japan Agency for Marine-Earth Science and Technology

96 × 192

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 96 × 192
MPI-ESM-P Max Planck Institute for Meteorology, Germany 96 × 192
MRI-CGCM3* Meteorological Research Institute, Japan 160 × 320
NorESM1-M* Norwegian Climate Centre, Norway 96 × 144
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about 6 °C in MME. Over Arctic, the climatological winter 
SAT is underestimated by about 8 °C in MME (Fig. 1c). For 
the STD in winter SAT variations, MME captures the large 
interannual variability over the Barents–Kara Seas region 
and northern Siberia, which is similar to the observed spatial 
feature (Fig. 1d). A difference map (Fig. 1f) indicates that 
the variance of winter SAT over most parts of the Arctic is 
underestimated in the MME. In contrast, MME tend to over-
estimate the variance of winter SAT over Eurasia.

To delineate the performance of the 25 models in rep-
resenting the winter SAT in more detail, Taylor diagrams 
(Fig. 2) are plotted for the climatological and standard 
deviation of winter SAT within 40°–90° N, 0°–180° E. The 
climatological mean SAT in the individual models have 
high pattern correlation with the OBS and the correspond-
ing correlation coefficients are above 0.90 in most of the 
models except for IPSL-CM5B-LR (Fig. 2a). This indicates 
that all of the 24 CMIP5 models can satisfactorily reproduce 
the spatial feature of climatological winter mean SAT. The 
normalized standard deviation ranges from 0.89 to 1.29. 
The spatial standard deviations are overestimated in most 
of the CMIP5 models, except for GFDL-CM3, inmcm4, 

IPSL-CM5A-MR, MIROC-ESM, MIROC4h and MPI-ESM-
P (Fig. 2a). The spatial distribution of climatological winter 
SAT in MME is better than that reproduced by most of the 
individual models, with a pattern correlation coefficient of 
0.98 and a normalized standard deviation of 1.05 (Fig. 2a). 
For the STD, there exist large inter-model spreads in the pat-
tern correlation coefficients and normalized standard devia-
tion among the 25 CMIP5 models (Fig. 2b). The pattern cor-
relations of winter mean SAT standard deviation ranges from 
0.31 to 0.85, which are lower than those of the climatology 
(Fig. 2a, b). The pattern correlation coefficients are less than 
0.6 in ACCESS1-0, CMCC-CM, FGOALS-g2 and IPSL-
CM5B-LR (Fig. 2b). The CESM1-CAM5 and NorESM1-M 
are the two best models in capturing the standard deviation 
of the winter mean SAT over Eurasia in terms of pattern 
correlation coefficients (all larger than 0.84) (Fig. 2b). Fur-
thermore, the normalized standard deviation ranges from 
0.65 to 1.0. Similar to the climatology, the MME tends to 
have a higher capability than most of the individual models 
in reproducing the variance of the winter mean SAT with 
a pattern correlation coefficient of 0.85 and a normalized 
standard deviation of 0.65.

Fig. 1  a Observation (OBS), b ensemble mean of multiple models (MME) and c the difference between MME and OBS for the climatological 
SAT (shading; unit: °C) in winter. d–f Same as a–c, but for the standard deviation (shading; unit: °C)
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4  WACE pattern and associated atmospheric 
circulation anomaly

Figure 3 is the regressed map of SAT, 300-hPa geopoten-
tial height (Z300), seal level pressure (SLP), 850-hPa wind 
on the normalized second principal components (PC2) 
both for MME and OBS. Figure 4 displays the explained 
variance of the EOF2 of winter SAT variations in the OBS 
and CMIP5 historical simulations during 1979–2005. In 
the OBS, the EOF2, which can explain 18.5% of the vari-
ance, exhibits a meridional dipole structure with centers 
over Arctic and Siberia (Fig. 3a). Consistent with Mori 
et al. (2014), the WACE pattern is closely related to the 

changes in the atmospheric circulation over Eurasia. As 
displayed in Fig. 3c, e, the positive phase of the WACE 
pattern is associated with positive geopotential height 
anomalies over Barents–Kara Sea region and negative geo-
potential height anomalies around Lake Baikal (Fig. 3c). 
This wave–train-like structure is quasi-barotropic and can 
extend to the surface (Fig. 3e). As demonstrated by Mori 
et al. (2014), the northerly cold-air advection accompanied 
by an anticyclonic circulation anomaly over northern Sibe-
ria causes cold SAT anomalies over the mid-latitude. The 
MME is generally able to reproduce the WACE pattern 
of SAT anomalies and associated atmospheric circulation 
anomalies, which is similar to the observed spatial feature 

Fig. 2  Taylor diagram of a 
climatology and b standard 
deviation of winter SAT over 
the region of 40°–90° N and 
0°–180° E. The pattern correla-
tion between the CMIP5 models 
and observation is represented 
by the azimuthal position. The 
radial distance denotes the 
ratio of the standard deviation 
obtained from CMIP5 models to 
the standard deviation derived 
from observation
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(Fig. 3b, d, f). However, the amplitude of the SAT anoma-
lies and associated atmospheric circulation anomalies in 
MME is little weaker than that in OBS. The explained var-
iance of the second EOF mode in MME is close to that in 
the observations (Fig. 4). The ACCESS1-0, ACCESS1-3, 
CESM1-BGC, CMCC-CM, CSIRO-Mk3-6-0, FIO-ESM, 
GFDL-CM3, GISS-E2-R-CC, inmcm4, MIROC-ESM 
and MPI-ESM-P reproduce smaller explained variances 

(Fig. 4). In contrast, other 14 CMIP5 models overestimate 
the explained variances (Fig. 4).

To quantitatively estimate the performance of 25 CMIP5 
models in representing the SAT anomalies associated with 
WACE pattern, the Taylor diagram is shown in Fig. 5. There 
exist large inter-model spreads in the pattern correlation 
coefficients and normalized standard deviation among the 
25 CMIP5 models in simulating the WACE pattern (Fig. 5). 

Fig. 3  Regressed winter SAT (shading; unit: °C) on normalized PC2 
time series during 1979–2005 in the a OBS and b MME. c–f are the 
same as a, b, but for Z300 (shading; unit: m) and SLP (shading; unit: 

hPa), respectively. Dots for shadings indicate the 90% confidence 
level. The vectors (units:  ms−1) in e, f denote the regressed 850 hPa 
wind on normalized PC2 time series

Fig. 4  Variance explained by 
the second EOF mode of winter 
SAT interannual variation 
over 40°–70° N and 0°–180° 
E in observations (blue bar) 
and CMIP5 historical simula-
tions during 1979–2005. Red 
bar indicates MME of the 25 
CMIP5 models, yellow bar indi-
cates CMIP5 individual models



4505CMIP5 model simulations of warm Arctic-cold Eurasia pattern in winter surface air temperature…

1 3

The pattern correlations of winter mean SAT anomalies over 
0–180° E, 40°–90° N range from 0.09 to 0.83 (Fig. 5). The 
MRI-CGCM3 and NorESM1-M are the two best models in 
capturing the WACE pattern in terms of the pattern correla-
tion coefficients (all larger than 0.8). The normalized stand-
ard deviation ranges from 0.5 to 1.1. Most of the CMIP5 
models overestimate the spatial standard deviations except 
for CESM1-WACCM (Fig. 5). The MME is better than most 
of the individual models in representing the WACE pattern, 
with a pattern correlation coefficient of 0.8 and a normalized 
standard deviation of 0.5 (Fig. 5).

In the following, we further analyze the possible reasons 
responsible for the variations among the 25 CMIP5 mod-
els in reproducing the WACE pattern. High and low cor-
relation model groups are selected in terms of the pattern 
correlation. According to the pattern correlation in Fig. 5, 
CanESM2, CESM1-WACCM, GFDL-CM3, MRI-CGCM3 
and NorESM1-M are selected as the high correlation (HC) 
models (with pattern correlations larger than 0.75), and 
ACCESS1-0, CESM1-BGC, CMCC-CM, CSIRO-Mk3-6-0, 
FGOALS-g2, GISS-E2-H-CC and IPSL-CM5B-LR are 
defined as the low correlation (LC) models (with pattern 
correlations less than 0.39). Figure 6 compares MME anom-
alies of winter mean SAT, Z300, SLP and 850 hPa winds 
between HC and LC groups. Substantial differences in spa-
tial characteristics and amplitude of the anomalous SAT 
are found between the HC and LC groups. In the MME of 
HC group, warm SAT anomalies appear over Barents–Kara 

Seas region, and cold SAT anomalies occur over the Eura-
sian continent (Fig. 6a), and the results are consistent with 
the observations, despite little differences in the amplitude 
(Figs. 3a, 6a). Geopotential height anomalies at 300 hPa are 
featured by pronounced positive anomalies over the Arc-
tic region and significant negative anomalies around Lake 
Baikal (Fig. 6c). In general, spatial patterns of the winter 
mean SAT and atmospheric circulation anomalies in the 
HC group bear a close resemblance to those in the observa-
tions (Figs. 3, 6a, c, e). In the MME of LC group, the dipole 
pattern is much weaker and shifts southeastward relative to 
that in the observations and HC group MME, so as the cor-
responding atmospheric circulation anomalies (Fig. 6b, d, f).

Chen et al. (2018) reported that the ability of a CMIP5 
model in capturing the dominant mode of Eurasian spring 
SAT variations is connected with the model’s performance 
while representing the related atmospheric circulation 
anomalies. From the Fig. 6, it is assumed that the ability 
of the CMIP5 models in reproducing the WACE pattern 
may be closely related to the performance of the models 
in capturing the observed atmospheric circulation pattern. 
Evidence is presented in the following section to verify the 
above assertion. Figure 7 displays a scatter diagram of the 
pattern correlation of SAT anomalies against the pattern cor-
relation of Z300 anomalies and 850 hPa wind anomalies in 
the region bounded within 40°–90° N, 0°–180° E. Results 
in Fig. 7 suggest that the CMIP5 models which have larger 
pattern correlations for Z300 anomalies and 850 hPa wind 

Fig. 5  Same as Fig. 2, but for 
regressed winter SAT on nor-
malized PC2 time series during 
1979–2005
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anomalies tend to have larger pattern correlation for SAT 
anomalies over the region within 40°–90° N, 0°–180° E. 
The correlation coefficients between the two variables pre-
sented in Fig. 7a, b are as high as 0.74 and 0.78, respectively, 
which are significant at the 99% confidence level according 
to the Student’s t test. The evidence confirms the assertion 
that CMIP5 model’s performance in representing the SAT 
anomalies related to the WACE pattern is closely associ-
ated with the model’s ability in capturing the atmospheric 
circulation pattern over Eurasia.

Considering previous studies have reported that the 
“Warm Arctic, Cold Continents” pattern in winter SAT is 
induced by sea ice loss (Honda et al. 2009; Liu et al. 2012; 
Mori et al. 2014; Kug et al. 2015), we further examine the 
interannual relationship between sea ice loss and WACE pat-
tern. Figure 8 display the anomalies of SIC in autumn and 
winter, which are regressed on the normalized PC2 time 
series for the periods of 1979–2005 in OBS. In autumn, sig-
nificant negative SIC anomalies were observed in the north-
ern Barents Sea and the Kara Sea (Fig. 8a). In winter, the 
SIC anomalies over Barents–Kara Seas shifted southward 
relative to those in autumn (Fig. 8b). These results indicate 
a significant connection between the WACE pattern and 

autumn and winter SIC anomalies around the Barents–Kara 
Sea. Hence, it is worthy to investigate whether CMIP5 mod-
els’ biases in reproducing the WACE pattern were related 
to the model’s ability in capturing the relationship between 
the SIC anomalies and the WACE pattern? Fig. 9 displays 
the MME anomalies of autumn and winter SIC, which is 
obtained by regressing on the normalized PC2 time series 
in the HC and LC groups, respectively. However, unlike the 
observational findings obtained in Fig. 9a, the SIC anomalies 
in autumn are weaker and insignificant in the Barents–Kara 
seas region both for the HC and LC model groups (Fig. 9a, 
c). In winter, significant decrease in SIC can be observed 
over Barents–Kara Seas in HC model groups, while no win-
ter SIC signal can be seen for LC model group during the 
positive phase of the WACE pattern (Fig. 9b,d).

Therefore, the ability of the CMIP5 model in simulat-
ing the WACE pattern may be partly related to the model’s 
performance in capturing its connection with the winter 
SIC over the Barents–Kara Seas. To confirm this assertion, 
we calculate the correlation coefficient between the winter 
mean SIC index and the PC2 time series in the HC and LC 
model group and the results are shown in Fig. 10. The SIC 
index is defined as domain average SIC over Barents–Kara 

Fig. 6  MME anomalies of winter SAT (shading; unit: °C) obtained 
by regression upon normalized PC2 time series during 1979–2005 in 
the a HC and b LC groups. c–f Same as a, b, but for Z300 (shading; 

unit: m) and SLP (shading; unit: hPa), respectively. Dots for shadings 
indicate the 90% confidence level. The vectors (units:  ms−1) in e, f 
denote the regressed 850 hPa wind anomalies
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Seas (10°–60° E, 70°–80° N). The SIC index has been 
multiplied by − 1 for the simplicity of comparison. In LC 
model group, except for the IPSL-CM5B-LR, the correla-
tion coefficients in ACCES1-0, CESM1-BGC, CMCC-CM, 
CSIRO-Mk3-6-0, FGOALS-s2, GISS-E2-R-CC are all 
below the 95% confidence level. In the HC model group (i.e., 
CanESM2, CESM1-WACCM, MRI-CGCM3, NorESM1-
M), the correlation coefficients between the SIC index and 
the PC2 time series all exceeds the 99% confidence level. 
This indicates that the ability of CMIP5 model in simulat-
ing the WACE pattern may be due to the model’s ability in 
capturing the relationship between the WACE pattern and 
the winter SIC over the Barents–Kara Seas.

Mori et al. (2014) has reported that WACE pattern is 
closely related to the winter SIC over Barents–Kara Seas. 
In particular, they reported that SIC-driven atmospheric 
response favors cold-air advection to Eurasia. This implies 
that the ability of the CMIP5 model in capturing the WACE 
pattern is closely related to the model’s performance in 
simulating the atmospheric circulation anomalies associated 
with the SIC over Barents–Kara Seas. To address this issue, 
we have compared the spatial patterns of winter mean SAT 
and Z300 anomalies corresponding to the sea ice loss over 
Barents–Kara Seas between the HC and LC model groups. 
Figure 11 displays MME anomalies of winter mean SAT 
and Z300 anomalies, which are obtained by regression upon 
the normalized SIC index in the HC and LC groups, respec-
tively. In the MME of the HC group, spatial distributions 
pattern of SAT and Z300 anomalies resembles those shown 
in Fig. 3a, c. Sea ice loss in the Barents–Kara Seas corre-
spond well to the warm anomalies over Barents–Kara Seas 
and cold anomalies over Siberia (Fig. 11a). Geopotential 
height anomalies at 300 hPa exhibit positive anomalies over 
Arctic region and negative anomalies around Lake Baikal 
region (Fig. 11c). Therefore, sea ice loss in the Barents–Kara 
Seas appears to initiate eastward-propagating wave trains of 
alternative high- and low-pressure regions in the HC group. 

Fig. 7  Scatterplot of pattern correlation between the observed and 
simulated SAT anomalies vs a pattern correlation between the 
observed and simulated Z300 anomalies, and b pattern correlation 
between the observed and simulated 850  hPa wind anomalies over 
40°–90° N and 0°–180° E. The best fitting line is represented by the 
black solid line in a and b 

Fig. 8  Anomalies of a autumn 
and b winter SIC (shading; 
unit:%) regressed upon the 
normalized PC2 time series 
during 1979–2005 in OBS. Dots 
for shadings indicate the 90% 
confidence level
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Anomalous high pressures around the Barents–Kara Seas 
triggers advection of anomalous cold air deep inside cen-
tral and East Asia. Contrastingly, in the LC group, the sea 
ice driven Rossby wave and associated SAT anomalies are 
weaker and insignificant (Fig. 11b, d). The above analysis 
suggests a higher ability of the CMIP5 models in HC group 
in reproducing the atmospheric variations induced by sea 
ice loss.

Furthermore, we investigate the possible origin of the 
CMIP5 models’ biases in capturing the winter SIC-related 

atmospheric circulation anomalies. The differences in stand-
ard deviations of winter mean SIC between the HC group 
and the LC group is displayed in Fig. 12a. Since the link-
age between SIC over the Barents–Kara Seas and winter-
time surface climate anomalies over Eurasia may depend 
on the strength of the standard deviations of winter mean 
SIC (Fan et al. 2017). As shown in Fig. 12a, the standard 
deviations of SIC in the northern Barents Sea and the Kara 
Sea in the HC group are larger than those in the LC group. 
Therefore, the stronger influences of winter mean SIC on 

Fig. 9  MME anomalies of 
autumn SIC (shading; unit: %) 
obtained by regression upon 
the normalized PC2 time series 
during 1979–2005 in the a HC 
and b LC groups, respectively. 
c, d same as a, b, but for winter 
SIC (shading; unit: %). Dots 
for shadings indicate the 90% 
confidence level

Fig. 10  Correlation coefficients 
between the winter SIC index 
and normalized PC2 time series 
during 1979–2005 in the (red 
bars) HC and (yellow bars) LC 
model groups. The horizontal 
dashed lines indicate the cor-
relation coefficient significant 
at the 95% and 99% confidence 
level, respectively
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the atmospheric circulation anomalies in the HC group may 
be due to the larger standard deviations of winter SIC simu-
lated in HC group. As warmer Arctic can lead to less and 
thinner sea ice, which tend to have larger year-to-year vari-
ability, it is assumed that the larger year-to-year variability 
of SIC over the Barents–Kara Seas in the HC group might 
be due to higher SAT. Figure 12b display the differences 
in winter mean SAT averaged from 1979 to 2005 between 
the HC group and LC group. It shows that warmer SAT can 
be observed over northern Barents Sea and the Kara Sea in 
the HC group, implying that higher SAT can lead to larger 
standard deviations in SIC. According to the above analy-
sis, it is assumed that the ability of the CMIP5 models in 
reproducing the WACE pattern is closely related to the inter-
model diversity in the strength of the standard deviations of 
winter SIC over the Barents–Kara Seas. The above assertion 

is verified by the relationship between the pattern correlation 
of pattern correlation of SAT anomalies and STD of SIC 
over the Barents–Kara Seas. Figure 13a shows a scatter dia-
gram in which the x and y axes represent the STD of SIC and 
the pattern correlation of SAT anomalies, respectively, based 
on 25 CMIP5 model simulations. The figure reveals that 
larger SIC variability (i.e., larger STD) corresponds a high 
pattern correlation of SAT anomalies in most of the CMIP5 
models. The correlation coefficient between x and y vari-
ables is 0.40 (Fig. 13a), exceeding the 95% confidence level. 
Furthermore, the inter-model diversity in the simulated SIC 
variability might be caused by the inter-model diversity in 
the mean state of winter SAT. Similarly, Fig. 13b shows 
a scatter diagram of the STD of SIC against the domain 
average winter mean SAT over the Barents–Kara Sea aver-
aged from 1979 to 2004. Results in Fig. 13b suggest that the 

Fig. 11  MME anomalies of winter SAT (shading; unit: °C) obtained by regression upon the normalized SIC index during 1979–2005 in the a 
HC and b LC groups, respectively. c, d are the same as a, b, but for Z300 (shading; unit: m). Dots for shadings indicate the 90% confidence level

Fig. 12  The difference of a 
standard deviation of winter 
SIC (shading; unit: %) and b 
climatological winter SAT dur-
ing 1979–2005 between HC and 
LC groups
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CMIP5 models that have higher SAT over the Barents–Kara 
Seas tend to produce larger SIC STD. The correlation coef-
ficient between the two variables, presented in Fig. 13b is 
0.59, which is significant at 99% confidence level according 
to the Student’s t test. These evidences confirm the asser-
tion that CMIP5 model’s performance in representing the 
SAT anomalies related to the WACE pattern is partly due 
to amplitude of SIC variability among the CMIP5 models. 
Additionally, it is indicated that the inter-model diversity in 
the simulated SIC variability is partly caused by the inter-
model diversity in the mean state of winter SAT.

Chen et al. (2018) reported that the ability of the CMIP5 
model in capturing the dominant mode of the spring Eura-
sian SAT is closely related to the model’s performance in 
simulating the dominant mode of the spring atmospheric 
circulation variations over Eurasia. Therefore, the ques-
tion is whether CMIP5 models’ biases in reproducing the 
WACE pattern are related to the model’s ability in model’s 
performance while simulating the dominant mode of the 
winter atmospheric circulation variabilities over Eurasia. 

Figure 14a displays the EOF1 of winter Z300 anomalies 
over 40°–90° N, 0°–140° E in OBS. It is found that the 
spatial distributions of the EOF1 of winter Z300 anoma-
lies bear several resemblances to those shown in Fig. 3c. 
Furthermore, there is a significant connection between the 
WACE pattern and the EOF1 of winter Z300 anomalies. 
The correlation coefficient between the PC time series is 
around 0.70 (Fig. 14b).

The linkage between the dominant mode of the win-
ter atmospheric circulation patterns and WACE pattern 
has been confirmed in the observations. To check whether 
CMIP5 models’ biases in reproducing the WACE pattern 
are related to the model’s ability in simulating the domi-
nant mode of the winter atmospheric circulation varia-
tions over Eurasia, we compared the spatial patterns cor-
responding to the EOF1 of winter mean Z300 anomalies 
between the HC and LC model groups. Figure 15 displays 
MME anomalies of winter mean Z300 anomalies obtained 
by regressing the normalized PC time series of EOF1 on 
winter mean Z300 anomalies in the HC and LC groups, 
respectively. However, there are no pronounced differ-
ences in the spatial patterns of the atmospheric circula-
tion anomalies related to EOF1 of the winter mean Z300 
variations. The spatial distributions of the atmospheric 
circulation anomalies both in HC and LC groups bear 
several resemblances to those shown in Fig. 3c. Above 
analysis suggests a weaker connection between the ability 
of a CMIP5 model in capturing the WACE pattern and the 

Fig. 13  Scatterplot of standard deviation of SIC index vs a pattern 
correlation between the observed and simulated SAT, and b domain 
average SAT over Barents–Kara Seas (70°–80° N, 10°–60° E) aver-
age from 1979 to 2005. The best fitting line is represented by the 
black solid line in a and b 

Fig. 14  a Anomalies of winter Z300 (shading; m) obtained by 
regressed upon the normalized PC time series of the EOF1 of win-
ter Z300 over 40°–90° N and 0°–180° E during 1979–2005 and b 
the corresponding normalized PC time series. The normalized PC 
time series of the EOF2 of the winter mean SAT over 40°–90° N and 
0°–180° E was also displayed in b for comparison. Dots for shadings 
indicate the 90% confidence level
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model’s performance in reproducing the dominant mode 
of the winter Eurasian atmospheric variations.

5  Summary

The present study defined the EOF2 of winter mean SAT 
over 0°–180° E, 40°–90° N during 1979–2005 as WACE 
pattern. This study analyzes the performance of 25 CMIP5 
models in capturing the WACE pattern based on the his-
torical simulations, as well as the climatology and stand-
ard deviation of winter mean SAT in the study region. The 
MME satisfactorily reproduces the observed spatial struc-
ture of climatological winter SAT over the region spanning 
from northern Eurasia to Arctic. The MME underestimates 
the SAT climatology over Barents Seas by about 8 °C and 
overestimates the climatology around the Caspian Sea by 
about 6 °C. Most of the 25 CMIP5 models satisfactorily 
reproduce the spatial feature of climatological winter mean 
SAT, with the pattern correlation coefficients larger than 
0.90, except for IPSL-CM5B-LR. In the MME, the stand-
ard deviations of winter mean SAT over the Barents–Kara 
Seas were underestimated. Large spread in the simulation of 
the standard deviation of the winter mean SAT can be found 
among the 25 CMIP5 models. The pattern correlations of 
winter mean SAT standard deviation ranges from 0.31 to 
0.85 in the individual models, which are much lower than 
those of the winter climatology. The spatial pattern of the 
anomalies of SAT, Z300 and SLP associated with the WACE 
pattern in MME is close to that in the observations, but with 
smaller amplitude. The simulation of the WACE pattern in 

each model exhibits large spread in terms of pattern correla-
tion coefficient. Then 5 HC (CanESM2, CESM1-WACCM, 
GFDL-CM3, MRI-CGCM3 and NorESM1-M) and 7 LC 
(ACCESS1-0, CESM1-BGC, CMCC-CM, CSIRO-Mk3-6-0, 
FGOALS-g2, GISS-E2-H-CC and IPSL-CM5B-LR) models 
are selected according to the pattern correlation. The HC 
models exhibit a better simulation ability of the WACE pat-
tern and associated atmospheric circulation anomalies com-
pared to the LC models. Furthermore, the winter mean SIC 
over the Barents–Kara Seas exhibit closer link to the WACE 
pattern and associated atmospheric circulation anomalies in 
HC group than that in the LC group. It further indicates that 
the ability of the CMIP5 models in reproducing the WACE 
pattern is closely related to the model’s performance in 
representing the observed atmospheric circulation anoma-
lies related to the winter mean SIC variation over the Bar-
ents–Kara Seas, which is partly due to the strength of the 
simulated SIC variability. Larger standard deviations of win-
ter SIC over Barents–Kara Seas can easily induce stronger 
and southward propagating stationary Rossby wave train, 
which further induce the winter mean SAT anomalies associ-
ated with the WACE pattern.

6  Discussion

Many studies have demonstrated that autumn Arctic sea ice 
plays a critical role in the winter mean atmospheric circula-
tion (Francis et al. 2009; Overland and Wang 2010; Hopsch 
et al. 2012; Jaiser et al. 2012; Chen et al. 2014) and mid-
latitude Eurasian cold winters (Liu et al. 2012). Our obser-
vational analysis also reveals that WACE pattern is closely 
related to sea ice loss in autumn (Fig. 8a). However, differ-
ent from the observational findings, the SIC anomalies in 
the autumn exhibits weak and insignificant connection with 
the WACE pattern of winter mean SAT both for the HC 
and LC model groups (Fig. 9a, c). According to Chen et al. 
(2014), on the interanuanl time scale, autumn Arctic SIC 
anomalies affect the winter mean Asian circulation through 
atmospheric processes (Alexander et al. 2003; Deser et al. 
2004, 2007; Honda et al. 2009; Chen et al. 2014). Specifi-
cally, anomalous autumn SIC-induced thermal state leads 
to an atmospheric circulation change around the Arctic and 
then the circulation change extends to Asia in winter through 
atmospheric processes such as the wave activity fluxes 
(Alexander et al. 2003; Deser et al. 2004, 2007; Honda et al. 
2009; Chen et al. 2014). The failure of CMIP5 models in 
capturing the link between autumn SIC anomalies and win-
ter Asian circulation may be due to their poor performances 
in reproducing the atmospheric processes, such as transient 
eddy feedback. Furthermore, previous studies with model 
simulations have reported that autumn sea ice loss over the 
Barents–Kara Seas can trigger cold weather over Eurasia 

Fig. 15  MME anomalies of winter Z300 (shading; m) obtained by 
regression upon the normalized PC time series of the EOF1 of winter 
Z300 over 40°–90° N and 0°–180° E during 1979–2005 in the a HC 
and b LC groups, respectively. Dots for shadings indicate the 90% 
confidence level
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through stratospheric pathway (Kim et al. 2014; Zhang et al. 
2018), indicating the importance of stratosphere-troposphere 
coupling process. They reported that low-top models or 
models with an insufficiently resolved stratosphere exhibit 
weaker stratosphere-troposphere coupling than that in obser-
vations or high-top stratosphere-resolving models (Charl-
ton‐Perez et al. 2013; Osprey et al. 2013). However, most of 
the CMIP5 models are ‘low-top’ models only, which poorly 
resolves the stratosphere and stratosphere–troposphere cou-
pling mechanisms (Charlton‐Perez et al. 2013). It may be 
another factor responsible for the unsuccessful representa-
tion of the linkage between the WACE and autumn sea ice 
loss over Barents–Kara Seas.

Our study emphasized that the ability of the CMIP5 
model in representing the observed atmospheric circula-
tion anomalies related to the winter SIC variation over Bar-
ents–Kara Seas is partly due to their performance in simu-
lating the SIC variability. The inter-model diversity of the 
simulated SIC variability may be caused by the inter-model 
spread in simulation of the sea ice thickness, which needs to 
be verified in the future. It should be noted that the atmos-
pheric circulation response to the sea ice changes is also sen-
sitive to the background climatic state (Kushnir et al. 2002; 
Balmaseda et al. 2010; Overland et al. 2016; Screen and 
Francis 2016; Sung et al. 2016; Li et al. 2018). For example, 
Li et al. (2018) suggested that the linkage between the sea 
ice cover in the Atlantic sector of Arctic and Eurasian cli-
mate only manifests in the cold phase of the Atlantic Multi-
decadal Oscillation (Li et al. 2018). Therefore, whether the 
performance of CMIP5 models in simulating the background 
climatic state can affect their ability to represent the WACE 
pattern needs to be studied in the future.
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