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Abstract
The power spectrum provides a compact representation of the scale dependence of the variability in time series. At multi-
millennial time scales the spectrum of the Pleistocene climate is composed of a set of narrow band spectral modes attributed 
to the regularly varying changes in insolation from the astronomical change in Earth’s orbit and rotation superimposed on a 
continuous background generally attributed to stochastic variations. Quantitative analyses of paleoclimatic records indicate 
that the continuous part comprises a dominant part of the variance. It exhibits a power-law dependency typical of stochas-
tic, self-similar processes, but with a scale break at the frequency of glacial-interglacial cycles. Here we discuss possible 
origins of this scale break, the connection between the continuous background and the narrow bands, and the apparently 
modest spectral power above the continuum at these scales. We demonstrate that the observed scale break around 100 ka 
can have a variety of different origins and does not imply an internal time scale of correlation as implied by the simplest 
linear stochastic model.

1  Introduction

The schematic picture of the climate spectrum proposed by 
Mitchell (1976), reproduced in Fig. 1, provides a classical, 
standard view of climate variability. Mitchell made a distinc-
tion between the continuous stochastic background spectrum 
and the discrete (line) spectrum superimposed, comprised by 
the periodic diurnal -, tidal -, and annual cycles.

Obviously, Mitchell’s figure is schematic and not intended 
to be interpreted too literally. For example, if we could com-
pute the Fourier transform of temperature records available 
over the entire geological history, the spectral line of the 
diurnal cycle would be broadened due to the tidally-forced 
slowing down of the Earth’s rotation. Likewise, the 100 ka 
cycle, which is characteristic of the Pleistocene (2.6 Ma–12 
ka BP), would not appear clearly on the spectrum of a 1 
billion-year-long record. In other words, the low frequency 

part of Mitchell’s spectrum is not an average over geological 
times, but rather a depiction of the dynamics averaged over 
a characteristic time in the recent Earth history. Yet, it offers 
an important and key insight by combining two aspects of 
climate variability. One is associated with stochastic pro-
cesses, where the accumulation of random fluctuations gen-
erates the background spectrum. The other aspect is associ-
ated with the periodic or quasi-periodic climate variations. 
These are the peaks on the spectrum.

The underlying theory and interpretation of Mitchell’s 
background spectrum were given by Hasselmann (1976). 
The basic assumption is that fast (chaotic) climatic fluctua-
tions (atmosphere temperature) decorrelate quickly enough 
to be effectively seen as noise by the slower components 
(ocean temperature) of the climate system. The influence 
of the noise on the slow climate variables is then integrated 
over time, counteracted by stabilising feedback processes. 
The latter brings the slow variables back to an equilibrium 
state with some characteristic relaxation time. In the Has-
selmann picture, the fluctuations are white noise, and the 
relaxation process is linear. It is a standard example of an 
Ornstein–Uhlenbeck (OU) process. Its power spectrum 
is easily calculated, as we shall do shortly. It behaves as 
(P(f ) ∼ f −2) for frequencies larger than the inverse relaxa-
tion time and has a flat spectrum (P(f ) ∼ f 0) for frequencies 
smaller than the inverse relaxation time.
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The origin of peaks at 20, 40 and 100 ka are, in Mitch-
ell’s spectrum, related to the astronomical forcing of cli-
mate. From celestial mechanics it is indeed established 
(Milankovitch 1941) that over time scales of tens of thou-
sands of years, the precession of Earth’s axis of rotation, 
variation in the inclination of the axis (obliquity) and in 
eccentricity affect the seasonal and latitudinal distributions 
of insolation. These orbital—or astronomical—variations 
constitute the dominant external forcing to the climate sys-
tem. They are due to many-body perturbations of Earth’s 
Keplerian orbit and steady rotation, and can be represented 
as a series of harmonic functions of time, with leading 
components having periods of 19, 21, 23 (precession), 41 
(obliquity), 100 and 400 ka (eccentricity) (Berger 1978). 
Evidence that the astronomical forcing somehow controls 
the succession of ice ages became largely acknowledged 
when Hays et al. (1976) recognised the astronomical fre-
quencies in the power spectra of marine isotopic records. 
Investigators have therefore focused on the mechanisms by 
which the astronomical forcing may generate, or at least 
set the timing, of ice ages. An approach has been to model 
the ice age phenomenon as governed by a determinstic 
dynamical system, featuring a small number of essential 
interacting climatic variables. A variety of models were 
proposed, involving interactions between ice volume/
ocean temperature/atmospheric CO2 (Saltzman and Sutera 
1987; Saltzman and Maasch 1990), ice sheet extent/plan-
etary albedo/atmospheric CO2 (Ghil et al. 1985), calci-
fying plankton/ocean alkalinity/CO2 (Omta et al. 2013), 
and ocean temperature/ice sheet area/basal temperature 

(Verbitsky et al. 2018), to cite but a few. Other models are 
more conceptual in the sense that they do not immediately 
identify variables with components of the climate system, 
but provide more generic results about the response to 
the astronomical forcing of a non-linear multi-stable sys-
tem (Paillard 1998; Ditlevsen 2009; Daruka and Ditlevsen 
2015), bi-stable potential with stochastic forcing (Benzi 
et al. 1982), internal oscillator (De Saedeleer et al. 2013; 
Mitsui et al. 2015; Ashwin and Ditlevsen 2015; Nyman 
and Ditlevsen 2019), or a threshold crossing process 
(Imbrie and Imbrie 1979; Huybers and Wunsch 2005). 
Some models require the astronomical forcing for gen-
erating glacial-interglacial cycles, while others exhibit 
a self-sustained cycle which can be synchronized on the 
astronomical forcing. Yet, they all generate power spectra 
in which the power is narrowly concentrated in the region 
10–100 ka, and exhibit pronounced spectral peaks.

Although the Milankovitch theory relating the glacial 
cycles to the narrow band astronomical forcing was con-
firmed, the spectral variance in the bands of astronomi-
cal forcing seems to capture only a limited fraction of 
the total variance of the record. This is seen in Fig. 2, 
with the spectra from the past 2 Ma of the Lisiecki and 
Raymo (2005) (LR04, green) and the Huybers and Wun-
sch (2004) (HW05, blue) records. These are composite 
records, obtained by averaging (“stacking”) several indi-
vidual records. The two stacks differ mainly in the dating 
assumptions: The LR04 is tuned to a simple climate model 
using the insolation curve, while the HW05 is dated using 
a constant sedimentation rate model independent from 
the astronomical forcing. As LR04 is tuned, it displays 
slightly more power in the obliquity and precession bands. 
Even with that tuning, though, the background spectrum 
contains most of the total variance. Before us, Wunsch 
(2003) estimated the fraction of the spectral power of the 
precession and obliquity bands (excluding 100 ka eccen-
tricity band) in the paleoclimatic records to be less than 
15%. When assuming a somewhat broader band spectrum 
around the astronomical periods, Tziperman et al. (2006) 
proposed that 65% of the spectral power exists over the full 
astronomical bands of precession (8%), obliquity (18%) 
and eccentricity (39%). Meyers et al. (2008) gave yet dif-
ferent estimates: 28% for precession and obliquity bands, 
41% for eccentricity band, and 31% for the background 
continuum. The differences originate from the fact that 
there is no unique way of separating the spectrum into the 
two parts. In the latter estimate the spectrum is assumed 
to be generated by a linear sum of a red noise process 
and the narrow band astronomical forcing. The relative 
weights of the two components are obtained by estimating 
the parameters for the red noise process, an AR(1) pro-
cess, from the continuous part of the spectrum away from 
the narrow peak spectrum rather than estimating from the 

Fig. 1   Schematic power spectrum of the climate variability on all 
scales reprinted from Mitchell (1976). The dashed lines within the 
gray area below the continuous spectrum indicate the contributions 
from processes on regional scales below 1000 km and 100 km respec-
tively. Why variability on small spatial scales should be suppressed 
on long temporal scales is not well explained by Michell and not clear 
to us. This is, however, not the focus here, where we shall only dis-
cuss the full spectrum
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lag-one autocorrelation, which is heavily influenced by the 
narrow peak spectrum (Mann and Lees 1996).

The Hasselmann conceptual framework for interpreting 
the background also needs to be questioned. Figures 2 and 
3 show spectra calculated from the oxygen isotopic ratio of 
benthic foraminifera, sampled in deep sea cores. The records 
reflect changes in ice volume and deep-sea temperature, and 
are considered as reasonable indicators of climate variations 
during the Cenozoic (66 Ma–present). The spectra of the 
shortest records, covering the last million years, display 
a scale break around 100 ka. This scale break at 100 ka 
has been recognized by several previous studies (Wunsch 
2003; Pelletier 2003; Lovejoy and Schertzer 2013; Shao 
and Ditlevsen 2016) and will hereafter be referred to as the 
“crossover”. As seen by the red curve in Fig. 2, the power 
spectra of the benthic records are reasonably well accom-
modated by a Lorentzian (defined in Sect. 3), suggesting 
that the OU-process with a relaxation time scale of 100 ka 
is a priori a reasonable model for this part of the spectrum. 
However, interpreting this in terms of climatic feedback 
raises the problem: There are no obvious components of the 
climate system described by linear feedback processes with 
a relaxation time scale of the order of 100 ka.

The longest records (Fig. 3) have spectra scaling in the 
low frequency end of the spectrum roughly as P(f ) ∼ f −� 
with � ≈ 1 , which is between the two scaling regimes for 
the OU-process. One approach is to explain a � ≈ 1 scal-
ing spectrum from a multitude of OU-processes by extend-
ing the stochastic relaxation model to account for multiple 

relaxation time scales. The spectrum obtained from observa-
tions of the system will then be composed of several Lorent-
zians, which can be arranged to accommodate almost any 
background spectrum with a slope (in the log-log plot) vary-
ing between 0 and − 2, including the scaling spectrum with 
� = 1 (Rypdal and Rypdal 2014). However, this solution 
exacerbates the problem already mentioned: at time scales 
of several millions of years the dynamics are better seen as 
an evolutionary process than as a form of linear relaxation.

Some alternative interpretations of the spectral back-
ground were suggested. A constant slope (in a log–log plot) 
may reveal some form of scaling invariance related to the 
symmetry of the equations governing the dynamics of the 
system being observed (Lovejoy 2015). The view is inspired 
by turbulence theory, in which scale analysis of the gov-
erning Navier–Stokes equations provides a constraint on 
the slope of the expected spectrum (Lovejoy and Schertzer 
2013). Similar scale invariance has recently been detected in 
a low-order ice-sheet climate model, in which it was shown 
that forcing at millennial time scale can excite low-frequency 
response following an upward cascade which is constrained 
by an approximate scale invariance of the dynamical equa-
tions (Verbitsky et al. 2018, 2019). In this view, a crosso-
ver, or a change in slope, is therefore related to a change in 
the nature of dominant processes which control the system 
evolution over a certain time scale. Lovejoy and Schertzer 
(2013) used the fluctuation spectrum as an empirical basis to 
define different such regimes: “weather”, “macroweather”, 
“climate”, and “macro-climate”. The 100-ka crossover in 
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Fig. 2   The past 2 Ma of the Lisiecki and Raymo (2005) (LR04, 
green) and the Huybers and Wunsch (2004) (HW05, blue) stacks of 
Pleistocene deep sea benthic foraminiferal oxygen isotope records 
are shown in the left panel. The dating of the former is obtained by 
fitting to an ice-sheet model forced by the 65N summer insolation, 
while the latter is dated based on sedimentation rates, independent 
from astronomical forcing. The spectra are shown in the right panel. 
As expected the tuned record (LR04) has slightly higher weights in 
the astronomical bands than the untuned (HW05) (indicated by grey 

bars). The discrepancy between the spectra at high frequencies is due 
to different procedures for smoothing out non-climatic noise in the 
stacked records. The spectra of the three astronomical parameters are 
shown at the bottom: eccentricity (magenta), obliquity (purple) and 
precession (red). The smooth red curve is the Lorentzian indicating 
a spectral crossover around the astronomical time scales. Here, as 
well as in the rest of the paper, the spectra are simply estimated by the 
Fourier periodogram
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this picture then corresponds to the transition between the 
“climate” and “macroclimate” regimes.

Finally, in the schematic spectrum in Fig. 1 the spectral 
density varies less than an order of magnitude over the range 
10–105 years. By contrast, the spectra in Fig. 3 vary by four 
to five orders of magnitude in the same frequency range.

Our objective here is, on one hand, to reconcile the lack of 
strong astronomical peaks in the climate spectrum obtained 
from paleoclimatic observations at glacial time scales with 
the theories of the dominant role of astronomical forcing 
in shaping the glacial cycles. On the other hand, we sug-
gest that the spectral crossover around 100 ka should not 
be interpreted as a relaxation time scale as suggested in the 
linear stochastic climate model approach.

We shall argue that the interpretation of the spectrum as 
a superposition of independent discrete (deterministic) and 
continuous (stochastic) parts, also suggested by the linear 
stochastic climate model, is insufficient in accounting for 
the climate spectrum. The observed spectrum strongly sug-
gests that the dynamics implies a broad band response to 
the narrow band forcing. To approach this problem, we will 
illustrate the interplay between scale breaks in the continu-
ous spectrum and spectral peaks by focusing on the range 

of scales imprinting the Pleistocene glacial cycles using the 
simplest available models of the glacial climate.

After briefly reviewing some basic relations for power 
spectra and stochastic models, we perform simple numer-
ical experiments with the Saltzman and Maasch (1990) 
limit cycle glacial model (SM90) to show that even moder-
ate dating uncertainties, realistic for paleoclimatic records, 
result in substantial spectral broadening of a discrete spec-
trum. This broadening leads to a spectrum with a scale 
break similar to what is seen in the estimated spectra for 
the paleoclimatic observations. For specific parameter 
choices the SM90 model does show chaos (Mitsui and 
Aihara 2014), but for illustrating the effect of chaos, we 
proceed with the classical Lorenz ’63 system to show that 
the interplay between spectral peaks and scale breaks is 
subtle. The Lorenz ’63 model is not relevant as a model 
of glacial cycles, but it is the most well-known and well 
studied low-dimensional chaotic system, and the spectral 
features are similar to any other simple chaotic model. The 
characteristic time scale of running through one lobe of 
the Lorenz attractor shows up as a scale break in the x- and 
y-components and as spectral peaks in the z-component.
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Fig. 3   Spectra from five different global deep sea oxygen isotope 
records, stacked and composed from ocean sediment cores: Zachos 
et  al. (2001) (magenta) present a composite of more than 40 Ocean 
drilling program (ODP) cores covering 0-65 Ma, Littler et al. (2014) 
(light blue) present a South Atlantic core covering a period in the 
early Paleocene (52.5–60.5 Ma), De  Vleeschouwer et  al. (2017) 
(green) present a splice of 11 sediment cores covering the period 
0–33 Ma, Lisiecki and Raymo (2005) (blue) present a stacked record 
of 57 overlapping cores covering 0-5.3 Ma and finally Grant et  al. 
(2014) (red) present a core from the Red Sea, representing relative 

sea level covering 0–492 ka. The different records give a consistent 
estimate for the spectra. From top to bottom it is seen that for the 
records covering the past approximately 5 Myrs the spectrum is flat 
(P(f ) ∼ 1) for time scales longer than the astronomical periods, indi-
cated by the vertical dashed lines. When including the warmer and 
older parts of the Paleocene, the spectrum is not flat but rather scaling 
with a slope close to − 1 (P(f ) ∼ f −1) , indicated by the black lines. 
Here the spectra are calculated with the multitaper method (Thomson 
1982), where the bandwidth parameter is 2 and 3 tapers as suggested 
by Ghil et al. (2002)
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We then consider some non-intuitive effects of the forc-
ing. Resonance theory tells us that a periodically forced, 
damped linear oscillator responds with a spectral peak at 
the forcing frequency. If, however, the forcing also has a 
stochastic component, a broad peak around the internal 
frequency appears if the damping is small, and a crosso-
ver at a much lower frequency that the internal frequency 
appears when the damping coefficient is large. To com-
plete the picture, we consider several cases of purely sto-
chastic models with drift constrained by a threshold, all 
previously proposed as models of the glacial cycles. In 
these stochastic models the spectrum shows a crossover 
at a time scale determined by a characteristic transit time.

2 � The autocorrelation and the power 
spectrum

For later reference, we briefly review the basics of the 
spectrum and the standard OU-process in the next two 
sections. We, furthermore derive a few central mathemati-
cal results in the Appendix. This can be skipped without 
loss of continuity, it is included for the presentation to be 
self-contained. In our discussion of the spectrum so far 
we have simply obtained the spectrum from the Fourier 
transform calculated from a time series, without consider-
ing the nature of the time series. This empirical approach 
is natural when considering observations, but in the fol-
lowing we will need to be a little more specific because we 
compare estimated spectra with analytic results and reali-
zations of different models. Firstly, the finite time series 
can be considered as “windowed data” from an infinite 
time series, thus we consider x(t) over −T∕2 < t < T∕2 
and assume x(t) = 0 elsewhere. This is a convenient way 
of handling convergence problems. When relevant we will 
implicitly assume that the limit T → ∞ is taken. Then, the 
Fourier transform of x(t) may be written as

with the inverse Fourier transformation

The power spectral density, here just denoted the power 
spectrum, is defined in two fundamentally different ways, 
which are sometimes confused. For a deterministic time 
series x(t), sometimes called a signal, the power spectrum is

(1)x̂(𝜔) =
1

2𝜋 ∫
∞

−∞

x(t)e−i𝜔tdt =
1

2𝜋 ∫
T∕2

−T∕2

x(t)e−i𝜔tdt,

(2)x(t) = ∫
∞

−∞

x̂(𝜔)ei𝜔td𝜔.

(3)P(𝜔) = lim
T→∞

2𝜋x̂(𝜔)x̂(−𝜔)

T

while for a stochastic time series, x(t), also called a stochas-
tic process, the power spectrum is defined as

where ⟨.⟩ denotes an ensemble mean. Thus the power spec-
trum is considered as the mean (which is also the expec-
tation value) over many realizations of the stochastic pro-
cess. An ergodic process is defined by the property that the 
temporal mean (3) and the ensemble mean (4) (in the limit 
T → ∞ ) are identical. The autocorrelation function c(�) for 
the process x(t) is defined as the ensemble mean,

Here it is implicitly assumed that the process is stationary, 
which implies that the statistics is time independent, thus the 
autocorrelation in (5) does not depend on t. By substituting 
t → t + � it follows that the autocorrelation is a symmetric 
function, c(−�) = c(�) . Again for an ergodic process we can 
as well define the autocorrelation as the temporal mean:

which is obviously independent of the integration variable 
t. A very important result, the Wiener–Khinchin theorem, 
states that the power spectrum and the autocorrelation are a 
Fourier transformed pair (see Appendix B):

Since both c(�) and P(�) are symmetric functions, the inte-
grals are just twice the integrals between 0 and ∞ . The 
autocorrelation, like any correlation function, is inherently 
related to stochastic variables. However, for any (square inte-
grable) deterministic function, we can of course formally 
apply (6). Thus for the harmonic function cos�t we get

The harmonic function is not a stationary process, but for 
a rigorous treatment, we can introduce a stochastic phase, 
� , uniformly distributed over [ 0, 2�∕� ] so that cos�(t + �) 
becomes a stationary stochastic process. By taking the 
ensemble average over � we get a result identical to (8). This 
trick can easily be applied to any deterministic function. By 
using the spectral representation of the Dirac delta distribu-
tion (see Appendix A),

(4)P(𝜔) = lim
T→∞

2𝜋⟨x̂(𝜔)x̂(−𝜔)⟩
T

,

(5)c(�) = ⟨x(t + �)x(t)⟩.

(6)c(�) = lim
T→∞

1

T ∫
T∕2

−T∕2

x(t + �)x(t)dt,

(7)

P(�) =
1

2� ∫
∞

−∞

c(�)e−i��d� and c(�) = ∫
∞

−∞

P(�)ei��d�.

(8)

c(�) = lim
T→∞

1

T ∫
T∕2

−T∕2

cos�(t + �) cos�t dt

= lim
T→∞

1

T ∫
T∕2

−T∕2

1

2
(cos�� + cos�(2t + �))dt =

1

2
cos��.
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the power spectrum for cos�0t is obtained as the Fourier 
transform of (8):

which is a single discrete peak in the positive spectrum 
( 𝜔 > 0).

3 � Stochastic climate

As argued by Hasselmann (1976), the climate is described 
by a slow variable x(t) submitted to the effects of relaxation 
( −�x(t) ) and forced by a fast process, �(t) , which is idealized 
as a standard (unit intensity) white noise process with the 
correlation function ⟨�(t)�(t + �)⟩ = �(�) . These assump-
tions yield the linear stochastic differential equation (SDE):

where � is the intensity of the noise and the dot repre-
sents the derivative with respect to time. This defines the 
OU-process.

An equation for the autocorrelation can be derived and 
solved directly from (11):

where we have used the symmetry, c(−�) = c(�) to obtain 
the result for 𝜏 < 0 . Physically, the parameter � represents 
stabilising feedbacks pulling the climate state toward the 
equilibrium state (normalized to x = 0 ). As � determines 
the exponential decay of perturbations, it determines a time 
scale � = 1∕� related to the physical processes governing 
the stabilising feedback.

The variance is c(0) = ⟨x2⟩ = �2∕(2�) (see Appendix D). 
The power spectrum is then immediately obtained:

This functional form of the power spectrum is called the 
Lorentzian. For later use, we shall calculate the spectrum for 
the OU-process in a slightly different but illuminating way 
by expressing (11) in Fourier space:

(9)�(t) =
1

2� ∫
∞

−∞

e±i�td�,

(10)P(�) =
1

2
(�(� − �0) + �(� + �0)),

(11)ẋ(t) = −𝛼x(t) + 𝜎𝜂(t),

ċ(𝜏) = ⟨x(t)ẋ(t + 𝜏)⟩ = ⟨x(t)(−𝛼x(t + 𝜏) + 𝜎𝜂(t + 𝜏)⟩
= −𝛼c(𝜏) for 𝜏 > 0 ⇒ c(𝜏) = c(0)e−𝛼�𝜏�,

(12)

P(𝜔) = ĉ(𝜔) =
1

2𝜋 ∫
∞

−∞

⟨x2⟩e−𝛼�𝜏�e−i𝜔𝜏d𝜏 =
1

2𝜋

2𝛼⟨x2⟩
𝛼2 + 𝜔2

=
1

2𝜋

𝜎2

𝛼2 + 𝜔2

(13)(i𝜔 + 𝛼)x̂(𝜔) = 𝜎𝜂̂(𝜔).

In a rigorous mathematical sense the Fourier transformed of 
the white noise, 𝜂̂(𝜔) , is not defined, since the white noise is 
delta-correlated with infinite variance. By multiplying with 
the complex conjugate, multiplying by 2�∕T  and taking the 
average on both sides in (13), the correct result is obtained 
by applying Ito isometry for the white noise (see Appendix 
E). Thus we obtain the power spectra directly from (4):

where the power spectrum of the unit variance white noise 
is P�(�) = 1∕(2�) (See Appendix C).

We shall use angular frequency or oscillation fre-
quency whenever convenient ( � = 2�f  ). A realiza-
tion of the OU-process is shown in the left panel of 
Fig. 4. The power spectrum, a Lorentzian (in orange), is 
shown together with the power spectrum calculated from 
the realization (in blue) in the right panel of Fig. 4. The 
power spectrum of this process is flat (white noise) on 
long time scales; 𝜔 ≪ 𝛼 ⇒ P(𝜔) ∼ 𝜎2∕(2𝜋𝛼2) , while on 
short time scales the spectrum scales as �−2 (red noise); 
𝜔 ≫ 𝛼 ⇒ P(𝜔) ∼ 𝜎2∕(2𝜋𝜔2) . It follows that the crossover 
frequency, � ≈ � is the inverse of the characteristic autocor-
relation time of the process, which is shown by the arrow in 
the second panel of Fig. 4.

Since the Fourier transform is linear, it directly fol-
lows that the dynamics resulting in the spectrum (14) 
does not involve any transfer of power between different 
modes. The dominance of the low frequencies (“redden-
ing of the spectrum”), is merely due to the slower damp-
ing at lower frequencies. Had there, say, been an additional 
periodic component in the forcing, 2A cos 𝜔̃t on the right 
hand side in (11), there would be a peak in the spectrum, 
P̃(𝜔) = 𝛿(𝜔 − 𝜔̃)A2∕(𝜔2 + 𝛼2) , corresponding to the square 
of the amplitude of the solution to the simple ordinary dif-
ferential equation,

ẋ(t) = −𝛼x(t) + 2A cos 𝜔̃t.

Equations (11) to (14) do not rely on a hypothesis of 
scale separation between fast and slow processes in the sto-
chastic climate model. In the case �(t) is itself a correlated 
noise process, with correlation time �1 = 1∕�1 and variance 
⟨�2⟩ = �2∕(2�1) , the spectrum for x(t) in (11) is readily 
obtained from (14):

(14)

2𝜋

T
⟨[(i𝜔 + 𝛼)x̂(𝜔)][(−i𝜔 + 𝛼)x̂(−𝜔)]⟩ = 2𝜋

T
⟨(𝜎𝜂̂(𝜔))(𝜎𝜂̂(−𝜔))⟩ ⇒

(𝜔2 + 𝛼2)
2𝜋⟨x̂(𝜔)x̂(−𝜔)⟩

T
= 𝜎2 2𝜋⟨𝜂̂(𝜔)𝜂̂(−𝜔)⟩

T
⇒

(𝜔2 + 𝛼2)P(𝜔) = 𝜎2P𝜂(𝜔) ⇒

P(𝜔) =
𝜎2P𝜂(𝜔)

𝜔2 + 𝛼2
=

1

2𝜋

𝜎2

𝜔2 + 𝛼2
,

(15)P(�) =
1

2�

�2

(�2 + �2)(�2 + �2
1
)
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This holds even in the case 𝜏1 > 𝜏 . There are thus two 
crossover times and an even steeper �−4 spectrum for 
𝜔 ≫ max(𝛼, 𝛼1).

A red-noise stochostic forcing (with its own time scale) 
is one of several mechanisms which may explain several 
time scales visible as several crossovers on the spectrum. 
Several crossovers may appear in a linear model with a 
2-dimensional (or more) state vector, associated with relax-
ation equations featuring distinct time scales. This is the 
framework implicit in the presentation of Mitchell (1976), 
and which is easily generalised to an arbitrary (up to count-
able infinite) number of time scales (Fredriksen and Rypdal 
2017). Multiple crossover may also occur as a natural non-
linear extension of the linear-relaxation stochastic climate 
model. In a bistable climate, the climate jumps between 
two stable states, either because of the external forcing or 
because of an internal stochastic noise. The latter case can 
be described as a process similar to Eq. (11) but with a non-
linear drift,

where

is a double-well potential.
The power spectrum can not be calculated analytically 

but be estimated as a spectrum composed by the spectrum 
of the jump process, which is a slow Poisson process of 
jumping between the two states called a telegraph process 
(Goldstein 1951), and the spectrum of a fast OU-process 
close to either of the stable states. The telegraph process 

(16)ẋ = −
dU(x)

dx
+ 𝜎𝜂 = −

𝛼

2
(x3 − x) + 𝜎𝜂,

(17)U(x) =
�

2

(x4
4

−
x2

2

)

also has an exponential autocorrelation, c1(�) = ⟨x2⟩e−���∕T , 
where T is the escape time from one well across the poten-
tial barrier. This escape time is obtained with Kramer’s 
formula, T = 2�(U

��

a
U

��

b
)−1∕2e2H∕�2 , where Ua is the poten-

tial at the minimum, Ub is the potential at the barrier and 
H = Ub − Ua is the height of the barrier. Since the two 
equilibria are at x = ±1 , the slow telegraph-like process has 
variance ⟨x2⟩ ≈ 1 . The fast OU-process between jumps can 
be obtained in the small noise limit, by linear expansion of 
the potential around either of the equilibria, which with the 
notation in (16) is exactly the process (11). There is thus a 
fast correlation time scale �−1 . The two Lorentzian power 
spectra are shown in the second panel in Fig. 5 as red and 
orange curves, while the sum of the two and the cross spec-
trum is shown in purple. The blue curve is the spectrum of 
the realization shown in the first panel. The average slope 
in the spectrum, which in this case contains two crossovers 
separated by a plateau, is then somewhere in between − 2 
and 0. This is slightly different from the composite spec-
trum of a sum of independent OU-processes suggested by 
Mitchell (1976).

4 � The spectrum from low order dynamical 
models

From these purely stochastic models, we now turn our 
attention to models with specific identifiable and dominat-
ing time scales of variation. Discrete peaks in the spectrum 
can be related to either periodic or quasiperiodic external 
forcing or periodic oscillations in the internal dynamics. 
However, the power in the narrow bands covering the 
astronomical forcing barely exceeds the continuous part 
of the paleoclimatic spectrum. A continuous spectrum 
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Fig. 4   Left panel: a realization of the Ornstein–Uhlenbeck process 
(11) with (�, �) = (0.1, 0.1) . The right panel shows the power spec-
trum of the realization to the left (blue), 10 other realizations (gray) 

and the analytic result (orange), the Lorentzian function (Eq. 14). The 
yellow arrow indicates the crossover time scale 2�∕�
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can arise from either chaotic dynamics or spill out from 
peaks in imperfectly dated observations. Chaotic dynamics 
with a characteristic time scale can produce a spectrum 
with spectral peaks on top of a continuous background. To 
illustrate this we examine two low-dimensional dynamical 
models, one glacial cycle model with an internal oscilla-
tion and a limit cycle, and one with chaotic dynamics and 
a strange attractor.

The first model is the three variable dynamical model of 
glacial cycles proposed by Saltzmann and Maasch (SM90):

Here x, y and z represent global ice volume, atmos-
pheric CO2 concentration and ocean temperature in 
suitable dimensionless form, and parameters are: 
(p1,… , p5) = (0.0075, 0.006, 0.0075, 0.006, 0.009) .  Note 
that in this simple form of the model the glacial cycles are 
internally generated, completely independent from the astro-
nomical periods.

The x component (ice volume) is shown in the first 
panel of Fig. 6 (blue). The corresponding spectrum is 
shown in second panel (blue).

Since the solution is strictly periodic—a limit cycle—
the spectrum is discrete, and the first discrete peak corre-
sponds to the period. The rest are over-tones of that. The 
dating uncertainty in the paleoclimatic records will perturb 
a strictly periodic signal. We model this uncertainty by 
assigning the time series x(ti), i = 1,… , n to n uniformly 
distributed stochastic time points in interval [ (t1, tn) ], and 

(18)

Ice volume: ẋ = − p1x − p1y

Atmospheric CO2 concentration: ẏ = p2y − p3z + p4z
2 − p1yz

2

Deep ocean temperature: ż = − p5x − p5z

then interpolate the time series back to evenly spaced 
times. With this stochastic uncertainty in dating, realistic 
for the dating uncertainty in the paleoclimatic records, the 
signal (black curve in left panel) is no longer periodic and 
only the main period and the first overtone show up in the 
spectrum. The spectrum at centennial to millennial time 
scales is generated by dating uncertainty with a continuous 
tail not very different from an f −2 spectrum.

The second model is the chaotic Lorenz ’63 system;

with parameters, (�, �, �) = (10, 28, 8∕3) . The attractor is the 
well-known two-lobe strange attractor (Fig. 7, left panel). 
The spectrum of the chaotic system is continuous, but the 
dominant time scale of variation turns up as peaks in the 
spectrum. The Lorenz system has three unstable fixed points, 
one at the origin and two at the centers of the lobes (red 
crosses). The x and y components are essentially identical 
and monitor in which lobe the system is while the z com-
ponent contains no information on which lobe the system 
is in. Realizations of the x(t) (blue) and z(t) (green) compo-
nents are shown in Fig. 7, middle panel. The corresponding 
power spectra are shown in the right panel. The spectrum 
for x(t) (blue) only shows a crossover from a fast decaying 
high frequency part to a flat spectrum above a crossover 
time scale. In the spectrum for z(t) the crossover time scale 
shows up as a strong discrete peak. The gray sine curve on 
top of the z(t) curve (green) in the middle panel corresponds 
exactly to the peak, thus it is seen that this is simply the 
period of rotating around the center of one lobe. The gray 

(19)

ẋ = − 𝜎x + 𝜎y

ẏ = 𝜌x − y − xz

ż = xy − 𝛽z
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Fig. 5   The left panel shows a realization of the process (16). The 
power spectrum (right panel) can be understood as the sum of two 
Lorentzian spectra, and the cross spectrum, from the jump process (a 
random telegraph process) and the OU-process in either of the steady 

states. The Lorentzians of a telegraph process and of a fast OU-pro-
cess are shown in orange and red respectively. The sum of the two 
and the cross spectrum between the two is shown in purple
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sine curve on top of the x(t) curve (blue) is obtained from 
the imaginary part ( �0 ) of the eigenvalue obtained from a 
linear perturbation around the central unstable fixed point. 
The two gray sine curves have slightly different frequencies. 
Though x(t) clearly oscillates at the frequency obtained from 
the stability analysis, this frequency does not show up in 
the corresponding power spectrum. The reason is that the 
projection of x(t) onto sin�0t from one lobe cancels the pro-
jection from the other lobe, leaving only the continuous part 
related to the chaotic shifts between the two lobes. In fact, 
a spectrum estimate from a time series too short for allow-
ing inter-lobe transitions will actually show a peak (Fig. 8). 
Indeed, when there is no inter-lobe transition, no phase can-
cellation occurs. Another way to describe the phenomenon 
is to observe that the z-component, which shows a peak in 

the spectrum, is degenerate in the sense that a Takens’ delay 
embedding—a plot of [z(t), z(t + �), z(t + 2�)]—will not for 
any value of � reproduce the two-lobe structure of the origi-
nal attractor.

These simple examples illustrate firstly, that the discrete 
spectrum of a limit cycle can be smoothed into a continu-
ous spectrum by dating uncertainty and secondly, that for 
autonomous chaotic systems the power spectrum contains 
both a continuous part and spectral peaks. Both cases evi-
dence difficulties for separating the discrete and continuous 
part in the estimated power spectrum. Dating uncertainties 
will result in an underestimation of the discrete part, while 
the Lorenz model case points to an entirely different effect: 
The non-degenerate x and y coordinates in the Lorenz model 
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Fig. 6   The left panel shows the x(t) component of the SM90 model 
(Eq. 18) in blue. The black curve shows the same variable but with 
dating uncertainty (see text), realistic for paleoclimatic records. The 

right panel shows the corresponding power spectra. The blue line 
spectrum is for the strictly periodic signal, while the black, continu-
ous spectrum is for the black signal in the left panel
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Fig. 7   The left panel shows the xz-projection of a trajectory on the 
Lorenz attractor. The red crosses in the center of the lobes are unsta-
ble fixed points. The middle panel shows the x(t) (blue) and z(t) 
(green) for the Lorenz model (Eq.  19). Corresponding spectra are 
shown in the right panel. The gray sin curve on top of z(t) correspond 
to the spectral peak at 10−2 (time units)−1 in the middle panel, while 

the gray sin curve on top of x(t) is calculated from the unstable focus 
in the center of one of the lobes (red cross) in the attractor (i.e. the 
imaginary part of the eigenvalue obtained in a linear stability analysis 
of the unstable fixed point). Note that despite the oscillatory nature of 
x(t) there are no peaks in the spectrum
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do indeed oscillate with a characteristic time scale, but the 
oscillations do not show up as a peak in the x- and y-spectra.

5 � Crossover and resonance

We now turn the attention to the crossover in the spectral 
slope in the paleoclimatic records around the time scales 
of the astronomical forcing. In the stochastic climate model 
perspective, a crossover in the background spectrum is inter-
preted as the typical relaxation time scale in the climate 
system. This is, however, an unlikely explanation for the 
crossover observed at 100 ka, since there is no relaxation 
process known to operate at that time scale.

Over the last million years, glacial cycles have been char-
acterized by an oscillation around 100 ka. The question is 
whether this oscillation is causing the crossover in the spec-
trum. To this end, we represent the climate signal by a linear 
damped oscillator, forced by the sum of white noise and a 
single harmonic function:

This stochastic differential equation is easily solved in Fou-
rier space, in analogy to the solution of the OU-process 
above:

where PF(�) is the power spectrum of the forcing F(t). The 
spectrum for the forcing is readily obtained from this auto-
correlation: cF(�) = 2A2 cos�f � + �2�(�) , which is obtained 

(20)ẍ(t) + 𝛾 ẋ(t) + 𝜔2
0
x(t) = 2A cos𝜔f t + 𝜎𝜂(t) = F(t).

(21)
(−𝜔2 + i𝜔𝛾 + 𝜔2

0
)(−𝜔2 − i𝜔𝛾 + 𝜔2

0
)
2𝜋

T
⟨x̂(𝜔)x̂(−𝜔)⟩

= [(𝜔2
0
− 𝜔2)2 + 𝜔2𝛾2]P(𝜔) = PF(𝜔).

using (8) and the independence between the two compo-
nents. Thus, PF(�) = A2[�(� − �f ) + �(� + �f )] + �2∕(2�) , 
and we have

Due to the combined deterministic and stochastic forcings 
this is a composite spectrum, with a spectral peak at the forc-
ing frequency �f  , depending on the strength of the damping 
� and how far the forcing frequency �f  is from the reso-
nance �0 . Furthermore, there is a continuous background 
proportional to the variance of the noise �2 and a broad peak 
around the resonance.

Two realizations of this process are shown in Fig. 9. In 
both cases the forcing frequency is �f = 2�∕41 kyr−1 cor-
responding to the obliquity cycle and the internal frequency 
is taken to be �0 = 2�∕10 kyr−1 . The spectra are shown 
in the right panels with the orange curves obtained from 
(22). The continuous spectrum depends substantially on 
the strength of the damping: For small damping ( � = 0.5 
kyr−1 ) the spectrum has a resonance peak around �0 . This 
is indicated by the arrow in the top right panel. It has a 
steep P(�) ∼ �−4 spectrum for shorter time scales. In the 
other case of a strongly damped oscillator ( � = 10 kyr−1 ), 
the crossover moves to a much longer time scale ∼ �∕�2

0
 , 

indicated by the arrow in the lower right panel.
Other forms of resonance have been discussed in the con-

text of Quaternary dynamics. The one which is arguably the 
most physically relevant in this context is coherence resonance, 
proposed by Pelletier (2003). Stochastic resonance was histori-
cally suggested as a possible mechanism for glacial-intergla-
cial cycles (Benzi et al. 1982). We will discuss it briefly as 

(22)P(�) =
A2[�(� − �f ) + �(� + �f )] + �2∕(2�)

(�2
0
− �2)2 + �2�2

.
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Fig. 8   In the right panel, the orange curve is the power spectrum of 
the x-coordinate of the Lorenz model calculated from a very long 
time series (same as blue curve in Fig. 7, right panel). The blue curve 
is the same power spectrum calculated from the short time series of 

the x-coordinate shown in the left panel. In this short time series the 
state happens to be mainly in one of the lobes of the attractor. The 
vertical line is the frequency corresponding to the peak in the z-coor-
dinate (see green curve in Fig. 7, right panel)
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well, even though its physical motivation for ice ages is prob-
ably no longer tenable.

Coherence resonance, in an excitable system, is a phenom-
enon where stochastic noise drives the system away from a sta-
ble fixed point into a large excursion in phase space returning 
back into the vicinity of the fixed point. Two time scales are at 
play here: the Kramer waiting time for escaping from the fixed 
point and the excursion time. For small noise, excursions are 
rarely excited and the waiting time becomes irregular, while 
for large noise, the trajectory is disturbed and the excursion 
time becomes irregular. For a certain amount of noise, the sto-
chastic system becomes more coherent (more periodic). Piko-
vsky and Kurths (1997) described the coherence resonance 
phenomenon in the noisy FitzHugh–Nagumo model. They 
suggested the following form of the autocorrelation function:

(23)C(t) = e−�|t| cos(�0t),

where � is a decay rate and �0 is the resonance frequency. 
The corresponding power spectrum is given by the Fourier 
transform of C(t) by the Wiener–Khinchin theorem:

The power spectrum P(�) is shown in the left panel in 
Fig. 10 with different parameter values. As before there are 
two scaling regimes, for 𝜔 ≫ 𝜔0 + 𝛾 , the power spectrum 
scales as P(�) ∼ �−2 , while for 𝜔 ≪ 𝜔0 + 𝛾 , it is constant 
such that P(�) = �∕[�(�2 + �2

0
)] . The crossover frequency 

� = �0 + � is related to the peak of the spectrum for strong 
resonance: 𝛾 ≪ 𝜔0 ⇒ 𝜔 ≈ 𝜔0 . Following Pikovsky and 
Kurths (1997), we integrate a stochastic FitzHugh–Nagumo 
model:

(24)
P(�) =

1

2� ∫
∞

−∞

C(t)e−i�tdt

=
1

2�

(
�

�2 + (� − �0)
2
+

�

�2 + (� + �0)
2

)
.
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Fig. 9   Realizations and power spectra for the forced and damped 
linear oscillator with noise. In both cases the internal frequency 
is �0 = 2�∕10 kyr−1 indicated by the yellow arrow in the top right 
panel. The spectral peaks correspond to the forcing frequency 
�f = 2�∕41 kyr−1 . Top row is for small damping, � = 0.5 kyr−1 , 

where a broad resonance is seen at the internal frequency. Bottom 
row is for large damping, � = 10 kyr−1 , where the spectral crossover 
is approximately at �2

0
∕� , indicated by the yellow arrow. The orange 

curves are given by (22)



1812	 P. Ditlevsen et al.

1 3

with the parameters, (�, a, �) = (0.01, 1.05, 0.25) . We 
scale time, such that the resonance frequency �0 is 2�∕100 
kyr−1 . The y component is shown in the middle panel in 
Fig. 10, with the corresponding power spectrum in the right 
panel. This spectrum is well fitted by (24), which is mul-
tiplied by the variance of y in order to satisfy Parseval’s 
theorem.

Benzi et al. (1982) introduced the stochastic resonance 
as a possible explanation of the 100 ka spectral peak. The 
original premise is that changes in globally averaged, annual 
mean insolation, which is controlled by excentricity only (here 
assumed to be represented by a pure 100 ka oscillation) are 
too weak to cause glacial-interglacial transitions. An amplify-
ing mechanism is thus needed, this is achieved by modelling 
the global temperature x as a mass-less (no acceleration term) 
viscous particle moving in a double-well potential, with sto-
chastic forcing, and with a weak periodic forcing with angular 
velocity �f :

The double-well potential, V(x), is such that with no forc-
ing the system has two steady states x = ±1 . Furthermore, 
the amplitude of the periodic forcing is smaller than needed 
to destabilize either of the steady states (A < 2

√
3∕9) . The 

forcing term can be included in the potential by redefining 
V(x, t) = x4∕4 − x2∕2 − Ax cos(�f t) . This potential has one 
deep and one shallow well when the forcing is either maxi-
mum or minimum, determining two distinct Kramers rates 
rs→d and rd→s for noise assisted escapes from the shallow and 
from the deep well, respectively. Resonance happens when 
the intensity of the noise � is such that rd→s ≪ 𝜔f ≪ rs→d.

(25)
ẋ = (x − x3∕3 − y)∕𝜖

ẏ = x + a + 𝜎𝜂

(26)
ẋ = −dV∕dx + A cos𝜔f t + 𝜎𝜂 = x − x3 + A cos𝜔f t + 𝜎𝜂.

An approximate expression for the power spectrum of the 
stochastic resonance phenomenon in the periodically-forced 
double-well potential system is (Gammaitoni et al. 1998):

where �f  is the frequency of the external forcing and rK is 
the Kramers rate of the noise-induced hopping in the sym-
metric double-well potential. The spectrum consists of a dis-
crete peak and a Lorentzian part analogous to the case of the 
linear damped and forced oscillator. Note that the resonance 
frequency � = �f  is unrelated to the crossover frequency 2rK 
of the Lorentzian part. Here, two times the escape rate 2rK 
plays the role of the internal frequency �0 (Fig. 11).

In summary, we have shown that for the resonance oscil-
lator models the crossover frequency is not directly linked to 
the external forcing frequency. For the linear damped oscil-
lator the crossover time scale depends on the linear damping 
and the internal frequency: � ∼ �∕�2

0
 , while in the coher-

ence resonance case it is inversely related to the sum of the 
resonance frequency and a damping rate: � ∼ 1∕(�0 + �) . 
Finally, in the case of the stochastic resonance, the crossover 
time is related to the Kramers rate of noise-induced transi-
tion, � ∼ 1∕rK.

6 � Threshold models

A different perspective, focusing on the 100-ka late Pleis-
tocene time scale of glaciation, was presented by Wunsch 
(2003). He suggested that the local maximum in 100-ka 
variability in the power spectrum should not be interpreted 
as a resonance peak. It is “a reflection of the absence of 
energy at the adjacent lower frequencies”. In this inter-
pretation, the existence of a crossover is not related to a 

(27)P(�) ∼
4�(A2rK∕�

2)�(� − �f ) + �2

(2rK)
2 + �2

+ O(A2),
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Fig. 10   Left panel: power spectra given by Eq.  24, typical for the 
coherence resonance. Parameters are �0 = 1 (in units of 2�∕100 
kyr−1 ), � = 0.1, 1, 10 for the red, orange, purple curves respec-
tively. The arrows indicate the crossover frequencies �0 + � for each 

case. Middle panel: A sample trajectory of the y coordinate of the 
FitzHugh–Nagumo model. Right panel: The power spectrum of y(t). 
The solid red line is P(f) in Eq. 24 multiplied by the variance of y(t)
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feedback time scale in the system. The hypothesis is that the 
∼ 100 ka glaciation is rather governed by constraints in ice 
volume independent from the astronomical forcing. Our first 
model encoding this assumption is that the ice growth is a 
purely random walk process, ẋ = 𝜎𝜂 bounded by a maximum 
volume xmax . The constraint can be modeled as reflecting 
boundaries for the random walk, making x a stationary pro-
cess. A characteristic time scale in this case would be the 
diffusion time for diffusing the distance xmax : �∼ (xmax∕�)

2 . 
Such a process is shown in Fig. 12 top left panel. The power 
spectrum is shown in blue in the top right panel together 
with a power spectrum (orange) obtained from a 105 ka 
realization. The diffusion time � is indicated by the arrow in 
the top right panel.

A slightly more realistic threshold model was proposed by 
Huybers and Wunsch (2004) (HW04). This is a random walk 
with a constant drift ẋ(t) = 𝜇 + 𝜂(t) . The ice volume x(t) col-
lapses to 0 when reaching a threshold xmax , corresponding to 
glacial terminations. This process is shown in Fig. 12 middle 
left panel. Though a distinct time scale for glacial cycles can 
be derived from the linear drift, � = xmax∕� , the spectrum 
has a weak spectral peak coinciding with the crossover, indi-
cated by the arrow, as is seen in middle right panel.

With no noise, the purely deterministic version of the 
HW04 model is simply a periodic sawtooth curve. It has a 
simple Fourier series,

with f = �∕xmax . Thus its discrete power spectrum 
S(fn), (fn = nf ) is given as

x(t) = (xmax∕�)

∞∑

n=1

(−1)n−1 sin(2�nft)∕n,

which, by coincidence, is the same spectral slope as we have 
for the OU-process. This discrete spectrum is indicated by 
the grey bars in the middle right panel of Fig. 12.

In a slightly more advanced version of the HW04 model, 
the astronomical forcing is introduced via a time varying 
threshold, xmax(t) = x0

max
+ F(t) where F(t) is a suitably 

rescaled version of the forcing. In this case (lower panel 
in Fig. 12), using the obliquity curve (Berger 1978), the 
response is an approximate 2:1 frequency locking to the 
41  ka almost harmonic obliquity curve. The 2 × 41  ka 
= 82 ka period shows up as broad peak in the spectrum, 
while the 41 ka period shows up as a more narrow peak 
(Fig. 12, lower right panel).

To summarize, for the threshold models the crossover 
time scale is either set by a diffusion time scale, or given by 
a linear drift, which in the low noise limit corresponds to 
the time needed for establishing a glacial maximum. When 
assuming that the astronomical forcing governs the thresh-
old, the spectrum shows peaks at multiples of the forcing 
frequencies in accordance with a frequency locking scenario 
(Nyman and Ditlevsen 2019).

7 � Summary and conclusions

Spectrum estimates of paleoclimate records tend to show 
weak astronomical modes over a dominant continuous sto-
chastic background. While this has been noted since the 

S(fn) = (xmax∕�)
2∕n2 ∼ f −2

n
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Fig. 11   A realization and the power spectrum for the stochastic reso-
nance model (26). Parameters are �0 = 1 (in units of 2�∕100 kyr−1 ), 
A = 0.3 and � = 0.3 . In the right panel the red line is the power 

spectrum (27). Note that, for the discrete peak at 10−2 kyr−1 , the two 
curves are on top of each other
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Fig. 12   Three models, where left panels are the realizations, right 
panels the power spectra of the realization (blue) and the mean spec-
tra are obtained from 1000 realizations of the model (orange): Top 
row is a random walk with reflecting boundaries at xmax = ± 0.9 . The 
yellow arrow in the right panel corresponds to the diffusion time for 
moving between x = 0 and x = xmax . The middle row is a linear drift 
with threshold xmax = 0.9 , where x is reset to 0. This is the Huybers-
Wunsch model of glacial terminations. The broad peak indicated by 
the yellow arrow corresponds to the mean drift time to reach x = xmax 

after a resetting. The bottom row shows is the Huybers-Wunsch 
model with the time varying threshold determined by the obliquity 
parameter, which is close to a 41 ka harmonic curve. With the linear 
drift being the same as above, the system shows an approximate 2:1 
frequency locking to the period of the forcing. This is reflected in the 
power spectrum, where the broad peak is shifted towards 1/82 ka−1 , 
indicated by the yellow arrow. The peak at 1/41 ka−1 is visible in the 
mean spectrum
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seventies, it still challenges the widespread conception that 
glacial cycles are generated by changes in Earth’s orbit and 
inclination. Any satisfactory theory of Quaternary variabil-
ity must explain both the weakness of astronomical modes in 
the power spectrum, and the existence of a crossover around 
100 ka, yet be compatible with the fact that deglaciations 
and glacial inceptions are paced by the orbital forcing.

On the basis of the different simple dynamical and stochas-
tic models analysed in this study, we can list possible keys to 
the interpretation of the crossover time scale. Most determin-
istic models supporting ice age theories present one strong 
mode around the 100 ka period with little or no background 
power. We used the SM90 as an archetypical representative of 
this class of models. The model has a limit cycle solution for 
the ice ages with a dominant mode. However, realistic dating 
uncertainty in proxy records weakens such modes, generating 
a scaling background spectrum with appealing properties; a 
ramp up to 100 ka followed by a scale break. Hence, part 
of the dispersion from the mode to a background continuum 
may conceivably originate from variability in the sedimentary 
deposition rate and other dating uncertainties.

In contrast to oscillator models, chaotic models have a 
continuous spectral background. This is illustrated by the 
Lorenz ’63 model, which also for the z-component has spec-
tral modes over the continuous background. The crossover to 
a flat spectrum occurs as it should be expected at the correla-
tion (Lyapunov) time scale set by the chaotic character of the 
dynamics. In this case the spectral peaks and the continuous 
background are parts of the same dynamics, thus estimating 
weight of a peak above a background in the spectrum of a 
specific observable is not relevant. In this simple case the 
high frequency end of the spectrum falls off exponentially, 
reflecting the smooth dynamics, which of course does not 
provide a realistic representation of the multi-scale climate 
dynamics. In the case of the Lorenz ’63 model, a spectral 
peak corresponding to the oscillatory mode around the lobes 
does not show up in the spectrum of variable x, thus for any 
given dynamical model an analysis and cautious interpreta-
tion of the power spectrum is required.

At the other extreme, in purely linear stochastic climate 
models, fluctuations of the stochastic components will gen-
erate a Lorentzian spectrum. The basic problem is the physi-
cal interpretation that a crossover near 100 ka would require 
a relaxation time scale of that order of magnitude, which is 
difficult to identify in known components of the climate sys-
tem. What we show here is that this is a too simplified view. 
We examined alternative simple linear and non-linear pro-
cesses, generating a crossover which need not to be directly 
related to a time scale of a process. This means that on the 
one hand, one should not rule out certain models solely 
based on the observed power spectrum. On the other hand 
estimates of crossovers and spectral peaks could perhaps be 
interpreted in such a way as to identify physical mechanisms.

Unexpectedly, a system with linear resonance can gener-
ate a crossover at a much lower frequency than the reso-
nance frequency if it has a very strong damping (crossover 
frequency at �2

0
∕� , cf. Fig. 9). In coherent resonance, the 

position of the crossover time scale relative to the resonance 
period is related to a decorrelation time scale, which itself 
depends on the noise level. In stochastic resonance, the 
crossover time scale is related to the typical exit time from 
one potential well to the other.

Finally, models associated with threshold-triggered tran-
sitions also generate crossovers, the time scale of which is 
associated to the typical transit time—physically interpreted 
as the time needed to build an ice sheet until it reaches levels 
of instability triggering collapse. Incorporating the astro-
nomical forcing through a varying threshold can generate a 
spectrum with spectral peaks similar to the spectra generated 
from the paleoclimatic records.

To conclude, in the spirit of Mitchell’s original paper, 
we used the simplest possible models of the ice age cli-
mate, concentrating on the millennial to astronomical time 
scales in the Pleistocene climate spectrum. We have shown 
that the interplay between the astronomical peaks and the 
crossover observed in the climate records can have several 
origins. As the time series of the past climate do not permit 
discrimination between the various proposed models, these 
obviously do not constitute a final theory of the Pleistocene 
climate. In our view, the different stochastic, deterministic, 
self-oscillating, and forced models describe different aspects 
of the climate system, which need not be mutually exclusive.
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Appendix

A: Spectral representation of the Dirac delta 
distribution

The Dirac delta distribution is defined such that for any suf-
ficiently well behaved function f(t) which is continuous in 
t = 0 we have

inserting f (t) = 1 , we trivially get ∫ ∞

−∞
�(t) dt = 1 . The spec-

tral representation of �(t) is,

This is not a convergent integral, so to see that this integral 
is �(t) consider the integral,

which is integrable due to the convergence function 
e−�

2∕(2n2) . Obviously for n → ∞ the limit for the integral in 
(A.3) is the integral in (A.2). We thus have to show that 
(A.1) is fulfilled for n → ∞:

which gives (A.1) in the limit n → ∞ . Here we used “com-
pletion of the square” and the substitution 𝜔̃ = 𝜔 − itn2 . 
Note that the integral in (A.3) can in the same way be cal-
culated directly to give the usual form proposed by Dirac of 
normal distributions approaching �(t):

(A.1)∫
∞

−∞

f (t)�(t) dt = f (0),

(A.2)�(t) =
1

2� ∫
∞

−∞

ei�td�.

(A.3)�n(t) =
1

2� ∫
∞

−∞

e−�
2∕(2n2)ei�td�,

(A.4)

∫
∞

−∞

f (t)𝛿n(t)dt

=
1

2𝜋 ∫
∞

−∞ ∫
∞

−∞

f (t)e−𝜔
2∕(2n2)+i𝜔td𝜔dt

=
1

2𝜋 ∫
∞

−∞ ∫
∞

−∞

f (t)e−(𝜔−itn
2)∕(2n2)e−t

2n2∕2dtd𝜔

=
1

2𝜋 ∫
∞

−∞

f (t)e−t
2n2∕2dt ∫

∞

−∞

f (t)e−𝜔̃
2∕(2n2)d𝜔̃

=
1

2𝜋 ∫
∞

−∞

(f (0) + f �(0)t +O(t2))e−t
2n2∕2dt

√
2𝜋n2

=
1

2𝜋

√
2𝜋n2

√
2𝜋∕n2f (0) +

1

n ∫
∞

−∞

f �(0)xe−x
2∕2dx +O

�
1

n2

�

= f (0) +O

�
1

n

�
,

(A.5)�n(t) =
n√
2�

e−t
2n2∕2.

B: The Wiener–Khinchin theorem

By direct calculation, using the Fourier transformation and 
spectral representation of the Dirac delta distribution we get:

where P(�) is defined in (3) and �(t) in (A.2). Thus the auto-
correlation is the Fourier transform of the power spectrum.

C: Spectral representation of the white noise

The white noise is defined from the autocorrelation 
c�(�) = ⟨�(t)�(t + �)⟩ = �(�) . Thus the spectrum becomes

This is a constant (flat) spectrum, where “white” alludes to 
the equal weight of all colors (frequencies) in the spectrum 
of white light.

D: The fluctuation‑dissipation theorem

The variance c(0) = ⟨x2⟩ can be obtained from the stationar-
ity of the process. Here it is convenient to write (11) in dif-
feretial form: dx = −�xdt + �dW  , where we have ⟨dW⟩ = 0 
and ⟨dW2⟩ = dW2 = dt:

where ⟨xdW⟩ = 0 , since dW is a zero-mean independent 
noise. This is the fluctuation-dissipation theorem, connect-
ing the fluctuations ⟨x2⟩ with the dissipation 2�2 . With the 

(B.1)

c(𝜏) = lim
T→∞

1

T ∫
T∕2

−T∕2

x(t + 𝜏)x(t)dt

= lim
T→∞∫

T∕2

−T∕2

1

T

[

∫
∞

−∞

x̂(𝜔)ei𝜔(t+𝜏)d𝜔

][

∫
∞

−∞

x̂(𝜔1)e
i𝜔1td𝜔1

]
dt

= ∫
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−∞ ∫
∞

−∞

lim
T→∞

[
2𝜋

T
x̂(𝜔)x̂(𝜔1)

][
1

2𝜋 ∫
∞

−∞

ei(𝜔+𝜔1)tdt

]
ei𝜔𝜏d𝜔1d𝜔
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∞

−∞ ∫
∞

−∞

[
lim
T→∞

2𝜋

T
x̂(𝜔)x̂(𝜔1)

]
𝛿(𝜔 + 𝜔1)e

i𝜔𝜏d𝜔d𝜔1

= ∫
∞

−∞

[
lim
T→∞

2𝜋

T
x̂(𝜔)x̂(−𝜔)

]
ei𝜔𝜏d𝜔

= ∫
∞

−∞

P(𝜔)ei𝜔𝜏d𝜔 = P̂(𝜏),

(C.1)

P�(�) =
1

2� ∫
∞

−∞

⟨�(t)�(t + �)⟩ei��d� =
1

2� ∫
∞

−∞

�(�)ei��d� =
1

2�
.

(D.1)

⟨x2⟩ = ⟨(x + dx)2⟩
= ⟨(x − �xdt + �dW)2⟩
= ⟨x2⟩ − 2�⟨x2⟩dt + �⟨dW2⟩ + �2dt2 + 2�(1 − �dt)⟨xdW⟩
= ⟨x2⟩ + (�2 − 2�⟨x2⟩)dt +O(dt2)

⇒ �2 − 2�⟨x2⟩ = 0 ⇒ ⟨x2⟩ = �2

2�
,
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explicit expression for the power spectrum (12) using (3) the 
variance of the process can also be obtained

directly from the Wiener–Khinchin theorem,

E: Ito isometry and the spectrum 
of the white noise

The Fourier transform of the white noise in (13) is formally

where we use �(t)dt = dWt , and Wt being the Wiener pro-
cess. This integral is a stochastic variable. Multiplying by 
the complex conjugate and taking the mean gives

where we have used (C.1).
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