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Abstract
The potential predictability and skill of boreal winter (December to February: DJF) precipitation over central-southwest 
Asia (CSWA) is explored in six models of the North American Multimodel Ensemble project for the period 1983–2018. The 
seasonal prediction data for DJF precipitation initialized at Nov. (Lead-1) observed initial condition is utilized. The poten-
tial skill is estimated by perfect model correlation (PMC) method, while observed real skill is calculated by the temporal 
anomaly correlation coefficient (TCC). The main focus is over the Northern Pakistan (NP: 68°–78°E, 31°–37°N), which is a 
dominant winter precipitation sub-region in CSWA. All participating models generally capture the observed climatological 
pattern and variation in winter precipitation over the region. However, there are some systematic biases in the prediction of 
the climatological mean DJF precipitation, specifically an overestimation of precipitation over the foothills of the Himalayas 
in all models. The substantial internal atmospheric variability (noise) in the seasonal mean (signal) means that the regional 
winter precipitation is poorly predictable. The NCEP climate forecast system (CFSv2) and two Geophysical Fluid Dynam-
ics Laboratory models (FLOR-A and FLOR-B) show the lowest potential and real skill. The COLA and NASA models 
show moderate but statistically significant PMC and TCC values. Each model captures the observed relationship between 
spatially averaged DJF precipitation over NP, with sea surface temperature (SST) and 200 hPa geopotential height (Z200), 
in varying details. The COLA and NASA models skillfully matched the observed teleconnection patterns, which could be a 
reason for their good performance as compared to other models. It also found that SSTs in the tropical oceans are relatively 
well predicted by NASA model when compared with other models. A critical outcome of the predictive analysis is that 
the multimodel ensemble (MME: A combination of six models and 79 members) does not show many advantages over the 
individual models in predicting boreal winter precipitation over the region of interest. Together, these results indicate that 
reliable prediction of the boreal winter precipitation over CSWA remains a big challenge in initialized models.
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1 Introduction

The agriculture production and many other economic activi-
ties of central-southwest Asia (CSWA) heavily depend on 
precipitation anomalies especially in Northern Pakistan 
(NP), the primary agriculture zone and food basket of 

more than 200 million people (Rehman et al. 2016; Adnan 
et al. 2017). Northern Pakistan has very complex topog-
raphy (Fig. 1a), and the mean boreal winter precipitation 
and its variability are strictly related to the orientation and 
elevation of the mountain ranges existing in the region: the 
Himalaya-Karakoram-Hindukush is collectively known as 
the HKH range (Palazzi et al. 2013). A substantial fraction 
of the boreal winter precipitation falls along the slopes of 
the HKH in the form of snow (Immerzeel et al. 2015). The 
subsequent melting of this winter snow during next summer 
is the most significant source of water (Lutz et al. 2014) 
for “Kharif” crops like rice that need ample water for its 
cultivation. The region’s lower latitudes also receive a good 
amount of winter rainfall (Sarfaraz and Khan 2015), which 
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is critical for “Rabi” crops like wheat that are sown during 
October through December and are harvested during March 
and April.

The influence of El Niño Southern Oscillation (ENSO) 
is one of the most critical factors that modulate the CSWA 
precipitation anomalies during boreal winter (Barlow et al. 
2002; Hoell et al. 2014, 2015a; Cannon et al. 2016). For 
regional climate predictions, understanding of the ENSO 
connection to a regional climate is essential, as most of the 
climate prediction signal in current operational prediction 
systems arise from ENSO (Palmer et al. 2004; Wang et al. 
2009; Kirtman et al. 2014; Hoell et al. 2017a, 2018a). Severe 
persistent drought is a prominent feature of the CSWA 
hydro-climatology (Barlow et al. 2002, 2016; Hoell et al. 
2013b, 2017a), therefore accuracy in prediction of the boreal 
winter precipitation has great value, which can inform the 
concerned government agencies and stakeholders to cope 
with the adverse consequences of precipitation variability, 
particularly during drought condition.

Coupled global climate models (CGCMs) have become 
useful tools to make forecasts at multiple timescales (Dun-
stone et al. 2016) ranging from sub-seasonal to seasonal 

(S2S) and seasonal to decadal (S2D) for climate-sensitive 
sectors (Schepen et al. 2016) such as water resources man-
agement (Viel et al. 2016; Arnal et al. 2017), agriculture 
(Ogutu et al. 2018) and energy production (Clark et al. 
2017). While the CGCMs have demonstrated advanced con-
figurations and more realistic representation of the earth sys-
tem, the skill of a seasonal forecast system strongly depends 
on the model parameterizations (Ehsan et al. 2017b) and its 
initialization strategy (Xue et al. 2011; Barnston and Tip-
pett 2013), and also varies according to variable, region, 
season, and lead-time (Saha et al. 2016; Almazroui et al. 
2017; Ehsan et al. 2017a, 2019).

One fundamental question in seasonal climate forecast-
ing is whether one prediction system is more skillful than 
another. A wide range of seasonal climate predictability 
studies has been conducted previously by using reforecast 
data obtained from CGCMs over different regions and sea-
sons (Jiang et al. 2013; Ogutu et al. 2017; Saha et al. 2016; 
Lu et al. 2017; Madrigal et al. 2018; among many others). A 
thorough summary of the results of these studies indicates 
that seasonal predictability of the key climatic variables 
(e.g., temperature and precipitation) over tropics is higher 

Fig. 1  a Core region (NP: 
68°–78°E, 31°–37°N) of winter 
(DJF: Dec–Jan–Feb) precipita-
tion and its neighborhoods. 
Topography of the region is 
indicated by the colors, with 
high elevation in red and lower 
elevations in beige. b Spatial 
DJF mean precipitation clima-
tology (shaded) and standard 
deviation (contour). c The 
spatially averaged DJF precipi-
tation time series over NP for 
36-years (1983–2018). d The 
correlation of the NP precipita-
tion time series to the precipita-
tion anomalies during DJF. In d 
a correlation coefficient higher 
than 0.32 is statistically sig-
nificant at 5% confidence level, 
using a t test. Unit of precipita-
tion and elevation are mm day−1 
and meter respectively

(a) (b)

(c) (d)



475Potential predictability of boreal winter precipitation over central-southwest Asia in the…

1 3

as compared to the mid and high latitude regions (Dunstone 
et al. 2016; Ehsan et al. 2019).

Several observational and modeling studies have been 
conducted to investigate the impact of ENSO and other 
climatic drivers on winter precipitation in CSWA (Barlow 
et al. 2002, 2005, 2007; Barlow 2011; Hoell et al. 2015b, 
2017b, 2018a, b). The ENSO signal over the CSWA has 
increased in recent decades (e.g., Kang et al. 2015), and 
some studies documented the connection between CSWA 
winter precipitation and its variability to ENSO (Hoell et al. 
2012, 2013a, b; Hoell and Funk 2013; Rana et al. 2018; 
among others). Therefore, there is an opportunity to research 
boreal winter precipitation potential predictability and skill 
assessment using CGCM seasonal forecast datasets focus-
ing over northern Pakistan, which is the dominant precipita-
tion region in CSWA. In this study, we analyze the potential 
predictability and forecast skill of seasonal mean winter 
precipitation over NP by using retrospective ensemble sea-
sonal forecasts obtained from six CGCMs during the period 
1983–2018. The assessment is performed both with single 
and multimodel ensemble predictions. The article is organ-
ized as follows. Section 2 introduce the models, forecast, 
observational, and reanalysis datasets. It also describes the 
methodology used to assess the potential predictability and 
skill of the boreal winter NP precipitation. Observed and 
predicted mean and variability analysis of winter precipi-
tation, regional precipitation connections with ENSO and 
atmospheric circulation, potential predictability, and skill 
assessment, are presented in Sect. 3. A summary and conclu-
sions are given in Sect. 4.

2  Data and analysis method

2.1  Prediction data

Seasonal initialized Prediction data used in this work come 
from the North American Multimodel Ensemble (NMME) 
project (Kirtman et al. 2014). The NMME (see Table 1) is 
a forecasting system consisting of coupled models from 

US and Canadian research and operational modelling cent-
ers. Real-time predictions of NMME have been started 
since August 2011, and there is hindcast available (forecast 
in the past) for each model that includes the period from 
1982–2010. Here we use integration with observed Novem-
ber start date from the hindcast period (1982–2010) and 
the real-time period (2011–2018). We make no distinction 
between hindcast and real-time forecast in our analysis and 
refer to both as predictions.

The focus of the current study is to analyze the potential 
predictability and skill of boreal winter precipitation over 
northern Pakistan from initial condition observed in Novem-
ber (Lead-1) using individual model and multimodel ensem-
ble (MME: a combination of six models and 79 ensemble 
members) approach. “Lead-1” prediction is based on Nov. 
initial conditions (IC), and it is the prediction for December. 
The prediction for Nov. itself can be considered as “Lead-0” 
forecast. Following this, the seasonal Lead-1 forecast is for 
the 3 months (December to February: DJF) following the 
initial month of Nov. Table 1 lists the models included in 
this study along with their acronym, ensemble size, native 
atmospheric and oceanic resolutions, prediction length 
and reference papers. Hindcast and real-time prediction 
of monthly averages of precipitation and sea surface tem-
perature are available for download from the International 
Research Institute for Climate and Society (IRI) (https ://iridl 
.ldeo.colum bia.edu/SOURC ES/.Model s/.NMME/).

2.2  Observational data

We use several monthly mean observational and reanalysis 
datasets, including precipitation from the Global Precipi-
tation Climatology Project (GPCP) version 2.3 combined 
precipitation dataset (2.5◦ × 2.5◦) (Adler et al. 2003), sea 
surface temperature (SST) from monthly NOAA Opti-
mum Interpolation (OI) SST V2 (1.0◦ × 1.0◦) (Reynolds 
et al. 2002), while geopotential height is from NCEP-DOE 
(National Centers for Environmental Prediction-Depart-
ment of Energy) AMIP-II Reanalysis products (2.5◦ × 2.5◦) 
(Kanamitsu et al. 2002). All these datasets are at different 

Table 1  Six seasonal prediction models used in this work

Model Acronym used Ensemble 
members

Native atm. res. Native ocn. res. Predic-
tion length 
(months)

References

NCEP-CFSv2 CFSv2 24 T126L64 MOM4L40 0.25° Eq. 10 Saha et al. (2014)
COLA-RSMAS-CCSM4 COLA 10 T85L261 POPL42 0.3° Eq. 12 Kirtman and Min (2009)
GFDL-CM2p1-aer04 GFDL-Aer 10 2.0° × 2.25°L24 MOM4L50 0.3° Eq. 12 Delworth et al. (2006)
GFDL-CM2p5-FLOR-A06 GFDL-FLOR-A 12 C18L32 (50 km) MOM4L50 0.3° Eq. 12 Vecchi et al. (2014)
GFDL-CM2p5-FLOR-B01 GFDL-FLOR-B 12 C18L32 (50 km) MOM4L50 0.3° Eq. 12 Vecchi et al. (2014)
NASA-GAMO-062012 NASA 11 1.0° × 1.25°L72 MOM4L40 0.25° Eq. 9 Vernieres et al. (2012)

https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
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resolutions and were converted to a (1.0◦ × 1.0◦) resolution 
using bilinear interpolation common to prediction data.

2.3  Analysis method

Seasonally averaged data for 36 boreal winters (Decem-
ber to February: DJF) 1982 − 83 to 2017 − 2018 is used 
both for observation and prediction. We define northern 
Pakistan domain to be all the land points included within 

68°–78°E, 31°–37°N. Boreal winter seasonal anomalies 
for each model and observation are computed relative to 
the 36–year climatology.

The potential predictability of boreal winter NP pre-
cipitation is assessed here as the variance of the ensemble 
mean also known as “Signal or external variance,” and the 
mean variance of ensemble deviations commonly known 
as “Noise or internal variance” (Rowell 1998). Following 
Rowell et al. (1995), signal or external variance can be 
expressed as;

Fig. 2  Predicted DJF precipita-
tion climatology (shaded) and 
standard deviation (contour) 
calculated based on 36-year 
prediction data (initialized in 
Nov./Lead-1) for a CFSv2 b 
COLA c GFDL-Aer d GFDL-
FLOR-A e GFDL-FLOR-B, and 
f NASA. Unit of precipitation is 
mm day−1

(a) (b)

(c) (d)

(e) (f)
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where P is the precipitation, P is the climatological mean of 
the ensemble mean given by P =

1

Nn

∑N

k=1

∑n

m=1
Pkm and P̄k 

is the ensemble mean. Here k indicates the specific year and 
m denotes ensemble members. The noise or internal vari-
ance can be expressed as;

σ2
Ext

=
1

N − 1

N
∑

k=1

(

P̄k − P

)2

,

The ratio of signal and noise variances (S/N Ratio) 
defines potential predictability (Kang and Shukla 2006).

σ2
Int

=
1

N(n − 1)

N
∑

k=1

n
∑

m=1

(Pkm − P̄k)
2,

S/NRatio =
σ2
Ext

σ2
Int

,

Fig. 3  Mean DJF precipitation 
bias (Model-OBS) calculated 
based on 36-year prediction 
data (initialized in Nov./Lead-
1) for a CFSv2 (b) COLA (c) 
GFDL-Aer (d) GFDL-FLOR-
A e GFDL-FLOR-B, and f 
NASA. Unit of precipitation is 
mm day−1

(a) (b)

(c) (d)

(e) (f)
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The potential skill is estimated by using the perfect 
model correlation (PMC) method, which is calculated 
as the “correlation between ensemble average and one 
ensemble member” and provides the predictive skill of 
that ensemble member (Ehsan et al. 2013). Following ‘m’ 
ensemble members ‘m’ correlations are averaged by using 
Fisher Z transformation. The prediction skill of boreal 
winter NP precipitation is assessed here is through the 
computation of the temporal anomaly correlation coef-
ficient (TCC) between the ensemble mean and observed 
time series. The student t test is used to calculate the 

statistical significance of the correlation (Wilks 2006), 
by considering a threshold value of 0.05.

3  Results

3.1  Observed and predicted mean and variability

The climatological mean DJF precipitation (shaded) and 
standard deviation (contour) obtained from the gridded 
GPCP dataset averaged over the period 1983–2018 is 

Fig. 4  Same as Fig. 3, but 
for root-mean-square-error 
(RMSE). Unit of precipitation 
RMSE is mm day−1

(a) (b)

(c) (d)

(e) (f)
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shown in Fig. 1b. The spatially averaged winter precipita-
tion over NP estimated from observation is 1.38 mm day−1 
with a standard deviation of 0.50 mm day−1. The coef-
ficient of variation is 37%, which shows that year-to-year 
precipitation variability is quite high as compared to the 
mean winter precipitation. The sizeable interannual vari-
ability is evident in spatially averaged winter precipita-
tion time series (Fig. 1c). The geographical distribution 

of correlation between spatially averaged winter Precipita-
tion time series and gridded precipitation for 36 years is 
shown in Fig. 1d. The NP precipitation is highly positively 
correlated over the whole NP region and shows positive 
covariability with contiguous northeast Afghanistan and 
northwest Indian regions. Moreover, the NP precipitation 
during DJF shows episodes (Fig. 1c) of below average 
precipitation during 1999–2002, which coincide with the 

Fig. 5  Signal variance of DJF 
precipitation estimated based 
on 36-year prediction data 
(initialized in Nov./Lead-1) for 
a CFSv2 b COLA c GFDL-Aer 
d GFDL-FLOR-A e GFDL-
FLOR-B, and f NASA. Unit of 
signal variance is  mm2  day−2

(a) (b)

(c) (d)

(e) (f)
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consecutive four drought years of CSWA in recent dec-
ades (Barlow et al. 2002, 2016). Socioeconomic impacts of 
this drought period were severe over the region (Agrawala 
et al. 2001), with shortened water availability resulting in 
reduced agriculture production and livestock populations 
that result in rural-to-urban population migration and also 
ignite unrest among local communities (Ali et al. 2018; 
Batool and Saeed 2018).

Before analyzing the potential predictability and skill of 
boreal winter NP precipitation, it is desirable to first assess 
the fidelity of individual models in comparison to observa-
tion. The spatial structure of predicted boreal winter pre-
cipitation climatology (shaded) and interannual variability 
represented by the standard deviation (contour) for the 
period 1983–2018 is shown in Fig. 2. Individual models 
well simulate the geographical distribution of mean and 

Fig. 6  Same as Fig. 5, but for 
noise variance. Unit of noise 
variance is  mm2  day−2

(a) (b)

(c) (d)

(e) (f)
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variability of boreal winter precipitation as compared to 
observation. However, all models strongly overestimated 
both mean and variability (based on individual model 
realizations) over the region of interest. The difference 
(Model-Observed) between predicted and observed cli-
matological seasonal mean DJF precipitation is shown in 
Fig. 3. All models show wet bias over the NP, particu-
larly over the foothills of the Himalayas. For each model, 
we also calculate the root-mean-square-error against the 
observed DJF precipitation measurements (Fig. 4). The 

COLA (GFDL-Aer) models (Fig. 4b, c) show the highest 
(lowest) RMSE as compared to other models.

3.2  Winter NP precipitation predictability 
assessment

The geographical distributions of signal, noise, and signal-
to-noise ratio (S/N Ratio) are elucidated in Figs. 5, 6, and 
7, respectively. Spatial distribution and magnitude of signal 
and noise variances vary by model. Signal variance is quite 

Fig. 7  Signal-to-noise ratio 
(S/N Ratio) of DJF precipitation 
estimated based on 36-year pre-
diction data (initialized in Nov./
Lead-1) for a CFSv2 b COLA c 
GFDL-Aer d GFDL-FLOR-A e 
GFDL-FLOR-B, and f NASA. 
S/N Ratio is unitless

(a) (b)

(c) (d)

(e) (f)
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weak (Fig. 5) as compared to noise variance, which shows 
quite high values in all models (Fig. 6). Northern Pakistan 
region shows high signal variance, while noise variance is 
even larger and almost uniformly distributed over the whole 
region. COLA model shows large signal variance (Fig. 5b), 
but it also tends to have even larger noise variance (Fig. 6b). 
The regions with high (low) signal-to-noise ratio tend to 
have a higher (lower) potential predictability (Fig. 7). The 
S/N Ratio ≥ 1.84 (1.60) is considered as significant at 95 

(90) % level based on F-ratio statistics. Due to substantially 
high values of internal atmospheric variability, the signal-
to-noise ratio tends to show quite low values in all models 
(Fig. 7), which shows an inherent low potential predictability 
over the region of interest. However, NASA model (Fig. 7f) 
shows highest S/N Ratio as compared to other models.

The spatial distribution of perfect model correlation 
(ensemble member against ensemble mean) is shown 
in Fig. 8. PMC is an indication of the upper limit of the 

Fig. 8  Potential skill of DJF 
precipitation estimated using 
perfect model correlation which 
is based on 36-year predic-
tion data (initialized in Nov./
Lead-1) for a CFSv2 b COLA c 
GFDL-Aer d GFDL-FLOR-A e 
GFDL-FLOR-B, and f NASA. 
A correlation coefficient higher 
than 0.32 is statistically sig-
nificant at 5% confidence level, 
using a t test

(a) (b)

(c) (d)

(e) (f)
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dynamical seasonal prediction skill that can be achieved 
with a perfect model and perfect boundary conditions. The 
figure indicates that the potential predictability of the boreal 
winter NP precipitation is relatively low. The COLA, GFDL-
Aer, and NASA models (Fig. 8b, c, f) show moderate but sta-
tistically significant potential skill over the region of interest, 
while all other models (CFSv2, GFDL-FLOR-A, and GFDL-
FLOR-B) depict quite low values of PMC over the region of 

interest. The spatial distribution of prediction skill for boreal 
winter NP precipitation in terms of TCC (ensemble mean 
correlated with observation) is shown in Fig. 9. Statistically 
significant TCC values are observed over the northern lati-
tudes (adjoining areas of Afghanistan, Pakistan, and Tajik-
istan) in CFSv2 (Fig. 9a) and GFDL-Aer (Fig. 9c), while no 
significant values are witnessed over the region of interest. 
However, COLA (Fig. 9b) and NASA (Fig. 9f) models show 

Fig. 9  Prediction skill (correla-
tion between ensemble mean 
and observed anomalies) of DJF 
precipitation based on 36-year 
prediction data (initialized in 
Nov./Lead-1) for a CFSv2 b 
COLA c GFDL-Aer d GFDL-
FLOR-A e GFDL-FLOR-B, 
and f NASA. A correlation 
coefficient higher than 0.32 is 
statistically significant at 5% 
confidence level, using a t test

(a) (b)

(c) (d)

(e) (f)
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reasonable statistically significant skill over the NP region. 
The two GFDL models (FLOR-A and FLOR-B) show the 
lowest actual skill (Fig. 9d, e). Recently, Cash et al. (2017) 
demonstrated that individual models and multimodel ensem-
ble of NMME are less skillful in predicting precipitation 
and temperature at different leads over Pakistan-Afghani-
stan (60°–75°E, 23°–39°N) as compared to Extended Indian 
Monsoon Rainfall region (70°–100°E, 10°–30°N) due to the 
complex mountainous terrain of the former. They attributed 
this low skill to the relatively low resolution of the simula-
tions that are not able to resolve the complex topography of 
the region in these models (Cash et al. 2017).

Turning our attention to the multimodel ensemble, we 
now reveal the potential predictability and skill of the mul-
timodel ensemble (a combination of six models and 79 

ensemble members) in predicting boreal winter precipita-
tion over the CSWA region. Several earlier (e.g., Palmer 
et al. 2004; Hagedorn et al. 2005) studies have confirmed 
the superiority of multimodel ensemble predictions over 
that of a single model. We show the spatial distribution 
of potential and actual skills of boreal winter precipita-
tion over CSWA (Fig. 10). MME based potential skill 
(Fig. 10a) clearly shows the underperformance of MME 
as compared to the individual models (Fig. 8). Figure 10b 
shows the spatial distribution of actual prediction skill 
for winter NP precipitation based on MME. In contrast to 
PMC, MME shows quite high values (statistically signifi-
cant) of TCC over the NP domain, which is an indication 
of underconfident forecasts (Eade et al. 2014) in which 
ensemble members do not agree well with each other (low 
PMC) but do capture the observed variations quite well 
(high TCC).

3.3  SST prediction skill and observed and predicted 
teleconnections

In the previous section, we have seen a significant difference 
in predicting potential and real skill of boreal winter CSWA 
precipitation in initialized models. Two main questions will 
be answered in this section: (1) do the models (e.g., COLA 
and NASA) that have higher CSWA precipitation skill also 
make a better SST forecast as compared to other models? (2) 
how well these models that show higher precipitation skill 
predict the boreal winter precipitation teleconnection with 
SSTs and atmospheric circulation as compared to observa-
tion and other models?

Figure 11 shows the global spatial distribution of the 
correlation coefficient between the observed and predicted 
ensemble mean DJF SSTs anomalies for each model. As 
elucidated in the introduction, the interannual and intra-
seasonal variability of winter precipitation over CSWA is 
strongly influenced by SST variability over the Pacific and 
Indian Oceans. Thus, simulation of SST and the telecon-
nection with winter NP precipitation are critical for an 
accurate representation of seasonal mean winter precipita-
tion and its predictability in initialized models. The figure 
indicates that the SST prediction skill is relatively high in 
the tropical oceans, particularly in the tropical (western, 
central, eastern) Pacific, and the tropical Indian Ocean. 
There is a considerably higher SST prediction skill in the 
NASA model (Fig. 11f) as compared to other models.

Now we identify the relationship between winter NP 
precipitation and global SSTs and upper-level geopoten-
tial height (Z200) in observation, and their reproduction in 

(a)

(b)

Fig. 10  a Potential and b actual skill estimated based on 36-year pre-
diction data (initialized in Nov./Lead-1) for MME (six models and 79 
members). A correlation coefficient higher than 0.32 is statistically 
significant at 5% confidence level, using a t test
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prediction data. Figure 12a shows the distribution of spa-
tial correlation between spatially averaged DJF precipita-
tion over NP and SST anomalies for the period 1983–2018. 
The DJF NP precipitation is positively correlated over the 
central-eastern equatorial Pacific as well as the tropical 
Indian Ocean and the Arabian Sea. The positive correla-
tion coefficient in the ENSO region shows that the ENSO 
tends to boost (suppress) winter precipitation in the region 
during warm (cold) events (Hoell et al. 2014; Rana et al. 

2017). Warmer than average SST anomalies in ENSO region 
develops deep convection, releasing latent heat in a deep 
atmospheric column and producing an upper-level diver-
gence in the central-eastern Pacific, which is balanced to 
a first order by descending motion and upper-level conver-
gence in the western Pacific in boreal winter. This upper-
level convergence in the western Pacific acts as a source for 
tropical cyclonic upper-level Rossby gyre further to the west 
in the CSWA region through syerdrup balance mechanism. 

Fig. 11  Prediction skill (corre-
lation between ensemble mean 
and observed anomalies) of DJF 
SST based on 36-year predic-
tion data (initialized in Nov./
Lead-1) for a CFSv2 b COLA c 
GFDL-Aer d GFDL-FLOR-A e 
GFDL-FLOR-B, and f NASA. 
A correlation coefficient higher 
than 0.32 is statistically sig-
nificant at 5% confidence level, 
using a t test

(a) (b)

(c) (d)

(e) (f)
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The correlation maps between spatially averaged DJF NP 
precipitation and Z200 circulation anomalies is shown in 
Fig. 12b. A statistically significant positive correlation is 
observed over the tropical areas, and negative correlation 
appears over the subtropical Asia (20° to 40° northern lati-
tudes) extending from the Middle East to western Pacific for 
Z200 (Fig. 12b). The negative correlation indicates that the 
winter precipitation anomalies in the region are associated 
with the upper-level cyclonic circulation anomalies over the 
region.

We expect that capturing the appropriate teleconnection 
pattern in prediction data is essential for better prediction 
skill. In order to have a fair comparison, the spatially aver-
aged precipitation over NP for a particular model is calcu-
lated for each ensemble separately and correlated with the 
SST global field of that ensemble member. This is done for 
each of the m ensemble members, and the m correlations 
are averaged, after applying Fisher Z transformation (Ehsan 
et al. 2017a). Each model captures the observed relation-
ship between spatially averaged DJF precipitation over NP, 
with sea surface temperature with varying details. Compared 
with observations, the SST-precipitation link is reasonably 

reproduced in COLA and NASA models (Fig. 13b, f) as 
compared to other models. However, the teleconnection pat-
tern is slightly stronger as compared to the observed pattern 
in NASA model (Fig. 13f). The outperformance of these 
models is also evident in the DJF NP-Precipitation-Z200 
analysis, which shows negative correlation over the CSWA 
region and positive values in the tropical regions (Fig. 14f) 
statistically significant at 95% level. This indicates that the 
predicted teleconnection pattern in these models is quite 
well reproduced as compared to the observed pattern, which 
may have a positive impact on the winter NP precipitation 
predictability in these models. Other models are also able to 
capture the negative (positive) correlation over the CSWA 
(tropical) region with varying details. However, the telecon-
nection patterns predicted in these models poorly matched 
the observation (statistically insignificant), indicating that 
more attention is needed on the tropical/extratropical tel-
econnection patterns in initialized models.

4  Summary and conclusions

The potential predictability intrinsically depends on the 
model characteristics. In other words, different models 
produce different signal and noise combinations and, there-
fore, different potential predictability is represented by the 
signal-to-noise ratio. The potential predictability and skill 
of precipitation over CSWA during boreal winter is investi-
gated in the present study. The assessment focused over the 
northern Pakistan where observed winter precipitation is a 
substantial fraction of the annual total, and this region stands 
out as receiving substantial winter precipitation in central-
southwest Asia. The prediction datasets at Lead-1 (based on 
Nov. observed initial conditions) is utilized in the present 
study come from a subset of the North American Multi-
model Ensemble during the period 1983–2018 (six models 
and 79 ensemble members). The main findings from this 
study are summarized below.

• Initialized models capture the observed mean features 
including; climatological mean DJF precipitation and 
variability over the region. However, some systematic 
biases/errors in the prediction of the winter climatologi-
cal mean precipitation are also observed, e.g., overesti-
mation of precipitation over the foothills of the Himala-
yas.

• The potential and actual prediction skills of winter 
CSWA precipitation are low because the potentially pre-
dictable component (signal) is small as compared to the 
unpredictable quantity (noise).

• Each model, with varying details, captures observed tel-
econnection patterns. However, the COLA and NASA 
models reasonably reproduced these teleconnection pat-

(a)

(b)

Fig. 12  The correlation of DJF precipitation anomalies (spatially 
averaged over NP domain) with a global sea surface temperature and 
b 200 hPa geopotential height (Z200). The data period is from 1983–
2018. A correlation coefficient higher than 0.32 is statistically signifi-
cant at 5% confidence level, using a t test



487Potential predictability of boreal winter precipitation over central-southwest Asia in the…

1 3

terns as compared to other models. It also found that 
SSTs in the tropical Oceans are relatively well predicted 
by NASA model when compared with other models.

• Use of MME shows an underperformance in estimating 
potential and actual skill over the region of interest as 
compared to individual models.

This study reveals the inadequate performance of cur-
rent state-of-the-art seasonal prediction models in predicting 

winter precipitation over northern Pakistan. Better represen-
tation of the teleconnection patterns in prediction data might 
be expected to lead to increased regional, seasonal climate 
predictability. Together, these results indicate that reliable 
prediction of the boreal winter precipitation over CSWA 
remains a great challenge in initialized models.

Fig. 13  The correlation of DJF 
NP precipitation anomalies 
(spatially averaged over NP 
domain) with SST anoma-
lies for a CFSv2 b COLA c 
GFDL-Aer d GFDL-FLOR-A e 
GFDL-FLOR-B, and f NASA. 
A correlation coefficient higher 
than 0.32 is statistically sig-
nificant at 5% confidence level, 
using a t test. The correlation is 
computed within each ensemble 
member separately and then 
average for all ensemble mem-
bers (see text for details)

(a) (b)

(c) (d)

(e) (f)
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