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Abstract
The South Pacific Ocean is a key driver of climate variability within the Southern Hemisphere at different time scales. Pre-
vious studies have characterized the main mode of interannual sea surface temperature (SST) variability in that region as a 
dipolar pattern of SST anomalies that cover subtropical and extratropical latitudes (the South Pacific Ocean Dipole, or SPOD), 
which is related to precipitation and temperature anomalies over several regions throughout the Southern Hemisphere. 
Using that relationship and the reported low predictive skill of precipitation anomalies over the Southern Hemisphere, this 
work explores the predictability and prediction skill of the SPOD in near-term climate hindcasts using a set of state-of-the-
art forecast systems. Results show that predictability greatly benefits from initializing the hindcasts beyond the prescribed 
radiative forcing, and is modulated by known modes of climate variability, namely El Niño-Southern Oscillation and the 
Interdecadal Pacific Oscillation. Furthermore, the models are capable of simulating the spatial pattern of the observed SPOD 
even without initialization, which suggests that the key dynamical processes are properly represented. However, the hindcast 
of the actual phase of the mode is only achieved when the forecast systems are initialized, pointing at SPOD variability to 
not be radiatively forced but probably internally generated. The comparison with the performance of an empirical prediction 
based on persistence suggests that initialization may provide skillful information for SST anomalies, outperforming damping 
processes, up to 2–3 years into the future.
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1 Introduction

The climate of the Southern Hemisphere is modulated by 
variability in the South Pacific (SP) region at several time 
scales, including seasonal (Guan et al. 2014), interannual 
(Linsley et al. 2000; Barros and Silvestri 2002; Shakun and 
Shaman 2009) and multi-decadal (Power et al. 1999). Yet, 
limited literature on the characterization of SP climate vari-
ability and dynamics exists so far, which in part has been 
attributed to the sparse data available over the basin (Basher 
and Zheng 1998). Nonetheless, recent active research on the 
field has provided further insight into our knowledge of the 
region (e.g. Power et al. 2017; Saurral et al. 2018; Lou et al. 
2019), particularly focused on the main modes of sea surface 
temperature (SST) variability, their drivers and impacts.

In a recent study, Saurral et al. (2018) characterized the 
main modes of SST variability on interannual time scales 
in the basin. They found that the leading mode exhibits a 
dipolar structure of SST anomalies covering subtropical 
and extratropical latitudes (see Fig. 1) that is highly and 
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significantly correlated with El Niño-Southern Oscilla-
tion (ENSO) and the Interdecadal Pacific Oscillation (IPO; 
Power et al. 1999). The second mode is associated with SST 
anomalies propagating eastward in the extratropics linked to 
the South Pacific Gyre (their Figs. 2, 8). Both patterns depict 
significant oscillations at interannual time scales: the first 
mode has periodicities of about 4 and 8 years and the sec-
ond mode oscillates at approximately 7 years. More recently, 
Lou et al. (2019) used a global ocean model to identify the 
sources of SST variability over the SP region at decadal 
and longer time scales and found that the topography of the 
SP basin helps in low-pass filtering the SST and, therefore, 
increasing the fraction of variance explained by lower-fre-
quency modes compared to the North Pacific region. At the 
same time, Chung et al. (2019) showed that part of the Trop-
ical Pacific variability is explained and driven by variations 
in salinity and SST over the SP region, providing further 
evidence of the importance of the SP region in sustaining 
and modulating the global climate.

Previous studies have identified potential sources of cli-
mate predictability in the SP region. Among them, Guan 
et al. (2014) concluded that seasonal SST variability in the 
area can be predicted with acceptable skill up to nine months 

in advance. At longer time scales, Ding et al. (2013) showed 
that the climate shifts observed in the Pacific around 1976 
and 1998, as well as the anomalous atmospheric conditions 
following such changes, could have been successfully pre-
dicted 4 years in advance using initialized coupled simula-
tions in retrospective-forecast mode. Guémas et al. (2013) 
found that some skill may be present over selected areas of 
the SP basin up to 2–5 years into the future. However, no 
quantification of the predictability of SST variability in the 
SP region has yet been carried out.

The presence of significant seasonal-to-interdecadal 
variability in the SP region leads to the question of whether 
these variations may be skillfully predicted. In this regard, 
the set of decadal climate predictions produced under the 
Fifth Phase of the Coupled Model Intercomparison Pro-
ject (CMIP5; Taylor et al. 2012) appears as a suitable tool 
to effectively assess multi-year forecast skill of SST vari-
ability in the SP region. The CMIP5 data comprise simula-
tions from different coupled global climate models (GCMs) 
especially developed for analyzing near-term climate pre-
dictability on interannual-to-decadal timescales. Two sets 
of simulations are used: initialized and non-initialized 
hindcasts (Doblas-Reyes et al. 2013; Kirtman et al. 2013). 
The initialized (Init) or decadal hindcasts are retrospective 
forecasts that employ the best estimate of the observed cli-
mate state at the start date and are run for 10 years into the 
future. Although standard hindcasts with a 5-year interval 
between start dates may be enough to evaluate the level of 
skill, yearly hindcasts allow assessing the forecast quality 
more accurately and with higher statistical robustness (e.g. 
García-Serrano and Doblas-Reyes 2012; García-Serrano 
et al. 2015). Therefore, the latter set includes simulations 
initialized every year from 1960 to 2005. The set of non-ini-
tialized hindcasts (NoInit) consists of historical runs started 
in the nineteenth or twentieth century from a long control 
simulation where no information of the actual state of the 
climate system is prescribed, and only radiative forcing is 
applied. In this study, the historical simulations are contin-
ued beyond 2005 with the projections using the scenario 
RCP4.5. The assessment of the actual impact of initialization 
on the forecast quality is carried out by contrasting predic-
tions skill from the Init and NoInit hindcasts.

Recent studies have shown that the actual skill of dec-
adal predictions for some atmospheric variables such as 
precipitation over South America is limited, even with the 
added value of initialization (e.g. Smith et al. 2019). As 
such, this study follows an approach usually employed in 
seasonal prediction studies, in which prediction skill of a 
given variable (e.g. precipitation) is quantified through the 
analysis of the prediction skill of known modes of climate 
variability that are related to this variable (e.g. Osman and 
Vera 2020). In the present study, the focus is put on the 

Fig. 1  a Spatial pattern of the leading mode of observed SST anoma-
lies in the SP region, and b time evolution (period 1982–2006) of the 
mode. This mode accounts for 37.6% of the variance. The northwest-
ern and southeastern centers of the SPOD are highlighted as “NW” 
and “SE”, respectively, in a 
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documented relationship between SST variability in the 
SP region and rainfall and temperature anomalies over the 
Southern Hemisphere.

Multi-year prediction skill in the Pacific Ocean has been 
the subject of several recent studies. For instance, Lienert 
and Doblas-Reyes (2013) analyzed the decadal prediction 
problem in the North Pacific region and found that the 

second mode of variability, called the North Pacific Gyre 
Oscillation, can be predicted with some skill almost 10 
years in advance. Guémas et al. (2012) found very little 
skill in decadal hindcasts over the North Pacific region, in 
agreement with other multi-model assessments (e.g. Kim 
et al. 2012; Doblas-Reyes et al. 2013), and linked it to the 
poor representation of anomalous SST events occurring 

Fig. 2  a–f Predictability of SST 
in the SP region in (left column) 
Init and (right column) NoInit 
hindcasts, from the first to the 
third forecast years (first to third 
row). g Basin-mean potential 
predictability evolution along 
the forecast years considering 
Init and NoInit (blue and red 
thick curves, respectively). Also 
shown are terms related to the 
variance of the signal (dashed 
lines) and variance of the noise 
(dashed-dotted lines)
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in the second half of the twentieth century. More recently, 
González and Goddard (2016) analyzed how a set of CMIP5 
decadal hindcasts predicts ENSO variability in seasonal to 
interannual scale. They concluded that ENSO may be pre-
dicted up to 2- to 3-years in advance, in agreement with pre-
vious findings using other forecast systems (Jin et al. 2008; 
Volpi et al. 2013).

The main objective of this study is to quantify predict-
ability as well as forecast skill in a set of hindcasts to simu-
late and predict interannual-to-decadal variability of SST 
anomalies in the SP region. A key aspect of the study is to 
systematically compare the performance of Init and NoInit 
as a way to assess the impact of initialization on the forecast 
skill, as well as to explore whether the SST variability is 
internally generated or radiatively forced.

Given the reported relationships of SST anomalies in 
this basin with temperature and precipitation variability 
over several land areas of the Southern Hemisphere (Saur-
ral et al. 2018), this study could provide useful informa-
tion for implementing regional climate services oriented 
to different socio-economic sectors like water management 
and agricultural planning. The paper is organized as fol-
lows: Sect. 2 describes the data and methodology used 
in the study. Section 3 contains the results and related 
discussion, including the assessment of predictability, a 
comparison between objective metrics of prediction skill 
in the Init and NoInit hindcasts and also an analysis of its 
link to temperature and precipitation predictions in the 
Southern Hemisphere. Finally, the conclusions are drawn 
in Sect. 4.

2  Data and methods

2.1  Observations

Observed monthly mean SST data was taken from ver-
sion 1.1 of the HadISST dataset (Rayner et al. 2003) which 
has a horizontal resolution of 1° × 1° and includes in-situ 
measurements from the Met Office Marine Data Bank as 
well as satellite-derived SST information starting in 1982. 
As discussed in Saurral et al. (2018), the lack of measure-
ments over the SP basin before 1982 could affect the results 
and lead to biased conclusions. In fact, a recent paper by 
Volpi et al. (2017) using different initialization approaches 
applied to the EC-Earth climate model found that the high-
est skill scores (i.e. best model performance) over the SP 
region are achieved in NoInit experiments, a result that 
the authors attribute to the sparseness of in-situ observa-
tions acting to preclude robust initialization there. For 
this reason, and despite the availability of hindcasts from 

the 1960s onward, it was decided to narrow the period of 
analysis from January 1982 to December 2015 (34 years) 
in order to consider only years with sufficient, reliable 
observational data (see further discussion in Saurral et al. 
2018). This study employs SST annual-mean values, so the 
original monthly values were averaged to derive 34 values 
(one per year) for every grid point. Most of the analysis 
is performed over the SP region, considered as the area 
bounded by Australia to the west and South America to the 
east, and from 20° S to 65° S.

As mentioned in the Introduction, the leading mode of 
interannual SST variability in the basin given by a Principal 
Component Analysis (PCA/EOF) shows a dipolar structure 
of anomalies, which is centered around 40° S/170° W and 
55° S/130° W respectively (Saurral et al. 2018; see Fig. 1a). 
The ability of the decadal prediction systems to simulate 
and forecast this pattern, called the South Pacific Ocean 
Dipole (SPOD) Huang and Shukla (2006), is addressed. In 
this paper, the SPOD index is computed as the difference of 
area-averaged SST anomalies in the box delimited by 20° 
S–48° S/165° E–170° W (the NW pole) minus those over 
44° S–65° S/140° W–100° W (the SE pole, Fig. 1b; see 
locations of the two poles in Fig. 1a). The analysis of the 
corresponding principal components (PCs) associated with 
the EOFs of SST provides identical results, but the approach 
of area-averaging is adopted for the sake of reproducibility 
and future applicability.

2.2  Hindcasts

Several forecast systems are used for the analysis of near-
term climate prediction. These include nine physically-
perturbed variants of the Met Office Decadal Climate 
Prediction System (Smith et al. 2010) and four models 
from the CMIP5 set of yearly hindcasts, namely HadCM3 
(Gordon et al. 2000), MIROC5 (Hasumi and Emori 2004), 
GFDL-CM2.1 (Yang et al. 2013; Zhang et al. 2017; from 
now on, simply GFDL) and EC-Earth2.3 (Du et al. 2012; 
hereafter EC-Earth). As introduced in Sect. 1, each forecast 
system contributes with Init and NoInit decadal hindcasts. 
Initialization in DePreSys and EC-Earth is on November 
1st, while in the other models is on January 1st of the fol-
lowing year (i.e. two months later). Anomaly initialization 
(a.i.) was employed in DePreSys, HadCM3 and MIROC5; 
while EC-Earth and GFDL make use of full-field initiali-
zation (FFI).

All simulations include the effects of solar variability, 
greenhouse gases and anthropogenic aerosols, although 
CMIP5 models also consider the role of volcanic eruptions 
and the related injection of aerosols into the stratosphere 
while DePreSys projects the volcanic aerosol load available 
at the start date. As the DePreSys dataset consists of nine 
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different (perturbed physics) versions of a single model, it 
is considered here as a multi-model with one member per 
model version. The CMIP5 GCMs have varying ensemble 
sizes: 10 ensemble members in GFDL and HadCM3, 5 (3) 
in EC-Earth Init (NoInit) and 6 (3) in MIROC5 Init (NoInit). 
Most of the analysis is done upon the multi-model ensemble-
mean, without discussing particular merits of the individual 
forecast systems.

Variables analyzed include monthly SST, 2-m air tem-
perature and total precipitation from both Init and NoInit 
hindcasts over the Southern Hemisphere. As for the observa-
tions, all monthly bias-corrected anomalies were averaged 
to obtain annual means, with one value per year at each grid 
point.

2.3  Statistical tools

Predictability is quantified following the definition proposed 
by Schubert et al. (2002), in which predictability of a quan-
tity x is given by the ratio between the variance of the signal 
and the total variance (which results from the sum of contri-
butions from the signal and the noise). Variance of the signal 
(S2) and noise (N2) are defined as:

 Brackets (overbars) indicate averaging over the m ensemble 
members (the n years). Predictability is therefore defined as 
the ratio between signal and total variance as follows:

 The quantification of the actual prediction skill is based on 
the comparison between SST variability in the observations 
and the different forecast systems. As a first step, for each 
forecast year the observed and simulated SST climatology 
were computed by averaging SST across the start dates, and 
then subtracting the obtained climatology from the raw val-
ues to remove the drift in each model (García-Serrano and 
Doblas-Reyes 2012). To avoid masking the skill with the 
signal resulting from long-term trends in SST, the trend at 
each grid point was removed in the observations (hindcasts) 
through a simple linear regression against the observed (sim-
ulated) global-mean temperature across all start dates as a 
function of the forecast year.

The skill of the hindcasts is determined by computing 
the anomaly correlation coefficient (ACC) as a function 
of the forecast year for each forecast system. The same 
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computation was done in parallel using persistence of the 
observed anomalies as an empirical prediction system 
relying on damped processes (e.g. García-Serrano et al. 
2012). The leading mode of SST variability was also 
computed for each forecast system considering Init and 
NoInit separately so that to assess if the SPOD pattern 
is simulated by the GCMs and whether initialization is 
required to properly capture the dipole-like structure or 
not.

Correlation maps were computed using the observed 
SPOD index against hindcast precipitation and tempera-
ture anomalies in order to explore climate impacts over the 
Southern Hemisphere that are associated with the SPOD 
skill. The diagnostic aims to assess the benefits, if any, of 
the initialization in hindcasting the target teleconnections 
(García-Serrano et al. 2015).

3  Results

3.1  Predictability of SST anomalies in the SP region

Figure 2 shows predictability of SST anomalies as a func-
tion of the forecast year, considering Init and NoInit hind-
casts (Fig. 2a–f). Initialization clearly leads to an increase 
in predictability over the basin, most noticeably in the first 
2 forecast years (Fig. 2a, c) with values surpassing 0.6 in 
two distinct regions: east of New Zealand, and southwest of 
the southern coast of South America near 60° S. Although 
the magnitude of predictability clearly diminishes at the 
third forecast year, it remains above the values derived from 
NoInit (Fig. 2e, f), suggesting an added value from initiali-
zation. The basin-averaged predictability along the forecast 
time is displayed in Fig. 2g, as well as the terms associated 
with the signal and noise variances, for Init (red) and NoInit 
(blue) separately. As expected from the grid-point analy-
sis, there are clear differences during the first and second 
forecast years. These differences can be mostly attributed 
to changes in the variance of the signal, which is markedly 
larger in Init as compared to NoInit in forecast years 1 and 
2. At the same time, the NoInit hindcasts contain much more 
noise than their Init counterparts, which naturally acts to 
shape the behavior of predictability. It is interesting to note 
that from the third forecast year onwards, the variance of the 
signal in Init and NoInit becomes virtually identical, sug-
gesting that initialization does not provide any improvement 
in its predictability after the second forecast year. Still, the 
variance of the noise remains substantially larger in NoInit 
than in Init (dashed-dotted lines) which leads to larger pre-
dictability values in Init even until the tenth forecast year 
and shows how initialization can effectively act to narrow 
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the dispersion among ensemble members along the entire 
hindcast period.

The relationship between SST variability in the SP 
region with the activity of large-scale modes of variability 
of the climate system such as ENSO and the IPO brings 
the question of whether these modes may be contributing 
to the SP predictability. To address this point, Fig. 3 shows 
the evolution of predictability in Init and NoInit consider-
ing the actual evolution of SST (“full”; same as in Fig. 2g) 
as well as after removing the effects of ENSO and IPO, 
separately. This is achieved by means of regressing out the 
least-square fit of SST anomalies at each grid point to the 
Niño 3.4 index and the IPO time series (estimated as the 
leading principal component of detrended SST over 50° 
S–50 °N/100° E–70° W; Doblas-Reyes et al. 2013), in Init 
and NoInit respectively.

In the case of Init (Fig. 3a), removing ENSO or IPO 
leads to a small decrease in predictability during the first 
and second forecast years. At longer lead times, the con-
tribution of the lower-frequency variability linked to the 
IPO is substantial up to the end of the hindcast period 
which results in a sharp decrease in predictability when 
the effect of IPO is removed from the total variability, 

while excluding the interannual variability linked to 
ENSO at these long lead times results in no change of 
predictability due to the limited predictability horizon 
of ENSO itself (e.g. Hou et al. 2018). Regarding NoInit 
(Fig. 3b), it is worth noting how the variability associated 
with ENSO represents an important source of unpredict-
able noise acting in detriment of predictability in the sys-
tem at all lead times, as the largest values are obtained 
when considering SST variability with no ENSO effect. 
Variability associated with the IPO has almost no effect 
on predictability in NoInit at shorter lead times, but then 
becomes beneficial at lead times larger than 8 years. It is 
clear from this analysis that predictability in NoInit hind-
casts is heavily affected by the incorrect phasing of both 
ENSO and IPO at the start of their simulations, which is 
carried all along the forecast period and is more clearly 
driven by ENSO. At the same time, it is interesting to note 
that previous authors have found that this predictability 
behavior is independent of the nature of the forecast sys-
tems considered (i.e., with or without ocean dynamics 
included) and the same results would be obtained even 
using simple, slab-ocean coupled models (Srivastava and 
DelSole 2018).

Fig. 3  Lead time evolution of 
SP basin-averaged predictability 
of SST in (top row) Init and 
(bottom row) NoInit hindcasts, 
considering the full SST vari-
ability (blue curves) and SST 
without the effects of ENSO 
(red curves) and IPO (green 
curves)
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3.2  SPOD prediction skill

The objective of this section is to assess the actual skill 
of the different forecast systems to predict the interannual 
variability of SST in the SP basin. Figure 4 shows the ACC, 
with respect to observations, of the empirical predictions 
based on persistence (first column) and the Init hindcasts 
(second column) for forecast years 1, 2 and 3 (rows). The 
climate system exhibits large memory at annual time scale, 
as can be seen from the persistence-based prediction for 
forecast year 1 (Fig. 4a). The exception is the central-east-
ern part of the SP basin, where persistence skill is very low. 
Simple damping processes are not skillful one year later, 
yielding a marked drop in correlation for forecast years 2 
and 3, where only a few spots across the SP basin retain 
ACC values exceeding 0.1 (Fig. 4c, e). In the case of the ini-
tialized forecast systems, the multi-model ensemble-mean 
is very skillful for forecast year 1 in most of the SP basin 
(Fig. 4b). But, more surprisingly, they also perform well 
and outperform persistence for forecast year 2 (Fig. 4d), 
particularly over the central part of the basin. Among them, 
DePreSys, EC-Earth and MIROC5 are those depicting the 
largest ACC values, with MIROC5 showing the best per-
formance (not shown). At forecast year 3 (Fig. 4f), there are 
still areas with ACC values above 0.6 in the multi-model 

ensemble-mean, mostly over the central SP region. These 
results illustrate the added value of dynamical climate 
forecasting as compared to simple empirical prediction for 
regional multi-annual SST variability. As the skill maps in 
Fig. 4 (right column) project on the leading mode of vari-
ability, i.e. the SPOD (Fig. 1a), in the following the separate 
role of initialization and radiative forcing on the SPOD skill 
is assessed.

Figure 5 shows the observed (black line) and simulated 
evolution of the SPOD index in Init (first column) and NoInit 
(second column) for the first three forecast years (rows), 
showing the multi-model ensemble-mean (colored lines) 
as well as the spread of the individual ensemble-means 
(colored shading). The ACC score is also computed in each 
case. Initialization clearly improves the prediction of the 
SPOD variability in terms of both, amplitude and phase. 
The multi-model ensemble-mean ACC is much larger for 
Init (0.51) than for NoInit (0.14) in the first forecast year. 
The amplitude of the SPOD index, which in the observa-
tions and the ensemble-mean of Init is approximately 0.5 
°C, drops dramatically below 0.2 °C in the case of the 
ensemble-mean of NoInit. It is worth noting that this fea-
ture cannot be explained by differences in the representa-
tion of the SPOD mode of SST variability in the forecast 
systems, as the mode is equally simulated in the models 

Fig. 4  ACC computed between 
(left column) persisted SST 
anomalies and (right column) 
multi-model ensemble mean 
Init hindcast anomalies in (top 
to bottom) forecast years 1, 2 
and 3. Black dots indicate where 
predictions from the hindcasts 
have larger ACC values than 
those from persistence at the 
corresponding forecast time
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regardless initialization (Fig. 9 in the “Appendix”). Instead, 
this result suggests that the SPOD is mostly part of internal 
variability and is not radiatively forced; yet, while in NoInit 
there is no consistency among the members/forecast sys-
tems (i.e. the ensemble-mean/multi-model ensemble-mean 
cancel each other out), initialization leads the Init hindcasts 
to be in phase among them and with observations. Note 
that ACC decreases with forecast time in Init, although it 
remains above that of NoInit and the predicted SPOD index 
systematically keeps depicting coherence in the phase, but 
not statistically significant.

Figure 6 shows the ACC evolution of the SPOD index 
as a function of forecast time using persistence (black) as 
well as Init (red) and NoInit (blue) from the different fore-
cast systems (thin lines), respectively; also displayed is the 

skill of the Init and NoInit multi-model ensemble-means 
(thick lines). In the case of persistence (and in agreement 
with the results discussed in Fig. 3) high ACC values are 
obtained in forecast year 1, comparable to Init scores, 
followed by a rapid decline. The negative correlations in 
forecast years 7–8 are consistent with the oscillation of 
this mode at periods around 8 years (Saurral et al. 2018). 
Regarding the skill of the forecast systems, it is clear that 
initialization improves the prediction of the SPOD vari-
ability, and not only in the first forecast year, for which is 
statistically significant, but also up to the second or third 
forecast year, although by then it is no longer statistically 
significant. Note that the evolution of the SPOD index in 
NoInit (Fig. 5, second column) translates into no skill at 
all in these three forecast years (Fig. 6), thereby confirming 

Fig. 5  Observed (black thick curve) and multi-model ensemble mean 
predicted evolution of the SPOD index (see text for its definition) in 
(left column) Init and (right column) NoInit hindcasts, for forecast 
years (top to bottom) 1, 2 and 3. The red and blue bands show the 

ensemble spread in each case. Numbers in the upper part of each 
figure indicate the correlation coefficient between the observed and 
predicted time series. Values between 0.39 and − 0.39 are not signifi-
cantly different from zero (alpha = 5%)
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that the role of the radiatively-forced variability in the 
SPOD is minor. Likewise, the Init hindcasts outperform 
persistence in forecast years 2–3. However, the grid-point 
SST skill displayed in Fig. 3 (cf. Init vs. persistence) is 
not associated with statistically significant SPOD skill at 
these forecast times. Hence, together with the results in 
Fig. 2, it is envisaged that there is room for improvement 
in near-term climate forecasting up to 2–3 years ahead in 
the SP basin since the predictability does not yet lead to 
prediction skill.

3.3  Skill of the relationship between SPOD 
and surface climate anomalies

The objective of this section is to identify the benefits, if 
any, of initialization in hindcasting the observed SPOD 
impact on temperature and precipitation anomalies over 
the Southern Hemisphere. It aims to assess the potential 
translation of SPOD skill in Fig. 6 into skill at captur-
ing the SPOD influence on surface climate; the approach 
unambiguously identifies grid points in which the observed 

Fig. 6  Ensemble-mean ACC for each forecast system against the 
observed SPOD index as a function of the forecast time, considering 
(black curve) persistence of SST anomalies, (red curves) Init hind-
casts and (blue curves) NoInit hindcasts, as a function of the forecast 
year

Fig. 7  a Correlation coefficient 
between observed SPOD index 
and observed annual mean 
precipitation anomalies. Multi-
model ensemble mean correla-
tion maps of hindcast annual 
mean precipitation anomalies in 
the b Init and c NoInit hindcasts 
against the observed SPOD 
index in the first forecast year. 
The black crosses highlight 
those correlation coefficients 
that are significant at the 10% 
confidence level according to a 
two-tailed t-test
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SPOD fluctuations are more representative of the hindcast 
variability (see Sect. 2). The analysis is restricted to only 
forecast year 1 and encompasses both local and remote 
(teleconnection-driven) impacts on the atmospheric vari-
ability. Figure 7 shows the correlation map between the 
observed SPOD index and observed (Fig. 7a) as well as 
multi-model ensemble mean hindcast precipitation anoma-
lies for Init (Fig. 7b) and NoInit (Fig. 7c). In the obser-
vations, the SPOD is highly and significantly correlated 
with precipitation anomalies over much of the Southern 
Hemisphere, most markedly over the ocean areas and spe-
cific parts of South America, South Africa and northern 
Australia (Fig. 7a). In the hindcasts, a remarkable feature 
of Init is that the SPOD skill is associated with large cor-
relation coefficients around Australia and over the western 
tropical Pacific, depicting a dipolar-type pattern of rainfall 
anomalies. Interestingly, there are also positive correlations 
over northern South America in all the forecast systems 
(not shown), although the signal is not statistically signifi-
cant. Hints of an opposite relationship are present over the 
southwestern South Atlantic region, but overall these cor-
relations are not significant either. Teleconnections forced 

by ENSO variability explain part of these relationships, and 
they are correctly captured by the initialized hindcasts (not 
shown). Indeed, ENSO variability has important effects 
on rainfall anomalies over Australia (e.g. Ropelewski and 
Halpert 1987; Power et al. 2006), interpreted as a latitudinal 
migration of the South Pacific Convergence Zone (SPCZ), 
away from the continent during El Niño conditions and into 
northern Australia during La Niña years. Also, the region 
with high correlations covering northern South America is 
affected by the remote influence of ENSO (e.g. Vera et al. 
2004; Kayano et al. 2009; Krishnamurthy and Misra 2010; 
Tedeschi and Collins 2016; García-Serrano et al. 2017), as 
well as southeastern South America (e.g. Ropelewski and 
Halpert 1987; Grimm et al. 2000). Regarding NoInit, the 
correlations are noticeably smaller, not even reaching 0.2, 
and not significant; this is consistent with the internal nature 
of the SPOD-related variability and thus the lack of skill 
discussed above.

The correlation between the observed SPOD index and 
2-m air temperature anomalies, both in observations and 
the forecast systems, is analyzed in Fig. 8, following a sim-
ilar approach as for precipitation. Again, a clear impact 

Fig. 8  As in Fig. 7 but for 
annual mean temperature 
anomalies
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arises from initialization, as no significant correlation is 
achieved in NoInit (Fig. 8c), in agreement with its lack of 
SPOD skill coming from the inconsistency among mem-
bers/forecast systems. In the Init hindcasts (Fig. 8b), as in 
observations (Fig. 8a), the correlations show a wave-like 
structure arching over the SP region. This feature is par-
ticularly robust in DePreSys, EC-Earth and GFDL, while 
in HadCM3 it is a bit distorted (not shown). These results 
could be explained by the ability of the forecast systems 
to simulate the SPOD spatial pattern (see Fig. 9), in which 
HadCM3 is less spatially coherent than the other models. 
Together with the analysis of precipitation, the results 
illustrate that initialization provides skill in forecast year 
1 for surface climate over the Southern Hemisphere, in 
association with the SPOD variability and likely mediated 
by ENSO.

4  Conclusions

This study assessed predictability and prediction skill in a 
set of decadal prediction hindcasts from state-of-the-art fore-
cast systems in the SP region. Focus was made on quantify-
ing their skill to predict the first mode of SST variability in 
the region. The assessment was performed for both, the skill 
in SST predictions and the related skill in representing the 
teleconnections with surface temperature and precipitation 
over the Southern Hemisphere.

It is shown that the forecast systems realistically simulate 
the leading mode of SST variability associated with a dipole 
of anomalies between subtropical and extratropical latitudes. 
This ability is present regardless initialization, indicating 
that the climate dynamics of the SPOD are properly repre-
sented in the models. Results also show that initialization 
provides added skill in the prediction of the SPOD and its 
variability beyond the prescribed radiative forcing. In fact, a 
comparison between the Init and NoInit hindcasts shows that 
Init has higher skill in forecasting the SPOD up to the third 
forecast year, also largely outperforming the skill of empiri-
cal predictions based on persistence beyond the first forecast 
year. However, the SPOD skill in forecast years 2–3 is not 
statistically significant. Analysis of predictability based on 
signal-to-noise variances suggests that larger prediction skill 
levels might be achievable at least for the second forecast 
year, which encourages further work in near-term prediction 
beyond ENSO. A first test-suite for improvement may be the 
upcoming Decadal Climate Prediction Project (DCPP; Boer 
et al. 2016) contribution to CMIP6.

There is a clear translation of the SPOD skill into 
capturing the relationship with surface climate thanks 
to initialization. The Init hindcasts proved to be skillful 

at representing the observed relationship between the 
SPOD and temperature and precipitation anomalies, 
mostly thanks to the contribution from ENSO-related 
variability. This could serve as a potential tool for near-
term predictions of climate anomalies over the South-
ern Hemisphere, such as mega-drought periods in South 
America (Boisier et al. 2016). In the light of the results 
found here, the skill of such predictions could be favored 
under active ENSO/IPO conditions. Still, it should be 
stressed that, due to constraints in the observational cov-
erage, the reliable period with available hindcasts only 
consists of 34 years. A longer set of initialized experi-
ments might need to be explored in order to gain some 
insight into the stationarity of the forecast quality (Mül-
ler et al. 2014).
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Appendix

Leading mode of SST variability in the SP region 
in the forecast systems

Figure 9 shows the spatial pattern associated with the 
leading mode of interannual SST variability in the SP 
region in forecast year 1 of the (left) initialized and 
(right) uninitialized hindcasts. The resemblance of the 
Init vs. NoInit patterns in each forecast system indicates 
that the SPOD mode is internally generated by the mod-
els. Additional discussion on this issue can be found in 
the main text.
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