
Vol.:(0123456789)1 3

Climate Dynamics (2020) 54:2883–2901 
https://doi.org/10.1007/s00382-020-05146-0

Contrasting regional and global climate simulations over South Asia

Arun Rana1,2   · Grigory Nikulin1 · Erik Kjellström1,3 · Gustav Strandberg1 · Marco Kupiainen1 · Ulf Hansson1 · 
Michael Kolax1

Received: 3 May 2019 / Accepted: 24 January 2020 / Published online: 31 January 2020 
© The Author(s) 2020

Abstract
Two ensembles of climate simulations, one global and one regional, are used to investigate model errors and projected 
climate change in seasonal mean temperature and precipitation over South Asia. The global ensemble includes ten global 
climate models (GCMs). In the regional ensemble all ten GCMs are downscaled by a regional climate model—RCA4 over 
South Asia at 50 km resolution. Our focus is on the Indian Summer Monsoon season (June–August) and we show that RCA4 
can reproduce, reduce or amplify large-scale GCM biases depending on regions and GCMs. However, the RCA4 bias pat-
tern in precipitation is similar across the simulations, regardless of forcing GCM, indicating a strong RCA4 imprint on the 
simulated precipitation. For climate change, the results indicate, that RCA4 can change the signal projected by the GCM 
ensemble and its individual members. There are a few RCA4 simulations with a substantial reduction of projected warm-
ing by RCA4 compared to the driving GCMs and with a large regional increase in precipitation absent in the GCMs. We 
also found that in a number of subregions warm RCA4 biases are related to stronger warming and vice versa, while there is 
no such dependency in the GCM ensemble. Neither the GCM nor the RCA4 ensemble shows any significant dependency 
between projected changes and biases for precipitation. Our results implicate that using only RCMs and excluding GCMs, a 
commonly established approach, can significantly change the message on future regional climate change.
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1  Introduction

South Asia is one of the most densely populated regions 
in the world and, at the same time, is particular vulnera-
ble to impacts of climate change and variability (Hijioka 
et al. 2014). The region is strongly influenced by the Asian 
Monsoon in boreal summer and undergoes large inter-
annual, decadal and multi-decadal variability, expressed 
as extremely wet/dry and/or relatively mild/hot conditions. 
India, the largest country in South Asia, with a population of 
more than 1.2 billion people strongly dependent on sectors 

sensitive to climate conditions notably influencing agricul-
ture and infrastructure.

A warming trend of about 0.5 °C has been observed 
in India over the last century with accelerated warming 
observed since the 1970s (Kothawale et al. 2010). The num-
ber of hot events/heat waves is also increasing (Revadekar 
et al. 2012; Pai et al. 2013; Mishra et al. 2015). Most of 
India receives much of its annual amount of rainfall in boreal 
summer from the Indian Summer Monsoon rainfall (ISMR). 
All India annual and monsoon rainfall does not show signifi-
cant long-term trends during the last century, although both 
decreasing and increasing trends are observed locally over 
different parts of India (Guhathakurta and Rajeevan 2008). 
However, a decreasing country-scale trend in rainfall was 
found for the last decades and additionally an increasing 
trend in extreme rainfall events and a decreasing trend in 
low intensity precipitation are reported (Kulkarni et al. 2012; 
Krishnaswamy et al. 2015; Roxy et al. 2015). Similarly, 
for neighbouring Bangladesh and Pakistan the frequency 
and intensity of extreme rainfall events have increased 
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significantly in recent decades (Abbas et al. 2014; Dastagir 
2015; Shahid et al. 2016; Amin et al. 2018).

Future climate projections over continental South Asia, 
based on the Coupled Model Intercomparison Project 5 
(CMIP5) ensemble, show about 2 °C warmer conditions 
above the late 20th century period in the mid-21st century 
under the Representative Concentration Pathway (RCP) 
8.5 forcing and more than 3 °C warming at the end of the 
century (Collins et al. 2013). The multi-model ensemble 
mean projects an 8–10% increase in the ISMR at the end 
of century, although the inter-model spread is large (Menon 
et al. 2013). At the same time almost all CMIP5 models that 
project an increase in the ISMR also project a contradict-
ing weakening of the large-scale thermodynamic driver of 
the Indian summer monsoon, namely the upper tropospheric 
temperature gradient over the South Asia monsoon region 
(Sabeerali et al. 2015).

Increasing complexity and high computational costs limit 
generation of large high-resolution Global Climate Mod-
els (GCMs) ensembles for long multi-decadal time scales. 
Typical grid spacing in CMIP5 GCMs is about 100–250 km 
which is not sufficient to adequately represent all important 
processes relevant for regional and local scales. Therefore, 
the CMIP5 GCM projections have recently been comple-
mented by dynamical and empirical–statistical downscal-
ing within the Coordinated Regional climate Downscaling 
Experiment (Giorgi et al. 2009; Jones et al. 2011). The aim 
of CORDEX is to provide climate information on regional to 
local scales relevant for vulnerability, impact and adaptation 
studies, and the initial suggested grid spacing was 50 km. 
However, a higher resolution grid spacing of 25 km is 
recently recommended. The number of CORDEX Regional 
Climate Model (RCM) simulations for South Asia is con-
tinuously growing with more simulations available (17 under 
RCP8.5 for 50 km and 6 for 25 km, status of November 
2019).

Over the South-Asian CORDEX domain, RCMs show 
varied skill in reproducing the climatology of the recent 
decades. A number of studies showed that RCMs in general 
can adequately capture temporal–spatial characteristics of 
precipitation relevant for the region and improve precipita-
tion climatology of their driving GCMs (Dash et al. 2015; 
Hassan et al. 2015; Maharana and Dimri 2016; Karmacha-
rya et al. 2017; Varikoden et al. 2018; Ghimire et al. 2018). 
However, other studies show more complex picture with 
RCMs not always improving, and sometimes even deteriorat-
ing precipitation climatology of their driving GCMs (Mishra 
et al. 2014; Mishra 2015; Singh et al. 2017). It is necessary 
to note here that proper evaluation of the ability of a RCM to 
simulate the present/recent climatology is impossible with-
out a reanalysis (perfect boundary conditions) driven simula-
tion. An ERA-Interim reanalysis driven simulation was used 
only in Maharana and Dimri (2016) and Karmacharya et al. 

(2017) in the above studies while others used only GCM-
driven simulations.

RCMs are developed to reproduce the large-scale clima-
tology of the GCMs and to provide additional smaller-scale 
information often referred to as “added value” (Giorgi and 
Mearns 1991). There is no clear unique definition of the 
added value as it depends on many factors: regions, spatial 
and temporal scales, processes and variables (Di Luca et al. 
2015; Rockel 2015; Rummukainen 2016). One can define 
added value of downscaling as reduction of large-scale GCM 
biases and indeed this may occur. However, not necessarily 
due to better description of regional process in RCMs but it 
could also be due to a simple cancelation of biases of oppo-
site sign in GCMs and RCMs. In some cases RCMs may also 
amplify GCM biases or even change their sign. All the above 
factors can potentially contribute to differences in simulated 
past/recent climatology between GCMs and RCMs and can 
also lead to differences in future climate projections (Teich-
mann et al. 2013; Sørland et al. 2018).

In this study we introduce the SMHI-RCA4 ensemble 
for the CORDEX South Asia domain. We outline the main 
characteristics of the GCM and RCM ensembles focusing 
on differences and similarities in simulated seasonal mean 
temperature and precipitation between the RCA4 ensemble 
and the driving GCMs. We aim to show how one RCM can 
change GCMs biases in the simulated recent/present climate 
and modify the signal in climate change projections gen-
erated by GCMs. We limit the study to an overview and 
leave more in-depth detailed process analysis to forthcom-
ing studies.

2 � Data and methods

2.1 � Study area

The study focuses on the central part of the South Asia 
CORDEX domain (Fig. 1) encompassing India, Pakistan, 
Nepal, Bangladesh, Bhutan and Myanmar. The region spans 
over a variety of different climatic zones, including arid 
deserts and dry lands, cold alpine mountains, and humid 
tropical islands, among others. The rainfall over the region is 
highly variable both on spatial and temporal scales with the 
Indian summer monsoon (June–July–August) contributing 
to about 75% precipitation of the annual amount. Spatially, 
the nature of monsoonal precipitation varies from region to 
region wherein the complex land–atmosphere interactions 
play a significant role. For spatial average analysis the study 
area is divided in nine subregions based on climatological 
features in the area (Fig. 1 and Table 2). A number of the 
subregions have been already used in different studies as 
CLI, SWI, SEI (Krishnamurti and Shukla 2000) and SPI 
and NPI (Sajjad et al. 2011), while configuration for other 
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regions covering countries in the eastern part of the domain 
were received through personal communications.

2.2 � GCM and RCM simulations

Two ensembles of climate simulations, one global and 
one regional, are utilized. The global ensemble includes 
ten GCMs from the CMIP5 project, listed in Table 1, with 

both a control period with prescribed forcing representa-
tive of conditions during 1951–2005 and the RCP8.5 sce-
narios for 2006–2100 (Moss et al. 2010). In the regional 
ensemble all ten GCMs are downscaled over the South Asia 
CORDEX domain by the Rossby Centre Regional Climate 
Model—RCA4 (Samuelsson et al. 2015; Strandberg et al. 
2014; Kjellström et al. 2016), at about 50 km resolution. The 
first evaluation runs over the CORDEX South Asia domain 
showed that RCA4 has a strong cold bias over Tibet and a 
strong dry bias over the continent. The standard version of 
RCA4 (v1) used for most of the CORDEX domains has been 
slightly retuned for the CORDEX South Asia domain and 
named as “v2”. The retuning includes changes in surface 
parameterization and in deep convection parameterization 
allowing deep convection to initiate more easily.

There was no skill-based selection of the CMIP5 GCMs 
for downscaling by RCA4 over the CORDEX South Asia 
domain. The 10 GCMs were simply downscaled in the order 
of their appearance (6-h model levels) on the Earth System 
Grid Federation (ESGF) or directly from the CMIP5 model-
ling groups. The same set of the 10 GCMs has been down-
scaled by RCA4 at 50 km over other CORDEX domains 
e.g. Africa (e.g. Nikulin et al. 2019; Tamoffo et al. 2019), 
Europe (e.g. Kjellström et al. 2016; Sørland et al. 2018), 
South (e.g. Feron et al. 2019; Llopart et al. 2020) and Cen-
tral (e.g. Corrales-Suastegui et al. 2019) America.

Daily mean sea surface temperature from the driving 
GCMs is used as lower boundary conditions. Downscaling 
of the ERA-Interim reanalysis (ERAINT, Dee et al. 2011) 
by RCA4 is also included to evaluate the ability of RCA4 
to simulate the observed climate when driven by so called 
perfect boundary conditions. No nudging towards the GCMs 
or ERAINT was applied. The GCMs have varying horizontal 
resolution ranging from 1° to 3° (see Table 1 for details) and 
for spatial maps all GCMs are remapped from the native 
grids to a regular 2° by 2° grid by bicubic interpolation 
whereas the native grids were used for spatially averaged 
analysis over the nine specified subregions.

2.3 � Observations and reanalysis data

Evaluation of RCM simulations over South Asia study 
region is a challenging task due to lack of high-quality 
long-term observational products with suitable temporal and 
spatial resolutions. In the present study, we use three com-
mon gridded observational datasets: the Global Precipita-
tion Climatology Centre, GPCC, version 7 (Schneider et al. 
2014), the Climate Research Unit Time-Series, CRU TS, 
version 3.23 (Harris et al. 2014), and University of Dela-
ware, UDEL, version 4.01 (Legates and Willmott 1990). 
All these three datasets are at 0.5° horizontal resolution. A 
reanalysis product from ECMWF, ERA-Interim (Dee et al. 
2011) is also used. In contrast to climate models, ERAINT 

Fig. 1   The study area with RCA4 topography at 50-km resolution 
(colour) and nine subregions used for spatially averaged analysis. 
(CLI Central India, SWI South West India, SEI South East India, NPI 
North Pakistan and India, SPI South Pakistan and India, NEP Nepal, 
BLH Bangladesh, BTN Bhutan, and MNR Myanmar)

Table 1   List of CMIP5 GCMs downscaled by RCA4 over the COR-
DEX South Asia domain

Model name Acronym used Resolution lon × lat

CanESM2 CanESM 2.8° × 2.8°
CNRM-CM5 CNRM 1.4° × 1.4°
EC-EARTH EC-EARTH 1.1° × 1.1°
MIROC5 MIROC 1.4° × 1.4°
HadGEM2-ES HadGEM 1.875° × 1.25°
MPI-ESM-LR MPI-ESM 1.875° × 1.875°
NorESM1-M NorESM 2.50° × 1.895°
GFDL-ESM2M GFDL 2.50° × 2.00°
IPSL-CM5A-MR IPSL 2.50° × 1.25°
CSIRO-Mk3-6-0 CSIRO 1.8° × 1.8°
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precipitation is a short term forecast product and there are 
several ways to derive ERAINT precipitation (e.g. different 
spin-up, base time and forecast steps) that can lead to differ-
ent precipitation estimates. ERAINT precipitation is derived 
by the simplest method, without spin up as in Nikulin et al. 
(2012). Multiple observation products, even if partly based 
on the same stations, allow us to get some rough estimation 
of observational uncertainties. All observation and reanalyse 
datasets were remapped from their native grids to the COR-
DEX 50 km grid by bicubic interpolations and aggregated to 
the common 2° GCM grid by conservative remapping. The 

native grids were employed for spatially averaged analysis 
over the nine specified sub-regions.

2.4 � Measure of robustness of climate change signal

In this study we use an approach developed in Nikulin et al. 
(2019) and define the climate change signal as robust if the 
following two conditions are fulfilled: (1) more than 80% of 
model simulations agree on the sign of the change and (2) 
the signal to noise ratio (SNR), i.e., the ratio of the mean to 
the standard deviation of the ensemble of climate change 
signals, is equal to or larger than one. If only the first condi-
tion is met we use the term “consistent”.

Fig. 2   CRU mean JJA temperature for 1981–2010 (top, left-hand panel), and differences compared to CRU in other observations/reanalysis—
UDEL/ERAINT (top, middle panels), ensemble mean of 10 GCMs (top, right-hand panel) and 10 individual GCMs (middle and bottom rows)
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3 � Evaluation of the GCM and RCA4 
ensembles

3.1 � Temperature

The main focus in our study is on the June–August (JJA) 
period with the largest contribution to the Indian summer 
monsoon rainfall over the sub-continent. Figure 2 shows 
CRU temperature for JJA and differences from CRU in the 
other datasets: the UDEL observation, the ERA-Interim 
reanalysis, the 10 GCM simulations and the GCM multi-
model ensemble. The seasonal mean temperature, according 

to CRU, varies strongly across the region with the coldest 
conditions in the high-altitude Himalayan region (2–4 °C) 
and the hottest ones in northwest India and Pakistan (up to 
36 °C). Both UDEL and ERAINT are in good agreement 
with CRU over the mainland India (differences mostly 
within 1  °C) while large discrepancies across the three 
datasets (up to 5–6 °C) are found locally in the Himalayan 
region. Such large differences in the region with complex 
topography represent a simple measure of observational 
uncertainties and compromises accurate evaluation of the 
simulated temperature in the northern part of the domain.

Fig. 3   CRU mean JJA temperature for 1981–2010 (top, left panel), 
and differences compared to CRU in ERAINT (top, left-middle 
panel), RCA4 driven by ERAINT (top, right-mid panel), ensemble 

mean of RCA4 driven by 10 GCMs (top, right panel) and 10 indi-
vidual RCA4 simulations (middle and bottom rows)
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The EC-EARTH is the coldest model in the ensemble 
with a strong cold bias (up to 8 °C) in the entire region. 
This feature is part of large-scale cold bias in EC-EARTH 
covering the tropics (Hazeleger et al. 2012). Contrasting to 
EC-EARTH, CSIRO has the strongest large-scale warm bias 
in the ensemble reaching more than 8 °C in northern India. 
Other models show mixed biases across the region with 
some tendency to overestimate temperature in northwest 
India and Pakistan and underestimate it in the Himalayas. 
The GCM ensemble shows a moderate warm bias (2–3 °C) 
in northern parts of India and a stronger cold bias in the 
Himalayas (up to 5–6 °C), although at some grid boxes the 
GCM cold bias is comparable with the difference between 

CRU and UDEL. We note that the moderate warm bias in the 
ensemble mean over northern India results from combining 
a large cold bias in EC-EARTH with warm biases in other 
GCMs. Only three models of ten—HadGEM, CNRM and 
MIROC are able to simulate the observed temperature to 
within ± 2 °C over most of India.

Compared to CRU, RCA4 driven by ERAINT overes-
timates temperature in northwest India and Pakistan and 
strongly underestimates it in the Himalayan region while 
biases are mostly within 1 °C over mainland India (Fig. 3). 
The RCA4 ensemble mean temperature is almost identical 
to the ERAINT-driven simulation. However, again similar 
to the GCM ensemble, the small RCA4 ensemble mean bias 

Fig. 4   GPCC mean JJA precipitation for 1981–2010 (top, left panel), and differences compared to GPCC in other observations/reanalysis—
CRU/ERAINT (top, middle panels), ensemble mean of 10 GCMs (top, right panel) and 10 individual GCMs (middle and bottom rows)
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originates from cancelation of biases with different sign in 
the individual simulations. Three RCA4 simulations (driven 
by CanESM, IPSL and CSIRO) are strongly overestimating 
temperature thus reproducing similar biases as in the driv-
ing GCMs. In contrast, downscaling by RCA4 considerably 
reduces the strong cold bias in EC-EARTH and the warm 
biases over northwest India and Pakistan in MIROC, GFDL 
and MPI-ESM. There are also RCA4 simulations where 
biases become larger than in the driving GCMs (CNRM 
and HadGEM). A common feature across all RCA4 simula-
tions is the Himalayan region where cold GCM biases are 
amplified. Clearly, the impact of downscaling by RCA4 is 

mixed: with either reduced, similar or amplified temperature 
biases compared to the underlying GCMs.

3.2 � Precipitation

Figure 4 represents the JJA precipitation as estimated by 
the GPCC observational dataset and the difference from 
GPCC between the other datasets (CRU and ERAINT) 
and the 10 GCM simulations. GPCC shows large spatial 
variability in precipitation with the largest amounts in the 
eastern part of the domain reaching up to 25 mm/day. CRU 
and ERAINT shows mixed patterns with either more or 

Fig. 5   GPCC mean JJA precipitation for 1981–2010 (top, left panel), 
and differences compared to GPCC in ERAINT (top, left-middle 
panel), RCA4 driven by ERAINT (top, right-mid panel), ensemble 

mean of RCA4 driven by 10 GCMs (top, right panel) and 10 indi-
vidual RCA4 simulations (middle and bottom rows)
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less precipitation than GPCC. For individual grid boxes 
differences across the datasets can reach up to 4 mm/day 
and even more and this may limits an accurate evalua-
tion. Compared to GPCC the GCM ensemble mean has a 
large-scale dry bias (up to 4 mm/day and more) over most 
of India whereas there are equally wet biases in the Hima-
layas and in the eastern part of the domain. EC-EARTH 
and MIROC show mostly wet biases over India while in 
contrast the rest of the GCMs show predominantly dry 
biases. Dry (wet) biases in precipitation often resembles 

warm (cold) biases in temperature (Fig.  2), although 
CNRM and HadGEM showing a strong dry bias despite 
relatively small biases in temperature, mostly within 1 °C. 
GPCC at its native 0.5° resolution resolves small-scale 
features in precipitation, for example a rain belt in South-
West India and a sharp contrast in precipitation on and 
near the slopes of the Himalayas (Fig. 5). Downscaling 
of ERAINT by RCA4 almost completely removes the 
ERAINT wet bias in the Himalayas while the dry bias in 
central India is amplified. Additionally, RCA4 (ERAINT) 

Fig. 6   Covariation of temperature and precipitation biases in the RCA4 (left) and GCM (right) ensembles relative to CRU over the SEI (top) and 
CLI (bottom) regions for 1981–2010
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generates a wet bias in north-eastern India, a feature not 
present in ERAINT. Instead of replicating the GCM bias 
patterns, the RCA4 bias pattern in precipitation is close 
to that seen in the ERAINT downscaling, regardless of 
forcing GCM. However, the strongest dry bias in central 
India is found in the RCA4 simulations driven by the driest 
GCMs (CanESM, HadGEM, IPSL and CSIRO). Despite 
some coherence with the GCMs, the RCA4 bias pattern 
is still very similar to that in the ERAINT-driven simula-
tion. This indicates that the RCA4 physics puts its strong 
imprint on the simulated precipitation.

3.3 � Covariation of temperature and precipitation 
biases

The impact of the RCA4 downscaling on the GCM biases 
over two subregions is illustrated in Fig. 6 showing scatter 
plots for temperature and precipitation biases in the global 
and regional ensembles averaged over South-East India 
(SEI) and over Central India (CLI). CRU is taken as refer-
ence here since both temperature and precipitation are avail-
able for this dataset. In general for both subregions and for 
both ensembles dry (wet) biases in precipitation correspond 
to warm (cold) biases in temperature. However, impact of 

downscaling on the GCM biases is different in the two 
regions. In the SEI region RCA4 tends to strongly reduce 
the negative and positive GCM biases in both precipitation 
and temperature simulating the observed climatology more 
accurately in comparison to the individual GCMs. Over the 
CLI region most of the GCMs cluster around warm and dry 
biases. Contrastingly, RCA4 changes biases towards wetter 
and colder conditions, showing a strong negative correla-
tion between temperature and precipitation biases. Never-
theless, for both regions, RCA4 almost always substantially 
reduces the largest GCM biases as for NorESM and CSIRO 
in SEI and MIROC and CSIRO in CLI. Contrasting the 
GCM biases versus RCA4 ones (not shown) does not show 
a consistent dependency of the RCA4 temperature biases 
on the respective driving GCM biases. The coldest/warmest 
RCA4 simulations partly correspond to the coldest/warmest 
GCM simulations in six regions of the nine but not in NPI, 
SPS and BLH. For precipitation biases, a similar moder-
ate dependence (the wettest/driest RCA4 simulations cor-
respond to the wettest/driest GCM simulations) is found 
only in SEI and NPI. These examples show that there is no 
systematic general reduction or amplification of the GCM 
biases by the RCA4 downscaling. Instead one can find either 
reduction or amplification of the GCM biases depending on 
region and/or on driving GCM.

Fig. 7   Ensemble mean JJA temperature in 1981–2010 (left), its 
change in 2071–2100 (second column), the spread (in terms of stand-
ard deviation) across the ensemble members (third column) and 
number of simulations agree on an increase (rightmost column). The 

RCA4 ensemble is presented in top row and the GCM ensemble in 
bottom one. All grid boxes show robust temperature change (SCN–
CTL) satisfying the two criteria (the agreement and signal to noise 
ratio)
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4 � Future climate projections in the GCM 
and RCA4 ensembles

4.1 � Temperature projections

Figure  7 represents projected climate changes in 

temperatures for the RCA4 and GCM ensembles under the 
RCP8.5 scenario in 2071–2100 with respect to 1981–2010. 
The spread in the projected changes across the individual 
members of the ensembles is expressed as the standard devi-
ation and a simple estimate of uncertainties is presented as 
the number of simulations that agree on an increase. Both 

Fig. 8   Time series of projected JJA mean temperature anomalies 
relative to 1981–2010 for the RCA4 (first and third rows) and GCM 
ensemble (second and forth row) over the SEI (two top panels) and 

CLI (two bottom panels) regions. Time-series are smoothed by a 
31-year moving average. For the ensemble mean, robust climate 
change signal (the two criteria are met) is shown by larger circles
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Table 2   Projected climate 
change and spread (in terms 
of standard deviations) in JJA 
mean temperature (°C) and 
precipitation (mm/day) in 2071–
2100 relative to 1981–2010 for 
the RCA4 and GCM ensembles

Values in bracket for precipitation are number of simulations projecting an increase (for temperature all 10 
simulations agree on an increase)

Region (acronym) coordinates Temperature, (°C) Precipitation, mm/day

RCA4 GCMs RCA4 GCMs

Mean Spread Mean Spread Mean Spread Mean Spread

Central India (CLI)
79–85° E, 20–26° N

3.8 0.83 3.81 0.98 3.4 (9) 3.2 1.4 (6) 2.3

South West India (SWI)
73–76° E, 11–21° N

3.27 0.53 3.3 0.82 5.2 (10) 3.0 3.8 (8) 4.7

South East India (SEI)
77–80° E, 8–16° N

3.54 0.58 3.31 0.9 1.4 (10) 0.6 2.2 (10) 1.6

North Pakistan and India (NPI)
70–80° E, 30–35° N

4.84 0.93 4.67 0.99 1.9 (8) 1.9 1.5 (9) 2.0

South Pakistan and India (SPI)
65–75° E, 23–30° N

3.95 0.84 3.83 0.91 1.2 (8) 2.1 0.3 (6) 1.3

Nepal (NEP)
80–89° E, 26–31° N

4.37 0.69 4.25 0.68 3.5 (9) 2.2 5.1 (9) 3.8

Bangladesh (BLH)
88–93° E, 20–27° N

3.3 0.54 3.49 0.91 6.0 (10) 3.8 2.6 (6) 5.7

Bhutan (BTN)
88–93° E, 26–29° N

4.06 0.67 3.95 0.7 5.1 (10) 2.2 7.8 (9) 8.4

Myanmar (MNR)
92–101° E, 9–28° N

3.44 0.54 3.55 0.86 8.0 (10) 2.6 3.6 (8) 2.7

Fig. 9   Same as Fig. 7 but for precipitation. Areas where at least 80% of the simulations (8 of 10) agree on the sign of the change are marked by 
positively sloped hatching. Areas where the signal to noise ratio is equal or more than 1 are marked by negatively sloped hatching
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the global and the regional ensembles depict an increase 
in summer temperature across the region with a similar 
north–south gradient. Temperature increases by up to 4 °C 
in the southern part of the domain and up to 5–6 °C in the 
northern part, although in the mountain region warming 
reaches up to 7–8 °C in the RCA4 ensemble. All individual 
simulations show increasing temperatures in all areas. How-
ever, there is some spread across the ensemble members. 

The largest spread is confined to high-altitude areas in parts 
of the Himalayas in both ensembles. A difference between 
the ensembles is that RCA4 in general reduces the spread 
over India and the south-eastern part of the domain. Such a 
reduction is most likely related to the fact that the 10 GCMs 
have different resolution and formulation while all RCA4 
simulations have the same resolution and formulation.

Fig. 10   Same as Fig. 8 but for precipitation
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To investigate temporal evolution of projected tempera-
ture changes in both ensembles Fig. 8 shows time series of 
regional averages for South East and Central India smoothed 
by a 30-year moving average. For both regions both ensem-
bles show similar transient temperature increase with a 
difference between the two RCPs emerging around 2030. 
The ensemble mean warming is almost the same in the two 
ensembles (difference within 0.2 °C) in these two regions 
and all others (see Table 2). The downscaling reduces the 
spread in all low-lying regions (CLI, SWI, SEI, BLH and 
MNR) while only minor changes are seen in high altitude 
regions (NPI, SPI, NED and BTN). A remarkable differ-
ence can be found for individual simulations. For example, 
HadGEM shows the strongest warming over the SEI region 
in the GCM ensemble (4.5 °C) while RCA4(HadGEM) 
shows more moderate warming (3.6 °C) close to the RCA4 
ensemble mean (3.5  °C). Similarly, RCA4 reduces the 
strongest warming over CLI compared to the GCM ensemble 
(CanESM, 5.1 °C), to a more moderate warming (3.2 °C), 
even below the RCA4 ensemble mean (3.8 °C). Such large 
differences may potentially have a strong impact on assess-
ment of regional climate change if a single GCM is used 

for downscaling, and shows the importance of using large 
ensembles.

4.2 � Precipitation projections

Figure 9 represents projected climate changes in precipita-
tion for the RCA4 and GCM ensembles. For the control 
period both ensembles show a similar large-scale precipi-
tation pattern with a maximum in northeast India and the 
eastern part of the domain. RCA4 provides more regional 
details like a more confined maximum along the Western 
Ghats in better agreement with GPCC7 (see Fig. 5) com-
pared to the GCM ensemble. Similarly, the sharp gradi-
ent in precipitation is more realistic along the Himalayan 
slopes in the RCA4 ensemble.

Both ensembles project increasing precipitation over 
most of the domain, although with differing spatial pat-
terns. The RCA4 ensemble shows robust increase over 
larger parts of the domain, especially in the north-east-
ern part. In contrast, the GCM ensemble, shows smaller 
patches with a robust signal. In the RCA4 ensemble a 
regional maximum is seen in the Ganges plains that is 
not coinciding with that in the GCM ensemble located 
more northwards into the mountains. Another difference 

Fig. 11   Temperature and precipitation changes over South East India 
(SEI) and Central India (CLI) for summer (JJA) mean conditions 
in 2071–2100 relative to the control period (1981–2010). The error 
bars plotted inside the axis in the diagram illustrate the average and 
plus or minus 1 standard deviation for (1) the CMIP5 ensemble (2) 

the ten-member GCM ensemble that has been downscaled and (3) 
the 10-member RCA4 ensemble. Open circles are CMIP5 GCMs that 
have not been downscaled by RCA4. Filled circles represent GCMs 
that have been downscaled by RCA4 and these are connected by a 
line to RCA4 (filled squares)
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between the two ensembles is the absence of a regional 
maximum over central-southern India in the RCA4 ensem-
ble. In general, the largest changes in precipitation coin-
cide with the largest spread across the ensemble members. 
A pronounced difference between the two ensembles is the 
fact that more members agree on an increase in precipita-
tion in the RCA4 ensemble. In the GCM ensemble there 
is a region in central-northern India where it is uncertain 
whether precipitation will increase or decrease. Contrast-
ingly, most of the RCA4 simulations indicate an increase.

Figure 10 shows time series of precipitation changes 
averaged for South East (SEI) and Central India (CLI). 
In both regions the ensemble means indicate increasing 
precipitation. In the SEI region RCA4 shows reduced 
spread compared to the GCM and a robust signal not seen 
in the GCM ensemble. In the CLI region, the spread in the 
RCA4 ensemble is increased and none of the ensembles 
show a robust signal. Table 2 further illustrates differences 
across the sub-regions. There is no systematic reduction or 
amplification of neither the ensemble mean change nor the 

Fig. 12   Projected changes in temperature and precipitation generated 
by RCA4(GCMs) as a function of projected changes generated by 
the driving GCMs. Temperature and precipitation are averaged over 

South East India (SEI, top) and Central India (CLI, bottom) for sum-
mer (JJA). Thin lines present a linear fit
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spread by downscaling. We note that for some individual 
simulations the response is very different in RCA4 com-
pared to the driving GCMs. For example in Central India 
RCA4 downscaling MIROC and CanESM projects large 
increases in precipitation more or less absent in these two 
GCMs. Contrasting to temperature (Fig. 8), in some GCM 
simulations, precipitation undergoes strong multi-decadal 
variability as expressed by the striking anomalies in GFDL 
and IPSL lasting for decades over SEI. For this particular 
region and the GCMs downscaling by RCA4 almost com-
pletely suppresses these multi-decadal anomalies.

5 � Discussion

The presented results are based on one single RCM driven 
by the 10 CMIP5 GCMs. Even if this is a relatively large set 
of driving GCMs it still only represents about a third of the 
GCMs in the full CMIP5 ensemble. Potentially, this can lead 
to underestimation of the spread in the climate change sig-
nal compared to the full ensemble. To illustrate this Fig. 11 
shows projected changes in precipitation and temperature 
over SEI and CLI at the end of the century as simulated by 
RCA4, its 10 driving GCMs and the full CMIP5 ensemble. 
For temperature in the SEI region the 10-member GCM 
ensemble has almost identical mean and spread as the full 
CMIP5 ensemble. For the CLI region the spread is also 
almost the same but the mean is slightly higher. For both 
regions, the RCA4 ensemble has a tendency to reduce the 
spread relative to that in the driving GCMs, mostly pro-
nounced in SEI.

For this SEI region the spread in precipitation changes 
is smaller in the 10-member GCM ensemble than in the 

full one. This is related to the fact that the driving GCM 
ensemble only includes models with moderate changes 
(0–1 mm/day) with the exception of MIROC. Further-
more, after downscaling, the spread is even more reduced. 
RCA4 strongly reduces the wet signal in MIROC while for 
other ensemble members differences between RCA4 and 
the underlying GCMs are relatively small. For CLI both 
GCM ensembles show a similar mean change and spread. 
In contrast to SEI, downscaling increases the spread and 
projects stronger increase in precipitation. Clearly, RCA4 
has a pronounced imprint on the results with both mod-
erate decreases (HadGEM, CSIRO and MPI) and strong 
increases (MIROC, CanESM and GFDL).

Another aspect (dimension) of downscaling is to what 
degree RCMs reproduce the climate change signal of their 
driving GCMs. To elucidate this, Fig. 12 shows tempera-
ture and precipitation changes projected by RCA4 as a 
function of the changes in the driving GCMs for SEI and 
SPI. There is a strong relationship between the changes 
in temperature for both regions, even if RCA4 sometimes 
alters the climate change signal by about 1°. For SPI, there 
is a strong relationship for the changes in precipitation, 
similar to temperature. In contrast, for SEI, there is no 
relationship between the changes in RCA4 and the driving 
GCMs. In general all nine subregions clearly show a strong 
positive relationship for temperature (see Table 3): RCA4 
driven by GCMs with stronger warming shows stronger 
warming as well. Table 3 also shows that the slope for 
temperature is less than one for all nine regions, implying 
that in general RCA4 has a tendency to reduce the warm-
ing as projected by the GCMs. However, for changes in 
precipitation a statistically significant relationship between 
RCA4 and GCMs is confined only to the three northwest-
erly regions—SPI, NPI and NEP (Table 3).

Next, in Fig.  13, we investigate to what extent the 
climate change signal is related to biases in the control 
period. In the SEI region for both the GCM and RCA4 
ensembles there is a statistically significant dependence of 
the projected temperature changes on biases. Colder biases 
are connected to weaker warming while warm biases are 
connected to stronger warming, similar to what has pre-
viously been found for southern Europe (Boberg and 
Christensen 2012). In contrast, no dependence is present 
in CLI, neither in the RCA4 nor in the GCM ensembles. 
A more comprehensive analysis, including all regions, 
shows that RCA4 has a similar significant dependence in 
six of the nine regions (Table 4) while the GCM ensemble 
shows no such dependency outside of the SEI region. For 
precipitation there is no significant dependency between 
projected changes and biases with the exception of the 
SWI for the GCM ensemble. We also note that all cases 
with significant dependencies in Table 4 do have a positive 

Table 3   The slope and one-sigma uncertainty estimates for a linear 
fit to projected changes in temperature and precipitation generated 
by RCA4 as a function of projected changes generated by the driving 
GCMs

The slope statistically significant at the 0.05 significance level is in 
bold

Region Temperature Precipitation

Slope Sigma Slope Sigma

Central India 0.53 0.23 − 0.13 0.48
South West India 0.56 0.11 0.02 0.22
South East India 0.51 0.14 − 0.03 0.13
North Pakistan and India 0.88 0.13 0.86 0.13
South Pakistan and India 0.76 0.18 1.35 0.27
Nepal 0.87 0.19 0.42 0.16
Bangladesh 0.51 0.11 0.10 0.23
Bhutan 0.77 0.19 − 0.03 0.09
Myanmar 0.56 0.1 − 032 0.33
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relationship meaning that larger warm/wet biases lead to 
larger projected increases in temperature/precipitation.

6 � Conclusions

In this study we analyse two ensembles of climate pro-
jections: one generated by 10 GCMs and one by a RCM 
(SMHI-RCA4) downscaling the 10 GCMs over the COR-
DEX South Asia domain at 50 km resolution. Our focus is 

on analysing differences and similarities between the two 
ensembles in seasonal mean temperature and precipitation 
during the Indian Summer Monsoon (June–August). Our 
results show that RCA4 performs better in some cases (e.g. 
reduction of the cold bias in EC-EARTH and warm bias in 
MIROC, GFDL and MPI-ESM). At the same time RCA4 
performance is worse in other cases (e.g. an amplified cold 
bias in parts of the Himalayan region for most GCMs). For 
climate change we see that RCA4 can modify the signal 
projected by the GCM ensemble and its individual members. 

Fig. 13   Projected changes in temperature and precipitation in the sce-
nario period (2071–2100) as a function of biases in the control period 
(CTL: 1981–2010, difference with respect to CRU-TS323). Tempera-

ture and precipitation are averaged over South East India (SEI, top) 
and Central India (CLI, bottom) for summer (JJA). GCMs are in blue 
and RCA4(GCMs) are in red. Thin lines present a linear fit
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For example, we note a substantial reduction of projected 
warming in a few RCA4 simulations compared to the driving 
GCMs. Another example relates to precipitation changes in 
Central India where RCA4 driven by two GCMs (MIROC 
and CanESM) projects a large increase absent in the GCMs. 
The results indicate that downscaling can change both the 
mean and spread as projected by the GCM ensemble. Par-
ticularly, downscaling reduces the spread in projected tem-
perature increase in low-lying regions. For precipitation 
we identified regions with either larger (Central India) or 
smaller (South-East India) spread in the RCA4 ensemble 
compared to the GCM one. Additionally, we show that 
selecting a subset of GCMs from a grand ensemble can have 
a strong impact on projected regional climate change.

We also investigate how projected climate changes may 
depend on model biases in the historical period. For exam-
ple, as shown by Boberg and Christensen (2012), warm 
biases may lead to stronger warming. Similarly, we found 
stronger warming in a number of regions where RCA4 has 
a warm bias. Also, we found a weaker warming when RCA4 
has a cold bias. However, the GCM simulations do not show 
this kind of dependency. For precipitation there is no such 
relationship in either RCA4 or the GCMs.

We recognize that our study is descriptive but we argue 
that such an analysis of global and regional ensembles is a 
first necessary step in analysing drivers of regional climate 
change. For a deeper understanding of the drivers a more 
comprehensive analysis of relevant processes, processed- 
based evaluation, is required (e.g. James et al. 2018; Tamoffo 
et al. 2019).

Our results implicate that for impact and adaption studies 
there is a need for a careful evaluation and analysis of both 
GCM and RCM ensembles. Such kind of in depth analysis is 
essential for Climate Services based on global and regional 
climate models. Excluding GCMs and using only RCMs, a 

commonly established approach, can significantly change 
the message on future regional climate change.
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