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Abstract
A simple, two-layer energy balance model (EBM) is used to investigate climate variability in Coupled Model Intercom-
parison Project Phase 5 (CMIP5) models and examine possible links between variability and climate sensitivity, and the 
roles of stochastic variability, radiative feedbacks and ocean mixing. The EBM represents global variability that, while 
somewhat stronger than the CMIP5 models, simulates reasonable ratios between shorter and longer timescales. Variability 
in the EBM to the range of parameters from the Global Climate Models is found to be particularly sensitive to stochastic 
variability, especially on interannual time-scales. Radiative feedbacks and ocean mixing parameters are also important, 
particularly for decadal timescales. A modest amount of the model-to-model spread in the variance of global temperature in 
the CMIP5 models is explained by the EBM. The EBM exhibits a stronger link between equilibrium climate sensitivity and 
the magnitude of the variability than it does for transient climate response, especially on decadal and longer timescales. The 
EBM results suggests that spread in stochastic forcing across the CMIP5 models is the single greatest factor degrading the 
correlation between variability and climate sensitivity, although model to model differences in radiative forcing and mixing 
into the deep ocean are also important. The findings suggest that from a theoretical point of view investigating constraints 
from variability may be a fruitful exercise. However, they also suggest that normalizing variability in general circulation 
models by stochastic forcing, uptake into the deep ocean and radiative forcing are all important first steps to reduce factors 
that will otherwise confound the correlations.

1  Introduction

Modelling suggests that further climate change this century 
is inevitable (Collins et al. 2013; Peters et al. 2013), but 
global and regional climate change projections retain large 
uncertainties for a given emissions scenario (Meehl et al. 
2007; Collins et al. 2013; Boucher et al. 2013). Much of 
this uncertainty results from the range in ‘climate sensitiv-
ity’ in climate models (Flato et al. 2013; Grose et al. 2018), 
and constraining this range would bring profound benefits in 
reducing costs of mitigating and adapting to climate change 
(Hope 2015). The range of model sensitivity has long been 
known to result largely from differences in the strength of 
radiative feedbacks—particularly those of clouds (Bony 
et al. 2006; Zelinka et al. 2013).

At the same time, the climate system is characterized 
by large natural global scale variability on timescales from 
years to decades (e.g. Kirtman et al. 2013; Power et al. 2006; 
Hawkins and Sutton 2009; Deser et al. 2012). As is the case 
with climate sensitivity, the range of this variability manifest 
in climate models is extremely large. In particular, the dec-
adal standard deviation of hemispheric or global scale tem-
peratures in Coupled Model Intercomparison Project phase 5 
(CMIP5, Taylor et al. 2012) models vary by a factor of more 
than four (Power et al. 2017; Colman and Power 2018). In 
contrast to climate sensitivity, however, the reasons for this 
range are not clear. Models do represent some features of 
e.g. the Interdecadal Pacific Oscillation (IPO, Power et al. 
1999, 2006; Folland et al. 1999) but the structure of decadal 
variability differs widely (Meehl et al. 2012; Kosaka and Xie 
2013; Dai et al. 2015). Furthermore, although representation 
of coupled ocean/atmosphere features such as the IPO are 
important for regional decadal variability (Chen and Tung 
2014), their roles in global scale variability are less clear 
(Liu 2012). It is found that models with only mixed-layer 
physics can show global variability at longer timescales 
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(decadal and beyond) only marginally weaker than that 
of fully coupled models (Middlemas and Clement 2016). 
This suggests that long term global variability may not be 
sensitively dependent on the details of ocean/atmosphere 
dynamic coupling but may be closer to a ‘Hasselmann’ style 
response (Hasselmann 1976) to shorter timescale stochastic 
forcing (Liu 2012; Roe 2009). This study will investigate 
climate variability under the Hasselmann framework, con-
sidering the contributions from feedbacks, stochastic forc-
ing, and heat capacity.

Theory suggests that radiative feedbacks should play 
a role in the magnitude of climate variability at a range 
of timescales (Von Storch and Zwiers 2001; Roe 2009; 
Mahadevan and Deutch 2009). Interannual variability 
is known to have strong radiative feedbacks not only on 
regional scales (e.g. Sun et al. 2003; Bellenger et al. 2014; 
Li et al. 2015; Rädel et al. 2016; Myers et al. 2018), but also 
global scales (Colman and Power 2010). Individual feedback 
processes which have been found to operate on interannual 
timescales include water vapour, snow and cloud feedbacks 
(Minschwaner and Dessler 2004; Hall and Qu 2006; Qu and 
Hall 2014; Dessler 2010, 2013). Consistent with this, sup-
pressing radiative feedbacks from water vapour or surface 
albedo in Global Climate Models (GCMs) reduces inter-
annual variability (Hall and Manabe 1999, 2000; Schnei-
der et al. 1999; Hall 2004), just as it does in forced climate 
change (Lahellec and Dufresne 2013). At decadal time-
scales, again both observations (Brown et al. 2014; Andrews 
et al. 2015; Zhou et al. 2016; Gregory and Andrews 2016; 
Ying and Huang 2016) and models (Brown et al. 2014, 2015; 
Colman and Hanson 2017; Colman and Power 2018) suggest 
an important role for radiative feedbacks in the magnitude 
and phase of variability.

Since feedbacks are established as important in both cli-
mate sensitivity and climate variability, there are grounds for 
expecting links between the magnitude of climate variability 
and climate sensitivity. Bolstering this expectation, relation-
ships have been found across models for the strength of indi-
vidual climate change feedbacks from decadal or interannual 
timescale changes with those from climate change (Dessler 
2010, 2013; Dessler and Wong 2009; Zhou et al. 2015; Col-
man and Hanson 2013, 2017). However, a number of factors 
may confound a direct correlation between the magnitude 
of climate variability and change. For a start, radiative feed-
backs are clearly not the only factor of importance. Theo-
retical considerations indicate that effective oceanic depth 
is important for setting the timescale and magnitude of the 
variability (Roe 2009; Farneti and Vallis 2011), but the rela-
tive importance of stochastic forcing, radiative feedbacks, 
and ocean effective depth/uptake on variability, and whether 
these are similar to the uptake response to climate forcing in 
transient climate change are less clear (Baker and Roe 2009; 
Soldatenko and Colman 2019).

The ultimate motivation behind the present paper remains 
the question of possible links—specifically correlations 
across different models—between variability and climate 
change in GCMs. If such correlations exist, they may per-
mit observations of the former to constrain the latter. There 
are tantalizing hints of a relationship across CMIP5 mod-
els between equilibrium climate sensitivity (ECS) and the 
magnitude of decadal variability in the tropics (Colman 
and Power 2018), and between climate sensitivity and the 
spread in decadal length trends in global temperatures under 
unforced variability (Nijsse et al. 2019). Further, theoreti-
cal arguments from single layer stochastic/feedback models 
suggest such links are anticipated (Roe 2009; Williamson 
et al. 2018). A recent study by Cox et al. (2018a) attempted 
to establish such constraints from observations. In this par-
ticular case concerns have been subsequently raised on the 
effectiveness of removing the forced signal from the histori-
cal climate change temperature signal (Brown et al. 2018; 
Rypdal et al. 2018), but the overall approach remains one of 
considerable interest.

Links such as found by Colman and Power (2018) and 
Cox et al. (2018a, b) are only convincing if they are based 
on sound theoretical arguments, otherwise they are open to 
the possibility that they are simply statistical flukes. Indeed, 
in response to studies of this nature, Williamson et  al. 
(2018) urge that ‘the search for emergent constraints (needs 
to) becomes more theory-led than it has been to date’. Wil-
liamson et al. (2018) lead the way with analysis of simple 
1, 2 and multi-layer models asking what theory suggests 
for the relationships between short term-variability and cli-
mate change, and what differences it implies between pre-
industrial and historical runs for CMIP5 models. This is a 
promising direction, but they do not examine what physical 
processes these simple models suggest are the causes of the 
wide spread in variability—i.e. what factors are the main 
‘spoilers’ of the correlations between sensitivity and vari-
ability across the CMIP5 models, and how the relationships 
vary as a function of timescale of variability. The present 
study, then, uses the ‘theory-led’ approach to ask what sim-
ple models suggest about these factors, and how they relate 
to the CMIP5 models.

The approach taken is to develop and utilize a two-layer 
energy balance/feedback model (EBM) for the climate sys-
tem, to explore and understand its variability on a range 
of timescales and to relate these to variability and climate 
change sensitivity found in the CMIP5 GCMs. The advan-
tage of such a model is that it is simple to understand and 
easy to set up (with only 2 or 3 independent parameters); 
yet similar models have been shown to capture enough 
of the essentials of the climate system to be capable of 
quantitatively describing the transient response of GCMs 
to very different time dependent forcing with the same set 
of parameters (Held et al. 2010; Geoffroy et al. 2013a, b; 
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Caldeira and Myhrvold 2013; Gregory et al. 2015). Of 
course, there are caveats in using such a simple model. 
Clearly, ocean/atmosphere dynamics and feedbacks play 
a critical role in the mechanisms driving patterns of vari-
ability such as El Nino-Southern Oscillation (ENSO), and 
ENSO related indices can explain around 30% of global 
interannual temperature variance in the observed record 
(Trenberth et al. 2002; Ayers 2017). Nevertheless, there is 
substantial evidence, as described above, of the important 
role of radiative feedbacks on global scales, and the util-
ity of the ‘Hasselmann’ type approach for understanding 
variability.

In summary then, we will use the EBM approach to 
explore four questions:

1.	 How well can important aspects of global scale vari-
ability on timescales from interannual to multi-decades 
in CMIP5 models be understood and quantitatively 
described using a simple two-layer EBM?

2.	 What relative role do radiative feedbacks play in deter-
mining the magnitude of global variability, especially 
on longer timescales?

3.	 What parameters control potential relationships between 
the magnitude of variability and transient climate 
response (TCR) (Collins et al. 2013) and/or ECS.

4.	 What do differences across GCMs in their magnitude 
of stochastic forcing, the strength of radiative feedbacks 
and in other parameters therefore imply for the potential 
for constraining ECS or TCR through observations of 
variability.

The layout of this paper is as follows: Sect. 2 will describe 
the EBM. Section 3 will explore the sensitivity of variability 
in the EBM to model parameters. Section 4 will consider the 
relationships between variability and climate sensitivity in 
CMIP5 GCMs as represented by the EBM, and their sensi-
tivity to different processes. Finally, summary and conclu-
sions will be presented in Sect. 5.

2 � Model description and analysis 
methodology

2.1 � The energy balance model

The model used here is a two-layer EBM (Gregory 2000; 
Held et al. 2010; Rypdal 2012; Caldeira and Myhrvold 2013) 
that is comprised of two sub-systems: (a) atmosphere/land 
surface and the ocean mixed layer and (b) the deep ocean. 
Evolution of the model is described by the temperature per-
turbations T and TD with respect to their reference (equilib-
rium) values T0 and TD,0 viz:

where � is a climate feedback parameter (in W m−2 K−1), 
� represents the coupling strength between the two subsys-
tems (in W m−2 K−1) and characterizes the deep ocean heat 
uptake, and F is a radiative forcing (in W m−2). The spe-
cific effective heat capacities C and CD of the fast and slow 
subsystems are such that C ≪ CD . Temperature variation of 
the fast system T  is identified with the global mean surface 
temperature change.

Deterministic formulations of such 2-layer models have 
been considered and analyzed in a number of papers. Geof-
froy et al. (2013a) (hereafter G13) explored the analytical 
solutions of the two-layer model for hypothetical climate 
forcing scenarios, and suggested the approach of calibrating 
the model parameters to imitate the dynamics of coupled 
ocean–atmosphere general circulation models from CMIP5. 
Gregory et al. (2015) analyzed the two-layer model and its 
upper-, zero- and deep-layer approximations, and discussed 
the TCR, the global mean surface air temperature change 
T under two scenarios, one with a step forcing (the abrupt 
4 × CO2 experiment) and one with the 1pctCO2 scenario 
(atmospheric CO2 increasing at 1% per year). Importantly, 
they found that despite the simplicity of the model, it was 
able to capture the evolution of average global surface tem-
perature over time under both types of idealized forcing.

To explore model variability, we add stochastic radiative 
forcing Fs (Hasselmann 1976) into the right-hand side of 
Eq. 1, approximated by a Gaussian delta-correlated random 
process with zero mean and variance �2

s
.

The parameter �s , the standard deviation of stochastic 
forcing, requires some discussion which will be provided 
below. Here we only highlight that our objective is to study 
the climate variability on annual, decadal and multi-decadal 
(30 years) timescales. Therefore, stochastic forcing should 
reflect at least monthly timescale fluctuations of radiative 
forcing, which in this context can be viewed as ‘noise’.

The inverse of the climate feedback parameter � = 1∕� 
(in W m−2 K−1) is referred to here as the ‘sensitivity param-
eter’ (e.g., Eslami 1994; Rozenvasser and Yusupov 2000; 
Cacuci 2003). Note that this sensitivity is different to that 
of the Intergovernmental Panel on Climate Change (IPCC) 
terminology, ‘climate sensitivity’ which refers here to ECS 
or TCR. From the viewpoint of dynamical systems theory, 
we can interpret the ECS as the climate system’s sensitivity 
with respect to parameters around its attractor. For a sys-
tem without radiative feedbacks (i.e. with only the ‘Planck’ 
response), we can define a ‘reference climate sensitivity 
parameter’ �0 (Bony et al. 2006; Roe 2009):

(1)C
dT

dt
= −�T − �(T − TD) + F,

(2)CD

dTD

dt
= �(T − TD),
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where � = 0.62 is the Earth’s emissivity (Karper and Engler 
2013), � = 5.67 × 10−8 is the Stephan-Boltzmann constant 
(in kg s−3 K−4), T0 = 288 K is the ‘reference’ global mean 
surface temperature. Note that an alternative formulation 
would set T0 as the temperature at the effective radiating 
height in the atmosphere (around 255 K), and ε = 1.0. A 
slightly smaller α0 (~ 0.27 W m−2 K−1) is calculated for this. 
In the present paper, we will adopt the usage in Eq. 3, as the 
EBM is formulated with respect to the surface temperature.

If we eliminate all radiative feedbacks, we obtain �0 ≈ 0.30 
(Colman 2003; Roe 2009), and the corresponding climate 
feedback parameter �0 = 1∕�0 ≈ 3.13 (W m−2 K−1)−1 . For 
convenience, instead of � , we can use the dimensionless 
feedback factor f such that � = (1 − f )∕�0 (e.g., Roe 2009). 
Introducing the deterministic radiative forcing caused by 
atmospheric greenhouse gases Fd , we can rewrite the equa-
tions of two-layer model as follows:

In practice, of course, in GCMs the net feedback factor 
is the result of contributions from water vapour/lapse rate, 
surface albedo and clouds (Colman 2003; Bony et al. 2006), 
but here the total f (or � ) only will be considered.

Deterministic radiative forcings to derive ECS and TCR 
for this model are:

1.	 Step function

2.	 Linear function of time assuming a logarithmic relation-
ship between Fd and the concentration of carbon dioxide 
(CO2) in the atmosphere:

where � = F2×CO2
∕t2×CO2

 with t2×CO2
≈ 70 years. Function 

(7) provides the 1% growth in CO2 concentration until �tst , 
where tst is a stabilization time.

Key characteristics of the model, including analytic 
solutions and sensitivity of those solutions to changes in 
parameters C, CD, f , � and �s are provided in Soldatenko 

(3)�0 =
1

4��T3
0

≈ 0.30 W m−2 K−1,

(4)C
dT

dt
= −

1 − f

�0
T − �(T − TD) + Fd + Fs,

(5)CD

dTD

dt
= �(T − TD).

(6)Fd(t) =

{
0

F2×CO2

if

if

t < 0

t ≥ 0
,

(7)Fd(t) =

⎧
⎪⎨⎪⎩

0

𝜅t

𝜅tst

if

if

if

t < 0

0 ≤ t < tst
t ≥ tst

,

and Colman (2019). The base values of C, CD, � and � used 
here are rounded values of the multi-model means of the 
CMIP5 fitted values under climate change from G13: viz 
C = 7.34 W year m−2 K−1 ,  CD = 105.5 W year m−2 K−1 , 
� = 1.13 W m−2 K−1 . and � = 0.73 W m−2 K−1 . Using the 
relationship between the dimensionless feedback factor f and 
the feedback parameter � , we obtain f ≈ 0.64.

A Monte Carlo approach is used for the solution of the 
equations of the two-layer model and to thereby obtain esti-
mates of the variance of the surface temperature perturba-
tions T used, Ten thousand integrations are performed for 
each set of model parameters, this being large enough a sam-
ple for accurate estimates of both variance and its sensitiv-
ity to the individual parameters (Soldatenko and Colman 
2019). Each realization is obtained by numerical integration 
of the model equations using a Euler–Maruyama scheme. 
All ensemble members are run for 1000 years with a time 
step of approximately 6 days. Annual means are calculated 
from 12-monthly averages of temperature, and interannual 
variance then derived. To retrieve decadal and multi-decadal 
(30-year) variances, a moving average approach is employed 
(e.g. Colman and Power 2018).

2.2 � GCM data

The results from the EBM are compared below with GCM 
results taken from the CMIP5 archive. GCM temperature 
variances and stochastic forcing are derived from the pre-
industrial (PI) runs of the models, where available up to 
300 years in length. Where multiple realizations are avail-
able, the first archived experiment is used. ECS, TCR and 
effective 2 × CO2 radiative forcing are taken from Table 9.5 
of Flato et al. (2013). GCMs chosen were restricted to those 
with ESM parameters available from G13, and are the same 
group as considered by Williamson et al. (2018). The mod-
els used, their sensitivities and 2 × CO2 forcings are listed 
in Table 1.

The advantage of the use of PI results rather than the 
historical is that by construction it removes the possibility 
of volcanic or secular (e.g. CO2 or aerosol) forcing affecting 
the diagnosed variability of the GCM results and thereby 
‘contaminating’ possible correlations with climate sensitiv-
ity (Cox et al. 2018a; Brown et al. 2018; Rypdal et al. 2018). 
This approach is also consistent with that used by Colman 
and Power (2018). Results comparing historical and PI cor-
relations with ECS in Williamson et al. (2018), however, 
suggest that similar qualitative results to those below would 
be found using historical GCM output.

It is important to note that stochastic forcing comes not 
from imposed ‘external’ influences (such as from increases 
in CO2) but from ‘internally generated’ month-timescale 
top of atmosphere radiative imbalances, caused primarily 
by cloud fluctuations (see below). It can be considered a 
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‘forcing’ because it is a top of atmosphere energy imbal-
ance. Pains are taken to diagnose the radiative imbalance 
in the GCMs is genuinely a ‘forcing’, and not a response 
of the climate system, by removing the component of top 
of atmosphere radiative fluctuations correlated with surface 
temperature fluctuations (see below).

The SST fluctuations, therefore, are not themselves 
considered ‘forcing’. They occur in GCMs from internal 
variability (however generated), with that variability in 
turn amplified/damped by radiative feedbacks. In this para-
digm, the ‘feedback’ is considered the ‘instantaneous’ top 
of atmospheric radiative response to surface temperature 
changes, irrespective of how those temperature changes 
arise. This forcing/feedback framework is a common one 
in the literature (e.g. Roe 2009; Colman and Power 2018; 
Williamson et al. 2018; Nijsse et al. 2019).

Estimates of temperature variance and stochastic forcing 
from the CMIP5 models were calculated by first detrending 
annual mean temperatures and TOA radiation (to remove 
any residual drift), then removing the annual cycle by sub-
tracting off mean January, mean February etc. For tem-
perature, annual, monthly, decadal and 30-year variances 
we calculated after first averaging the monthly temperature 
fluctuations into annual means, then passing 10 year and 
30 year running means through these timeseries prior to the 
calculation of variances.

For the stochastic forcing, a slightly different last step 
was taken. Before calculating the monthly TOA radiation 

variances, global temperature-related variations in radi-
ation were removed, by calculation of the regression 
between the two, then removal of the temperature-related 
component. As discussed above, we wish to calculate the 
variation in the TOA that represents the ‘forcing’ alone. 
The assumption here is that radiative responses which 
are correlated with temperature changes on very short 
(e.g. monthly) timescales are radiative ‘feedbacks’ (i.e. 
responses to the temperature variation) rather than forc-
ing. In the event, the fraction of the total TOA radiation 
variance correlated with surface temperature fluctuations 
at monthly timescales was typically small, at around only 
5% of the full standard deviation in radiation.

The remaining variation, taken to represent the stochas-
tic forcing in the models, was found to be dominated by 
shortwave variations (not shown), which were dominated in 
turn by the ‘all sky’ (i.e. clouds) rather than clear sky varia-
tions. This confirms our expectations that synoptic timescale 
variations of clouds provide the primary radiative ‘noise’ 
(Trenberth et al. 2014).

Monthly stochastic forcing standard deviations are listed 
in Table 1. The multi model mean value is ~ 0.61 W m−2. 
Observational estimates based on CERES (Clouds and the 
Earth’s Radiant Energy System) satellite data indicate that 
global scale total TOA variability has a standard deviation 
of around 0.62 W m−2 on monthly timescales (Trenberth 
et al. 2014), a value comparable to the multi model mean 
(although, as with the models, some of the observed value 

Table 1   The GCMs used in this study, listing: their calculated values 
of monthly stochastic forcing; climate change feedback parameter, 
ECS and TCR from Flato et  al. (2013); F

2×CO
2

 from Geoffroy et  al. 

(2013a); interannual and decadal feedback parameters calculated 
using the methodology in Colman and Hanson (2017)

Model Monthly stochas-
tic forcing (W/
m2)

Climate change feed-
back parameter (W/
m2/K)

Interannual feedback 
parameter (W/m2/K)

Decadal feedback 
parameter (W/
m2/K)

F
2×CO

2

 (W/m2) ECS (K) TCR (K)

BCC-CSM1-1 0.54 1.21 0.42 0.35 3.7
BNU-ESM 0.71 0.93 1.34 0.38 3.35 4.1 2.6
CanESM2 0.62 1.03 1.08 0.39 3.8
CCSM4 0.64 1.24 0.09 − 0.03 3.6
CNRM-CM5 0.51 1.11 0.72 0.25 3.65 3.3 2.1
CSIRO-Mk3-6-0 0.74 0.61 0.39 0.17 2.55 4.1 1.8
FGOALS-s2 0.80 0.88 0.82 0.10 3.75
GFDL-ESM2M 0.73 1.34 1.80 0.17 3.3 2.4 1.3
GISS-E2-R 0.48 1.7 1.26 0.87 3.65 2.1 1.5
HadGEM2-ES 0.64 0.65 0.10 0.13 2.95 4.6 2.5
INMCM4 0.46 1.51 0.60 0.60 3.1 2.1 1.3
IPSL-CM5B-LR 0.62 0.79 0.17 0.56 3.2 2.6 1.5
MIROC5 0.50 1.58 0.86 0.42 4.25 2.7 1.5
MPI-ESM-LR 0.34 1.14 0.95 0.91 4.1 3.6 2.0
MRI-CGCM3 0.59 1.26 0.014 0.19 3.3 2.6 1.6
NorESM1-M 0.63 1.11 0.86 0.29 3.1 2.8 1.4
Averages 0.61 1.13 0.72 0.41 3.45 3.08 1.76
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will likely represent the response, i.e. feedback, from surface 
temperature changes).

A second set of global temperature fluctuations was also 
derived, where temperature variation associated with ENSO 
was removed. The purpose of this is to explore the sensitivity 
of the results to the absence of the largest known dynamical 
driver of interannual variability (McPhaden et al. 2006). The 
presence of ENSO related variability has also been found to 
affect the ability of Hasselmann type models to fit the power 
spectra of CMIP5 models (Lutsko and Takahashi 2018). To 
remove ENSO variability, monthly global temperatures were 
modified by regressing them against NINO3.4 sea surface 
temperatures, then removing NINO3.4 related variations. 
Removing ENSO resulted in standard deviations of tempera-
ture variability reducing by around 19%, 15% and 18% on 
interannual, decadal and 30-year timescales respectively. In 
the event, there were no significant differences between the 
results obtained (e.g. the correlations found between vari-
ability and climate sensitivities) between using temperature 
variances with and without ENSO removed, so the results 
are shown only for one case only (with ENSO removed). 
Since our results are insensitive to the removal of ENSO, 
we do not further investigate the effect of removing other 
dynamical modes of variability (e.g. such as the North 
Atlantic Oscillation).

Since a primary focus is to explore the climate vari-
ability on a broad range of timescales, the assumption is 
made that the monthly timescale stochastic forcing is con-
sidered as Gaussian white noise. Although the implied lack 
of correlation is unlikely to be strictly correct (e.g. serial 
correlation may be expected following from phases of the 
Madden–Julian Oscillation or from modulation of forcing 
by longer term variability, such as from ENSO) it does not 
significantly affect the results from the two-layer model.

2.3 � Sensitivity analysis method

Prior to application of the two- layer model to study vari-
ability in individual GCMs, we explore the dependence of 
the model dynamics (variability) on its parameters. Since 
the model considered is stochastic rather than determinis-
tic, conventional so-called ‘sensitivity analysis’ techniques 
used in studies of deterministic dynamical systems cannot 
be employed. This is because output results vary between 
numerical experiments even when identical initial condi-
tions and parameters are set. A number of approaches have 
been suggested and previously explored for solving non-
deterministic equations of this sort, e.g. in specific problems 
in biochemistry (Damiani et al. 2013; Tsourtis et al. 2015; 
Hoffmann et al. 2017). These methods can be divided into 
two groups: those connected with Monte Carlo experiments, 
and those based on sensitivity of probability density func-
tions, using the equivalents of the conventional sensitivity 

coefficient and the Fisher Information Matrix. Since we 
focus on the local sensitivity analysis of annual, decadal and 
inter-decadal climate variability, Monte Carlo experiments 
were chosen as the best approach for solving this problem.

Some previous studies (e.g., Lea et al. 2000; Eyink et al. 
2004; Thuburn 2005; Wang 2013; Wang et al. 2014; Sol-
datenko et al. 2015; Soldatenko and Chichkine 2016) have 
shown that in sensitivity analysis of dynamical systems that 
produce chaotic behavior it is expedient to explore sensitivi-
ties averaged over a long (theoretically infinite) time interval 
t ∈ [0, �] , where � → ∞ . Let us introduce the response func-
tion as (e.g. Cacuci 2003).

where � is a (nonlinear) function of the model state x evolv-
ing over time depending on the parameter vector α. The 
averaged value of (8) is defined as

Then the sensitivity of interest with respect to variations 
in the parameter αj is computed by (Wang 2013)

w h e r e 
�� = �

(
x0 + �x0, �0

1
,… , �0

j
+ ��j,… , �0

m

)
− �(�0, �0) is a 

difference in function � at any instant of time between the 
perturbed parameter simulation and the unperturbed control 
model run that generates the reference trajectory. In our cal-
culations, the variance of surface temperature anomaly is 
considered as a key metric of climate system variability, 
consequently we define � = Var(T(t)).

3 � Sensitivity of variability in the EBM

In this Section, we conduct ‘sensitivity analyses’ as 
described above of annual, decadal and inter-decadal (30-
year) variability for the EBM with respect to f, γ, C, CD and 
�s . The purpose of this is to understand how changes in these 
parameters affect temperature variability on different time-
scales before then considering how these parameters affect 
correlation between variability and sensitivity.

First, however, we need to establish the accuracy of 
the numerical algorithm used in this study bearing in 
mind that the order of the Euler–Maruyama method for 

(8)R =

�

∫
0

� (t; �(t), �) dt,

(9)⟨R⟩ = lim
�→∞

1

�

�

∫
0

�(t; �(t),�) dt.

(10)
d

d�j
⟨R⟩ = lim

��j→0

�⟨R⟩
��j

= lim
��j→0

lim
�→∞

1

�

�

∫
0

��

��j
dt,
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stochastic differential equations is (Δt)1∕2 . Since the two-
layer model in deterministic formulation (no stochastic 
forcing is applied) admits an explicit analytical solution 
for the step and linearly growing forcing (G13), we can 
analyze the accuracy of the applied numerical algorithm 
by comparing the exact (analytical) and numerical results. 
Figure 1 shows the ensemble global mean surface tempera-
ture response T for both step forcing with F0 = F4×CO2

 and 
1pctCO2 forcing obtained by numerical integration of the 
two-layer model equations with the ‘standard’ (i.e. multi-
model mean) values of model parameters (see Table 2). It 
was found, that on the time interval t ∈ [0, 1000] year the 
differences of numerical and analytical solutions do not 
exceed 0.01 K in absolute values.

To analyze the model variance sensitivity with respect 
to C, CD, f , � and �s , we need to set a range of reason-
able values for each of these parameters and then, first, 
calculate the climate variability within the range of each 
parameter and, second, compute an ‘average’ of sensitiv-
ity coefficients S̄𝛼 , where � = (C, CD, f , � , �s)

T . In our 
calculations, ranges of climate system inertia parameters 
C and CD, radiative feedback parameter � , and coupling 
parameter � are those that have been derived in G13 from 
the analysis of the CMIP5 models under simplified (instan-
taneous CO2 quadrupling) forcing (see Table 2). The range 
of dimensionless feedback factor f that is used instead of 
� , and the range of stochastic forcing standard deviation �s 

are also included in Table 2. Both for reference purposes, 
and also acknowledging that credible values in the climate 
system may lie outside the values found in G13, the ranges 
of all two-layer model parameters were slightly expanded 
keeping the base values unchanged.

It is important to collate the climate variability computed 
numerically via the two-layer model with those represented 
in GCMs. The detailed analysis of this comparison will be 
provided in the next section. The inter-annual, decadal and 
multi-decadal EBM variances for with standard settings of 
all parameters are about one-and-a-half times the (ENSO 
removed) average values obtained via the CMIP5 models 

Fig. 1   Ensemble global mean 
surface temperature response 
obtained for a step forcing with 
F
0
= F

4×CO
2

 (black line); and 
1pctCO2 forcing (blue line). The 
red line is a schematic of the 
CO2 forcing timeseries; a and c 
show the full timeseries, b and 
d represent a ‘zoom in’ to the 
first 200 years

Table 2   Maximum, minimum and multi-model mean values of radia-
tive feedback parameter � , climate system inertia parameters C, CD 
and � derived from analysis of the CMIP5 models (G13); the cor-
responding values for dimensionless feedback factor f and standard 
deviation of stochastic forcing �

S
 from this study

Parameter Min value Max value Multi-
model 
mean

� (W m−2 K−1) 0.61 1.70 1.13
� (W m−2 K−1) 0.50 1.16 0.73
C (W year m−2 K−1) 4.7 8.6 7.3
CD (W year m−2 K−1) 53 145 105.5
f 0.47 0.80 0.64
�
S
 (W m−2) 0.34 0.80 0.61
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analysis (see Table 3). This over-estimation is reduced if 
ENSO variability in included in the GCMs, as this increases 
GCM variability by around 15–20% (see above). Despite 
the variances being somewhat too great for the EBM, 
Table 3 shows that the EBM simulates quite well the ratio 
between interannual variance Var(TA) and the decadal 
one Var(TDec) , and between decadal Var(TDec) and multi-
decadal Var(TID) , variances. From CMIP5 models we have 
Var(TA)∕Var(TDec) ≈ 3.31 and Var(TDec)∕Var(TID) ≈ 3.02 , 
wh i l e  f rom EBM Var(TA)∕Var(TDec) ≈ 3.76  and 
Var(TDec)∕Var(TID) ≈ 2.78 . This gives us some confidence 
that the simple two-layer EBM both qualitatively and quan-
titatively reproduces overall features of variability from 
interannual to multi-decades in comparison with CMIP5 
models. Also bolstering the use of the EBM is that Wil-
liamson et al. (2018) found that the expectation of a linear 
relationship between ECS and short-term variability holds 
for this relatively simple 2-layer model, in a similar way 
as for more complex vertical gradient diffusion models. A 
future study will investigate the current results with more 
complex models.

G13 demonstrated that ‘fitted’ model parameters can 
achieve a very good match of the two-layer deterministic 
forced model results with those obtained via CMIP5 models. 
Since here we are interested in correlations between vari-
ability and climate sensitivity, it is highly desirable to under-
stand which of the parameters provide the most significant 
influence on the variance of surface temperature perturba-
tion 

�
�T2

�
=
�
T2

�
− ⟨T⟩2 produced by the two-layer model.

Figure 2 shows how changes in model parameters affect 
the variance 

⟨
�T2

⟩
 at annual, decadal and multi-decadal 

timescales. In calculations, we applied the monothetic OFAT 
(one-factor-at-a-time) analysis, varying each parameter over 
its range and holding others at their base (i.e. CMIP5 model 
average) values. It is obvious that within this approach we 
cannot explore how interactions among the parameters affect 
�T2 . However, our model is a simple one; hence the use of 
monothetic method can be considered as a good starting 
point. As shown in Fig. 2, the variance 

⟨
�T2

⟩
 calculated 

within the OFAT method, as expected, is dependent on the 
climate ‘timescale’ considered. The variance is much more 
‘sensitive’ to mixed layer depth for interannual variability 
than for decadal or 30-year (Fig. 2a). Increasing parameters 

f  and �s cause accelerating growth of the variance 
⟨
�T2

⟩
 

for all timescales, strongest at shorter. Note that consider-
ing the sensitivity in relative terms across the timescales 
(i.e. the sensitivity normalised by the mean value of the 
variance at that timescale) tells a somewhat different story. 
When considered this way, sensitivities of variances to given 
changes in �s are virtually the same across all timescales. 
In other words, the fractional change to 

⟨
�T2

⟩
 for a given 

increase in stochastic forcing is roughly the same irrespec-
tive of timescale (not shown). Furthermore, the fractional 
change in variance for given changes in f now increases with 
timescale, i.e. is greatest for 30-year variability and least for 
interannual.

By contrast to the above, decreases in 
⟨
�T2

⟩
 are found 

when parameters C and � increase, with increases in � effec-
tively increasing the mixed layer depth of the model. The 
change in the parameter CD has little effect on the annual, 
decadal and multi-decadal climate variability except perhaps 
at very small values of CD, beyond the lower range of the 
CMIP5 models.

Absolute sensitivity of coefficients with respect to the 
model parameters calculated around their base values for 
different climate timescales are given in Table 4. Positive/
negative coefficients S� imply that the infinitesimal perturba-
tions in the parameters α causes increases/decreases in the 
variance 

⟨
�T2

⟩
 , and correspond with the sign of the gradi-

ents in Fig. 2. Using sensitivity coefficients, we can, if it is 
required, estimate how the uncertainty in the parameter α 
affects the model output

where �� is an infinitesimal variation in the parameter �.
In practice, absolute changes to different parameters are 

hard to compare because of their differing units. To rank the 
relative importance of the parameters for their influence on ⟨
�T2

⟩
 , we also calculate the relative sensitivity coefficients 

by normalising the absolute sensitivity by the mean values 
of the parameter, viz SR

�
=
(
�∕

⟨
�T2

⟩)
S� . The relative sensi-

tivity coefficients calculated for different climate timescales 
around the base parameter values are shown in Table 5.

From Table 5 we conclude that the standard deviation of 
stochastic forcing �S has the largest rank for all timescales; 
for decadal and 30-year timescales feedback parameter 
f  and heat exchange coefficient � rank second and third, 
respectively, followed by heat capacity of the upper layer 
C and lower layer effective heat capacity CD . For annual 
variability heat capacity of the upper layer C and feedback 
parameter f  rank second and third, respectively, followed 
by heat exchange coefficient � and lower layer effective heat 
capacity CD.

(11)
Δ
⟨
�T2(�)

⟩
≈
⟨
�T2(�∗ + ��)

⟩
−
⟨
�T2(�∗)

⟩
≈ �� S�

||�=�∗ ,

Table 3   Global mean surface temperature variances (× 0.01 K2) cal-
culated via the two-layer model with base parameter values and those 
derived in this study from the CMIP5 model analysis

Time scale

Interannual Decadal 30-year

Two-layer model 1.2 0.31 0.11
CMIP5 models 0.70 0.21 0.071
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Fig. 2   Annual (blue), decadal (red) and 30-year (green) variance of 
the surface temperature in the EBM as a function of a upper layer 
effective heat capacity C, b stochastic variability σs, c parameter γ, d 
lower layer effective heat capacity CD, and e feedback parameter f. In 

each frame the parameters that are not being varied take their values 
from the CMIP5 multi-model mean from Table 2. The vertical dashed 
lines and black bars on the x-axis show the CMIP5 model range (also 
shown in Table 2)

Table 4   Sensitivity coefficients 
for annual, decadal and 30-year 
variability estimated around the 
base parameter values

Sf Sγ (W m−2 K−1) SC (W year m−2 K−1) SCD (W year m−2 K−1) Sσs (W m−2)

Annual 0.021 − 0.0065 − 0.0026 − 1.28 × 10−6 0.038
Decadal 0.017 − 0.0048 − 4.54 × 10−4 − 1.62 × 10−6 0.021
30-year 0.010 − 0.0024 − 0.68 × 10−4 − 2.25 × 10−6 0.01
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A closely related question is how much the variance actu-
ally changes across the GCM ranges for each of the param-
eters. This can be estimated from the absolute differences 
that we find in the variances shown in Fig. 2 (i.e. varying 
one parameter across the GCM range, but holding all others 
at their mean values). These results are shown in Table 6 and 
indicate that the order of impact on the variance is the same 
as calculated for the relative sensitivity coefficients above 
(i.e. in Table 5). The greatest absolute range in variance is 
induced by differences in GCM values of σs at all timescales, 
followed by f and γ at decadal and 30-year timescales. For 
interannual variability, again the range in C is second most 
important after σs, although f has almost as much impact.

Thus, considering the second hypothesis mentioned in 
the introduction we can conclude: radiative feedback factor 
plays a very important role in the magnitude of global vari-
ability on all time scales in the EBM. The longer the time-
scale the greater the importance of feedbacks. Differences in 
mixed layer depth are most important at shorter timescales, 
and the magnitude of stochastic forcing is very important at 
all timescales.

In the following section we evaluate how the EBM and 
CMIP5 variances range across the ensemble of models, and 
what the EBM implies for the relationship between climate 
variability across different timescales and climate sensitivity.

4 � Analysis of climate variability and change 
of CMIP5 models

We saw above that the mean value of the temperature stand-
ard deviation (SD) implied by the EBM shows fair agree-
ment with the average SD of the CMIP5 models, and good 
ratios of SDs between timescales. How well are individual 
model SDs predicted? Figure 3 shows the SD (with ENSO 

removed) for individual CMIP5 GCMs against the EBM 
with the corresponding G13 parameters. Taking all time-
scales together, the EBM shows reasonable correlation, 
albeit with substantial scatter and consistently higher SDs 
than for the GCMs (as noted above). For the individual time-
scales there is considerable scatter, with the EBM explaining 
fair levels of inter-model variance (~ 25%) for interannual 
and decadal timescales, but less for 30-year (13%). Although 
the explained variances are only fair, it nevertheless demon-
strates that a significant amount of the variability in GCMs 
is explainable from simple model fits to climate change 
response. This itself means that some features of longer 
timescale variability are captured by the processes captured 
by the EBM, despite their extreme simplicity, and by climate 
change values of parameters, i.e. despite differences in the 
values of feedbacks, effective mixed layer depths, dynami-
cal processes etc., expected between climate variability and 
the climate change fitted values. So, on reflection, explained 
variances across models of up to 25% could be considered 
surprisingly large. It therefore remains useful to explore 

Table 5   Relative sensitivity 
coefficients for annual, 
decadal and 30-year variability 
estimated around the base 
parameter values

SR
f

SR
�

(W m−2 K−1)
SR
C
 (W year m−2 K−1) SR

CD

(W year m−2 K−1)
SR
�s

 (W m−2)

Annual 0.92 − 0.39 − 1.03 − 0.01 1.97
Decadal 1.40 − 0.60 − 0.43 − 0.02 2.00
30-year 1.57 − 0.66 − 0.15 − 0.08 1.98

Table 6   Range of variance (× 10−2 K2) for the full range of GCM val-
ues for each parameter, keeping all other parameters at their model 
mean values. Shown are annual, decadal and 30-year variances

f γ C CD αs

Annual 0.77 0.42 0.98 0.02 1.87
Decadal 0.61 0.31 0.18 0.02 0.90
30-year 0.30 0.14 0.02 0.02 0.40
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Fig. 3   A comparison between the SD of CMIP5 GCMs at interan-
nual, interdecadal and 30-year timescales, compared with the SDs 
predicted by the EBM using the G13 values. Lines of best fit and 
explained variances are shown for the three timescales separately and 
the 1:1 line is shown in dashed blue
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what potential physical insights we might obtain using the 
EBM by exploring the question: what parameters are the 
most important in establishing any relationship between 
variability and climate sensitivity for either ECS or TCR, 
and what can be expected to ‘spoil’ it?

Before we investigate this question in detail, we ask 
whether the difference in feedbacks operating for interan-
nual and decadal variability compared with those under cli-
mate change reduce the strength of the correlation shown 
in Fig. 3: i.e. what if we used the actual feedbacks at these 
timescales derived from the CMIP5 models themselves? 
The EBM calculations were therefore repeated using inter-
annual and decadal feedback parameters calculated from PI 
experiments using the methodology of Colman and Hanson 
(2017), along with other values taken from G13 as before. 
These variability-derived feedback parameters are listed 
in Table 1. The resulting temperature SD correlations at 
interannual and decadal timescales between CMIP5 mod-
els and the corresponding EBM simulations are shown in 
Fig. 4. This reveals that the correlation at decadal timescales 
is indeed a little higher (with explained variance of 36%), 
although the regression slope now differs substantially from 
1:1. However, at interannual timescales, the correlation is 
now weaker (15%). The reason for this decreased correlation 

at interannual timescales is unclear and warrants further 
investigation. However, the increased correlation at decadal 
timescales is consistent with the high relative importance of 
feedbacks for variability at longer timescales, as shown in 
Table 5, and indicates that allowing for differences in feed-
back strengths between variability and climate change may 
modestly increase correlations for some timescales.

We return to the question of what the EBM indicates 
might be expected to degrade/strengthen the correlation 
between climate sensitivity measures and the magnitude 
of temperature variability. To investigate this question, 
the EBM was run as before with corresponding variables 
taken from G13 and the stochastic forcings from Flato et al. 
(2013), but this time predicting ECS and TCR. A third 
sensitivity measure (hereafter called T140) also calculated 
is the 1% compounded CO2 forced transient response for 
a quadrupling of CO2 (i.e. the quadrupling equivalent of 
TCR). The reason for the latter is that it has proved to be a 
parameter useful for understanding the spread in tempera-
ture response under representative concentration pathways, 
RCPs (Gregory et al. 2015; Grose et al. 2018). In the event 
the results are not significantly different for T140 than for 
TCR, so only the TCR results will be shown.

The correlations found by the EBM for the G13/Flato 
et al. (2013) parameters, between sensitivity and variability 
are shown in Fig. 5 for ECS and Fig. 6 for TCR. The EBM 
predicts a high degree of correlation (i.e. high explained 
variance across the models) between variability and ECS 
with an R2 of 0.58 at interannual timescales, and up to 0.68 
for 30-year. The correlations for TCR are consistently some-
what smaller ranging from an R2 of 0.25 for interannual up 
to 0.36 for 30-year. In short, the correlations predicted are 
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Fig. 4   A comparison between the SD of CMIP5 GCMs at interan-
nual and decadal timescales, compared with the SDs predicted by the 
EBM using the monthly stochastic forcing, σs in Table 1, the G13 val-
ues of C, CD, and γ, and using values of feedback parameter, λ (listed 
in Table  1) derived from interannual and interdecadal variability 
from 300 years of the pre-industrial (PI) experiments following Col-
man and Hanson (2017). Lines of best fit and explained variances are 
shown for the two timescales separately and the 1:1 line is shown in 
dashed blue
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Fig. 5   ECS versus standard deviation of temperature for the EBM 
driven with the CMIP5 derived parameters for G13 and Flato et  al. 
(2013), for the timescales interannual, decadal and 30-year. Lines of 
best fit and explained variance are also shown
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stronger for longer timescales and for ECS but are statisti-
cally significant in all cases. Interestingly the higher correla-
tion between variability and ECS mirrors the higher degree 
of correlation across models of ECS versus TCR for RCP 
projected warming over the twenty-first century (Gregory 
et al. 2015; Grose et al. 2018). The reasons for the latter pos-
sibly relate to differences in the heat uptake between climate 
change and variability timescales. These will be the subject 
of a future study with the EBM. 

The correlations in Figs. 5 and 6, although high, are not 
perfect, however. What factors increase/decrease this cor-
relation? To determine this, the EBM was next run in two 
ways. In the first, it was run with all parameters correspond-
ing to the differing CMIP5 values from G13 and Flato et al. 
(2013), then with parameters one-by-one replaced by their 
multi-model means, to determine the impact of removing 
cross-model variation in that parameter. The results are 
shown in Fig. 7. In the second, it was run with λ varying 
across models, but all other values set at their multi-model 
means, then one-by-one the parameters were allowed to vary 
across the GCM values (Fig. 8).

Considering Fig. 7, it is immediately apparent that elim-
inating the range of the feedback essentially destroys the 
correlations for both ECS and TCR with variability. (As an 
interesting aside, it does not destroy the correlation between 
TCR and ECS, as F still varies across the models, so will 
drive a range in ECS and TCR, even without feedbacks—not 
shown). The ranges in ECS and TCR are both reduced by 
around 1 K; ECS from a range of 2.48 to 1.5 K, TCR from 
1.59 to 0.42 K, so there is less spread. This illustrates the 
key importance of feedbacks in establishing this correlation 
in the EBM. It can be easily understood in the case of the 
ECS/variability correlation: the only factor producing spread 
in the ECS remains F, which plays no role in variability in 

the EBM. Any remaining non-zero correlation must relate to 
the correlations arising from the parameters derived in G13.

For the TCR, the loss of correlation with λ fixed is even 
more marked (it is now zero at interannual timescales), and 
is harder to understand. Variables such as gamma, C and CD 
play a role in setting the transient warming time as well as 
the variability so may be expected to provide some correla-
tion. However, the EBM predicts that without correspond-
ing feedbacks operating these variables do not produce any 
significant correlation.

For TCR the correlation is insensitive to eliminating the 
ranges of C, CD, γ or F at all timescales (Fig. 7b). This indi-
cates that if all other parameter values vary, then the fact that 
these parameters differ across models play insignificant roles 
in decreasing the correlation. That is, they are of secondary 
importance in determining the closeness of the correlation 
between TCR and variability. This is reflected in Fig. 8b, 
which shows that allowing these parameters to be the only 
ones to differ across models has minimal effect on the cor-
relations (except for C at the shortest timescales).

Notably, replacing �s by the mean value increases cor-
relation of TCR and interannual variability to nearly 0.8, 
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Fig. 6   As for Fig. 5, but for TCR​
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and TCR and decadal and 30-year variability to nearly 1 
(Fig. 7b). This means that, irrespective of the other vari-
ables, �s is the key variable which, were it to be similar 
across models, would restore high long-timescale correla-
tions with TCR.

Figure 8 backs this up. Figure 8 shows the ‘converse’ 
of Fig. 7. This means instead of allowing all parameters to 
vary, then replacing them one-by-one with the multi-model 
mean (Fig. 7), Fig. 8 starts with all parameters (except for 
λ) as the multi-model mean, and replaces them one-by-one 
with the individual model values. Figure 8 confirms that 
allowing �s to vary reduces the correlations, particularly 
at shorter timescales. This is consistent with the results of 
Sect. 3, above, as differences in the stochastic forcing, which 
would be expected to have, at most, only a minor influence 
on TCR,1 have a relatively large impact on the variability of 
the model, particularly at shorter timescales.

In short, the EBM results for correlations with TCR and 
variability therefore predict that the spread in the �s is the 
key parameter marring the correlation between TCR and 
variability, but that even with the range present in CMIP5 
models, correlations should be reasonably high. The EBM 
gives close to perfect correlations between TCR and vari-
ability except when �s has the CMIP5 range.

For ECS, the situation is slightly different. Correlations 
between variability and ECS are again relatively insensi-
tive to the spread in C and CD (Fig. 7a). Correlations again 
increase when �s does not vary, but in this case, they do not 
go to 1 for the longer timescales as they did for TCR. This 
is clearly because other variables F and γ also affect the cor-
relation. Removing the spread in F increases correlation at 
all timescales. Removing the spread in γ, however, has the 
counter intuitive effect of decreasing the correlation between 
variability and ECS. The impact of F is easily understood: 
it causes spread in ECS but does not affect variability, so 
reducing its spread produces greater correlation. However, it 
is less important for TCR correlation, presumably since it is 
only one factor causing the spread in TCR between models, 
but a dominant factor for ECS. The puzzle is why eliminat-
ing the spread in γ reduces the correlation between ECS 
and variability. It turns out that γ is weakly negatively cor-
related with C and positively correlated with λ across models 
(not shown). C plays little role in determining correlations 
(Fig. 7a) but the correlation with λ means that it reinforces 
the variability spread correlated with λ and therefore in the 
presence of other varying parameters removing it reduces 
the correlations.

Figure 8a confirms the results from for ECS shown in 
Fig. 7a. The inter-model ranges in γ, �s and F acting alone 
all to some extent spoil the correlation between variability 
and ECS, with �s having the strongest effect. The spoiling 
effect of σs is strongest on short timescales; γ, and F are 
largely timescale independent. The weak correlation of γ 
and λ noted above is not so important here—any spread in γ 
which is not fully correlated with λ will act to mar the per-
fect correlation of λ varying alone. Again, these results are 
consistent with the ‘parameter sensitivity’ results of Sect. 3, 
and the results of Soldatenko and Colman (2019): it is no 
surprise that the spread in σs is a key driver of the lack of 
correlation as it the strongest relative driver of spread in 
variability.

5 � Summary and conclusions

There is a critical ongoing need for deeper understanding 
of the reason for the large spread in both temperature cli-
mate variability and climate change. There is a critical need 
too for understanding what links may lie between them, 
and whether we can exploit those links to provide possible 
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Fig. 8   Explained variance in correlations between SD of temperature, 
and a ECS and b TCR for a range of parameter settings. In the left-
most cluster of three columns, to the left of the vertical blue line, the 
EBM is driven by CMIP5 GCM specific λ values from Table 1, with 
all other parameters specified as the average of the multi-model val-
ues (given in Table 2). The EBM is then driven with the multi-model 
parameter means replaced one-by-one by the individual CMIP5 GCM 
parameter values (i.e. for C, CD, γ, σs and F) with all other param-
eters (except λ) kept at their multi-model means. Shown left to right 
for each parameter in blue, orange and grey are the results for Annual 
(I/A), Decadal (Dec) and 30-year timeframes (30 yr)

1  Decadal timescale variability may of course affect the temperature 
increase found in the model at time of CO2 doubling.
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constraints on the magnitude of future global warming. Here 
we use a simple 2-layer energy balance model (EBM) to 
ask what factors might contribute to the spread in variabil-
ity, and which factors might provide (or indeed limit) the 
degree of correlation between the magnitude of unforced 
variability and climate sensitivity (both ECS and TCR) 
across timescales from interannual to multi-decadal. Follow-
ing Williamson et al. (2018), it is hoped that this ‘theory-led’ 
approach can provide hints as to directions we might explore 
in ultimately establishing climate change constraints based 
on links between GCM variability and change, coupled with 
observations of unforced variability.

We examined the EBM theoretically to determine for 
which parameters variability showed most sensitivity across 
different timescales. Results showed the most important fac-
tor, considering the range of the CMIP5 model parameters, 
to be stochastic forcing, particularly at the shorter time-
scale (i.e. interannual). However radiative feedbacks also 
strongly affect variability in the EBM, with greater sensitiv-
ity at longer timescales. This is consistent with the strong 
positive feedbacks found in GCMs across interannual and 
decadal timescales (e.g. Dessler 2010; Dessler and Wong 
2009; Zhou et al. 2015; Colman and Hanson 2013, 2017; 
Colman and Power 2018), and their role found in unforced 
variability from GCM experiments (e.g. Hall and Manabe 
1999, 2000; Hall 2004).

The EBM was then run with climate change fitted param-
eters for CMIP5 model derived by G13, along with stochas-
tic forcing calculated from the CMIP5 models. Variability 
was diagnosed for interannual, decadal and 30-year time-
scales for both the CMIP5 models and the EBM. For average 
CMIP5 parameters the ratios of interannual to decadal and 
decadal to 30-year SDs are in reasonable agreement between 
CMIP5 models and the EBM, although overall the EBM 
simulates somewhat larger variability than found in the mod-
els. The correlation across CMIP5 models between the GCM 
variances and those simulated by the EBM are modest, with 
around 25% variability explained for longer timescale (dec-
adal and 30-year). On reflection it is perhaps striking that 
it is as large as this given the simplicity of the model, and 
the stipulation of parameters derived purely from centennial 
timescale forcing and response. Presumably it reflects that 
there are physical processes, particularly feedbacks operat-
ing to an extent in analogue between variability and climate 
change (Zhou et al. 2015; Colman and Power 2018), e.g. in 
that correlations exist between climate change feedbacks and 
feedbacks under decadal variability (Colman and Hanson 
2017).

The EBM is then used to ask what correlations we might 
expect to be fruitful to pursue (under the assumptions of the 
EBM) and why we might or might not expect these to pro-
vide constraints on climate change. The EBM predicts that 
the correlations between sensitivity and variability should 

be higher at longer timescales in the GCMs. It also predicts 
that �s variation is most responsible for degrading that cor-
relation, although differences in γ and F are also important. 
This is consistent with the findings that the stochastic forcing 
was also the single greatest cause of the spread in the first 
place (see also Soldatenko and Colman 2019). Furthermore, 
the stochastic forcing spread is the one factor that is irrel-
evant for ECS and likely to play a small role, only, in TCR. 
Normalising variability by the SD of the stochastic forcing 
might therefore prove a more fruitful line of investigation 
than comparing variability alone when seeking to provide 
constraints from the real world (e.g. Cox et al. 2018a).

The EBM predicts lower correlations between variability 
and TCR than with ECS, consistent with there ocean heat 
uptake factors affecting TCR, whereas ECS is dependent on 
forcing and feedback alone.

The overall implications of the current work are that 
variability may indeed provide a fruitful direction for con-
straining sensitivity, particularly if stochastic forcing differ-
ences in CMIP5 models can be reduced or removed in the 
analysis, and stochastic forcing errors and biases reduced in 
future generations of GCMs. Understanding the differences 
in the heat uptake (and specifically γ) and normalising for 
difference in F may further improve correlations. Clearly, 
deeper understating of the differences in feedbacks across 
timescales and from climate change is also critical, given 
the central importance of λ.

There are some important caveats to the current study, 
particularly given the simplicity of the EBM.

1.	 Firstly, the EBM does not include ‘internal’ coupled pro-
cesses, so dynamically driven or amplified variations in 
temperature in GCMs due to processes such as to ENSO 
or the IPO will not be captured. This might intuitively 
lead us to expect smaller overall fluctuations in the EBM 
than in the models. For example, around 20% and 15% 
of GCM interannual and decadal SD respectively is cor-
related with NINO3.4. In fact, the EBM was found to 
overestimate interannual and decadal variances com-
pared with the GCMs—by around 10–15% on average. 
This increases to around 50% when ENSO related vari-
ability is explicitly removed from the GCMs (Table 3). 
Of course, the EBM also lacks internal dissipative pro-
cesses which may act to bolster its variability relative 
to the GCMs and therefore contribute to some of this 
overestimation of variance.

The above discussion relates to multi-model means. Not 
including internal processes also means that dynamical 
aspects of differences between GCM variances will not be 
captured. Again, we might intuitively expect a smaller range 
across the EBM than the GCMs. Interestingly however (and 
encouragingly) the EBM/GCM SD fit (Fig. 3) is close to 
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1:1, particularly at decadal and interannual timescales. The 
absolute range of the spread, however, is greater in the EBM 
than in the GCMs for interannual and decadal variability but 
around the same for 30-year variations.

2.	 Secondly and related to the first point above, global 
averaging in the EBM precludes regional contributions 
to variability and change. The EBM does not represent 
land surface areas, or SST pattern changes. The lat-
ter, in particular, are known to be important for many 
aspects of climate variability and change. For example, 
the time evolution of spatial feedbacks over the South-
ern Ocean affects ‘effective’ climate sensitivity (Senior 
and Mitchell 2000; Armour et al. 2013). Notably these 
limitations do not preclude the EBM from represent-
ing century-timescale global secular trends in response 
to different types of greenhouse gas forcing (Geoffroy 
et al. 2013a, b). Despite the skill of the EBM in produc-
ing these trends, however, we may expect the lack of 
regional process and pattern representation to degrade 
both its representation of climate variability and correla-
tions between climate variability and climate sensitivity.

Arising from this, we might intuitively expect higher 
correlations between climate sensitivity and variability as 
variability timescales increase—i.e. as patterns of variabil-
ity become more ‘similar’ to expected patterns of climate 
change on decadal and longer timescales (e.g. Brown et al. 
2014; Dai et al. 2015; Colman and Power 2018). That is, we 
might expect long term EBM variability driven by climate 
change derived parameters from GCMs to be more closely 
related to corresponding climate change derived from those 
same parameters. The EBM does indeed predict closer cor-
relations between variability and both ECS and TCR on 
longer timescales than short (Figs. 5, 7).

These results must be treated with caution however, as 
inter-GCM feedback correlations between climate change 
and climate variability are known to be sensitive to the dif-
ferent SST patterns under different timescale variability 
(Zhou et al. 2015; Colman and Hanson 2017, 2018). In par-
ticular, there are stronger long term (decadal) water vapour 
and lapse rate feedback correlations with secular climate 
change feedbacks, but stronger short-term (interannual) cor-
relations for clouds and surface albedo (Zhou et al. 2016; 
Colman and Hanson 2017, 2018). The reasons for these dif-
ferences are not clear, and need further research.

Aside from the ‘pattern’ effects, it could be hypothesised 
that the improvement in the correlations at longer time-
scales seen in Figs. 5 and 7 are mostly to do with reduction 
in the importance of the mixed layer depth as a source of 
inter-model variations as timescales increase (Fig. 2a). This 
appears less likely however, as if this were the case then 
removal of variations across models in C would have more 

impact at shorter timescales that longer—which is not evi-
dent in Fig. 7.

3.	 A third important factor to be borne in mind in inter-
preting the current results is that the EBM is specified 
from climate change derived parameters. This was, of 
course, part of the ‘design’ of the study, and the subject 
of some of its key hypotheses. However, it is likely to 
decrease correlations that might otherwise be higher. 
The mixed layer depths C and mixing factors γ are 
important, particularly on shorter timescales (Fig. 2). 
These might well be different from those under climate 
change, as effective heat uptake may differ under vari-
ability versus secular forcing (Hegerl and Bindoff 2005). 
This would be expected to mar the EBM versus GCM 
correlations in Figs. 3 and 4, and between variability 
and sensitivity (Figs. 5, 6). A fruitful future investiga-
tion could consider the effective mixed layer/ocean heat 
uptake implied by interannual and decadal variation (e.g. 
AchutaRao et al. 2006), estimating it from unforced vari-
ability in GCMs and observations and adjust the EBM 
accordingly. We speculate that this could improve cor-
relations, particularly between variability and TCR, 
given the importance of ocean heat uptake for both. 
Note that although the cross model spread in TCR is 
less predictive than that of ECS for cross model spread 
in twenty-first century warming (Grose et al. 2018), the 
value of TCR is more relevant to the absolute magnitude 
of expected warming, and improving correlation in the 
EBM between TCR and variability across models would 
be a very useful development.

The one exception to the use of climate change derived 
parameters in the EBM just discussed is of interannual/
decadal feedbacks (derived from the same GCMs), shown 
in Fig. 4. The improvement in decadal correlation between 
Figs. 3 and 4 (to over a third of explained variance) is 
encouraging, implying that if we can derive decadal feed-
backs from observations or process understanding this 
might provide a fruitful path to strengthening constraints 
on ECS/TCR. Two issues cloud this, however. Firstly, there 
is a change in the decadal correlation gradient, which now 
differs markedly from 1:1 (Fig. 4), which demands further 
investigation. Secondly, the fact that correlations are worse 
at interannual timescales when using interannually derived 
feedbacks is surprising and also needs further investigation.

4.	 A fourth issue of caution involves assumptions made 
regarding stochastic forcing. The role of stochastic 
forcing in the current results is striking, as the EBM 
suggests that it could be a key ‘spoiler’ of cross GCM 
climate change/variability correlations. In interpreting 
this, however, we need to bear in mind that only monthly 
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stochastic forcing is applied in the EBM. Clearly, we 
might expect a range of forcing on shorter and longer 
timescales in both the real world and in GCMs (e.g. 
Trenberth et al. 2014), for example including known 
radiative impacts from variations such as the Madden–
Julian Oscillation (e.g. Wheeler and Hendon 2004). 
ENSO itself may be conceptually considered radiative or 
dynamic ‘forcing’ that effects broad regions and longer 
timescales (Power et al. 1999; Folland et al. 1999; Chi-
ang and Sobel 2002), but this is obviously missing in the 
monthly forcing applied to the EBM. The implication is 
that correlations found between GCM variability and 
ECS (Colman and Power 2018; Nijsse et al. 2019) will 
be ‘seeing’ stochastically forced variability not seen by 
the EBM, which may be important for the strength of 
that correlation.

Despite these limitations of the EBM, it does highlight an 
expected critical role of stochastic forcing on the variability 
spread. Understanding the range in the stochastic forcing 
is therefore an important area of further research in under-
standing variability/sensitivity correlations. In particular, 
given that the primary source of the forcing is shown here 
to be from SW cloud ‘noise’ (80% by SW and 80% of that 
from clouds) further investigation is needed to understand 
this basic process in GCMs, and why it varies across models 
by a factor of more than three.

5.	 Finally, stochastic surface forcing in GCMs, such as 
from changes in latent and sensible heat could also be 
important in forcing variability. Although they do not 
affect TOA radiances directly, processes linking them 
to internal dynamics (e.g. feedbacks on ENSO—Geb-
bie et al. 2007) may indirectly cause extra TOA forcing. 
Surface processes which impact TOA radiation in this 
way on monthly timescales in GCMs will to that extent 
be ‘picked up’ by the EBM. A fundamental assumption 
of the EBM is that since the top ‘layer’ of the model 
represents both atmosphere and upper layer of the ocean, 
only TOA radiance changes (i.e. at the ‘boundary’ of the 
model) affect the energy of the system—and therefore 
the surface temperature. However, a further development 
of the EBM could usefully separate these components 
and explicitly consider the role of surface forcing in 
variability.

Considering the limitations discussed here of the EBM, it 
is again noteworthy that it can explain between a quarter and 
a third of cross model spread in temperature variance. Future 
work, such as the development of more sophisticated (e.g. 
better vertically resolved, multi-sector or zonally averaged) 
models—could improve on this.

With the emerging availability of CMIP6 GCMs, and a 
revealed broader range of ECS, further work needs to inves-
tigate the range of unforced variability, whether correlations 
found for CMIP5 are similar to those found in CMIP6, and 
to understand those correlations. The current study should 
provide an important benchmark against which that can be 
compared.
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