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Abstract
Uncertainties in representing land–atmosphere interactions can substantially influence regional climate simulations. Among 
these uncertainties, the surface exchange coefficient Ch is a critical parameter, controlling the total energy transported from 
the land surface to the atmosphere. Although it directly impacts the coupling strength between the surface and atmosphere, 
it has not been properly evaluated for regional climate models. This study assesses the representation of surface coupling 
strength in a stand-alone Noah-MP land surface model and in coupled 4-km Weather Research and Forecasting (WRF) model 
simulations. The data collected at eight FLUXNET sites of the Canadian Carbon Program and seven AMRIFLUX sites are 
used to evaluate the offline Noah-MP simulations. Nine of these FLUXNET sites are used for the evaluation of the coupled 
WRF simulations. These sites are categorized into three land use types: grassland, cropland, and forest. The surface exchange 
coefficients derived using three formulations in Noah-MP simulations are compared to those calculated from observations. 
Then, the default Czil = 0 and new canopy-height dependent Czil are used in coupled WRF simulations over the spring and 
summer in 2006 to compare their effects on surface heat flux, temperature, and precipitation. When the new canopy-height 
dependent Czil scheme is used, the simulated Ch exchange coefficient agrees better with observation and improves the daily 
maximum air temperature and heat flux simulation over grassland and cropland in the US Great Plains. Over grassland, the 
modeled Ch shows a different diurnal cycle than that for observed Ch, which makes WRF lag behind the observed diurnal 
cycle of sensible heat flux and temperature. The difference in precipitation between the two schemes is not as clear as the 
temperature difference because the impact of changing Ch is not local.
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1 Introduction

Land–atmosphere interactions play important roles in 
weather and climate systems through the exchange of energy, 
moisture, and momentum between the atmosphere and land 
surface (Knist et  al. 2017). Land–atmosphere coupling 
strength is the degree to which anomalies in land surface 

states are transported to the atmosphere and hence impact 
atmospheric processes from an atmospheric perspective 
(Koster et al. 2006). Many observational studies have shown 
the importance of land–atmosphere coupling for regional 
weather and climate. LeMone et al. (2008) indicate that wet-
ter soils can lead to higher evaporation and higher latent heat 
flux by affecting atmospheric heating rates, cloud formation, 
and therefore regional precipitation. Fischer et al. (2007) and 
Hirsch et al. (2014) have demonstrated that the land–atmos-
phere interaction impacts near surface temperature, humid-
ity, cloud formation, rainfall generation, and other atmos-
pheric processes through the modulation/partition of the 
exchange of latent heat and sensible heat between the land 
surface and atmosphere (Fischer et al. 2007; Hirsch et al. 
2014; Kang et al. 2007; LeMone et al. 2008; Niyogi et al. 
1999; Pielke 2001; Knist et al. 2017; Zheng et al. 2015).

The land–atmosphere coupling processes and their 
impacts on regional climate change have been investigated 
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in many observational and modeling studies, especially 
those involve soil moisture- temperature and soil moisture-
precipitation feedbacks (Dirmeyer 2000; Guo and Dirmeyer 
2013; Guo et al. 2006; Hirsch et al. 2014; Koster et al. 2003, 
2004, 2006; Seneviratne et al. 2006, 2010). Understanding 
the feedbacks between land surfaces and the atmosphere can 
help improve weather and climate prediction in regional and 
global models (Barlage et al. 2015; Chang et al. 2009; Chen 
and Dudhia 2001; Chen and Zhang 2009; Kumar et al. 2014; 
Rasmussen et al. 2011; Trier et al. 2004, 2008). For land 
surface models (LSMs), determining a correct representa-
tion of the land–atmosphere coupling strength is challeng-
ing. Uncertainties in energy and water fluxes in LSMs arise 
from the choice of schemes used to represent land surface 
(Chen and Zhang 2009) and boundary layer processes (Sell-
ers et al. 1997; Overgaard et al. 2006; Dickinson 2011), and 
from meteorological inputs (Santanello et al. 2009). Several 
studies of coupled atmosphere–ocean general circulation 
models (GCMs) have alsodemonstrated that the coupling 
strength between the land and atmosphere is highly depend-
ent on model parameterizations. Therefore, an evaluation of 
simulated coupling strength against observation is desirable. 
(Koster et al. 2002, 2004, 2006; Guo et al. 2006).

Land–atmosphere coupling is a complex process that 
involves many aspects of the terrestrial-atmosphere system: 
soil moisture, aerodynamic resistance, staminal resistance, 
flux partitioning, etc. Several metrics have been defined for 
quantifying the land–atmosphere coupling strength depend-
ing on the variables involved and the feedback processes 
addressed in global climate models and regional climate 
models, e.g. by Seneviratne et al. (2006, 2010), Decker 
et al. (2015), Lorenz et al. (2015) and Knist et al. (2017), 
and through diagnosis of observation and reanalysis, e.g., by 
Dirmeyer (2011), Miralles et al. (2012), etc. These methods 
mainly address the soil moisture-temperature feedback pro-
cesses and on the time scale of days to months, though not 
all methods necessarily use the soil moisture variable explic-
itly in their formulas. In this study, we focus on the surface 
coupling strength involving the thermal roughness length 
that depends on the instantaneous atmospheric conditions 
(near surface wind speed, temperature difference between 
the surface and atmosphere) and the roughness of the land 
surface.

LeMone et al. (2008) and Chen and Zhang (2009) have 
indicated that the coupling strength in the bulk heat transfer 
equation between the land surface and the atmosphere can 
be quantified by the surface exchange coefficient Ch as it is 
the key factor for determining the amount of energy trans-
ferred from the surface to the lower atmosphere (a more 
detailed description of Ch is found in Sect. 2.1). Coupling 
strength depends on the exchange coefficient for different 
land-cover types and climate regimes. Chen and Zhang 
(2009) and Zheng et al. (2015) applied the bulk transfer 

aerodynamic method in which Ch can be calculated from 
simulation and observation. Their studies call for a dynamic 
coupling strength in terms of the Zilitinkevich (1970) empir-
ical coefficient Czil, and the evaluation was only performed 
over a short time scale. How it works in a climate timescale 
remains unknown. Thus, evaluations of Ch in climate models 
are needed to investigate the effects of different formulations 
of the surface exchange coefficient on climate simulations. 
Several formulas represent Ch in the literature (Chen et al. 
1997; Chen and Zhang 2009) as presented in Sect. 2, but 
their effects on land surface modeling have not been thor-
oughly investigated against observations.

The objectives of this study are to: (1) evaluate several 
Ch formulas in offline Noah-MP LSM against the Ch derived 
from long-term summer observations; (2) evaluate the 
simulated Ch with different formulas from high-resolution 
regional climate simulations (WRF) against the Ch derived 
from observations; and (3) assess the impacts of using a 
dynamic canopy-dependent Ch formula on WRF regional 
climate simulations.

This paper is organized as follows. Section 2 describes 
the datasets used and the experiment setups using the offline 
Noah-MP LSM and the coupled WRF model. Section 3 dis-
cusses the effect of land-coupling strength on both the stand-
alone LSM and the WRF simulation. The conclusions and 
discussions are provided in Sect. 4.

2  Data and methods

This section describes the formulas of Ch, the FLUXNET 
observation dataset, as well as the experiment setup of the 
Noah-MP LSM and the WRF regional climate simulations. 
First, we evaluated the Ch coefficient from a recently-con-
ducted regional climate simulation in the contiguous US 
against the Ch derived from FLUXNET Canada and Ameri-
flux tower observations. Then, we tested several formulas 
of Ch and assessed the impacts of the coupling coefficients 
on surface fluxes (sensible heat flux and latent heat flux) 
within the Noah-MP offline model. Finally, we evaluated the 
impacts of the new canopy-dependent Ch on surface fluxes, 
temperature, and precipitation in a high-resolution regional 
climate simulation. For the comparison of temperature and 
precipitation for the coupled WRF simulation, we used 
PRISM data (PRISM Climate Group 2004) and WFDEI 
(Weedon et al. 2014) as benchmarks.

2.1  Land‑atmospheric coupling method 
and the experiment design

In the original Noah LSM, the surface sensible (H) and 
latent (LH) heat fluxes are determined through the bulk 
transfer relations (Garrat 1992) as:
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where � is the air density, Cp is the air heat capacity, |U| 
is the wind speed, �a and qa are the air potential tempera-
ture and the air specific humidity at the lowest model level 
or at a specific height above the ground, and �s and qs are 
the surface temperature and the surface specific humidity. 
Ch and Ce are the surface exchange coefficient for sensible 
and latent heat fluxes and Ce is assumed to be equal to Ch. 
Hereafter, we focus on Ch. These equations have been dis-
cussed in several previous studies (Chen et al. 1997; Chen 
and Zhang 2009; Zheng et al. 2015). In the Noah-MP LSM, 
the ground surface is separated between vegetated canopy, 
vegetated ground, and the bare ground surface; hence, the 
surface energy balance is determined respectively (Niu et al. 
2011). The sensible heat and latent heat flux formulas for 
these three surfaces use a similar form to Eqs. (1) and (2), 
although the surface relative humidity hg is introduced in 
the vegetated and bare ground latent heat to characterize the 
availability of soil moisture (Niu et al. 2011, Appendix A).

Ch is determined by the Monin–Obukhov similarity 
theory as:

where L is the Monin–Obukhov length, Za is the height 
above the surface ground, R is the Prandtl number, and �m 
and �h are stability functions (Stull 1988). Also, in Eq. (3), 
Z0t is the roughness length for moisture and heat and Z0m 
for momentum, and they are assumed to be the same. Many 
studies (Chen and Zhang 2009; Brutsaert 1982; Sun and 
Mahrt 1995) have indicated that Z0t is different from Z0m 
because heat and momentum transfers are determined by 
different resistances and mechanisms in the roughness layer. 
Sun (1999) also found that Z0t has a much larger interday 
and diurnal variation depending on the factors involved in 
the bulk transfer formula (Eq. (1)), even over homogeneous 
surfaces (e.g., grassland). Zilitinkevich (1970) proposed a 
formula for Z0t:

where k = 0.4 is the von Kaman constant, Re is the rough-
ness Reynolds number, u*0 is the friction velocity, and ν is 
the kinematic molecular viscosity, and an empirical coeffi-
cient Czil . Chen et al. (1997) indicated that the Czil values are 
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assumed to vary from 0.01 (strong coupling) to 1.0 (weak 
coupling). Zheng et al. (2015) also confirmed that a smaller 
Czil results in stronger surface coupling. The default M–O 
option in Noah-MP LSM is the same as setting Czil to 0, 
assuming Z0t = Z0m.

The Z0t/Z0m ratio, through the change of Czil , can modu-
late surface heat fluxes. This ratio is more realistic than the 
treatment in the Monin–Obukhov option. Therefore, the 
specification of Czil is expected to improve the model per-
formance of surface fluxes. Chen and Zhang (2009) analyzed 
multi-year Ameriflux data and found that the Czil values are 
vegetation-type dependent and that Czil can be represented 
as a function of canopy height h (in meters):

Chen and Zhang (2009) demonstrated that the can-
opy-height dependent Czil formula (Eq. (6)) significantly 
improved the simulation results, especially in short vegeta-
tion sites.

2.2  FLUXNET data sets

FLUXNET, a global network of micrometeorological 
tower sites, uses eddy covariance methods to estimate 
the exchanges of carbon dioxide, water vapor, and energy 
between the atmosphere and terrestrial ecosystems. Both 
FLUXNET Canada and Ameriflux are part of FLUXNET.  
This study used data collected at 15 flux tower sites located 
in three biomes (grassland, cropland, and forest) and dif-
ferent climate zones, from FLUXNET Canada (CA-WP1, 
CA-Ca3, CA-Obs, CA-Qfo, CA-Ojp, CA-TP4) and Ameri-
flux (US-Bkg, US-Aud, US-Fpe, US-Wkg, US-Var, US-
ARM, US-Bo1, US-NR1). Detailed information about the 
AmeriFlux network can be found at http://publi c.ornl.gov/
ameri flux/ and about CCP (Canadian Carbon Program) at 
https ://fluxn et.ornl.gov/site_list/Netwo rk/3. Figure 1 shows 
the geographical locations of these sites, and Table 1 pro-
vides general information about them. Our goal is to explore 
the effect of the surface exchange coefficient Chon the land-
atmospheric surface coupling strength in regional climate 
models and compare them to uncoupled simulations using 
the approach by Chen and Zhang (2009).

2.3  Noah‑MP LSM Offline modeling system

Noah-MP is a new-generation of LSM (Niu et al. 2011; Yang 
et al. 2011), which was developed to improve the perfor-
mance of Noah LSM (Chen et al. 1996, 1997; Chen and 
Duhia 2001). It has been coupled to the community WRF 
weather and regional climate model (Barlage et al. 2015; 
Salamanca et al. 2018; Xu et al. 2018) and is also avail-
able as an offline 1-D model (e.g., Chen et al. 2016). Noah-
MP has been widely used in regional climate models for 

(6)Czil = 10(−0.4h).

http://public.ornl.gov/ameriflux/
http://public.ornl.gov/ameriflux/
https://fluxnet.ornl.gov/site_list/Network/3
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investigating the feedback between soil moisture and pre-
cipitation (the interaction between the land and atmosphere) 
(Barlage et al. 2015; Wan et al. 2017).

For this study, we chose the Noah-MP LSM (v3.6) to 
evaluate its Ch calculation. The Noah-MP LSM has two 
options to calculate Ch: one uses Monin–Obukhov (M–O) 
with identical roughness lengths for momentum ( Z0m ) and 
heat ( Z0t ), and the other uses different roughness lengths 
for Z0m and Z0t (Chen et al. 1997). Chen and Zhang (2009) 

demonstrated that the canopy-height dependent Czil formula 
(Eq. (6)) significantly improves the simulation results, espe-
cially in short vegetation sites.

In the offline Noah-MP simulations, we tested and com-
pared three options for Czil : the Noah-MP LSM original 
Monin–Obukhov, which uses Czil = 0 ; a constant Czil = 0.1 , 
and the canopy-height dependent scheme according to Eq. (6). 
The model simulated Ch is compared with observation-derived 
Ch from the FLUXNET sites.

Fig. 1  Locations of 15 FLUXNET sites (in dark circles) selected for this study. The domain inside the red line is the smaller domain where cou-
pled WRF simulations were conducted. Also shown is the distribution of vegetation based on the IGBP/MODIS land cover classification

Table 1  General information about 15 FLUXNET sites used in this study

ENF evergreen needleleaf forests, DBF deciduous broadleaf forests, WET permanent wetland, WS wooded savannah

Site location Latitude, longitude Elevation (m) Land-cover type Canopy height (m) Years of data used

US-Bkg 44.35, − 96.83 510 Croplands 0.2–0.4 2005–2007
US-Aud 31.59, − 110.51 1469 OSH 0.1–0.2 2003–2007
US-Fpe 48.31, − 105.10 634 Grassland 0.2–0.4 2001–2007
US-Wkg 31.74, − 109.94 1531 Grassland 0.5 2005–2007
US-Var 38.41, − 120.95 129 WS 0.55 ± 0.12 2001–2007
US-ARM 36.61, − 97.49 311 Croplands 0–0.5 2003–2007
US-Bo1 40.01, − 88.29 219 Croplands 3.0 (mz) 0.9 (sb) 2001–2007
CA-WP1 54.95, − 112.47 549 WET 3.4 2004–2007
CA-Ca3 49.53, − 124.90 153 ENF 7.6 2001–2007
CA-Obs 53.99, − 105.12 598 ENF 9.4 2001–2007
US-NR1 40.03, − 105.55 3050 ENF 11.5 2001–2007
CA-Qfo 49.69, − 74.34 390 ENF 13.8 2004–2007
CA-Ojp 53.92, − 104.69 518 ENF 16.7 2001–2007
CA-TP4 42.71, − 80.36 219 Mixed forest 20.3 2002–2007
CA-Oas 53.63, − 106.20 580 DBF 21.5 2001–2007
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2.4  WRF model and domain configuration

The weather research and forecasting (WRF) model was 
configured with 4-km horizontal grid spacing that permits 
convection and resolves mesoscale orography covering 
large parts of North America (1360 by 1016 grid points, 
Fig. 1) (Rasmussen and Liu 2017; Liu et al. 2017). The 
WRF model was used to directly downscale the Euro-
pean Centre for Medium-Range Weather Forecast Interim 
Reanalysis (ERA-Interim) (Dee et al. 2011) data for the 
period from October 2000 to September 2013 to gener-
ate a high-resolution regional climate simulation (WRF-
CONUS). The WRF-CONUS dataset has been used for 
several regional climate studies on, regarding convective 
precipitation (Prein et al. 2016; Rasmussen et al. 2017; 
Scaff et al. 2019), snow hydrology (Musselman et al. 2017, 
2018), and extreme heat waves (Raghavendra et al. 2019; 
Zhang et al. 2018). The first three months are treated as a 
spin-up period and not included in the analysis. The output 
from WRF-CONUS is used as forcing for offline simula-
tions using Noah-MP with different Czil formulas to com-
pare the impact of Czil schemes on Ch, surface temperature, 
and heat flux simulation.

For our coupled WRF simulation with different Czil for-
mulations, the simulation was performed over a smaller 
domain over the central part of the continent, as shown in 
the boxed region in Fig. 1, for the period from 2006 to 2007. 
In the default simulation (WRF-CTL), the parameterization 
schemes employed are identical to those described in Liu 
et al. (2017). To investigate the impacts of coupling strength 
on WRF-Noah-MP model simulations, another simulation 
with the canopy-height dependent formula Czil = 10(−0.4h) 
(WRF-CZIL) is performed over the small domain. WRF-
CZIL uses the same physics scheme as Liu et al. (2017) 
except that in the Noah-MP LSM the new Czil formulation 
(dependent on canopy height, Eq. (6)) replaces the default 
M–O scheme (equivalent to Czil = 0). The coupled simula-
tions (WRF-CTL and WRF-CZIL) over the small domain 
were initialized at 0000 UTC 1 Feb 2006 and ended at 0000 
UTC 1 Sep 2007. The first month was treated as a spin-up 
period.

3  Results

3.1  Impact of the coupling strength on the offline 
Noah‑MP LSM simulation

Ch can be directly derived from flux observations using 
the method from Chen and Zhang (2009). Instruments at 
FLUXNET sites directly provide sensible heat H and ∣U∣; 
�a  and �s  are calculated from observed air temperature 
and outgoing longwave radiation flux. Ch is calculated 

using 30-min data by the bulk transfer formula in Eq. (1) 
and then averaged from 1000 to 1500 local time to obtain 
midday values. Figure 2 shows midday Ch calculated by 
FLUXNET data and offline Noah-MP experiments using 
the FLUXNET data for each station in Table 1 and aver-
aged for spring and summer. Compared to the midday 
observation-derived Ch, the modeled Ch values from the 
default run are overestimated for all sites. Especially the 
positive bias of Chin short vegetation (grassland and crop-
land: US-Bkg to Ca-WP1) is larger than in forest sites. 
This result agrees with Chen and Zhang (2009) in that 
Noah LSM overestimates the surface coupling strength in 
short vegetation sites and provides too much water vapor, 
while the LSM reasonably captures the coupling for for-
est sites. In the simulations with Czil = 0.1, the Ch values 
decrease for all the sites. Compared to the observation, 
Czil = 0.1 improves Ch over short vegetation but still over-
estimates it, while for the forest sites the Ch values are 
underestimated. Thus, based on the simulation results, a 
constant Czil value cannot represent the strong dependency 
of Ch on vegetation types with different canopy heights in 
Noah-MP LSM. Using canopy-height dependent Czil , as 
in Eq. (6), significantly improves the midday Ch values in 
short vegetation sites with good agreement with observa-
tion, while in forest sites, the simulated Ch are still over-
estimated but reasonable for summer. The above analysis 
demonstrates that adjusting the Czil values can substantially 
improve the land-atmospheric coupling strength for differ-
ent land cover types, especially for short vegetation sites. 
Except for the site US-NR1, all offline simulations show 
a much narrower range for Ch compared to observation, 
meaning that Noah-MP produces a smaller diurnal cycle 
of Ch than observation in offline simulations. Any factors 
and observation uncertainties that affect the variables in 
the bulk transfer formula (Eq. (1)) can cause large changes 
and variations in Ch derived from FLUXNET data.

Figures 3, 4, and 5 show the diurnal surface heat fluxes 
(averaged from 2001 to 2007) from FLUXNET observation 
and offline Noah-MP simulations forced by FLUXNET 
data over all sites, with the same land cover for three dif-
ferent land covers (grassland, cropland, and forest). There 
are small differences (underestimations) between modeled 
LH using three formulas ( Czil = 0, 0.1 and h-dependent) 
and observed LH over the three land cover types. Large 
differences (overestimations) are found in H among the 
three simulations and observations. The changes are small 
in LH among the three formulas because the LH is also 
strongly affected by moisture availability besides the 
exchange coefficient. Compared to the observed H, both 
the default and Czil = 0.1 experiment overestimate H over 
cropland and grassland at midday, confirming again that 
the surface coupling strength is too strong for cropland and 
grassland sites in the daytime. Figure 3 shows that over 
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Fig. 2  Ch (plotted at  log10 scale) derived from FLUXNET observa-
tions, calculated by the Noah-MP LSM using default M–O scheme 
run, CZIL = 0.1, and Czil(h) relationship of Eq. (6) for different land-
cover types. These are midday (1000–1500 LST) values and averaged 

for spring (March–April–May) and summer (June–July–August). The 
median values of spring (summer) average Ch are represented by mid-
dle lines. The bars comprise 75% of all midday values Ch for spring 
(summer) for each site

Fig. 3  Comparisons of averaged surface sensible heat flux and latent heat flux between observation and offline experiments over grassland sites
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grassland the Czil(h) simulation reproduces the observed 
H maximum value. However, the simulated H peaks ear-
lier than in the observation. This is due to the thermal 

difference between the surface and atmosphere peaking 
earlier in the Czil(h) simulation. Czil(h) decreases Ch signifi-
cantly over grassland compared to the default and Czil = 0.1 

Fig. 4  Comparisons of averaged surface sensible heat flux and latent heat flux between observation and offline experiments over cropland sites

Fig. 5  Comparisons of averaged surface sensible heat flux and latent heat flux between observation and offline experiments over forest sites
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simulations and is closer to the mean observed Ch value 
at midday (not shown). However, the observed Ch peaks 
around early morning and late afternoon over the grassland 
sites, whereas the simulated Ch (default, Ch = 0.1, Czil(h)) 
peaks at midday. Large observed Ch in the morning cor-
responds to a large H with a small thermal gradient. The 
significant decrease in Ch for the Czil(h) simulation requires 
a larger temperature difference between the land surface 
and atmosphere in the morning to match the observed H. 
This larger thermal difference causes larger H in the early 
morning as the simulated Ch increases with local solar 
time, hence the earlier peak time for H than the other two 
simulations and the observation. Through the investiga-
tion of momentum and thermal roughness length over 
grassland, Sun (1999) found nearly constant values for 
momentum roughness length but a large diurnal variation 
of thermal roughness length. Sun also found that when the 
surface wind is weak, the aerodynamic temperature used 
in the bulk flux equation (Eq. (1)) deviates far from the 
surface radiation temperature and that apparent counter 
thermal gradient heat transport occurs under such condi-
tions. Over the grassland sites in this study, the weakest 
surface wind speeds occur during the transitional periods 
of morning and evening, which coincide with the large Ch 
values over the grassland and some cropland FLUXNET 
sites. To better simulate the sensible heat flux and tem-
perature diurnal cycle over grasslands, more studies are 
warranted to investigate the diurnal variation of thermal 
roughness length and surface exchange coefficient Ch over 
grasslands.

Figure 4 shows that although the simulation with the 
canopy height dependent Czil(h) still overestimates H for 
cropland, it matches the observed H better within a reason-
able range. The changes in H from the default to Czil(h) are 
relatively small in spring compared to summer. The new Czil 
formula reduces the positive bias of H to about 50% of that 
of the default simulation. There are almost no differences in 
the simulated LHs for the three formulas, all of which show 
large negative biases for both seasons.

For the forest sites in Fig. 5, both default and Czil = 0.1 
simulations underestimate H, but the new Czil simulations 
slightly overestimate H and are closer to the observed value 
than the other two simulations. In general, the coupling 
strength is too weak for forest sites in both the default and 
Czil = 0.1 experiments. For forest sites, there is not much 
difference between the default and new Czil in H, since a 
high canopy will yield a Czil close to 0 and make it nearly 
identical to the default Ch scheme, overestimating H at the 
same scale. Yet a constant Czil = 0.1 underestimates H and 
overestimates LH fluxes in forest sites. The underestimation 
of H by Czil = 0.1 is expected with a smaller Ch as less heat is 
transferred from the surface to the atmosphere, resulting in 
a higher skin temperature. The increase of skin temperature 

enhances the evaporation from the ground and canopy. For 
all the cases with a smaller Ch ( Czil(h) for grassland and 
cropland, and Czil = 0.1 for forest), H decreases substantially 
compared to cases with a larger Ch (default for grassland, 
cropland, and Czil(h), and default for forest). Although there 
is a large decrease of H and increase of skin temperature 
caused by a smaller Ch value, the changes in LH over grass-
land and cropland are negligible. The simulated changes in 
LH over forest sites are larger due to their larger soil mois-
ture availability and smaller stomatal resistance, which play 
an important role in controlling moisture flux.

3.2  Impact of the coupling strength on the coupled 
WRF model

As the 13-year 4-km WRF-CONUS simulation does not use 
the new Czil method, we conducted another set of experi-
ments over a smaller domain using the identical configu-
ration of WRF-CONUS and with both the default and a 
new Czil(h) method, known as WRF-CTL and WRF-CZIL, 
respectively. The simulation period for WRF-CZIL and 
WRF-CTL is from February 1, 2006 to September 1, 2007. 
In order to compare the performance of different Czil for-
mulas in the coupled model, the simulation results of both 
WRF-CTL (equivalent to Czil = 0 ) and WRF-CZIL ( Czil(h)) 
are analyzed. Figure 6 shows the Chderived from observa-
tions and calculated by both WRF-CTL and WRF-CZIL run 
using the Czil(h) relationship of Eq. (6) (WRF-CZIL) for 
the nine FLUXNET sites through spring and summer for 
2006 and 2007. Compared to observation-derived values, the 
WRF Ch has a much smaller range over all the sites regard-
less of scheme. As discussed in Sect. 3.1, the Ch derived 
from FLUXNET shows much larger diurnal variability. The 
WRF-CTL results overestimate Chfor short vegetation, while 
for the forest sites, the simulated Ch is very close to the 
observation-derived values. Using canopy height dependent 
Czil , the WRF-CZIL simulation results slightly improve the 
Chin short vegetation sites while matched with the observa-
tions over forest sites. WRF-CZIL with improved Ch pro-
duces better simulated mean air temperature results (Fig. 6). 
The WRF-CTL simulated temperature bias is generally more 
than 5 degrees in spring and summer for short vegetation; 
the new Czil scheme cools down the warm bias by about 2° 
in general.

Figures 7, 8 and 9 present the impacts of the coupling 
strength through applying the Czil(h) formula to heat fluxes 
in coupled WRF simulations over three types of land sur-
face. Figure 7 shows that in grassland sites during spring and 
summer the WRF-CZIL experiment improves the simula-
tion of H at midday over WRF-CTL, although both over-
estimate H compared to observation. Both WRF-CTL and 
WRF-CZIL overestimate LH compared to observation with 
little difference between the two simulations. Unlike the 
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Fig. 6  Ch (top, plotted at  log10 scale) and T2 (bottom) derived from 
FLUXNET observations, those calculated from two coupled WRF 
simulations (WRF-CTL and WRF-CZIL). Ch values are midday 
(1000–1500 LT) values and averaged for spring (March–April–May) 

and summer (June–July–August) in 2006 and 2007. The median val-
ues of spring (summer) average Ch are represented by middle lines. 
The bars comprise 75% of all midday values Ch for spring (summer) 
for each site
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Fig. 7  Comparisons of averaged surface sensible heat flux and latent heat flux between observation and coupled WRF model results over grass-
land sites

Fig. 8  Comparisons of averaged surface sensible heat flux and latent heat flux between observation and coupled WRF model results over crop-
land sites
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offline Noah-MP simulation in which the simulated H peaks 
earlier than in observation, the coupled simulation shows a 
delayed peak of H compared to FLUXNET observation. This 
delay is related to a much more gradual rise of skin tem-
perature in the morning in both WRF-CTL and WRF-CZIL 
compared to observation. In the WRF-CTL simulation, the 
mean Ch is larger than the observed value. However, in the 
early morning the observed Ch value is as large as the Ch in 
WRF-CTL, in which the minimum value occurs early in the 
morning (Fig. 10). The temperature and skin temperature in 
the observation start to rise at an earlier local time than in 
both the WRF-CTL and WRF-CZIL simulations, which is 
consistent with the earlier rise of H in the observation. This 
delayed rise of H and temperature in the early morning in 
the WRF simulation contrasts with the offline simulation 
using Noah-MP, which produces an earlier peak of H than 
observation. The utilization of the new Czil formula mainly 
decreases the peak magnitude of H and surface temperature 
and has no effects on the nighttime minimum surface tem-
perature (not shown). WRF-CTL produces a diurnal range 
of surface temperature slightly less than observation. The 
new Czil decreases the diurnal range of temperature relative 
to WRF-CTL and observation. In other words, a higher value 
of Ch in the early morning and in the evening in WRF-CZIL 
would improve the simulation of H and surface temperature 
in WRF-CZIL over grasslands.

For cropland sites, as shown in Fig. 8, WRF-CTL and 
WRF-CZIL results are very similar in spring and summer. 
Both overestimate the observed H in midday by more than 
100  Wm−2. WRF-CZIL improves the H value and slightly 
reduces the positive bias relative to observed values com-
pared to WRF-CTL. The Ch values in WRF-CTL are gener-
ally larger than in observation for the cropland sites. The Ch 

Fig. 9  Comparisons of averaged surface sensible heat flux and latent heat flux between observation and coupled WRF model results over forest 
sites

Fig. 10  The diurnal cycle of Ch from site US-Fpe (grassland) from 
observation during summer (JJA) and those from WRF-CTL and 
WRF-CZIL schemes
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values in WRF-CZIL are generally less than in observation, 
as shown in Fig. 6. The positive bias of H in the daytime 
in WRF-CZIL with a smaller Ch is due to the fact that the 
simulated skin temperature in WRF-CZIL at midday is much 
larger than in observation, which more than compensates for 
the effects of the reduced Ch. Compared to the offline simu-
lation (Fig. 4), both WRF-CTL and WRF-CZIL simulate 
better LH, greatly reducing the negative bias in the simulated 
LH in the offline simulations. These better results for LH 
compared to offline simulations, however, are caused by a 
large warm bias in skin temperature (not shown) in both 
WRF-CTL and WRF-CZIL.

Over forest sites, WRF-CTL and WRF-CZIL produce 
similar H and LH in both spring and summer, as shown 
in Fig. 9. Because Czil is close to 0 (default) for the canopy 
height of forest sites, according to Eq. (6). WRF-CTL and 
WRF-CZIL both overestimate H compared to observation. 
Figures 7, 8, and 9 show that the WRF-CZIL simulations 
agree better with observation in terms of H, while the cou-
pling strength does not affect the LH much over all the 
FLUXNET sites, especially for the spring season. Compared 
to WRF-CTL, the WRF-CZIL using the Czil(h) relation can 
reduce the coupling strength in short vegetation sites, which 
brings the H simulation closer to observation for grassland 
and cropland during daytime. Ch improved by WRF-CZIL 
leads to better simulated mean 2-m air temperature results 
over grassland (Fig. 6). The WRF-CTL temperature bias is 
generally more than 5° in spring and summer for short veg-
etation, while the new Czil scheme reduces the warm bias by 
about 2° in general.

Figures 11, 12 compare the spatial distribution of simu-
lated daily maximum surface temperature  (Tmax) compared 
to PRISM in the US and to WFDEI in Canada in spring and 
summer for 2006 and 2007. Figure 11 shows that the spring 
 Tmax distribution simulated by WRF-CTL has a positive bias 
in the high plains centered over the Dakotas, Nebraska, Kan-
sas, and Oklahoma, which are covered mostly by grasslands 
and croplands. WRF-CZIL reduces the warm bias in the 
region, especially over grassland. WRF-CTL also simulates 
cold biases over the grasslands close to the Rocky Mountains. 
WRF-CZIL enhances the cold bias by WRF-CTL over this 
region. Figure 12 shows that the general pattern of  Tmax bias 
during summer is similar to the pattern during spring for both 
WRF-CTL and WRF-CZIL. The summer  Tmax bias pattern 
shows a small shift toward the east relative to spring. WRF-
CZIL reduces the warm bias in the eastern part of the central 
plains and worsens the cold bias in the grasslands close to the 
Rockies. Because the new Czil scheme reduces Ch over short 
vegetation canopy, WRF-CZIL generally decreases the daily 
maximum temperature over the domain compared to WRF-
CTL, since grassland and cropland are the dominant land use 
types in the domain.

Figures 13, 14 show the daily minimum temperature  (Tmin) 
from PRISM/WFDEI, WRF-CTL, and WRF-CZIL. WRF-
CTL produces a warm bias in the whole domain, with the 
larger bias centering on the Great Plains for both spring and 
summer. There is a cold bias belt following the forest distri-
bution in western Canada in both seasons. The WRF-CZIL 
simulation produces a very similar pattern with an enhanced 
warm bias over croplands in Illinois, Wisconsin, and Iowa. 
A nighttime temperature warm bias is the main contributor 
to the warm bias in daily mean temperature in WRF over the 
Great Plains.

Figures 15, 16 show the WRF precipitation simulation 
comparison with PRISM/WFDEI for spring and summer. The 
indirect impacts of the surface exchange coefficient on pre-
cipitation involve many processes, are nonlocal, and are not as 
clear as those for temperature. In Fig. 15, WRF-CTL produces 
a dry bias in the southeast domain that fades northwestward 
into the central plains and a wet bias over the cropland region 
during spring. The Czil(h) simulation enhances the wet bias 
over the cropland region in Missouri and Illinois. This region 
is warm during spring and downwind of the grassland region, 
where new Czil increases LH and evaporation in the WRF-
CTL simulation. Figure 16 shows that the precipitation pat-
tern and changes in summer are more complex compared to 
spring. Observation shows a main precipitation region extend-
ing from Oklahoma (around 100° W) northeastward to Lake 
Michigan. WRF-CTL produces a wet bias of 4–5 mm/day in 
the forests of Minnesota and Wisconsin and in southwestern 
Ontario largely to the north/northeast of the observed main 
precipitation regions. WRF-CZIL tends to reduce this wet bias 
in WRF-CTL over the region and mitigate the dry bias in the 
cropland in WRF-CTL over the main precipitation area in the 
observation. In other words, compared to WRF-CTL, WRF-
CZIL produces more precipitation over grassland and cropland 
in the main precipitation region in observation. WRF-CZIL 
also reduces precipitation in the forest zone north of the above 
region. WRF-CTL produces a wet bias of 2–3 mm/day near 
Wyoming and Nebraska and a dry bias to the east. WRF-CZIL 
seems to reduce these biases, which is consistent with the fact 
that WRF-CZIL has a lower Ch during daytime and simulates 
a lower maximum temperature over the grasslands close to 
the Rockies.

4  Discussion and conclusions

In this study, the impact of land-atmospheric coupling 
was assessed using an offline Noah-MP LSM and coupled 
WRF-Noah-MP model for selected FLUXNET sites and 
over the central US and Canada. Three formulas calculat-
ing the surface exchange coefficient Ch, including a canopy 
height dependent formula, were tested using the Noah-MP 
offline mode with observational forcing from the selected 
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FLUXNET sites. The default and new Czil formulas were 
tested in WRF-Noah-MP coupled runs. The impacts of 
two Czil formulas on the land–atmosphere interaction were 
studied through analysis of energy fluxes and surface tem-
perature, and precipitation for spring and summer during 
2006–2007.

The offline Noah-MP single point simulations forced by 
FLUXNET data with various coupling strength formulas 
show substantial differences in simulated Ch, as well as in 
surface energy fluxes, especially in sensible heat H. The 
default option, equivalent to Czil = 0 , overestimates Ch in all 
sites in both spring and summer. This leads to more energy 

transferred as sensible heat flux over short vegetation, result-
ing in more over-coupling between land and atmosphere than 
in observation. The constant Czil = 0.1 scheme reduces the 
positive Ch bias simulated by default over short vegetation 
and underestimates Ch over tall vegetation. The overestima-
tion of the surface exchange coefficient by the constant Czil 
over cropland and grassland is still evident, and so is the 
underestimation for forest sites. Finally, the new Czil simu-
lation produces the least mean Ch bias in short vegetation 
with decent results in tall vegetation, resulting in a small 
positive bias in H and a reasonably good estimation of LH 
for grassland and forest.

Fig. 11  Comparisons of  Tmax from PRISM/WFDEI and coupled WRF model results in spring (MAM) of 2006, 2007. The top row shows the 
observation and WRF-CTL in degree Celsius. The bottom row shows the WRF-CTL and WRF-CZIL Bias in degree celsius
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The Ch estimated using the bulk formula over grasslands 
shows a different diurnal cycle than both in Noah-MP and 
WRF. In both models, the diurnal cycle of Ch at each site 
shows a diurnal cycle following the temperature diurnal 
cycle. The observed Ch over grassland sites and some crop-
land sites shows a maximum near early morning and late 
afternoon (Fig. 10). The observed Ch over forest sites shows 
a varied pattern but resembles those from the model with the 
maximum during the daytime. This diurnal variation of Ch 
causes the offline Noah-MP and WRF-CZIL simulations to 
fail to capture the peak time for H over grassland. All the 
variables in the bulk formula in Eq. (1) can cause uncer-
tainty and variation in Ch for grassland. Sun (1999) pointed 

out that the aerodynamic temperature (the effective tempera-
ture for heat exchange between the surface and atmosphere 
when Ch is fixed in Eq. (1) and Z0t = Z0m) is higher than the 
radiative temperature when the wind speed is slow, which 
is the case for grassland sites in the early morning and late 
afternoon. A higher aerodynamic temperature is equivalent 
to a higher Ch using surface radiation temperature in Eq. (1).

The results from coupled WRF Noah-MP simulations 
with two coupling strength treatments, WRF-CTL and 
WRF-CZIL, differ in terms of H and LH. The changes 
caused by the different choices of Czil schemes are smaller 
for the coupled runs compared to offline simulations. The 
Chsimulated by both schemes shows less variability than that 

Fig. 12  Same as in Fig. 11, except for summer (JJA)
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derived from observation and that from offline Noah-MP 
results forced by FLUXNET in Sect. 3.1, suggesting that 
uncertainty from the measurement and representation of the 
related variables in Eq. (1) may introduce uncertainty of the 
exchange coefficient. The Ch simulated by WRF-CTL shows 
a constant positive bias over short vegetation and is close to 
the Ch for observation over forest in both spring and summer. 
WRF-CZIL improves the Ch over short vegetation while 
keeping a reasonably good estimation over tall vegetation. 
The two schemes show substantial differences in sensible 
heat and only small differences in latent heat. WRF-CZIL 

reduces the strong positive midday sensible heat bias by as 
much as 100  Wm−2, particularly in summer over cropland. 
For forest sites, the improvement in simulated sensible heat 
is not significant.

The WRF-CZIL simulation reduces the warm bias in 2-m 
air temperature in the WRF-CTL simulation by 2°–3° over 
short vegetation sites, suggesting the key role of land–atmos-
phere interaction in impacting local climate through surface 
coupling strength. These results provide solid evidence for 
diagnosing the warm bias that appears in summer over the 
North Great Plains in the CONUS simulation (Liu et al. 

Fig. 13  Comparisons of  Tmin from PRISM/WFDEI and coupled WRF model results in spring (MAM) of 2006, 2007. The top row shows the 
observation and WRF-CTL in degree Celsius. The bottom row shows the WRF-CTL and WRF-CZIL Bias in degree Celsius
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2017). There are other issues related to the warm bias, such 
as little cloud cover resulting in more solar radiation, less 
precipitation, and soil moisture with less evaporative cool-
ing. These could also lead to the consequences of warm bias, 
yet they are beyond the scope of this paper. Another inter-
esting finding related to the new Czil scheme is that the Ch 
and energy fluxes simulated over grassland in summer have 
less bias than in spring, especially in offline simulations. 
The seasonal change of canopy height is not represented in 
our configuration of Noah-MP. Instead the change in Z0m is 
implemented through the seasonal change of the green veg-
etation fraction. Through Eq. (4), the seasonal change of the 
vegetation fraction can affect the ratio between Z0t and Z0m. 

The other two schemes (the default Czil = 0 and Czil = 0.1 ) 
neglect the dependence of coupling strength on canopy 
height, which is bound to cause biases in coupling strength 
in grassland and forest. By decreasing Ch over grassland, the 
WRF-CZIL reduces the warm bias in  Tmax over the Great 
Plains and worsens the cold bias in  Tmax over the grassland 
near the Rockies.

Finally, although the updated simulations with the new 
Czil(h) scheme in the coupled WRF Noah-MP model improve 
the simulation of coupling strength in terms of the surface 
exchange coefficient in this study, many uncertainties and 
questions remain. These include uncertainties from inter-
annual variability since it only covers two springs and 

Fig. 14  Same as Fig. 13, except for summer (JJA)
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summers, and the secondary and indirect effects induced 
by the new scheme through modifying surface heat flux, 
moisture flux, and flux partitioning. The difference in pre-
cipitation between the two Czil schemes is not as clear as the 
difference in temperature because the impact of changing Ch 
is not local. WRF-CZIL improves the precipitation simula-
tion compared to WRF-CTL by increasing the precipita-
tion over cropland downwind of grassland and decreasing 
precipitation over forest where WRF-CTL overestimates it. 
The fully coupled effects of the new Czil on precipitation and 
the water cycle need to be verified through an analysis of the 

moisture flux/budget and precipitation events. Further stud-
ies with longer-term simulation using the new Czil scheme 
implemented in the LSM and coupled with convection-
permitting WRF are planned to resolve these uncertainties. 
Nevertheless, this study shows the potential for improving 
temperature simulation by correctly representing the surface 
exchange coefficient, especially through better simulation of 
sensible heat flux. These results will benefit hydrologists and 
atmospheric scientists who are interested in the response of 
the land surface to the atmosphere and climate systems in 
future modelling studies.

Fig. 15  Comparisons of precipitation from PRISM/WFDEI and cou-
pled WRF model results in spring (MAM) of 2006, 2007. The top 
row shows the observation and WRF-CTL in mm/day. The bottom 

row shows the WRF-CTL bias and the difference between WRF-
CZIL and WRF-CTL in mm/day
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