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Abstract
The extreme temperature changes under a 0.5 °C global mean surface temperature warming increment is of great importance 
for climate change adaption and risk management on post-Paris-Agreement agenda. The impacts of the already happened 
0.5 °C warming increment on extreme temperature can serve as essential references for the 1.5/2 °C projections. Quantifying 
the observed changes of climate extremes is hampered by the limitation of observational datasets in both spatial coverage 
and temporal continuity. The reanalysis datasets are hoped to be useful substitutes for the observations, but their perfor-
mance over continental China remains unknown. In this study, we compare the extreme temperature changes associated with 
the past 0.5 °C warming derived from three reanalysis datasets including JRA-55, ERA and 20CR with the observation in 
China. Distinct increases (decreases) in warm (cold) extremes are detected in all three reanalyses in a spatially aggregated 
perspective as in the observation. On regional scales the reanalyses have evident spreads in regions with insufficient obser-
vational coverage such as the western China. JRA-55 shows good agreement with the observation in both spatial patterns 
and magnitudes of extreme temperature changes. Both ERA and 20CR show weaker consistency with the observation, 
particularly in western China, mainly due to less observational constraints in data assimilation. The different aerosol data 
used in reanalysis assimilation systems also influenced the data quality. Our results indicate that while the reanalyses can 
serve as useful substitutes to fill in the observational gaps, cautious should be taken in regions with sparse observations and 
large anthropogenic aerosol emissions.
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1  Introduction

Climate extreme changes have more severe impacts on mul-
tiple aspects in human and natural systems compared to the 
mean climate changes (Seneviratne et al. 2012). The cli-
mate extremes have increased in terms of both frequency and 
intensity during recent decades as the global mean surface 
temperature (GMST) has experienced a marked increase 
(IPCC 2014). A better understanding in changes of climate 
extremes is of urgent need for policy-making and adaption-
planning. The Paris Agreement sets a goal of “holding the 
increase in the global average temperature well below 2 °C 
above the pre-industrial levels and to pursue efforts to limit 
the temperature increase to 1.5 °C above pre-industrial 
levels” (UNFCC 2015). The different impacts of climate 
extreme changes between the 1.5 °C versus 2 °C warmer 
worlds have emerged as a global concern (Hulme 2016; 
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Schleussner et al. 2016; King and Karoly 2017; Mitchell 
et al. 2017).

The impacts of the half-degree additional warming 
between the two long-term global warming goals (LTGGs) 
1.5 °C and 2 °C have been studied using various approaches 
including: the transient simulations with a “time-sampling” 
approximation (Schleussner et al. 2016; King and Karoly 
2017; Kharin et al. 2018; Zhang et al. 2018; Zhou et al. 
2018a); the stabilized 1.5 °C and 2 °C warming level tar-
geting experiments performed by fully coupled general 
circulation models (Sanderson et al. 2017; Li et al. 2018; 
Nangombe et al. 2018) and the atmosphere-only general 
circulation models such as the ‘Half a degree Additional 
warming, Prognosis and Projected Impacts’ (HAPPI) pro-
ject (Lewis et al. 2017; Mitchell et al. 2017; Chevuturi et al. 
2018; Zhou et al. 2018b). Different model projection results 
(or methods) have all projected increase in mean tempera-
ture in China under 0.5 °C additional warming with a range 
between 0.6 and 0.7 °C (Chen and Zhou 2017; Xu et al. 
2017; Lin et al. 2018). And a generally warming tendency 
has also been projected in the extreme temperature. The hot-
test day and night will increase by ~ 0.6 °C–0.7 °C, and the 
frequency of the warm days will be increased ~ 130% (Guo 
et al. 2017; Kharin et al. 2018; Shi et al. 2018). While these 
different approaches qualitatively agree with each other in 
the general decreases of extreme temperature under 1.5 °C 
warming level compared to 2 °C, quantitative differences are 
seen due to the different modeling strategies and the limita-
tions of climate models in the physical processes param-
eterization. Observational evidences are hoped to serve as 
metrics for gauging model performance. Since the GMST 
has already witnessed a half-degree warming increment 
during the period of 1991–2010 compared to the period 
of 1960–1979 (Hansen et al. 2010). This indicate that the 
observed changes in climate extremes under this historical 
0.5 °C warming increment can be used as observational met-
rics to evaluate model performance, or even regarded as ana-
logues for the future projections (Schleussner et al. 2017). 
Chen et al. (2018) has pointed out that the temperature 
extreme changes are detectable in China under the past-half 
degree warming increment. Zhao and Zhou (2019) has com-
pared the heat extreme changes under historical and future 
half-degree warming and find out that the historical changes 
in daytime heat extremes under the past 0.5 °C warming 
increment is a conservative estimation for the future projec-
tion. How to reliably quantify the observed changes is thus 
of central importance.

Unfortunately, the observational datasets still have 
many limitations. For example, the sparse spatial coverage 
of observational stations in some parts of the world does 
not allow us to give a reliable estimation of the observed 
temperature changes (Alexander et al. 2006; Caesar et al. 
2006; Donat et al. 2013a, b). As an alternative choice, the 

reanalysis datasets, which can provide consistent spatial 
and temporal resolution for many decades by assimilating 
traditional observation, radiosonde, and satellite data into 
dynamically consistent models (Kalnay and Cai 2003), are 
hoped to be useful substitutes to the observations. The rea-
nalyses have been demonstrated to be reliable in measur-
ing the monthly-to-annual temperature climatologies and 
anomalies on a global scale compared to observational data-
sets, although they still show weaknesses in quantifying the 
long-term trends (Smith et al. 2001, 2004; Simmons et al. 
2010; Compo et al. 2013). Climate extremes tend to mani-
fest different variations compared to the mean state changes 
(Seneviratne et al. 2014). A systematic assessment of the 
consistency in extreme temperature changes between a set of 
gridded observational datasets and reanalysis datasets indi-
cates that while normalized trends during the past ~ 60 years 
generally compare well, the actual values of annual extremes 
differ across datasets (Donat et al. 2014). Extended to the 
whole twentieth century, the long-term trends of extreme 
temperature manifest a consistent increase globally (with 
local variations) in three reanalysis datasets, but the spreads 
across reanalysis datasets are still large in the first half of 
the twentieth century (Donat et al. 2016). The reanalysis 
datasets have been used to validate the model performance 
on simulating the extreme temperature changes during the 
period of 1979 until now (Kharin et al. 2005, 2007; Sillmann 
et al. 2013; Angélil et al. 2016).

In comparison to other parts of the world, less effort 
has been devoted to the validation of reanalysis datasets 
in quantifying the changes of extreme temperature in 
China. Some preliminary analyses found that the reanaly-
ses tend to underestimate the climatology daily maximum 
temperature (TX) and overestimate the climatology daily 
minimum temperature (TN) especially over regions with 
complex topography (Mao et al. 2010). The reanalysis data 
show biases in measuring the long-term trends of extreme 
temperature over the regions with sparse observations such 
as the Tibetan Plateau (You et al. 2013; Zhou et al. 2016). 
The biases of the extreme temperature frequency indices 
are larger than that of the intensity indices (Zhu et al. 
2017). While the existing evaluations on the performance 
of reanalysis datasets in quantifying the climate states and 
long-term trends in extreme temperature changes provide 
useful information, the strengths and weaknesses of rea-
nalysis datasets in measuring the changes of extreme tem-
perature under the historical half-degree warming incre-
ment remains unknown. In this study, we aim to answer 
the following questions: (1) Are reanalysis datasets reli-
able substitutes for observations on revealing the extreme 
temperature changes under the historical 0.5 °C warming 
increment in China? (2) What are the advantages and dis-
advantages of each reanalysis datasets on measuring the 
extreme temperature changes and what are the possible 
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causes? We show evidences that the reanalysis datasets can 
generally reproduce the changes of the extreme tempera-
ture under the past 0.5 °C warming but have large spreads 
on regional scales. JRA-55 shows better consistency with 
the observation than ERA and 20CR due to more obser-
vational data constraints and realistic aerosol data used in 
the reanalysis system.

The remainder part of the paper is structured as follows: 
we describe the datasets used and the methods applied in 
Sect. 2. A comparison of extreme temperature changes 
derived from a gridded observational dataset and three rea-
nalysis datasets are presented in Sect. 3. The conclusion is 
given in Sect. 4 along with a discussion.

2 � Data and methods

2.1 � Gridded observational dataset and reanalysis 
datasets

We investigate and compare the extreme temperature 
changes in one gridded observational dataset and three rea-
nalysis datasets. The observational dataset we used is the 
homogenized gridded CN05.1 with a horizontal resolution 
of 0.25° × 0.25° and a time range of 1961–2015 (Wu and Gao 
2013). It is constructed using more than 2400 observation 
stations in China. An “anomaly approach” (New et al. 2000) 
is applied in the data interpolation. The dataset has been 
proved to have good performances in climatology and long-
term trend on both mean state and extreme temperature in 
comparison with other commonly used observational data-
sets. Minor differences still can be found in station sparse 
regions like the western China indicating certain uncertain-
ties in such regions which should be interpreted with care 
(Xu et al. 2009; Wu and Gao 2013). We also calculated the 
mean temperature increase in observational records under 
historical half-degree warming increment which is ~ 0.6 °C 
in CN05.1, comparable to the model projected results.

Three commonly used reanalysis datasets are compared 
in our study:

1.	 European Centre for Medium-Range Weather Forecasts 
(ECMWF) reanalysis (ERA), which is merged from 
the 45-year ECMWF reanalysis (ERA-40) (Uppala 
et al. 2005) and the ECMWF Interim reanalysis (ERA-
Interim) (Dee et al. 2011), because both of them doesn’t 
cover the full analyzing period of 1961–2010. The time 
merged ERA reanalysis dataset includes ERA-40 from 
the year of 1961 until the year of 1978 and ERA-Interim 
from the year of 1979 and after (following Schleussner 
et al. 2017). The ERA reanalysis dataset used is at a 
horizontal resolution of 1.125° × 1.125°.

2.	 Japanese 55-year reanalysis dataset (JRA-55), with a 
horizontal resolution of 1.25° × 1.25° for the time period 
from 1958 to 2019.

3.	 Twentieth century reanalysis version 2c (20CR), which 
provides 1.875° × 1.9° horizontal resolution for the 
period from 1851 to 2014 (Compo et al. 2011). Noted 
that 20CR only assimilated hourly and synoptic baro-
metric pressure observations, monthly averaged sea sur-
face temperature, and sea ice concentration field.

We note that there are also other commonly used rea-
nalysis datasets such as the National Centers for Environ-
mental Prediction Reanalysis I (Kalnay et al. 1996) and 
II (Kanamitsu et al. 2002) (NCEP-R1 and NCEP-R2) and 
the Modern-Era Retrospective analysis for Research and 
Applications version 1 (Rienecker et al. 2011) and version 
2 (Gelaro et  al. 2017) (MERRA and MERRA2). These 
datasets do not fit our analysis here because most of them 
(NCEP-R2, MERRA and MERRA2) do not cover the full 
time range from 1960 to 2010. In addition, NCEP-R1 is also 
not included in our analysis since it has been demonstrated 
to have poor performance in measuring extreme temperature 
changes (Donat et al. 2014).

2.2 � Methods

We consider a subset of ten extreme temperature indices 
following the recommendation of the Expert Team on Cli-
mate Change Detection and Indices (ETCCDI) (Zhang et al. 
2011), which can be divided into three categories:

1.	 Intensity indices: daytime hot extreme (TXx), nighttime 
hot extreme (TNx), daytime cold extreme (TXn) and 
nighttime cold extreme (TNn);

2.	 Frequency indices: warm days (TX90p), warm nights 
(TN90p), cold days (TX10p) and cold nights (TN10p);

3.	 Duration indices: warm spell duration (WSDI) and cold 
spell duration (CSDI).

The frequency and duration indices are calculated based 
on the 10th or 90th percentile threshold derived from a com-
monly used fixed period of 1961–1990 (Zhang et al. 2011). 
For more calculation details please refer to Table 1.

For all three reanalysis datasets, the TX and TN are not 
standard output variables. Following Donat et al. (2014), we 
use the instantaneous 2 m temperature of 06:00 UTC (14:00 
local time) as the proxy of the TX and that of 18:00 UTC 
(02:00 local time) as the TN. The three reanalysis datasets 
and the observational dataset CN05.1 differ in horizontal 
resolutions, to avoid the differences in spatial representative-
ness (Gervais et al. 2014; Pendergrass and Knutti 2018), all 
datasets are interpolated onto a common 2.0° × 2.0° grid. We 
use the first-order area-conservative remapping technique 
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(Jones 1999) as implemented in the Climate Date Operators 
software (CDO, https​://code.zmaw.de/proje​cts/cdo).

We compare the consistency across reanalysis datasets 
and observational dataset in extreme temperature changes 
under the half-degree warming increment in a spatially 
aggregated approach which is proposed in Fischer et al. 
(2013). Since the extreme changes on a single grid are usu-
ally not significant, in order to get more significant signals, 
the extreme temperature indices are calculated on each of 
the grid point and then regionally aggregated into an area-
weighted spatial probability density function (PDF). The 
probability denotes the percentage of landmass in continen-
tal China that experienced a certain change. A nonparamet-
ric assessment: Kernel Density Estimation (KDE) (Scott 
2015) is used rather than the traditional approach of the PDF 
estimations to avoid subjective biases when selecting bins. 
The KDE bandwidth used here follows the Silverman’s Rule 
(Bashtannyk and Hyndman 2001).

The GMST during 1991–2010 is 0.5 °C warmer than 
that during the period of 1960–1979 (Hansen et al. 2010). 
Considering the time period of the observational dataset 
CN05.1 which is 1961–2015, we take 1961–1979 as the 
former 19-year period (which does not affect the results) 
and 1991–2010 as the latter 20-year period. The differences 
between the latter and former period represent the changes 
of the extreme temperature under the historical 0.5 °C warm-
ing. Following Schleussner et al. (2017) we randomly choose 
100 pairs of 20-year period from 1961 to 2010, their differ-
ences are calculated for each dataset as internal variability 
ranges. The 25–75% range is shown in all the figures to be 
given below. If the observed change is significantly different 
from what would be expected to be the internal variability, 
we consider that the change is detectable. Same approaches 
have been used in Fischer and Knutti (2014).

The Pearson product-moment coefficient of linear cor-
relation is used to measure the consistency between certain 
reanalysis dataset and the observational dataset CN05.1 at 

the corresponding locations. The significance of the pattern 
correlation coefficient (PCC) is assessed by the Student’s t 
test.

3 � Results

3.1 � Changes in the intensity indices

Under the past half-degree warming increment, the obser-
vational dataset shows a warming change in all four of the 
extreme temperature intensity indices in most part of con-
tinental China (Fig. 1). The daytime and nighttime cold 
extremes (TXn and TNn) generally exhibit more significant 
warming than the corresponding warm extremes (TXx and 
TNx). The changes are spatially inhomogeneous over China, 
western and north-eastern China has seen more intense 
warming (and also in Yangtze River Valley in TNn). The 
changes in seasonal mean temperature shows good linear 
relationship with the extreme temperature intensity changes 
(Fig. 2). This indicates that the seasonal mean TX and TN 
warming background mainly contributes to the correspond-
ing extreme temperature change. The wider scattering spread 
in DJF than that in JJA possibly implies larger role of inter-
nal variability in the extreme changes in the wintertime. The 
warming of the extreme temperature is more than 1.0 °C 
in daytime and nighttime hot extremes (TXx and TNx), 
and even more than 1.5 °C in the daytime and nighttime 
cold extremes (TXn and TNn) over these regions. The area 
in central-eastern China between the Yellow River Valley 
(~ 40° N) and the Yangtze River Valley (~ 30° N) has seen 
an insignificant cooling of ~ 1 °C in daytime hot extreme 
(TXx), which might be attributed to the anthropogenic aero-
sol changes (Wang et al. 2016; Xu et al. 2018).

Three reanalysis datasets can generally reproduce the 
key features in spatial patterns of the extreme temperature 
intensity changes with the severest warming in western 

Table 1   Definitions and 
calculations of the extreme 
temperature indices

Category Label Definitions and calculations Unit

Intensity TXx Annual maximum value of daily maximum temperature °C
TNx Annual maximum value of daily minimum temperature °C
TXn Annual minimum value of daily maximum temperature °C
TNn Annual minimum value of daily minimum temperature °C

Frequency TX90p Annual count of days when TX > 90th percentile Days
TN90p Annual count of days when TN > 90th percentile Days
TX10p Annual count of days when TX < 10th percentile Days
TN10p Annual count of days when TN < 10th percentile Days

Duration WSDI Annual count of days with at least 6 consecutive days when 
TX > 90th percentile

Days

CSDI Annual count of days with at least 6 consecutive days when 
TN < 10th percentile

Days

https://code.zmaw.de/projects/cdo
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and north-eastern China (except for ERA and 20CR in cold 
extremes). The region with daytime hot extreme cooling 
in central-eastern China can also be captured by the ERA 
and JRA-55. All reanalysis datasets show large deviations 
from the observed extreme temperature changes in west-
ern China and the Tibetan Plateau. Different magnitudes 
and even opposite signs are seen in these regions where 
the observation stations are sparsely distributed. There are 
also large climatology discrepancy seen in these regions 
which may have certain impact on the changes under the 
0.5 °C warming, but it is not solid for all indices (see Fig. 
SI2 and SI3 for more details).

JRA-55 shows satisfying performance in measuring 
both the spatial patterns and the magnitudes of the extreme 
temperature changes. In most regions over continental 
China, the differences between JRA-55 and CN05.1 in 
extreme temperature changes are less than 0.5 °C. ERA 
shows evident cold differences of more than 1.5 °C in 
north-western China and the Tibetan Plateau and less 
than 0.5 °C in parts of eastern China. The differences 
between 20CR and CN05.1 in intensity changes are more 
than 1.5 °C in part of western and north-eastern China and 
also less than 0.5 °C in parts of central and eastern China.

If the changes of the extreme temperature intensity indi-
ces are aggregated in a spatial probability perspective, it is 
evident that under the past half-degree warming increment, 
the extreme temperature intensity indices show consistent 
warming with the PDFs shift to positive (Fig. 3). In the 
observational dataset CN05.1, more than 88.4%/95.3% of 
landmass over continental China has experienced a warming 
by at least 0.5 °C in daytime/nighttime cold extremes (TXn/
TNn). Likewise, more than 46.4%/73.0% of China’s land-
mass has seen at least 0.5 °C warming in daytime/nighttime 
hot extremes (TXx/TNx). The PDF shapes of the internal 
variability of extreme temperature intensity indices in the 
observational dataset all centered on zero and has quasi-
normal distributions. The PDFs of the observed changes 
under the past half-degree warming increment all shift to 
positive and are located out of the expected internal vari-
ability ranges. Hence, the observed changes in extreme tem-
perature intensity are detectable in continental China as in 
previous studies (Chen et al. 2018; Zhao and Zhou 2019). 
The reanalysis datasets are consistent with the observation 
in this regard.

The distribution patterns of PDF in JRA-55 show close 
agreement with the observation in all four of the extreme 

Fig. 1   Patterns of the extreme temperature intensity indices changes under the past 0.5 °C warming increment in China. Differences are calcu-
lated between the latter period of 1991–2010 and the former period of 1961–1979. The black dots denote the 5% significance level
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temperature intensity indices especially the daytime hot 
extreme (TXx). The differences in China’s landmass fraction 
which exhibits a warming by at least 0.5 °C (1.0 °C) are less 
than 10% (12%) between JRA-55 and observation (Fig. 3e). 
In comparison, ERA and 20CR manifest weaker consistency 
with the observational records. ERA tends to have wider 
decrease tails than the observation in all the PDFs, indicat-
ing an underestimation of the warming in the extreme tem-
peratures, especially in western China according to Fig. 1. 
On the other hand, 20CR shows narrower PDF distributions 
than the other two reanalysis datasets in hot extremes (TXx 
and TNx), indicating less spatial diversity in the intensity 
changes. The deviations between ERA/20CR and observa-
tion in China landmass fraction with extreme temperatures 
warming over 0.5 °C (1.0 °C) are about 34%/32% (41%/44%) 
respectively, which are larger than that of JRA-55.

The observation and the reanalyses show greater agree-
ment in the PDFs of the daytime and nighttime hot extreme 
(TXx and TNx) changes than that of the cold extreme (TXn 
and TNn) especially in ERA and 20CR. Daytime and night-
time hot extreme (TXx and TNx) generally appears in boreal 
summer and daytime and nighttime cold extreme (TXn and 
TNn) generally appears in boreal winter over China. 20CR 

assimilated hourly and synoptic barometric pressure obser-
vations, monthly averaged sea surface temperature, and sea 
ice concentration field (Compo et al. 2011). Summer climate 
in China is mainly controlled by the East Asian monsoon 
which is strongly affected by the tropical SST, land-sea 
thermal contrast and the western North Subtropical High. 
It means the temperature changes in summer could be well 
constrained by observed SST and surface pressure which are 
assimilated in all the reanalysis. In contrast, in boreal win-
ter, climate in China experience larger atmospheric internal 
variability, like blocking high, polar vortex and cold surge 
processes which are less constrained by the SST and the 
surface pressure. So the winter (cold) extreme tempera-
ture change shows more uncertainty than the summer (hot) 
extreme temperature.

3.2 � Changes in the frequency indices

For the extreme temperature frequency indices, the observa-
tion shows general increases in warm days/nights (TX90p/
TN90p) and decreases in cold days/nights (TX10p/TN10p) 
under the past half-degree warming increment (Fig. 4). Dif-
ferent from the intensity indices, the changes in cold days/

Fig. 2   Relationship between the 
seasonal mean daily maximum 
and minimum temperature 
changes and the extreme tem-
perature intensity changes under 
half-degree warming increment. 
Blue dots are CN05.1, orange 
dots are JRA-55, green dots are 
ERA and purple dots are 20CR
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nights (TX10p/TN10p) are milder than that of the warm 
days/nights (TX90p/TN90p). In general, significant changes 
(increases in hot extremes and decreases in cold extremes) 
are seen in the Tibetan Plateau, western and north-eastern 
China in the observation. The changes in warm and cold 
nights (TN90p and TN10p) are more than a month in most 
part of these regions. The region in central-eastern China 
with cooling in daytime hot extreme (TXx) also sees 
decreases in warm days (TX90p).

The reanalysis datasets reproduce the key features of the 
observation but with weaker magnitudes. They tend to gen-
erally underestimate the increases of the warm days/nights 
and the decreases of the cold days/nights. There are larger 
differences over the regions with insufficient observational 
station coverage such as western China and the Tibetan 
Plateau.

JRA-55 shows good consistency with the observa-
tion (except for TN90p where JRA-55 underestimate the 
increases in observation in many regions). Both the spatial 
patterns and magnitudes of the extreme temperature fre-
quency changes are well captured. The differences between 
JRA-55 and the observation in frequency changes are less 
than 7 days in half of the China’s landmass (except for 
TX90p). ERA shows less consistency with the observa-
tion, particularly in north-western China and the Tibetan 
Plateau. 20CR shows better agreement with the observa-
tion in TN90p than other frequency indices. The difference 
between 20CR and the observation reaches 20 days in the 
north-eastern China and part of the western China in fre-
quency indices (except for TN90p).

In the context of spatially aggregated PDFs, more than 
50% of China’s landmass has seen an increase by at least 
19/34 days in warm days/nights (TX90p/TN90p) and a 
decrease by at least 7/21 days in cold days/nights (TX10p/
TN10p) in the observational records (Fig. 5). The PDFs of 
the changes in warm indices (TX90p and TN90p) gener-
ally spread wider than the cold indices (TX10p and TN10p), 
which denotes that the changes in warm days/nights are 
more spatially inhomogeneous in continental China (as in 
the spatial patterns in Fig. 4). Like the extreme temperature 
intensity indices, the anthropogenic influence is also detect-
able in the changes of the frequency indices. While only few 
grid points exhibit significant changes (Fig. 4), the observed 
spatially aggregated PDFs all shift out of the expected inter-
nal variability ranges.

The reanalysis datasets generally show reasonable agree-
ment with the observations in the frequency indices changes 
except with lower magnitudes. We calculate the changes of 
frequency indices in 50% (blue shading) and the warm-
est 25% (pink shading) of landmass in continental China 
(Fig. 5e). Noted that different from intensity extremes, the 
climatology of each frequency extreme varies in a wide 
range. Changes in the absolute value of each indice are not 

Fig. 3   Changes in the extreme temperature intensity indices under 
the past 0.5 °C warming increment in China. The PDFs in a–d repre-
sent the percentage of the aggregated landmass in continental China 
experienced certain changes during the period of 1991–2010 com-
pared to the period of 1961–1979. Solid lines are results derived from 
the observational and reanalysis datasets. Blue lines are the results 
derived from the homogenized gridded observational dataset CN05.1, 
orange lines are JRA-55, green lines are ERA and purple lines are 
20CR. Red lines denote a 0.5  °C warming in certain temperature 
indices. The corresponding light color ribbons represent the internal 
variability with a range of 25–75%. The percentage of landmass in 
continental China that sees a 0.5 °C (1.0 °C) warming is given with 
blue (pink) shading in e 
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comparable. JRA-55 shows good agreement with the obser-
vation in the frequency changes except for TN90p. In half of 
China’s landmass, the differences between JRA-55 and the 
observation are less than 1 day in TX90p, TX10p, ~ 7 days in 
TN10p, and ~ 13 day in TN90p. There are more pronounced 
lower tails of the PDF distributions in the warm frequency 
indices (TX90p and TN90p) and more pronounced higher 
tails in the cold frequency indices (TX10p and TN10p) in 
ERA. This indicates that ERA underestimate the increases of 
warm days/nights (TX90p/TN90p) and the decreases of cold 
days/nights (TX10p/TN10p). The difference in frequency 
changes between ERA and CN05.1 is about  4–13 days 
in half landmass of continental China. 20CR shows good 
agreement in warm nights (TN90p) with a difference less 
than 5 days compared to observation in half of China’s land 
mass, while large deviation of 17 days can be found in cold 
nights (TN10p).

3.3 � Changes in the duration indices

The observed spatial patterns of the extreme tempera-
ture duration indices changes under the past half-degree 
warming increment (Fig. 6a, e) are like that of the extreme 

temperature intensity and frequency changes. The extension 
in warm spell duration (WSDI) and shortening in cold spell 
duration (CSDI) are most significant over western and north-
eastern China and weaker over central-eastern China. The 
warm spell is about 8–12 days longer and the cold spell is 
about 3–5 days shorter in western and north-eastern China 
under the 0.5 °C warming increment.

The increase in warm spell duration (WSDI) and decrease 
in cold spell duration (CSDI) are generally captured by rea-
nalysis (Fig. 6), while in regions with sparse observational 
station coverage, particularly over Tibetan Plateau, all rea-
nalysis datasets show large deviations from the observed 
extreme temperature duration changes. JRA-55 reproduces 
most of the key features in the observation. In eastern China 
where the observational records are rich, the differences 
between JRA-55 and the observation in duration changes 
are less than 2 days, while the differences in observation-
sparse western China are relatively larger. ERA and 20CR 
have weaker performance compared to JRA-55. It tends 
to underestimate the extension of the warm spell and the 
shortening of the cold spell mainly in western China. The 
deviation from observation in warm spell duration (WSDI) 
changes is more than 10 days over vast area of western and 

Fig. 4   Same as Fig. 1 but for extreme temperature frequency indices
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north-eastern China in 20CR and more than 10 days over 
western China in ERA.

We can detect significant changes in duration indices that 
emerge from internal variability in a spatially aggregated 

perspective as their PDF of the changes shift out of the 
expected internal variability (Fig. 7). In the observational 
records, the warm spell extends by at least 8 days and the 
cold spell shortens by approximately 3 days over half of total 
land fractions in continental China. The anthropogenic influ-
ence on the warm spell duration (WSDI) is stronger than that 
on the cold spell duration (CSDI), as the observed changes 
in the warm spell duration (WSDI) are more significantly 
different from what would be expected to be the internal 
variability.

All the reanalysis datasets can capture the general exten-
sion tendency of the warm spell and the shortening tendency 
of the cold spell under the half-degree warming increment in 
the spatially aggregated perspective, but the magnitudes of 
the changes are underestimated (except for 20CR in WSDI). 
Like the observation, the anthropogenic influence signal is 
less clear in cold spell duration (CDSI) as the PDF distri-
butions of reanalysis datasets manifest limited differences 
to the expected internal variability. JRA-55 shows good 
agreement with the observation. The differences between 
JRA-55 and the observation are less than 1 day in warm 
spell duration (WSDI) and ~ 2 days in cold spell duration 
(CSDI) changes in half of continental China. ERA generally 
underestimates the magnitudes of the extreme temperature 
duration changes with a difference of ~ 3 days in warm spell 
duration (WSDI) and ~ 2 days in cold spell duration (CSDI) 
from the observation. 20CR shows a general warm deviation 
compared to the observation. It has a difference of ~ 7 days 
in the warm spell duration (WSDI) changes and ~ 3 days in 
the warm spell duration (WSDI) over the 50% landmass in 
continental China.

3.4 � Spatial correlation and RMSE analysis

We try to clarify the advantage and disadvantage of rea-
nalysis datasets on revealing the extreme temperature 
changes based on comprehensive consideration of PCC 
and Root Mean Squared Error (RMSE) with the observa-
tional dataset (Fig. 8). JRA-55 shows generally good con-
sistency with the observation in of extreme temperature 
changes under the past half-degree warming increment. 
In China’s mainland, the PCC of the extreme tempera-
ture changes between JRA-55 and the observation range 
between 0.74 to 0.94. The RMSE is less than 0.9 °C in 
intensity indices, ~ 6–18 days in frequency indices and 
~ 2–5 days in duration indices. ERA shows generally lower 
spatial correlation coefficients with the observation than 
JRA-55 in continental China, with PCC less than 0.74 
in all extreme indices. The RMSE are between 0.8 and 
1.5 °C in intensity indices, ~ 13–26 days in frequency indi-
ces and ~ 3–6 days in duration indices. 20CR shows large 
uncertainties across different indices with the PCC range 
between 0.43 and 0.94. RMSE are between 0.5 and 1.6 °C 

Fig. 5   Same as Fig. 3 but for frequency indices. Red lines denote 50% 
of aggregated China’s landmass. The blue (pink) shading in c repre-
sents changes in duration indices in 50% (warmest 25%) of China’s 
landmass
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in intensity indices, ~ 10–20 days in frequency indices and 
~ 4–10 days in duration indices. It shows generally better 
performances in hot extreme which mainly occurs in sum-
mer. As we have addressed before, by assimilating SST 
and surface pressure, 20CR may have better performances 
in summer large-scale circulations which are mainly con-
trolled by the SST and surface pressure.

CN05.1 is a homogenized gridded dataset interpolated 
from more than 2400 stations in China. The observation 
stations have inhomogeneous spatial distributions in west-
ern and eastern China. Only ~ 9% of the stations locate in 
the regions west of 100° E in China. Given this distribu-
tion asymmetry, we divided continental China into two 
subregions: western China (regions west of 100° E) where 
the observational network is sparse, and eastern China 
(regions east of 100° E) where the observation stations are 
more homogenously and densely distributed. The PCC in 
extreme temperature changes between the reanalyses and 
the observation are significantly higher in eastern China 
than that in western China (except for 20CR in percentile-
based warm indices) and the RMSE are generally lower. 
The PCC of extreme temperature changes between JRA-55 
and the observation range between 0.69 to 0.93 in western 
China, which are lower than that in eastern China in all 
ten of the extreme temperature indices. Same features are 
also evident in ERA. 20CR only shows higher PCC in 
eastern China in intensity indices but RMSE is lower in 
the eastern China in each indices. The observation sparse 
regions have more uncertainties due to less observational 
constraints in reanalysis datasets assimilations. Therefore, 

it is difficult to estimate which of the reanalyses has a more 
realistic behavior than others in these regions (Donat et al. 
2014).

4 � Conclusion and discussion

Due to the high impact of climate extremes on nature and 
social system, its changes in the 1.5 °C and 2 °C warmer 
worlds are of global concern on the post-Paris science 
agenda. While the extreme temperature changes under 
the 0.5 °C additional warming increment measured by 
observational datasets are hoped to be useful references 
for adaptation activities, the observational datasets have 
suffered from insufficient spatial consistency and temporal 
continuity in observational stations. The reanalysis data-
sets are hoped to be useful substitutes of the observations 
but the quality needs to be assessed. In this study, we eval-
uate the consistency of the extreme temperature changes 
under the past half-degree GMST warming increment in 
continental China across observation and three reanalysis 
datasets in a spatially aggregated perspective. The major 
findings are summarized below:

1.	 All three reanalysis datasets can generally capture the 
increases in warm extremes and the decreases in cold 
extremes as the observation over continental China 
under the historical 0.5 °C warming increment. The 
spatial distribution patterns are reasonably reproduced. 
Regions with significant extreme temperature changes 

Fig. 6   Same as Fig. 1 but for duration indices
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such as western and north-eastern China are captured by 
the reanalyses, but large spreads are seen across datasets, 
which may be attributed to less observational constraints 
over these regions in the reanalysis data assimilation 
(Donat et al. 2014). In a spatially aggregated perspec-
tive, the reanalysis datasets show comparable signs but 
weaker magnitudes in the extreme temperature changes 
compared to the observation. The anthropogenic influ-
ence on the extreme temperature changes under the past 
half-degree warming increment can be detected in the 
reanalysis datasets as in the observation.

2.	 JRA-55 shows good consistency with the observation. 
Both the spatial patterns and the actual values of the 
extreme temperature changes are reasonably captured, as 
evinced by PCC between 0.74 (CSDI) to 0.94 (TN10p) 

with the observation. The difference in intensity indices 
changes in China’s landmass that sees at least 0.5 °C 
warming between JRA-55 and the observation is less 
than 10.0%. ERA tends to underestimate the magnitudes 
of the extreme temperature changes. It has large differ-
ences with the observation (PCC less than 0.74) espe-
cially in western China and the Tibetan Plateau where 
the observation stations are sparsely distributed. 20CR 
shows large uncertainties across extreme indices with 
PCC range between 0.43 (CSDI) to 0.94 (TN90p). It 
shows generally better consistency in hot extremes than 
in cold extremes. Because the temperature changes in 
summer could be well constrained by observed SST and 
surface pressure assimilated in the reanalysis dataset.

Fig. 7   Same as Fig. 3 but for 
extreme temperature duration 
indices. Red lines denote 50% 
of aggregated China’s landmass. 
The blue (pink) shading in c 
represents changes in duration 
indices in 50% (warmest 25%) 
of China’s landmass
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Finally, we present a discussion on the strengths 
and weaknesses of reanalysis datasets in measuring the 
extreme temperature changes in continental China. Our 
evaluation indicates that all three reanalysis datasets mani-
fest weaker performance in revealing the extreme tempera-
ture changes in western China and the Tibetan Plateau. 
This kind of weakness is resulted from less observational 
constraints in data assimilation process of reanalyses. 
Among the three datasets, JRA-55 has assimilated more 
observational data archived by the Japan Meteorological 
Agency (JMA) particularly over East Asia such as sur-
face temperature, rain-gauge precipitation data etc., which 
makes it outperform other reanalysis in reproducing the 
climate changes here (Chen et al. 2014; Huang et al. 2018; 
Chen et al. 2019). In comparison, 20CR only assimilated 
hourly and synoptic barometric pressure observations, 
monthly averaged sea surface temperature, and sea ice 
concentration field (Compo et al. 2011), and this has led 
to less observational constraints to the 2 m temperature.

The aerosol concentration changes may significantly 
affect both mean state and extreme temperature in China. 
Qian et al. (2011) uses regional simulation together with 
observation of aerosol properties and shows that due to 
direct and indirect aerosol effect a cooling trend has been 
seen in various regions in China during the last decades 
of the twentieth century. Huang et al. (2006) developed 
a regional coupled climate-chemistry-aerosol model to 
examine the impacts of aerosol on surface temperature 
over East Asia. The experiment shows that the daytime 
surface temperature cools ~ 0.7 °C over the industrialized 

parts of China. The future projected changes in tempera-
ture extremes are also affected by aerosol changes in dif-
ferent Representation Concentration Pathways (Li et al. 
2016a, b; Wang et al. 2016, 2017; Xu et al. 2018).

In reanalysis datasets, the assimilated aerosol deter-
mines the calculation of the solar radiation in certain 
extent (Zhou et al. 2017; Du et al. 2018). Aerosol mani-
fests sophisticate temporal and spatial variations in China 
(Yu et al. 2003; Li et al. 2016a, b). A “realistic” aerosol 
optical depth (AOD) data used in the reanalysis assimi-
lation system has been proved to benefit on character-
izing the regional warming (Zhou et al. 2017). JRA-55 
has used a climatology annual cycle AOD data based 
on observations from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) and the Total Ozone Map-
ping Spectrometer (TOMS) (Kobayashi et al. 2015). In 
comparison, ERA-40 uses model designed climatology 
AOD distributions (Tanré et al. 1984) and ERA-Interim 
uses model designed monthly climatology AOD (Tegen 
et al. 1997) which has more homogeneous spatial distri-
bution compare to the MODIS observation assimilated in 
JRA-55 (Benedetti et al. 2008). 20CR only assimilated 
the volcano aerosols and also has biases with the obser-
vation both in temporal and spatial changes. The lack of 
AOD time evolution and realistic spatial distribution in 
these two reanalysis datasets partly explains their biases 
in reproducing the extreme temperature changes.

Besides, the anthropogenic influences are detectable on 
extreme temperature changes as we presented previously in 
the observational datasets. But with climatology observed/

Fig. 8   a Pattern correlation coefficient and b RMSE of the extreme 
temperature indices changes under the past 0.5  °C warming incre-
ment between the observational dataset and the reanalysis datasets in 
China’s mainland and two subregions. Every three column represent a 

specific reanalysis dataset. Column “CN” represents the mainland of 
China, “W” represents western China (west of 100° E) and “E” repre-
sents eastern China (east of 100° E)
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model designed aerosol concentration in JRA-55/ERA and 
only volcano aerosol in 20CR, the reanalysis datasets may 
still has certain biases with observation in extreme tempera-
ture changes under anthropogenic influence which should be 
treated with care.
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