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Abstract
Many atmospheric fields—in particular the temperature—respect statistical symmetries that characterize the macroweather 
regime, i.e. time-scales between the ≈ 10 day lifetime of planetary sized structures and the (currently) 10–20 year scale at 
which the anthropogenic forcings begin to dominate the natural variability. The scale-invariance and the low intermittency of 
the fluctuations implies the existence of a huge memory in the system that can be exploited for macroweather forecasts using 
well-established (Gaussian) techniques. The Stochastic Seasonal to Interannual Prediction System (StocSIPS) is a stochastic 
model that exploits these symmetries to perform long-term forecasts. StocSIPS includes the previous ScaLIng Macroweather 
Model (SLIMM) as a core model for the prediction of the natural variability component of the temperature field. Here we 
present the theory for improving SLIMM using discrete-in-time fractional Gaussian noise processes to obtain an optimal 
predictor as a linear combination of past data. We apply StocSIPS to the prediction of globally-averaged temperature and 
confirm the applicability of the model with statistical testing of the hypothesis and a good agreement between the hindcast 
skill scores and the theoretical predictions. Finally, we compare StocSIPS with the Canadian Seasonal to Interannual Predic-
tion System. From a forecast point of view, GCMs can be seen as an initial value problem for generating many “stochastic” 
realizations of the state of the atmosphere, while StocSIPS is effectively a past value problem that estimates the most probable 
future state from long series of past data. The results validate StocSIPS as a good alternative and a complementary approach 
to conventional numerical models. Temperature forecasts using StocSIPS are published on a regular basis in the website: 
http://www.physi cs.mcgil l.ca/StocS IPS/.

1 Introduction

When taken beyond their deterministic predictability limits 
of about ten days, the output of General Circulation Models 
(GCMs) can no longer be usefully interpreted in a deter-
ministic sense; they are at least implicitly stochastic and if 
they use stochastic parameterizations, they are explicitly 
so. In this “macroweather” regime, successive fluctuations 
tend to cancel each other out so that in control run mode, 
each GCM converges ultra slowly (Lovejoy et al. 2013) to its 
own climate. Assuming ergodicity, the control run climate 
is deterministic because it is the long-time average climate 
state, but the fluctuations about this state are stochastic.

Although each GCM climate may be different—and dif-
ferent from that of the real world—various studies (see e.g. 

the review (Lovejoy et al. 2018)) have indicated that the 
space–time statistics of fluctuations about the climates are 
statistically realistic—that they are of roughly the same type 
as the fluctuations observed in the real climate about the 
real climate state. For example, over wide ranges, and with 
realistic exponents, they exhibit scaling in both space and 
in time and at least approximately, they obey a symmetry 
called “statistical space–time factorization” (Lovejoy and de 
Lima 2015) that relates space and time. This suggests that 
the main defect of GCMs is that their fluctuations are around 
unrealistic model climates.

Many different stochastic processes can yield identi-
cal statistics. This leads to the possibility—developed in 
(Lovejoy et al. 2015)—that a simple model, having the 
same space–time statistical symmetries as the GCMs and 
the real world, could be used to directly model temperature 
fluctuations. If in such a model, the long term behaviour 
and the statistics of the fluctuations are forced to match that 
of real-world data in the past, the model would thus com-
bine realistic fluctuations with a realistic climate, leading to 
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significantly improved forecasts. Indeed, using this ScaLIng 
Macroweather Model (SLIMM), (Lovejoy 2015) gave some 
evidence for this by accurately forecasting the slow-down in 
the warming after 1998.

Starting with (Hasselmann 1976), various stochastic mac-
roweather and climate models have been proposed. Today, 
these approaches are generally known under the rubric Linear 
Inverse Modelling (LIM), e.g.: (Penland and Matrosova 1994; 
Penland and Sardeshmukh 1995; Winkler et al. 2001; New-
man et al. 2003; Sardeshmukh and Sura 2009). However, they 
all are based on integer order (stochastic) differential equa-
tions and these implicitly assume the existence of character-
istic time scales associated with exponential decorrelation 
times; such models are not compatible with the scaling. To 
obtain models that respect the scaling symmetry, we may use 
fractional differential equations that involve strong, long-range 
memories; it is these long-range memories that are exploited 
in SLIMM forecasts. From a mathematical point of view, the 
fractional differential operators are of Weyl type (convolu-
tions from the infinite past) so that they are not initial value 
problems, but rather past value problems.

In this paper we present the new Stochastic Seasonal to 
Interannual Prediction System (StocSIPS), that includes 
SLIMM as the core model to forecast the natural variability 
component of the temperature field, but also represents a 
more general framework for modelling the seasonality and 
the anthropogenic trend and the possible inclusion of other 
atmospheric fields at different temporal and spatial reso-
lutions. In this sense, StocSIPS is the general system and 
SLIMM is the main part of it dedicated to the modelling 
of the stationary scaling series. The original technique that 
was used to make the SLIMM forecasts was basically cor-
rect, but it made several approximations (such as that the 
amount of data available for the forecast was infinite) and 
it was numerically cumbersome. Here, for the developing 
of StocSIPS, we return to it using improved mathematical 
and numerical techniques and validate them on ten different 
global temperature series since 1880 (five globally-averaged 
temperature series and five land surface average tempera-
ture). We then compare hindcasts with Canada’s opera-
tional long-range forecast system, the Canadian Seasonal 
to Interannual Prediction System (CanSIPS) and we show 
that StocSIPS is just as accurate for 1-month forecasts, but 
significantly more accurate for longer lead times.

2  Theoretical framework

2.1  SLIMM

Since the works of (Hasselmann 1976), there have been 
many stochastic climate theories based on the idea that the 
high-frequency weather drives the low-frequency climate as 

a stochastic forcing [for a review, see Franzke et al. (2014)]. 
The first and simplest approaches for solving the stochastic 
climate differential equations deduced from these theories 
were made through linear inverse models (LIM). The theo-
retical justification of LIM methods is based on extracting 
the intrinsic linear dynamics that govern the climatology of 
a complex system directly from observations of the system 
(inverse approach). However, they implicitly assume expo-
nential decorrelations in time, whereas both the underlying 
Navier–Stokes equations (and hence models, GCMs) and 
empirical analyses respect statistical scaling symmetries [see 
the review in Lovejoy and Schertzer (2013)]. Due to this 
lack of solid physical basis, LIM approaches are referred to 
as “empirical approaches”. Nevertheless, its use is justified 
as a simpler alternative to the difficult task of improving 
numerical model parameterizations by appealing to physical 
arguments and first-principle reasoning alone.

Exponential decorrelations assumed by LIM models 
imply a scale break in time and—ignoring the diurnal and 
annual cycles—the only strong scale break is at the weather-
macroweather transition scale of �w ≈ 5–15 days (slightly 
varying according to location (especially latitude and land 
versus ocean), and also with slight variations from one 
atmospheric field to another. For the temperature, there is a 
transition in the spectrum at � ∼ �w ≈ 1∕�w , with two differ-
ent asymptotic behaviors for very high and very low frequen-
cies [see Fig. 4 in Lovejoy and Schertzer (2012)]. Empiri-
cally we find that ET (�) ∼ �−� with, �h = 1.8 (𝜔 > 𝜔w) and 
�l ≈ 0.2–0.8 

(
𝜔 < 𝜔w

)
 (depending on the location). The inte-

ger order differential equation for the LIM model implies 
that �h = 2 and �l = 0 (exactly, everywhere) . Note that �h is 
the value for a turbulent system, it corresponds to a highly 
intermittent process, not a process that is close to the inte-
gral of white noise (i.e. an Ornstein–Uhlenbeck process). 
LIM’s exactly flat spectral behavior at low frequencies is 
a consequence of the fact that the highest order differential 
term is integer ordered, it implies that the low frequencies 
are (unpredictable) white noise. For times much larger than 
the decorrelation time, temperature forecasts have no skill. 
LIM’s short memory behavior can be modeled as a Markov 
process, equivalently as an autoregressive or moving aver-
age process.

There are many empirical results that show a non-flat 
scaling behavior in the temperature spectrum (as well as in 
many other atmospheric variables) with values for �l from 
0.2 to 0.8 [see the review in Lovejoy and Schertzer (2013), 
also Lovejoy et al. (2018)]. This power-law behavior in the 
spectrum (and in the autocorrelation function) reflects the 
long-range memory that must be modelled. To appreciate 
the importance of the value of �l for Gaussian processes, 
when �l = 0, there is no predictability, and when �l = 1, 
there is infinite predictability. The long memory effects 
mean that the equations become non-Markovian and that 
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also past states need to be considered in order to predict 
the behavior of the system. The generalization of LIM’s 
integer ordered differential equations to include fractional 
order derivatives already introduces power-law correlations, 
the simplest option being to retain the simplest (Gaussian) 
assumption about the noise forcing. This is the main idea 
behind the ScaLIng Macroweather Model (SLIMM) (Love-
joy et al. 2015).

In the macroweather regime intermittency is generally 
low enough that a Gaussian model with long-range statistical 
dependency is a workable approximation [except perhaps for 
the extremes; e.g. the review (Lovejoy et al. 2018)]. Some 
attempts have been made to use Gaussian models for pre-
diction in the mean square prediction framework of autore-
gressive fractional integrated moving average (ARFIMA) 
processes (Baillie and Chung 2002; Yuan et al. 2015). The 
theory behind some of these models only applies to station-
ary series, while, for example, in the case of globally-aver-
aged temperature time series, there is clearly an increasing 
trend due to the anthropogenic warming in recent decades. If 
the trend is not properly removed, the assumption of random 
equally distributed variables no longer applies, and the skill 
of the predictions is adversely affected. The ScaLIng Mac-
roweather Model (SLIMM), (Lovejoy et al. 2015) was the 
first of such models that took all these facts into considera-
tion and offered a complete evaluation of the prediction skill 
based on hindcasts after the removal of the anthropogenic 
warming part.

SLIMM is a model for the prediction of stationary series 
with Gaussian statistics and scaling symmetry of the fluc-
tuations. It proposes a predictor as a linear combination of 
past data (or past innovations). For the case of Gaussian 
variables, it has been proven that this kind of linear predic-
tor is optimal in the mean square error sense [see the “Fun-
damental note” in page 264 of Papoulis and Pillai (2002)]. 
That is, if any other functional form (i.e. nonlinear) is used 
to build a predictor based on past data, the mean square 
error of the predictions will be larger than with the linear 
combination. This is not necessarily true if the distribution 
of the variables is not Gaussian, for example, in the case of 
multifractal processes, where the second moment statistics 
are not sufficient to describe the process.

Similarly to the spectrum where ET (�) ∼ �−� , in the 
macroweather regime the average of the fluctuations as a 
function of the time scale also presents a power-law (scal-
ing) behavior with ⟨ΔT(Δt)⟩ ∼ ΔtH . Besides the scale-
invariance, low intermittency (rough Gaussianity) in time, 
is another characteristic of the macroweather regime. For 
Gaussian processes, the spectrum and the fluctuation expo-
nents are related by H =

(
�l − 1

)
∕2 . In Lovejoy et al. (2015) 

SLIMM was introduced, based on fractional Gaussian noise 

(fGn), as the simplest stochastic model that includes both 
characteristics.

For their relevance to the current work, some properties 
of fGn presented in that paper are summarized here; for an 
extensive mathematical treatment see Biagini et al. (2008).

Over the range −1 < H < 0 , an fGn process, GH(t) , is 
the solution of a fractional order stochastic differential 
equation of order H + 1∕2 , driven by a unit Gaussian �
-correlated white noise process, �(t) , (with ⟨�(t)⟩ = 0 and ⟨
�(t)�

(
t�
)⟩

= �
(
t − t�

)
 , where �(t) is the Dirac function):

where:

and � (x) is the Euler gamma function. The value for the 
constant cH was the standard one chosen to make the expres-
sion for the statistics particularly simple, see below. The 
fractional differential equation (Eq. (1)) was presented in 
Lovejoy et al. (2015) as a generalization of the LIM inte-
ger order equation to account for the power-law behavior 
observed for the spectrum at frequencies 𝜔 > 𝜔w ≈ 1∕𝜏w . 
Physically it could model a scaling heat storage mechanism.

Integrating Eq. (1), we obtain:

In other words, GH(t) is the fractional integral of order 
H + 1∕2 of a white noise process, which can also be 
regarded as a smoothing of a white noise with a power-
law filter. The process �(t) is a particular case of GH(t) for 
H = −1∕2 . Just as �(t) is a generalized stochastic process (a 
distribution), the process GH(t) is also a generalized func-
tion without point-wise values. It is the density of the well-
known fractional Brownian motion (fBm) measures, BH� (t) , 
with H�

= H + 1 , i.e. dBH� (t) = GH(t)dt (Wiener integrals for 
the case H�

= 1∕2 ). The derivative of a distribution (in this 
case BH� (t) ) is formally defined from the following:

where �(t) is any locally integrable function.
From this relation to fBm, the resolution � (smallest sam-

pling temporal scale) fGn process, GH,�(t) , can be defined, 
either as an average of GH(t) , or from the increments of the 
fBm process, BH� (t) , at the same resolution:

(1)
dH+1∕ 2GH(t)

dtH+1∕ 2
= cH�(t),

(2)c2
H
=

�

2 cos (�H)� (−2 − 2H)

,

(3)GH(t) =
cH

� (H + 1∕2)

t

∫
−∞

(
t − t�

)
−(1∕ 2−H)

�
(
t�
)
dt�.

(4)
∫ �(t)dBH� (t) = ∫ �(t)GH(t)dt = −∫ ��

(t)BH� (t)dt,
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In Lovejoy et al. (2015) it was shown that, for resolution 
𝜏 > 𝜏w , we can model the globally-averaged macroweather 
temperature as:

where −1 < H < 0 and �T is the temperature variance (for 
� = 1 ). The parameter H , defined in this range, is not the 
more commonly used Hurst exponent for fBm processes, H′ , 
but the fluctuation exponent of the corresponding fractional 
Gaussian noise process. Fluctuations exponents are used 
due to their wider generality; they are well defined even for 
strongly non-Gaussian processes. For a discussion see page 
643 in (Lovejoy et al. 2015).

Assuming � is the smallest scale in our system with the 
property 𝜏 > 𝜏w (e.g. � = 1 month for air temperature), the 
temperature defined by Eq. (6) has the following properties:

For more details see Mandelbrot and Van Ness (1968), 
Gripenberg and Norros (1996) and Biagini et al. (2008).

From Eq. (7.iii), the behavior of the autocovariance func-
tion for Δt ≫ 𝜏 and −1 < H < 0 is:

and the corresponding spectrum for low frequencies is:

where �l = 1 + 2H.
Combining Eqs. (3), (5) and (6), we get the following 

explicit integral expression for the temperature at resolu-
tion �:

(5)

GH,�(t) =
1

�

t

∫
t−�

GH

(
t�
)
dt� =

1

�

t

∫
t−�

dBH�

(
t�
)
=

1

�

[
BH� (t) − BH� (t − �)

]
.

(6)T�(t) = �TGH,�(t),

(7)

(i) T� (t) is a Gaussian stationary process with continuous paths.

(ii) ⟨T� (t)⟩ = 0 and
�
T� (t)

2
�
= �2

T
�2H ; for all t, the notation ⟨⋅⟩

denotes ensemble (infinite realizations) averaging.

(iii) C
H,�

T
(Δt) = ⟨T� (t)T� (t + Δt)⟩

=

�2
T

2�2

��Δt + ��2H+2
+ �Δt − ��2H+2

− 2�Δt�2H+2
�
;

for Δt ≥ �.

(8)CH,�T
(Δt) ≈ �2

T
(H + 1)(2H + 1)Δt2H

(9)ET (�) ≈ � (3 + 2H) sin (�H)�−�l

�√
2�,

(10)

T�(t) =
1

�

c
H
�
T

� (H + 3∕2)

⎡⎢⎢⎣

t

∫
−∞

�
t − t

�
�H+1∕ 2

�
�
t
�
�
dt

�
−

t−�

∫
−∞

�
t − � − t

�
�H+1∕ 2

�
�
t
�
�
dt

�

⎤⎥⎥⎦
.

Notice that T�(t) is obtained from the difference of frac-
tional integrals of order H + 3∕2 of a white noise process. 
Our definition of cH in Eq. (2) implies that 

⟨
T�(t)

2
⟩
= �2

T
�2H . 

As H < 0 , it follows that, in the small-scale limit ( � → 0 ), 
the variance diverges and H is the scaling exponent of the 
root mean square (RMS) value. This singular small-scale 
behavior is responsible for the strong power-law resolution 
effects in fGn. For a detailed discussion on this important 
resolution effect that leads to a “space–time reduction fac-
tor” and its implications for the accuracy of global surface 
temperature datasets, see Lovejoy (2017).

Using the fact that T�(t) is a Gaussian stationary process, 
Lovejoy et al. (2015) derived a formula for the predictor 
of the temperature at some time t ≥ � , given that data are 
available over the entire past (i.e. from t = −∞ to 0 ). From 
Eq. (10), the mean square (MS) estimator for the tempera-
ture can be expressed as:

As a measure of the skill of the model, we can use the 
mean square skill score ( MSSS ), defined as:

i.e. one minus the normalized mean square error ( MSE ). 
Here T�(t) represents the verification and T̂𝜏(t) the forecast 
at time t ≥ � . The reference forecast would be the average 
of the series ⟨T�(t)⟩ = 0 , for which the MSE is the variance ⟨
T�(t)

2
⟩
 . Using Eqs. (10) and (11) in (12), an analytical 

expression for the MSSS can be obtained:

where t ≥ � and

in particular,

Although Eq. (11) is the formal expression for the pre-
dictor of the temperature, from a practical point of view it 
has two clear disadvantages: it is expressed as an integral 
of the unknown past innovations, �(t) , and it assumes the 
knowledge of these innovations for an infinite time in the 

(11)

T̂𝜏(t) =
1

𝜏

cH𝜎T

𝛤 (H + 3∕2)

0

∫
−∞

[(
t − t�

)H+1∕ 2
−

(
t − 𝜏 − t�

)H+1∕ 2
]
𝛾
(
t�
)
dt�.

(12)MSSS(t, 𝜏) = 1 −

⟨[
T𝜏(t) − T̂𝜏(t)

]2⟩
⟨
T𝜏(t)

2
⟩ ,

(13)MSSSH(t∕�) =
FH(∞) − FH(t∕�)

FH(∞) +
1

2H+2

,

(14)FH(t) =

t−1

∫
0

(
(1 + u)H+1∕ 2

− uH+1∕ 2
)2
du;

(15)FH(∞) =

� (3∕2 + H)� (−2H)

(2H + 2)� (1∕2 − H)

−
1

2H + 2
.
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past. It would be more natural to express the predictor as a 
function of the observed part of the process. This problem 
was solved for fBm processes with 1∕2 < H� < 1 (equiva-
lently −1∕2 < H < 0 ) by Gripenberg and Norros (1996). 
The explicit formula they found for the predictor, B̂H�,a(t) , 
of the fBm process, BH� (t) , known in the interval (−a, 0) for 
t > 0 and a > 0 , is:

where ga
(
t, t′

)
 is an appropriate weight function given by:

It is important to note that the weight function goes to 
infinity both at the origin and at −a [see Fig. 8 in Norros 
(1995)]. In their words, this divergence when we approach 
−a is because “the closest witnesses to the unobserved past 
have special weight”.

The results summarized in Eqs. (10–17) are theoretically 
important, but, from the practical point of view of mak-
ing predictions, a discrete representation of the process is 
needed. In the next sections, we present analogous results for 
the prediction of discrete-in-time, finite past fGn processes 
and its application to the modelling and prediction of global 
temperature time series.

2.2  StocSIPS

The theory presented in the previous section and the appli-
cability of SLIMM is restricted to detrended time series with 
Gaussian statistics and a scaling behavior of the fluctuations. 
Real-world datasets, in particular raw temperature series, 
normally include periodic signals corresponding to the diur-
nal and the seasonal cycles. They are also affected by an 
increasing trend as a response to anthropogenic forcing and 
usually combine different scaling regimes depending on the 
temporal resolution used.

StocSIPS is the general system that includes SLIMM as 
the core model for the long-term prediction of atmospheric 
fields. In order to use SLIMM, some of the components of 
StocSIPS are dedicated to the “cleaning” of the original 
dataset. In particular, it includes techniques for removing 
and projecting the seasonality and the anthropogenic trend. 
It also degrades the temporal series to a scale where only one 
scaling regime with fluctuation exponent −1∕2 < H < 0 is 
present. The initial goal is to produce a temporal series that 

(16)B̂H,a(t) =

0

∫
−a

ga
(
t, t�

)
BH

(
t�
)
dt�,

(17)

ga
(
t,−t�

)
=

sin
[
�
(
H�

− 1∕2
)]

�

[
t�
(
a − t�

)]
−H�

+1∕2

t

∫
0

[x(x + a)]H
�
−1∕2

x + t�
dx.

can be modelled and predicted with the stationary fGn pro-
cess using the SLIMM theory. Some other aspects of Stoc-
SIPS—not discussed in this paper—include the addition of 
another space–time symmetry [the statistical space–time 
factorization (Lovejoy and de Lima 2015; Lovejoy et al. 
2018)] for the regional prediction, and the combination as 
copredictors of different atmospheric fields.

One of the objectives of this paper is to show the improve-
ments in the theoretical treatment and in the numerical meth-
ods of SLIMM as an essential part of StocSIPS. These recent 
developments have helped to produce faster and more accu-
rate predictions of global temperature. The improvement 
in SLIMM and some of the preprocessing techniques are 
illustrated later on in Sect. 3 through an application to the 
forecast of globally-averaged temperature series.

2.2.1  Discrete‑in‑time fGn processes

As we showed in Sect. 2.1, for predicting the stationary com-
ponent of the temperature with resolution � at a future time 
t > 0 , the linear predictor, T̂𝜏(t) , based on past data ( T�(s) 
for −a < s ≤ 0 ) satisfying the minimum mean square error 
condition (orthogonality principle between the error and the 
data) can then be written as:

or equivalently, based on the past innovations, �(s):

where MT (t, s) and M� (t, s) are appropriated weight 
functions. In SLIMM, the predictor given by Eq.  (11) 
is a particular case of Eq.  (19) for a = ∞ and 
M� (t, s) = cH�T

[
(t − s)H+1∕2

− (t − � − s)H+1∕2
]
∕�� (H + 3∕2), 

while the solution in Gripenberg and Norros (1996) (Eq. (16) 
here) is the case of Eq. (18) for an fBm process with MT (t, s) 
analogous to ga

(
t, t′

)
 given by Eq. (17).

The mathematical theory presented in Sect. 2.1 is gen-
eral for a continuous-in-time fGn. Moreover, the integral 
representation of fGn given by Eq. (10), is based on an infi-
nite past of continuous innovations, �(t) . For applications to 
real-world data, a discrete version of the problem is needed 
for the case of fGn with finite data in the past ( a < ∞ ). In 
practice, in the case of temperature (and any other atmos-
pheric field) we only have measurements at discrete times 
with some resolution over a limited period. For modeling 
these fields, we can consider discrete-in-time fGn process 
as a more suitable model.

(18)T̂𝜏(t) =

0

∫
−a

MT (t, s)T𝜏(s)ds,

(19)T̂𝜏(t) =

0

∫
−a

M𝛾 (t, s)𝛾(s)ds,
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Assuming that we have already removed the low-fre-
quency anthropogenic component of the temperature series 
(see Sect. 3.2), in the discrete case, we could express the 
zero mean detrended component by its moving average 
(MA(∞ )) stochastic representation given by the Wold rep-
resentation theorem (Wold 1938):

where 
{
�t

}
 are weight parameters with units of temperature 

and 
{
�t
}
 is a white noise sequence with �t ∼ NID(0, 1) and ⟨

�i�j
⟩
= �ij , where �ij is the Kronecker delta and NID

(
�, �2

)
 

stands for normally and independently distributed with mean 
� and variance �2 (the sign ∼ means equal in distribution). 
This equation is analogous to Eq. (10) for the continuous 
case.

By inverting Eq. (20) we can obtain the equivalent autore-
gressive (AR(∞ )) representation (Palma 2007):

which is more suitable for predictions, as any value of the 
series is given as a linear combination of the values in the 
past. In this representation the weights 

{
�t
}
 are unitless.

In practice, we only have a finite stretch of data 
{
T
−t,… , T0

}
 . 

Under this circumstance, the optimal k-steps Wiener predictor 
for Tk ( k > 0 ), based on the finite past, is given by:

w h e r e  t h e  n e w  v e c t o r  o f  c o e f f i c i e n t s , 
� t(k) =

[
�t,−t(k),… ,�t,0(k)

]T  (the superscript T  denotes 
transpose operation) satisfies the Yule-Walker equations [see 
page 96 in Hipel and McLeod (1994)]:

with �t

H,�
T

(k) =
[
C
H,�

T
(k − i)

]T
i=−t,…,0

=

[
C
H,�

T
(t + k),… ,C

H,�
T
(k)

]T 
and �t

H,�T
=

[
CH,�T

(i − j)
]
i,j=−t,…,0

 being the autocovariance 
matrix. The elements CH,�T

(Δt) are obtained from Eq. (7.iii) 
where we assume � = 1 is the smallest scale in our system 
with the property 𝜏 ≫ 𝜏w (e.g. � = 1 month).

Notice that the coefficients 
{
�t,j

}
 will only depend on H 

[ �T cancels in both sides of Eq. (23)] and further that they 
are not the same as the coefficients 

{
�t
}
 , for which the 

complete knowledge of the infinite past is assumed. The 
coefficients 

{
�t
}
 decrease monotonically as we go fur-

ther in the past, while this is not the case for the coeffi-
cients 

{
�t,j

}
 , as we can see in Fig. 1 for the cases where 

(20)Tt =

t∑
j=−∞

�t−j�j,

(21)Tt = �0�t +

t−1∑
j=−∞

�t−jTj,

(22)T̂t(k) =

0∑
j=−t

𝜙t,j(k)Tj = 𝜙t,−t(k)T−t +⋯ + 𝜙t,0(k)T0,

(23)�t
H,�T

� t(k) = �t
H,�T

(k),

H = − 0.1,− 0.25,− 0.4 , and we predict k = 12 steps in the 
future by using a series of t + 1 = 36 values. Notice how the 
memory effect (the weight of the coefficients) increases with 
the value of H . This behavior of the coefficients is analo-
gous to the one mentioned earlier for the function ga

(
t, t′

)
 

(Eq. (17)). As found in Gripenberg and Norros (1996) for the 
continuous-in-time case, not only is there a strong weighting 
of the recent data, but the most ancient available data also 
have singular weights [compare Fig. 1 here with Fig. 3.1 in 
(Gripenberg and Norros 1996)].

This behavior of the coefficients for fGn is the main dif-
ference (and a clear advantage) over other autoregressive 
models (AR, ARMA) which do not include fractional inte-
grations accounting for the long-term memory and do not 
consider the information from the distant past. An additional 
limitation of these approaches is that for each Δt , the val-
ues for C(Δt) = ⟨T�(t)T�(t + Δt)⟩ must be estimated directly 
from the data. Each C(Δt) will have its own error, this effec-
tively introduces a large “noise” in the predictor estimates. 
In addition, it is computationally expensive if a large num-
ber of coefficients are needed. In our fGn model the coef-
ficients have an analytic expression which only depends on 
the fluctuation exponent, H , obtained directly from the data 
exploiting the scale-invariance symmetry of the fluctuations; 
our problem is a statistically highly constrained problem of 
parametric estimation ( H ), not an unconstrained one (the 
entire C(Δt) function).

Fig. 1  Optimal coefficients, �t,j , in Eq.  (17) with 
H = −0.1,−0.25,−0.4 (top to bottom) for predicting k = 12 steps in 
the future by using the data for j = −35,… , 0 in the past. Notice the 
strong weighting on both the most recent (right) and the most ancient 
available data (left) and how the memory effect decreases with the 
value of H . Compare to Fig. 3.1 in Gripenberg and Norros (1996)
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In the discrete case, the mean square skill score, defined 
by Eq. (12), has the following analytical expression:

where �̃t
H
(k) =

[
�̃H(k − i)

]T
i=−t,…,0

 is a vector formed by the 
autocorrelation function C̃H(Δt) = CH,𝜎T

(Δt)∕𝜎2
T
 (see Eq. (7.

iii)) and �̃t
H
= �t

H,𝜎T
∕𝜎2

T
=

[
C̃H(i − j)

]
i,j=−t,…,0

 is the autocor-
relation matrix. For a given horizon in the future, k , the 
MSSS will only depend on the exponent, H , and the exten-
sion of our series in the past, t.

In the previous equations, the full length of our known 
series was t + 1 , but we don’t necessarily have to use the 
complete series to build our predictor. It is enough to use 
a number m + 1 of points in the past (memory) with m < t . 
The new predictor and skill score are obtained by just replac-
ing t  by m in Eqs. (22–24). By doing this, we can use the 
remaining t − m − 1 points for hindcast verifications.

For the case where H = − 0.25 and k = 3 , Fig. 2 shows 
how the MSSS approaches the asymptotic value correspond-
ing to an infinite past as we increase the amount of memory 
we use. The dashed line represents the MSSS for m = 500 
and the dotted line is the value we obtain using Eq. (13) for 
the continuous-in-time case with the infinite past known. 
The difference between the two is not due to the finite mem-
ory ( m = 500 ) we have in the discrete case with respect to 
the infinite past assumed in Eq. (13), but to intrinsic dif-
ferences due to the discretization and more related to the 

(24)MSSSt
H
(k) = �̃t

H
(k)T

(
�̃t

H

)
−1
�̃t

H
(k),

high-frequency information loss because of the smoothing 
from a continuous to a discrete process. Note that we do 
not need to use a large memory to achieve a skill close to 
the asymptotic value. In this example where H = − 0.25 , we 
only need to use m ≥ 22 for k = 3 to get more than 95% of 
the maximum skill.

The amount of memory needed depends on the value of 
H , as we can see in Fig. 3, where we plot the minimum 
memory needed, m95% , to get more than 95% of the asymp-
totic value (corresponding to m = ∞ ) as a function of the 
horizon, k , for different values of H . The line m = 15k was 
also included for reference. The larger the value of the expo-
nent, H , (the closer to zero) the less memory we need to 
approach the maximum possible skill. This fact seems coun-
terintuitive, but the explanation is simple: for larger values 
of H (closer to zero), the influence of values farther in the 
past is stronger, but at the same time, more information of 
those values is included in the recent past, so less memory is 
needed for forecasting. Following the rule of thumb found by 
Norros (1995) for the continuous case: “one should predict 
(…) the next second with the latest second, the next minute 
with the latest minute, etc.” Actually, from Fig. 3 we can 
conclude than, for predicting k steps into the future, a mem-
ory m = 15k would be a safe minimum value for achieving 
almost the maximum possible skill for any value of H in the 
range (−1∕2, 0) , which is the case for temperature and many 
other atmospheric fields. Of course, if H is close to zero a 

Fig. 2  MSSSm
H
(k) as a function of the memory, m , for the case 

where H = − 0.25 and k = 3 . The dashed line represents the MSSS 
for m = 500 and the dotted line is the value obtained with Eq.  (12) 
for the continuous-in-time case. For m = 22 , more than 95% of the 
asymptotic skill is achieved

Fig. 3  Minimum memory, m , needed to get more than 95% of the 
asymptotic value (corresponding to m = ∞ ) as a function of the hori-
zon, k , for different values of H . The larger the value of H (the closer 
to zero) the less memory is needed for a given horizon. The approxi-
mate ratio m95%∕k for each H was included at the top of the respec-
tive curve
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much smaller value could be taken. The approximate ratio 
m95%∕k for each H was included at the top of the respective 
curve. From the point of view of the availability of data for 
the predictions, this result is important. Once the value for 
H is estimated, assuming it remains stable in the future, we 
only need a few of recent datapoints to forecast the future 
temperature. The information of the unknown data from the 
distant past is automatically considered by the model.

Previously, we showed that an fGn process is fully charac-
terized by its autocovariance function, which in turn depends 
only on the covariance, �2

T
 , and the fluctuation exponent H . 

To extend our description to more general cases, we could 
allow our series to have a non-zero ensemble mean, � . This 
family of three parameters defines our fGn process and rep-
resents the link between the mathematical model and real-
world historical data.

In Appendix 1 we discuss how to obtain maximum like-
lihood estimates (MLE) for these parameters on a given 
time series. For the fluctuation exponent, we show other 
approximate (and less computationally expensive) meth-
ods. We can use Eq. (9) to obtain Ĥs =

(
𝛽l − 1

)
∕2 from the 

spectrum exponent at low frequencies. This method, as well 
as the Haar wavelet analysis to obtain an estimate Ĥh from 
the exponent of the Haar fluctuations, was used in Lovejoy 
and Schertzer (2013) and Lovejoy et al. (2015) to obtain 
estimates of H for average global and Northern Hemisphere 
anomalies. A Quasi Maximum Likelihood Estimate (QMLE) 
method is also discussed in Appendix 1. The latter is more 
accurate than the Haar fluctuations and the spectral analysis 
methods and is obtained as part of the hindcast verification 
process. Nevertheless, those two have the advantage of being 
more general and applicable to any scaling process (even 
highly nonGaussian ones).

All these methods were applied to fGn simulations and 
the parameters estimated were summarized in Table 4. The 
technical details for producing exact simulations are also 
discussed in Appendix 1. Finally, we show how to to check 
the adequacy of the fitted fGn model to real-world data and 
we derive some ergodic properties of fGn processes. Specifi-
cally, we show that the temporal average standard deviation 
squared, SD2

T
=

∑N

t=1

�
Tt − T̄N

�2
∕N  , is a strongly biased 

estimate of the variance of the process, �2
T
 , for values of 

H close to zero (the overbar denotes temporal averaging: 
T̄N =

∑N

t=1
Tt∕N ). The sample and the ensemble estimates 

are related by:

When H = − 0.06 , N = 1656 (values for the monthly 
series since 1880) there is a huge difference between the 
sample and the ensemble estimates ( SD2

T
∕�2

T
= 0.59 ). 

Some skill scores (e.g. the MSSS or the normalized mean 
squared error NMSE ) use the variance for normalization. 

(25)SD2
T
= �2

T

(
1 − N2H

)
.

The implications of the difference in the estimates of the 
variance on the definition of the MSSS will be discussed in 
Sect. 3.4.3.

3  Forecasting global temperature 
anomalies

3.1  The data

The general framework presented here is applicable to fore-
casting any time series that satisfies, (a) the conditions of 
stationarity, (b) Gaussianity and (c) long-range dependence 
given by power-law behavior of the correlation function with 
fluctuation exponents in the range (−1∕2, 0) . These three 
properties are well satisfied for globally-averaged tempera-
ture anomaly time series in the macroweather regime, from 
10 days to some decades (Lovejoy and Schertzer 2013; Love-
joy et al. 2013, 2015). In the last three decades, there has 
been a growing literature showing that the temperature (and 
other atmospheric fields) are scaling in the macroweather 
regime (Koscielny-Bunde et al. 1998; Blender et al. 2006; 
Huybers and Curry 2006; Franzke 2012; Rypdal et al. 2013; 
Yuan et al. 2015) and see the extensive review in Lovejoy 
and Schertzer (2013). Strictly speaking, in the last century, 
low frequencies become dominated by anthropogenic effects 
and after 10–20 years the scaling regime changes from a 
negative to a positive value of H , as we will show below. 
As was discussed in detail in Lovejoy (2014, 2017) and 
Lovejoy et al. (2015), differently from preindustrial epochs, 
recent temperature time series can be modeled by a trend 
stationary process, i.e. a stochastic process from which an 
underlying trend (function solely of time) can be removed, 
leaving a stationary process. In other words, to first order, 
variability is unaffected by climate change. The determinis-
tic trend representing the response to external forcings can 
be removed by using  CO2 radiative forcing as a good linear 
proxy for all the anthropogenic effects [or equivalent-CO2 
 (CO2eq) radiative forcing as the one used for CMIP5 simula-
tion (Meinshausen et al. 2011)]. There is a nearly linear rela-
tion between the actual  CO2 concentration and the estimated 
equivalent concentration which includes all anthropogenic 
forcings, including greenhouse gases, aerosols, etc. (Mein-
shausen et al. 2011).

In this paper, we limit our analysis to globally-averaged 
temperature anomaly time series at monthly resolution. This 
is a first step for checking the applicability of the model 
and at the same time providing an alternative method for 
obtaining long-term forecasts. The quality of our method 
can be assessed based on the skill obtained from hindcasts 
verification and its agreement with the theoretical prediction.
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There are five major observation-based global tempera-
ture datasets which are in common use. They are (a) the 
NASA Goddard Institute for Space Studies Surface Tem-
perature Analysis (GISTEMP) series, abbreviated NASA 
and NASA-L in the following for global and land surface 
averages respectively (Hansen et al. 2010; GISTEMP Team 
2018), (b) the NOAA NCEI series GHCN-M version 3.3.0 
plus ERSST dataset (Smith et al. 2008; NOAA-NCEI 2018), 
updated in Gleason et al. (2015), abbreviated NOAA and 
NOAA-L (global and land surface averages, as before), 
(c) the Combined land and sea surface temperature (SST) 
anomalies from CRUTEM4 and HadSST3, Hadley Cen-
tre—Climatic Research Unit Version 4, abbreviated HAD4 
and HAD4-L (Morice et al. 2012; Met Office Hadley Centre 
2018), (d) the version 2 series of (Cowtan and Way 2014, 
2018), abbreviated CowW and CowW-L, and (e) the Berke-
ley Earth series (Rohde et al. 2013; Berkeley Earth 2018), 
abbreviated Berk and Berk-L. The average of the global and 
the land surface series were included in the analysis and we 
use for the abbreviations Mean-G and Mean-L, respectively.

All these series are of anomalies, i.e. the difference 
between temperature at a given time and the average during 
a baseline period. They tend not to be on the same baseline; 
for NASA and Berk the reference period is 1951–1980, for 
HAD4 and CowW it is 1961–1990, and for NOAA it is the 
20th century (1901–2000). To compare them, we need to 
use the same zero point. In this case we chose the 20th cen-
tury average as a common reference period. The average 
temperature for 1901–2000 is nearly the same as that for 
1951–1980, while that of more recent times (1961–1990) 
is warmer.

Each series spans a somewhat different period: HAD4, 
CowW and Berk start first, beginning in 1850, NASA and 
NOAA both start in 1880. When the data were accessed on 

May 21, 2018, they were all available at monthly resolutions 
until April 2018. Only the period January 1880–December 
2017 was analyzed, i.e. 138 years = 1656 months (the same 
length that was used in the simulations in Appendix 1). 
These series (updated until 2012), together with twentieth 
century reanalysis global average, were used in (Lovejoy 
2017) to assess how accurate are the data as functions of 
their time scale. As it was pointed out in the latter, each data 
set has its strengths and weaknesses and it is precisely their 
degree of agreement or disagreement what permits us to 
evaluate the intrinsic absolute uncertainty in the estimates 
of the global temperature.

In Fig. 4 we show the global average temperature (bot-
tom) and the land surface average temperature (top). In red 
are the means of the five global datasets for global and for 
land, respectively, and in blue are a measure of their level of 
dispersion given by the standard deviations. The datasets are 
most dissimilar before 1900, which could be due to the lack 
of reliable measurements, but otherwise, the overall level of 
agreement is very good [about ± 0.05 °C and is nearly inde-
pendent of scale for the global temperature series (Lovejoy 
2017)]. Each series shows warming during the last decades, 
and they all show fluctuations superimposed on the warm-
ing trend.

3.2  Removing the anthropogenic component

In the present case of globally-averaged temperatures, the 
seasonality in the time series is weak. The deterministic 
annual cycle component was removed first from the original 
series. It was estimated from the average of every month for 
the full period of 138 years (1880–2017). Cross-validation 
effects are weak for such a long reference period and were 
not considered.

Fig. 4  Monthly surface temper-
ature anomaly series from 1880 
to 2017. In red is the mean of 
the five datasets for global (bot-
tom): NASA, NOAA, HAD4, 
CowW, and Berk, and for land 
(top): NASA-L, NOAA-L, 
HAD4-L, CowW-L, and Berk-
L. The dispersion among the 
series—given by the standard 
deviations of the five series as 
a function of time—is shown 
in blue. Each series represents 
the anomaly with respect to the 
mean of the reference period 
1901–2000
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Because of the anthropogenically induced trends in addi-
tion to internal macroweather variability, global temperature 
time series have low-frequency forced variability. A simple 
application of the linearity of the climate response to exter-
nal forcings yields:

which considers the temperature as a combination of a 
purely deterministic response to anthropogenic forcings, 
Tanth , plus a strict stationary stochastic component, Tnat , with 
zero mean. The low frequency component can be obtained 
as:

where �CO2eq
 is the observed globally-averaged equiv-

alent-CO2 concentration with preindustrial value 
�CO2eq,pre

= 277 ppm and �2×CO2eq
 is the transient climate 

sensitivity (that excludes delayed responses) related to the 
doubling of atmospheric equivalent-CO2 concentrations. For 
�CO2eq

 we used the CMIP5 simulation values (Meinshausen 
et al. 2011). The definition of  CO2eq here includes not only 
greenhouse gases, but also aerosols, with their correspond-
ing cooling effect. The reference value T0 is chosen so that 
T̄nat = 0 , (the overbar indicates temporal averaging). The 
parameters �2×CO2eq

 and T0 are estimated from the linear 
regression of T(t) vs. log2

[
�CO2eq

(t)∕�CO2eq,pre

]
 . The residu-

als are the stochastic natural variability component, Tnat.
The natural variability includes “internal” variability and 

the response of the system to natural forcings: solar and vol-
canic. There is no gain in trying to model the responses to 
these two natural forcings independently. They would repre-
sent unpredictable signals while the ensemble of Tnat can be 
directly modelled using the techniques discussed in Sect. 2 
for fGn processes. We made some experiments trying to 
predict the internal variability and the solar and the vol-
canic responses independently, and the combined error was 
larger than if we try to forecast the natural variability com-
ponent as a whole. On the other hand, the relatively smooth 
dependence of the anthropogenic component makes it easy 
to project it a few years into the future with good accuracy.

As an example, the temperature anomalies for the global 
average dataset (Mean-G) is shown in Fig. 5 (red in the 
online version) together with the  CO2eq response to anthro-
pogenic forcings (dashed, black) and the residual natural 
variability component (blue). To use  CO2 instead of  CO2eq 
forcings leads to almost the same residuals due to the nearly 
linear relation between the two, but it avoids the uncertain-
ties due to the estimation of the cooling effects of the aero-
sols as well as other radiative assumptions. The  CO2 forcing 
is taken as a surrogate for all the anthropogenic forcings. 
The focus of this work is to model and forecast the residuals 
(natural variability), and for that purpose, either of the two 

(26)T(t) = Tanth(t) + Tnat(t),

(27)Tanth(t) = �2×CO2eq
log2

[
�CO2eq

(t)
/
�CO2eq,pre

]
+ T0,

concentrations would lead to the same residuals (they dif-
fer by a factor of 1.12 over the last century). From a direct 
inspection of Fig. 5, it is clear that a  CO2eq response does a 
much better job of reproducing the actual trend of the tem-
perature series than a simple regression linear in time, which 
is often used for estimating the warming trend.

Before making predictions, we need to verify the ade-
quacy of the model and verify the hypothesis that the resid-
ual natural variability component has scaling fluctuations 
with exponent in the range (−1∕2, 0) . The Haar fluctuation 
analysis for the Mean-G (bottom) and Mean-L (top) data-
sets before and after removing the anthropogenic trends are 
shown in Fig. 6 (red for the raw dataset fluctuations and blue 
for the detrended series in the online version). The refer-
ence lines with slopes Hh = − 0.078 ± 0.023 for the global 
series and Hh = − 0.200 ± 0.021 for the land surface series 
were obtained from regression of the residuals’ fluctuations 

Fig. 5  Temperature anomalies for the Mean-G dataset (red in the 
online version) together with the  CO2eq trend (dashed, black) and the 
residual natural variability component (blue)

Fig. 6  Haar fluctuation analysis for the Mean-G (bottom) and Mean-L 
(top) datasets before (red) and after (blue) removing the trends. The 
reference lines with slopes Hh = − 0.064 ± 0.020 for the global series 
and Hh = − 0.241 ± 0.017 for the land surface series were obtained 
from regression of the residuals between 2 months and 60 years. The 
last points were dropped to get better statistics. The units for Δt and 
ΔT  are months and °C, respectively
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between 2 months and 60 years. The points correspond-
ing to scales of more than 60 years were not considered 
for estimating the parameters as there were not many fluc-
tuations to average at those time scales. In addition, some 
of the low frequency natural variability was presumably 
removed with the forced variability. The units for Δt and 
ΔT  are months and °C, respectively. Notice that the anthro-
pogenic warming breaks the scaling of the fluctuations at 
a time scale of around 10 years (the red and blue curves 
diverge at ~ 100 months). The residual natural variability, 
on the other hand, shows reasonably good scaling for the 
whole period analyzed (138 years). The same range of scal-
ing with decreasing fluctuations has been obtained in tem-
perature records from preindustrial multiproxies and GCMs 
preindustrial control runs (Lovejoy 2014).

The global series are a composition of land surface data 
and sea surface temperature data. The average temperature 
over the ocean shows fluctuations increasing with the time 
scale (positive H ) up to 2 years. This corresponds to the ocean 
weather regime as discussed in Lovejoy and Schertzer (2013). 
The same break in the scaling is found in the global tem-
perature fluctuations, but this break is subtle, and an overall 
unique scaling regime can be assumed for the global data. The 
influence of the ocean on the global temperature also brings 
its fluctuation exponent towards higher values (closer to zero) 
compared to the land surface fluctuations. This makes the 
global data more predictable than the land-only series.

In the frequency domain, the corresponding spectra for 
the Mean-G dataset are shown in Fig. 7. The raw spectrum 
for the natural variability series is represented in grey. It 
shows scaling, but with large fluctuations, as expected. To 
get better estimates of the exponent we can average the raw 
spectra using logarithmically spaced bins. These “cleaner” 
spectra for the series before and after removing the anthro-
pogenic trend are shown in red and blue in the online ver-
sion, respectively. Notice that they only differ appreciably 
for the low-frequency range, corresponding to the removed 
deterministic trend. The frequency, � , is given in units 
of (138 years)−1 . The particularly low variabilities at fre-
quencies corresponding to (30 years)−1 is an artefact of the 
30-year detrending period used in most of the datasets. The 
solid black line was obtained from a linear regression on the 
residues. The exponent obtained from the absolute value of 
the slope was � = 0.81 ± 0.13 . Using the monofractal rela-
tion � = 1 + 2H , we obtain the estimate for the fluctuation 
exponent: Hs = − 0.096 ± 0.063 . The dashed reference line 
with slope corresponding to �h = 1 + 2Hh = 0.84 ± 0.05 
was included in the figure for comparison (using the value 
obtained from the Haar fluctuation analysis in Fig. 6).

It is worth mentioning that this very simple approach to 
removing the warming trend is a special (low memory) case 
of the much more general model of linear response theory 
with a scaling response function proposed by Hébert et al. 

(2019). In this work, the authors directly exploit the sto-
chasticity of the internal variability and the linearity and 
scaling of the forced response to make projections based 
on historical data and a scaling step Climate Response 
Function that has a long memory. They not only include 
anthropogenic effects, but also solar and volcanic forcings. 
Consequently, the residuals they obtain once these forced 
components are removed, do not represent the forced natu-
ral variability response, but the internal variability of the 
system. The authors based their analysis on the assumption 
that this internal stochastic component can be approximated 
by an fGn process. This hypothesis has been confirmed on 
GCMs preindustrial control runs outputs where the forcings 
are not present.

3.3  Fitting fGn to global data

Having obtained the stationary natural variability com-
ponent, Tnat , for the Mean-G dataset from the residuals of 
the linear regression of T(t) vs. log2

[
�CO2eq

(t)∕�CO2eq,pre

]
 

(Eqs. (26) and (27)), we can now model this series using 
the theory presented in Sect. 2 and Appendix 1. The first 
step is to obtain the parameters � , �2

T
 and H . We would like 

to underline that these parameters describe the—infinite 
ensemble—fGn stochastic process, but we can only obtain 
estimates for them based on a single realization (our glob-
ally-averaged temperature time series). In Appendix 1 we 
show how to obtain the MLE for � and �2

T
 . In the case of 

the fluctuation exponent, we can repeat the methods pre-
sented in Sect. 3.2 and obtain estimates from the slopes in 
the Haar fluctuations and the spectrum curves. However, 
as we mentioned before, it is clear in Figs. 6 and 7 that the 
error in the estimates is much higher for these methods than 

Fig. 7  Spectra for the Mean-G dataset. In grey is the raw spectrum 
of the residuals. Averages with logarithmically spaced bins are shown 
for the series before (dashed, red) and after (blue) removing the 
trend. The solid black line, with slope −� , was obtained from a linear 
regression on the residues. The reference dashed line with absolute 
value of the slope 1 + 2Hh = 0.84 was included for comparison (using 
the value obtained from the Haar fluctuation analysis in Fig. 6). The 
frequency, � , is given in units of (138 years)−1
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by using the MLE or QMLE due to the high variability of 
the fluctuations. Nevertheless, their advantage over the lat-
ter is that they are general and apply not only to Gaussian 
processes (such as fGn), but also to multifractal or other 
intermittent processes with different statistics. The MLE and 
QMLE methods make the extra assumption of adequacy of 
the fGn model, which ultimately must be verified.

To get an idea of how well the stochastic model describes 
the observational dataset, we created completely synthetic 
time series by superimposing fGn simulations on the low-
frequency anthropogenic trend. Four randomly chosen 
simulations are shown in Fig. 8 together with the Mean-
G dataset (top). The synthetic series were created using 
�2×CO2eq

= 2.03 °C and T0 = − 0.379 °C for the anthropo-
genic trend, Tanth , and following the procedure described 
in Appendix 1-i with parameters � = 0  °C, �T = 0.195 °C 
and H = −0.060 for simulating Tnat (see Eqs. (26) and (27)). 
All these parameters were obtained by fitting the Mean-G 
observations in the period 1880–2017 ( N = 1656 months). 
In Appendix 2 (Table 5), we summarize the parameters 
obtained for the ten datasets and the corresponding mean 
series for global and for land.

Although a visual inspection of Fig. 8 is not a convincing 
proof of the applicability of the model, it is clear that if we 
eyeball the completely synthetic time series with the obser-
vational Mean-G dataset, you cannot tell which is which. A 
simple verification of the fGn behavior of the detrended data 
can be done by checking that the biased temporal estimate of 
the variance, SD2

T
 , and the value obtained using maximum 

likelihood, �̂�2
T
 , satisfy Eq. (25) (derived in Appendix 1-iii.).

Following Eq. (25), the temporal estimate of the vari-
ance should depend on the number of months, n , that is 

used for the estimates: SD2
T
(n) = �2

T

(
1 − n2H

)
 . For only one 

time series, the estimate of SD2
T
(n) is noisy. To reduce the 

noise, this value can be estimated using k-segments of the 
series from t = k to t = k + n − 1 (each of length n ), and 
then averaged over the total ensemble of segments (in this 
case Nsegments = N − nmax , where N = 1656 months is the full 
length of the series and nmax = 120 months is the maximum 
length of the segments used):

where T̄n =
∑n

t=1
Tt∕n , the values Tt are for the natural 

variability component of the Mean-G dataset and the fac-
tor (n − 1)∕n accounts for the bias of the length-n sample 
estimate, SD2

T
(n) , with respect to the length-n population 

variance, 
⟨
SD2

T
(n)

⟩
.

In Fig. 9 we show in red line with circles the empirical 
values of the standard deviation 

⟨
SD2

T
(n)

⟩1∕2 as a function 
of n (obtained using Eq. (28) for the ensemble of N − nmax 

segments). The function f�T ,H(n) = �T

√(
1 − n2H

)(
1 − n−1

)
 

(obtained by replacing the expression for SD2
T
(n) in Eq. (28) 

and taking the  square root) is  plotted using 
𝜎T = �̂�T = 0.195  °C and the following values of H  : 
Hf = −0.069 (solid black line), obtained from the fit of the 
red curve; Hl = −0.060 (dashed line), obtained using MLE, 
and Hq = −0.080 (dotted line), from the QMLE. The empiri-
cal curve for a synthetic realization of Gaussian white noise 
with standard deviation �wn = 0.141 °C was also included 
for comparison (blue line with squares).

(28)

⟨
SD2

T
(n)

⟩
=

n − 1

n
SD2

T
(n) =

1

N − nmax

N−nmax∑
k=1

[
1

n

k+n−1∑
t=k

(
Tt − T̄n

)2
]
,

Fig. 8  Four randomly chosen 
synthetic time series together 
with the Mean-G dataset (top). 
The simulations were created by 
superimposing fGn simulations 
for Tnat to the low-frequency 
anthropogenic trend, Tanth (see 
Appendix 1 and Eqs. (26) and 
(27)). The parameters used for 
the simulation (shown in the 
figure) were obtained by fitting 
the Mean-G series in the period 
1880–2017
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The difference between the red curve for the observational 
time series and the blue curve for the uncorrelated synthetic 
series illustrates the effects of the long-range correlations in 
the natural variability of the globally-averaged temperature 
time series. This strong dependence of the estimates of the 
variance with the length of the estimation period for H close 
to zero could have an influence on statistical methods that 
depend on the covariance matrix [e.g. empirical orthogonal 
function (EOF) and empirical mode decompositions (EMD)].

The agreement between the 
⟨
SD2

T
(n)

⟩1∕2 curve esti-
mated from the data and the function f�T ,H(n)—that only 
depends on the two parameters �T and H—is an evidence of 
the good fit of the fGn stochastic model to the natural vari-
ability. At the same time, it could be used as an alternative 
method for obtaining the parameters �T and H by fitting the 
curve 

⟨
SD2

T
(n)

⟩1∕2 based on observations using the function 
f�T ,H(n).

More detailed statistical tests to check the fit of the model 
to the data are shown in Appendix 2 using the theory pre-
sented at the end of Appendix 1. The main conclusion is 
that the global average temperature series can be consid-
ered Gaussian as well as their innovations, while for the 
case of land average temperature, there are some deviations 
from Gaussianity. Nevertheless, the residual autocorrelation 
functions (RACF) satisfy the normality condition with good 
enough accuracy for all datasets, corroborating the white-
ness of the innovations and hence that an fGn model can be 
considered a good approximation in all cases.

3.4  Forecast and validation

3.4.1  The low‑frequency anthropogenic component

Ultimately, as a final step to confirm the adequacy of the 
model to simulating and forecasting global temperature data, 
we present the skill scores obtained from hindcast verifica-
tions and compare their values with the theoretical predic-
tions. First, we should point out that for predicting the global 
temperature we need to forecast both the anthropogenic 
component and the natural variability. Our final estimator 
for k steps into the future, following Eq. (26), is given by:

where T̂nat is obtained from Eq. (22) using the theory pre-
sented in Sect. 2.2.1. The anthropogenic component, which 
we model with a separate low-frequency process must also 
be forecast. Nevertheless, even if we use persistence of the 
 CO2eq increments, the error on predicting the low-frequency 
component is small compared to the error on forecasting the 
natural variability (for lead times up to a year or so). For 
this reason, for obtaining T̂anth(t + k) based on the previous 
values of the trend, we just assume persistence of the incre-
ments ΔTanth(t, k) = Tanth(t) − Tanth(t − k) , that is:

For a linear trend, the absolute error 
⟨||Tanth(t + k

)
−T̂anth(t + k)

|||
⟩
=

⟨||ΔTanth(t + k, k) − ΔTanth(t, k)
||
⟩
= 0 . In 

the case of the  CO2eq trend shown in black in Fig. 5, for 
small k , the function is almost linear in a k-vecinity of any 
t  . This justifies the rejection of this error compared to the 
error on forecasting the natural variability. For reference, the 
root mean square error ( RMSE ) using this method for the 
anthropogenic component, in the 1044-months hindcast 
period January 1931–December 2017, performed with 
k = 24 months in advance for every month, was of 0.01 °C 
for all global datasets.

3.4.2  The natural variability component

For the natural variability, the expectation of the RMSE—
taking the infinite ensemble average using the theory for 
fGn—for a prediction k steps into the future is defined by:

According to the definition of MSSS , given by Eq. (12), 
and the analytical expression, Eq. (24), a theoretical ensem-
ble estimate of RMSEnat(k) , for prediction using a memory 
of m steps, is given by:

(29)T̂(t + k) = T̂anth(t + k) + T̂nat(t + k),

(30)
T̂anth(t + k) = Tanth(k) + ΔTanth(t, k)

T̂anth(t + k) = 2Tanth(t) − Tanth(t − k).

(31)RMSE
theory

nat (k) =

√⟨[
Tnat(t + k) − T̂nat(t + k)

]2⟩
.

Fig. 9  Empirical values of 
⟨
SD2

T
(n)

⟩1∕2 as a function of n , obtained 
using Eq.  (28) (red line with circles). The function 
f�T ,H(n) = �T

√(
1 − n2H

)(
1 − n−1

)
 , with 𝜎T = �̂�T = 0.195  °C, is 

plotted for three values of H : Hf = −0.069 (solid black line), 
obtained from the fit of the red curve; Hl = −0.060 (dashed line), 
obtained using MLE and Hq = −0.080 (dotted line), from QMLE. 
The empirical curve for a synthetic realization of Gaussian white 
noise with variance �2

wn
= 0.02 °C was also included for comparison 

(blue line with squares). The agreement between the red line with cir-
cles and the solid black line is an evidence of the fGn behavior of the 
natural variability
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Notice that, unlike the MSSS , this is not only a function 
of the horizon, k , the memory, m , and the exponent, H , but 
also of the specific series we are forecasting due to the pres-
ence of the parameter �T , which must be estimated using 
Eq. (50) in Appendix 1. As expected, for given values of k , 
m and H , the RMSE is proportional to the amplitude of the 
series we want to predict.

3.4.3  Validation

To validate our model, we produced series of hindcasts at 
monthly resolution, each for a different horizon from 1 to 
12 months, in the verification period January 1931–Decem-
ber 2017. For this hindcast series each subsequent point 
plotted on the graph was independently predicted using the 
information available k months before. What changes from 
month to month is the initialization date while the forecast 
horizon is kept fixed. Such hindcast series are useful because 
they show how close the predictions are to the observations 
for a given value of k . The dependence with the horizon of 
many scores (e.g., the RMSE ), are obtained from the dif-
ference between hindcasts series at a fixed k and the cor-
responding series of observations.

StocSIPS assumes an additive fixed annual cycle inde-
pendent of the low-frequency trend; it does not make dis-
tinctions from month to month from the point of view of the 
statistics of the anomalies. In fact, is this month-to-month 
correlation that is exploited as a source of predictability in 
the stochastic model. Nevertheless, there is always an intrin-
sic multiplicative seasonality in the data that is impossible to 
completely remove without affecting the scaling behavior of 
the spectrum. To account for the effects of this seasonality, 
we can stratify the observations and the forecasts series to 
show dependences with the initialization date.

For each horizon, k , we used a memory m = 20k . For 
example, to predict the average temperature for January 1931 
with k = 1 month, we used the previous 21 months, includ-
ing December 1930, and the same was done for each month 
up to December 2017. For k = 2 months, we used the previ-
ous 41 months, including December 1930, to produce the 
first forecast for February 1931, and so on.

Examples of the hindcasts series initialized every month, 
each for a different horizon, are shown in Fig. 10 for the 
Mean-G natural variability. In blue, we show the hindcasts 
series for k = 1, 3 and 6 months (bottom to top). In red we 
show the verification curve of observations for the natural 
variability starting in January 1931. The vertical gridlines 
correspond to the forecast and verification for each January; 
that is, initializing the first day of each January with data up 
to every December in the bottom panel, up to every October 

(32)
RMSE

theory

nat (k) = RMSEm
H,𝜎T

(k) = 𝜎T

√
1 − �̃m

H
(k)T

(
�̃m

H

)
−1
�̃m

H
(k).

in the middle panel and up to every July in the top one. This 
shows how the stratification is done for obtaining depend-
ences of the skill with the initialization date (shown later).

As can be seen in Fig. 10, there is a reduction of the 
amplitude and an increasing lag between the observed and 
forecast time series as the horizon increases (more notice-
able in the top panel). This is due to the model tendency to 
predict the return rate towards the mean as a function of H . 
Extremes can therefore only be predicted as a consequence 
of the anthropogenic increase. However, the general behav-
ior of the temperature is well predicted.

Equation (31) is the definition of the infinite ensemble 
expectation of the RMSE , for which we get an analytical 
expression (Eq. (32)). The all-months verification RMSE 
can then be computed from the series shown in Fig. 10 as:

where N = 1044 months (from January 1931 to December 
2017) and the number of terms in the sum is reduced in k − 1 
because the last verification date (December 2017) is the 
same for every k while the first verification date is k months 
after December 1931 ( t = 0 ) for each horizon. This equation 
can be adapted to get the RMSE for each horizon and for 
each initialization month.

In Fig. 11a, we show a comparison between the RMSE 
obtained from the hindcasts of all the months in the verifi-
cation period 1931–2017 using Eq. (33) and the theoretical 

(33)

RMSEnat(k) =

√√√√ 1

N − k + 1

N−k+1∑
t=0

(
Tnat(t + k) − T̂nat(t + k)

)2

Fig. 10  In blue, series of hindcasts for the Mean-G natural variability 
initialized every month for horizons k = 1, 3 and 6 months (bottom to 
top). In red, the verification curve of observations for the natural vari-
ability starting in January 1931. The vertical gridlines correspond to 
the forecast and verification for each January; that is, initializing with 
data up to every December in the bottom panel, every October in the 
middle and every July in the top
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expected RMSE , which is only a function of �̂�T , H and m 
(Eq. (32)). The agreement between the theory (solid black) 
and the actual errors (red curve) is another confirmation 
of the model for the simulation and prediction of global 
temperature. In the figure, we also included the values 
�̂�T = 0.195 °C and SDT = 0.147 °C for the Mean-G natu-
ral variability (dotted and dashed lines respectively). The 
value of the former is the same as shown in Table 5, while 
the value of the latter is slightly different from the value 
reported there because now it was computed for the verifica-
tion series in the period 1931–2017 (red curve in Fig. 10). 
Notice that, for N = 1044 months and H = −0.060 (see 

Table 5), SDT∕

√
1 − N2H

= 0.195 °C, in perfect agreement 
with the value of �̂�T for that dataset.

The error for the anthropogenic trend forecast calculated 
using Eq. (30) is always less than 7% of the RMSEnat shown 
in Fig. 11a (see the final paragraph of Sect. 3.4.1). Because 
of this, its contribution to the overall error, RMSEraw , on fore-
casting the raw temperature (natural plus anthropogenic) is 
lower than 0.4% for all horizons (compare the red-circles and 
the blue-squares curves in Fig. 11a). For all practical pur-
poses, RMSEraw ≈ RMSEnat with a high degree of accuracy.

In Fig. 11b, we show a density plot with the RMSE as 
a function of the forecast horizon and the initialization 
month. The diagonal pattern from the top-left corner to the 
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Fig. 11  RMSE of StocSIPS forecasts for the Mean-G dataset. a 
Curves of RMSEnat(k) (red circles) and RMSEraw(k) (blue squares), 
for the natural variability component and for the raw series, respec-
tively. The curves were obtained using Eq. (33) from the hindcasts of 
the Mean-G dataset including all the months in the verification period 
1931–2017. The difference between the two is negligible. The theo-
retical expected RMSE

theory

nat (k) (solid black), given by Eq. (32), is also 
shown for comparison. The values of �̂�T (Table  5) and SDT for the 
Mean-G natural variability were included for reference (dotted and 
dashed lines, respectively). b Density plot with the RMSE as a func-
tion of the forecast horizon and the initialization month. The diagonal 
pattern from the top-left corner to the bottom-right is an indication of 

the intrinsic multiplicative seasonality in the time-series. c Graphs of 
RMSE vs. initialization month for different forecast horizons ( k = 1, 
3, 6 and 12 months). There is an increase in the RMSE for the forecast 
of the Boreal winter months associated to the increase in the standard 
deviation, SDT , of the globally-averaged temperature for those months 
(shown in dashed black line in the bottom panels figures). d Graphs 
of RMSE vs. k for different initialization months. For large values of 
k the skill of the model is small and the value of the RMSE is close to 
the standard deviation for that specific month (dashed black line). The 
RMSE graph in a is close to the average of the RMSE graphs in d 
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bottom-right is an indication of the intrinsic seasonality in 
the time-series. This is shown in detail in the bottom panels 
figures.

In Fig. 11c, we show graphs of RMSE vs. initializa-
tion month for different forecast horizons ( k = 1, 3, 6 and 
12 months). There is an increase in the RMSE for the fore-
cast of the Boreal winter months associated to the increase 
in the variability (standard deviation, SDT ) of the globally-
averaged temperature for those months (shown in dashed 
black line in the bottom panels figures). In Fig. 11d, we show 
graphs of RMSE vs. k for different initialization months. As 
expected, there is an increase in the RMSE with k . For large 
values of k the skill of the model is small and the value of 
the RMSE is close to the standard deviation for that specific 
month (dashed black line). The RMSE graph in panel (a) is 
close to the average of the RMSE graphs in panel (d). It is 
actually the all-month MSE the one that is the average of the 
MSE s for each month (as long as the number of years used 
for the average is the same for every month).

Related to the RMSE score, the mean square skill score 
( MSSS ) is a commonly used metric:

where MSE = RMSE2 is computed using Eq.  (33) and 
MSEref is the mean square error of some reference forecast.

The climatology—constant annual cycle taken from the 
average in a given reference period of at least 30 years—
is commonly used as reference forecast. In this case, 
MSEref = SD2

raw
 , is the variance of the raw series:

(assuming that the natural and anthropogenic variabilities 
are independent) and we call MSSS = MSSSraw.

If we take as reference the anthropogenic trend fore-
cast, then MSEref = SD2

T
 , is the variance of the natural 

variability component (detrended series, Tnat ) and we name 
MSSS = MSSSnat . This would be the same as the skill on 
forecasting the detrended series taking as reference forecast 
its mean value. Using the theoretical expressions for SD2

T
 and 

for RMSE = RMSE
theory

nat (k) (Eqs. (25) and (32), respectively) 
we can obtain an analytical expression for MSSSnat:

where MSSSm
H
(k) was defined for the infinite ensemble average 

in Eq. (24) [Eq. (13) for the continuous-time case]. Notice that 
MSSS

theory

nat (k) is not only a function of the fluctuation exponent, 
H , and the memory used for the forecasts, m , but also of the 
length of the verification period, N . For an infinite series, the 
ergodicity of the system is verified; i.e. the temporal average 

(34)MSSS = 1 −
MSE

MSEref

,

(35)SD2
raw

=

(
Tanth + Tnat

)2
= T2

anth
+ SD2

T

(36)MSSS
theory

nat (k) =
MSSSm

H
(k) − N2H

1 − N2H
,

is equal to the ensemble average: MSSS
theory

nat (k) = MSSSm
H
(k) 

(recall H < 0 ). We can check the agreement between the theo-
retical result (Eq. (36)) and the MSSSnat obtained from hindcast 
to verify the validity of the model.

The anomaly correlation coefficient ( ACC ) is another 
commonly used verification score. In this case, we can also 
obtain the ACC for the raw or for the detrended series:

where we assume that T(t) and the predictor T̂(t) are zero 
mean anomalies, the overbars indicate temporal average for 
a constant forecast horizon, k , and either all the subscripts 
are “nat” or all are “raw” depending on whether we forecast 
the detrended or the raw anomalies, respectively. In the lat-
ter case, spurious high values of the ACC (similarly for the 
MSSS ) are found due to the presence of the deterministic 
trend. This is a very common flaw found throughout the 
literature, where this score is routinely reported for unde-
trended anomalies.

It is useful to note the relationship between the ACC 
and MSSS obtained from minimum mean square predic-
tions. It can be easily seen from the orthogonality principle, ⟨
T̂
(
T − T̂

)⟩
= 0 , that the stochastic predictions satisfy

for any horizon k . This relation can also be used to check the 
agreement between the theoretical predictions of the model 
and the actual results obtained from hindcasts verification.

In Fig. 12 we summarize the results for the MSSS (top) 
and the ACC (bottom). In Fig. 12a, we show curves of MSSS 
vs. k for the Mean-G dataset considering all months in the 
verification period 1931–2017. In red line with circles, the 
curve for MSSSnat taking as reference the anthropogenic 
trend forecast, for which MSEref = SD2

T
 ( SDT = 0.147 °C). 

In green line with triangles, the values for MSSSraw taking 
as reference the climatology forecast with MSEref = SD2

raw
 

( SDraw = 0.293 °C). The theoretical expected MSSS
theory

nat (k) 
(solid black), given by Eq. (36), is also shown for com-
parison. There is relatively good agreement between this 
theoretical prediction of the model and the MSSS values 
obtained from the verification. The asymptotic value of 
MSSS

theory

nat (k) for N → ∞ (given by Eq. (24)) is shown in 
dotted line with squares (dashed line for the continuous-
time case, Eq. (13)). The longer the verification period the 
closer the MSSS will be to that asymptotic value. For the 
discrete theoretical curves (solid black line and dotted black 
with squares), we used a memory m = 20k . The small differ-
ence for k = 1 month, between this curve and the one for the 
continuous case (solid black) is due to the high-frequency 
information loss in the discretization process.

(37)
ACCnat∕ raw(k) =

Tnat∕ raw(t + k)T̂nat∕ raw(t + k)

SDT∕ raw

√
T̂nat∕ raw(t)

2

,

(38)ACCnat(k) =
√
MSSSnat(k)
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In Fig. 12c, we show curves of ACCnat (red circles) and 
ACCraw (green triangles) obtained from Eq. (37). Here, we 
can appreciate the spuriously high correlation values of 
ACCraw compared to the ACCnat due to the presence of the 
anthropogenic trend. The values of 

√
MSSSnat (blue squares) 

were included to check the consistency of the theoretical 
relationship given by Eq. (38); we see that it is relatively 
well satisfied, confirming the validity of the model.

In the right panels of Fig. 12, we show density plots with 
the MSSS and the ACC [panels (b) and (d), respectively] as a 
function of the forecast horizon and the initialization month. 
As we already showed for the RMSE , there are diagonal 
patterns from the top-left corner to the bottom-right as a 
consequence of the seasonality in the globally-averaged 

temperature anomalies. Nevertheless, for the MSSS and the 
ACC , these patterns are relatively less significative com-
pared to the ones in the RMSE because—roughly speak-
ing—both scores are functions of the ratio RMSEnat∕SDT , 
reducing the impact of the variation of the standard devia-
tion of each individual month (see Fig. 11c). Some results 
of the hindcast validation are summarized in Table 7 for the 
twelve datasets, including the mean series for the global and 
the land surface.

3.4.4  Parametric probability forecast

Probability forecasts from long-term prediction dynamical 
models are usually obtained by fitting probability 

(a) (b)

(d)(c)

Fig. 12  MSSS and ACC of StocSIPS forecasts for the Mean-G data-
set. a Curves of MSSS vs. k for the Mean-G dataset considering all 
months in the verification period 1931–2017. In red line with circles, 
the curve for MSSSnat taking as reference the anthropogenic trend 
forecast. In green line with triangles, the values for MSSSraw tak-
ing as reference the climatology forecast. The theoretical expected 
MSSS

theory

nat (k) (solid black), given by Eq.  (36), is also shown for 
comparison. The asymptotic value for N → ∞ (given by Eq.  (24)) 
is shown in dotted line with squares (dashed line for the continuous-
time case, Eq.  (13)). The longer the verification period the closer 

will be the MSSS to that asymptotic value. b Density plot showing 
the MSSS as a function of the forecast horizon and the initialization 
month. c Curves of ACCnat (red circles) and ACCraw (green triangles) 
as a function of the forecast horizon obtained from Eq. (37). The val-
ues of 

√
MSSSnat (blue squares) were included to check the consist-

ency of the theoretical relationship given by Eq. (38). d Density plot 
of the ACC as a function of the forecast horizon and the initialization 
month. The diagonal patterns from the top-left corner to the bottom-
right in b, d are consequences of the intrinsic seasonality in the time-
series
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distributions to the ensemble forecast for each month and 
deriving probabilities of three climatologically equiprobable 
categories: below normal, near normal and above normal 
conditions. In general, the form of the distribution and the 
skill of the forecast is affected by the size of the ensemble. 
One of the main advantages of StocSIPS over conventional 
numerical models is that, by its inherent stochastic nature, 
the infinite ensemble parametric probability forecast can be 
obtained analytically without the need of simulating any 
individual realization. Following the results presented in 
Sect. 2, the theoretical probability distribution forecast at 
horizon k , taking data up to time t , is a Gaussian with mean 
𝜇f = T̂(t + k) given by Eq.  (29) and standard deviation 
�f (k) = RMSEm

H,�T
(k) given by Eq. (32) (we neglected the 

error in the projection of the anthropogenic trend). In this 
section we only consider results for the full time series with-
out stratification of the data. The theoretical expression for 
�f (k) , obtained from the results for an infinite ensemble, only 
applies in this case.

The “reliability” is defined as the consistency or repeat-
ability of the probabilistic forecast. In order to evaluate 
the reliability of the probabilistic forecast of an ensemble 
model, the ensemble spread score ( ESS ) is commonly used 
as a summarizing metric. The ensemble spread score ( ESS ) 
is defined as the ratio between the temporal mean of the 
intra-ensemble variance, �2

ensemble
 , and the mean square error 

between the ensemble mean and the observations (Palmer 
et al. 2006; Keller and Hense 2011; Pasternack et al. 2018):

In the case of StocSIPS, �2
ensemble

= �2
f
 is obtained analyti-

cally using Eq. (32) and MSE = RMSE2 is obtained from 
the hindcasts using Eq. (33).

Following Palmer et al. (2006), an ESS of 1 indicates 
perfect reliability. The forecast is “overconfident” when 
ESS < 1; i.e. the ensemble spread underestimates forecast 
error. If the ensemble spread is greater than the model error 
( ESS > 1), the forecast is “overdispersive” and the forecast 
spread overestimates forecast error. In Fig. 11a, we showed 
that there is good agreement between the theoretical estimate 
RMSEm

H,�T
(k) = �f (k) and the hindcast error RMSEnat(k) for 

all horizons k , or—what is the same—between �2
ensemble

 and 
MSE in Eq. (39). This gives a value of ESS ≈ 1 , so that Stoc-
SIPS is a nearly perfectly reliable system without needing a 
recalibration of the forecast probability distribution.

Examples of probability forecasts for July 1984 for the 
natural variability component of the Mean-G dataset are 
shown in Fig. 13 for horizons k = 1 and 3 months (left and 
right panels, respectively). That is, using data up to June 
1984 for the k = 1 month forecast and up to April 1984 for 

(39)ESS =

�2
ensemble

MSE
.

k = 3 months. The normal probability density function 
(PDF) in grey represents the climatological distribution of 
the monthly temperatures for the detrended anomalies of the 
Mean-G dataset for the full period 1931–2017, for which 
�clim = SDT = 0.147 °C. The terciles of the climatological 
distribution are indicated by vertical dashed lines. These 
vertical lines define three equiprobable categories of above 
normal, near normal, and below normal monthly tempera-
tures observed in the verification period. The forecast distri-
bution is indicated by the black curve with the forecast mean 
𝜇f = T̂(Jul 1984) = − 0.118  °C and standard deviation 
�f = RMSEm

H,�T
(k) = 0.101 °C for k = 1 month (left panel) 

and �f = − 0.063 °C, �f = 0.122 °C for k = 3 months (right 
panel). The areas under the forecast PDF in different colors 
indicate probabilities of below normal (blue), near normal 
(yellow), and above normal (pink) temperatures. These prob-
abilities are summarized in the top-left corner as bar plots. 
The climatological probability of 33% is indicated by the 
horizontal dashed line. The observed temperature for that 
specific date, Tobs = − 0.191 °C, is represented by the verti-
cal green line. The forecast distributions for k = 1 month are 
sharper than for k = 3 months. As expected, the confidence 
of the probabilistic forecast decreases as the lead time 
increases and they become more conservative.

The verification of the probabilistic forecast in categories 
(above, near and below normal) is done using 3 × 3 contin-
gency tables (Stanski et al. 1989). The forecast and observed 
categories are simply classified in a table of three rows and 
three columns. There is a row for each observed category 
and a column for each forecast category. For each month 
forecast, one is added to the grid element of the contingency 
table according to the intersection of the forecast category 
and the observed category. In Table 1 we show the contin-
gency table for the k = 1 month forecast of the natural vari-
ability anomalies, Tnat , of the Mean-G dataset (red curves 
in Fig. 10). The 1044 month period (Jan 1931–Dec 2017) 
was used for verification. The climatological distribution 
was defined using the mean and standard deviation of the 
detrended series over that period.

There are many scores that can be obtained from the 
contingency table (Stanski et al. 1989). In this paper we 
used the percent correct ( PC ) obtained from the ele-
ments in the main diagonal (shown in bold in Table 3). 
This score, often called accuracy, is very intuitive and it 
counts, overall, the percentage of the category forecasts 
that  were correct. From Table  1, we obtain the values 
PCnat = 100 (272 + 160 + 250)∕1044 ≈ 65% . We can obtain 
contingency tables for all k . The dependence of the PC with 
k , is shown in Fig. 14 for the forecasts of the detrended 
anomalies, Tnat (blue line with squares in the figure). The 
dashed line at 33.3% is a reference showing the skill of the 
climatological forecast. 
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The thresholds for the three equiprobable categories, 
above normal, near normal and below normal, will depend 
on the base-line of zero temperature and the standard devia-
tion of the reference climatological distribution used. This 
will affect the distribution of events in the contingency table 
and consequently, the PC score obtained even though the 
forecast system has not changed. In that sense, the PC is a 
relative score. To avoid this dependence we could use abso-
lute scores (independent of the climatology used), such as 
the ignorance score or the continuous ranked probability 
score ( CRPS ) (Hersbach 2000; Gneiting et al. 2005). The 

latter is the one we used in this paper for evaluating the qual-
ity of the probability forecasts of StocSIPS.

The CRPS for a forecast initialized at time t with horizon 
k is defined as:

Fig. 13  Example of parametric probability forecasts for July 1984 for 
the natural variability component of the Mean-G dataset for horizons 
k = 1 and 3 months (left and right panels, respectively). That is, using 
data up to June 1984 for the k = 1 month forecast and up to April 
1984 for k = 3 months. The normal probability density function in 
grey represents the climatological distribution of the monthly temper-
atures for the detrended anomalies of the Mean-G dataset for the full 
period 1931–2017. The terciles of the climatological distribution are 

indicated by vertical dashed lines. The colored areas under the fore-
cast density function are proportional to the forecast probabilities for 
each category: below normal (blue), near normal (yellow) and above 
normal (pink). These probabilities are summarized in the top-left cor-
ner as bar plots. The climatological probability of 33% is indicated by 
the horizontal dashed line. The observed temperature for that specific 
date, Tobs = −0.198 °C, is represented by the vertical green line. The 
parameters for all the distributions are included in the legends

Table 1  Contingency table for the k = 1 month forecast of the natu-
ral variability anomalies, Tnat , of the Mean-G dataset (red curves in 
Fig. 10)

The 1044  months period (Jan 1931–Dec 2017) was used for verifi-
cation. The climatological distribution was defined using the mean 
and standard deviation of the detrended series over that period 
( �clim = SDT = 0.147 °C)

Contingency table for the 
detrended anomalies, Tnat

Forecasts Total

Below Normal Above

Observations
 Below 272 77 9 358
 Normal 102 160 90 352
 Above 15 69 250 334

Total 389 306 349 1044

Fig. 14  PC as a function of k for the forecasts of the detrended anom-
alies, Tnat (blue line with squares in the figure). The dashed line at 
33.3% is a reference showing the skill of the climatological forecast
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where Pf (t, x) is the cumulative forecast distribution with 
mean 𝜇f = T̂(t + k) given by Eq. (29) and standard deviation 
�f (k) = RMSEm

H,�T
(k) and Po(t + k, x) = H

[
x − Tobs(t + k)

]
 is 

the cumulative observed distribution defined in terms of the 
Heaviside function H(x) . The CRPS can be determined for a 
single forecast, but a more accurate value is determined from 
a temporal average of many forecasts. The time mean CRPS 
as a function of horizon k is:

The CRPS is a negatively oriented measure of forecast 
accuracy, similar to the RMSE for deterministic ensemble 
mean forecasts; that is, smaller values indicate better skill. 
In fact, for deterministic forecasts, where �f → 0 , the crps in 
Eq. (40) reduces to the absolute error: AE =

|||Tobs − T̂
||| . If 

we assume that Pf  is the cumulative distribution function 
(CDF) of a normal distribution with mean �f  and standard 
deviation �f  , a closed form for crps can be derived by repeat-
edly integrating by parts in Eq. (40) (Gneiting et al. 2005):

where �(⋅) and �(⋅) denote the PDF and the CDF, respec-
tively, of the normal distribution with mean 0 and vari-
ance 1 evaluated at the normalized prediction error, 
�n =

(
Tobs − �f

)
∕�f  . This expression is very useful for 

obtaining the CRPS of large or many verification series and 
for calibrating ensemble forecasts from its optimization. In 
this paper, we will use it for deriving a general result that 
relates the CRPS with the RMSE of the ensemble mean of 
Gaussian probability forecasts.

Let us assume that the ensemble-mean forecast error, 
� = Tobs − �f  , follows a Gaussian distribution with zero mean 
and standard deviation �� . Notice that �f ≠ �� ; the former is 
given by the intra-ensemble spread, �f = �ensemble , and the lat-
ter can be estimated from the RMSE between ensemble mean 
and observation. The CRPS and the RMSE can be related by 
averaging Eq. (42) for all possible values of the error, �:

(40)crps(t + k) =

∞

∫
−∞

[
Pf (t + k, x) − Po(t + k, x)

]2
dx,

(41)CRPS(k) =
1

N − k + 1

N−k∑
t=0

crps(t + k).

(42)

crps(t + k) =

�f

�
Tobs − �f

�f

�
2�

�
Tobs − �f

�f

�
− 1

�
+ 2�

�
Tobs − �f

�f

�
−

1√
�

�
,

(43)⟨crps(t + k)⟩� =
∞

∫
−∞

�

�
�

��

�
crps(t + k)d

�
�

��

�
,

where �(⋅) is defined as in Eq.  (42). If we now replace 
Eq. (42) in Eq. (43) and integrate by parts, we obtain:

The average for all possible values of the error, ⟨⋅⟩� , can 
be approximated by the time average, Eq. (41), for long 
enough verification periods. Moreover, we can approximate 
�f  and �� by their corresponding time-average estimates: 

�2
f
≈ �2

ensemble
 and �� = RMSE . Using the definition of 

ESS = �2
ensemble

∕MSE (Eq.  (41)), we can finally rewrite 
Eq. (44) as:

where �(ESS) =
√
2(1 + ESS) −

√
ESS . The function 

�(ESS) takes the minimum value �min = 1 for a system 
with perfect reliability where ESS = 1 . For any other value 
of ESS , CRPS > RMSE∕

√
𝜋 . This result shows that, for 

ensemble prediction systems, the optimal way of produc-
ing parametric probabilistic forecasts, assuming a Gaussian 
distribution, is by calculating the standard deviation of the 
forecast distribution from the hindcast period rather than 
just from the current forecast ensemble. This result agrees 
with previous studies (Kharin and Zwiers 2003; Kharin et al. 
2009, 2017), which reach the same conclusion from the opti-
mization of other standard probabilistic skill measures (e.g., 
the Brier skill score).

As we mentioned before, StocSIPS is a system with 
nearly perfect reliability and it assumes, by hypothesis, the 
Gaussianity of the errors. In that sense, the analytical expres-
sion for RMSEm

H,�T
(k) (Eq. (32)) can be used to obtain a theo-

retical expression for CRPS(k) in Eq. (45). At the same time, 
the verification of this expression through a comparison 
between the values of RMSE(k) and CRPS(k) obtained from 
hindcasts can be used to check the validity of the model.

In Fig. 15 we show the time mean CRPS as a function of 
k , calculated in the verification period 1931–2017 for the 
probabilistic forecast of the monthly temperature anomalies 
of the Mean-G dataset. In the figure we show the results of 
the forecast of the raw anomalies (red circles), for which 
both the natural variability and the anthropogenic trend 
have to be forecast. Similarly to the previous results for the 
RMSE , the difference with the score of the forecast of the 
detrended anomalies is negligible ( CRPSraw ≈ CRPSnat ), 
corresponding to the very small error on the projection 
of the trend compared to the error on the prediction of the 
detrended anomalies. The line in blue with empty squares, 
almost coincident with the red line, shows the function 

(44)⟨crps(t + k)⟩� =
��√
�

��
2
�
1 + �2

f

�
�2
�

�
− �f

�
��

�
.

(45)CRPS(k) =
RMSE(k)√

�
�(ESS),
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RMSEraw(k)∕
√
� , in perfect agreement with the theoretical 

prediction for the optimal value �min = 1 in Eq. (45), cor-
responding to perfect reliability. In the green triangles we 
included the CRPS of the reference climatology forecast of 
the natural variability component ( CRPSclim

nat
= 0.083 °C). 

That is, using the fixed climatological probability distribu-
tion (shown in grey in Fig. 13), with zero mean and standard 
deviation �clim = 0.147 °C, to forecast the detrended anoma-
lies. If we use the same climatological distribution for fore-
casting the raw anomalies, we obtain the much larger value 
CRPSclim

raw
= 0.181 °C.

3.5  Comparison with GCMs

According to the World Meteorological Organization 
(WMO) (http://www.wmo.int/pages /prog/wcp/wcasp /gpc/
gpc.php), there are currently fifteen major centers providing 
global seasonal forecasts. Thirteen of them have been offi-
cially designated by the WMO as Global Producing Centres 
for Long-Range Forecasts (GPCLRFs). The Meteorological 
Service of Canada (MSC) contributes with the Canadian 
Seasonal to Interannual Prediction System (CanSIPS) (Mer-
ryfield et al. 2011, 2013).

CanSIPS is a multi-model ensemble (MME) sys-
tem using 10 members from each of two climate models 

(CanCM3 and CanCM4) developed by the Canadian Cen-
tre for Climate Modelling and Analysis (CCCma) for a 
total ensemble size of 20 realizations. It is a fully coupled 
atmosphere–ocean–ice–land prediction system relying 
on operational data assimilation for the initial state of the 
atmosphere, sea surface temperature and sea ice.

To evaluate forecasts and compare StocSIPS with Can-
SIPS, we accessed the publicly available series of hindcasts 
of CanSIPS covering the period 1981–2010 (CanSIPS 2016). 
The fields, available on 145 × 73 latitude–longitude grids at 
resolutions of 2.5° × 2.5° for each of the 20 ensemble mem-
bers, were area-weight averaged to obtain global mean series 
of hindcasts at monthly resolution. CanSIPS produces fore-
cast at the beginning of every month for the average value of 
that month and the next 11 months; i.e. for lead times from 
0 to 11 months for each initialization date. In our case, that 
would correspond to forecast horizons (number of periods 
ahead that are forecasted) from 1 to 12 months. In the veri-
fication for k = 1 month (lead zero), the hindcast period is 
January 1981–December 2010; for k = 2 months (lead one), 
the hindcast period is February 1981–January 2011, and so 
on. This way, all the 12 series of hindcasts (one for each 
horizon) have a length of 360 months.

An optimal use of the dynamical model can be obtained 
after advanced postprocessing and calibration to reduce the 
bias of the model (Crochemore et al. 2016; Kharin et al. 
2017; Van Schaeybroeck and Vannitsem 2018; Pasternack 
et al. 2018). We do not pretend here to make an exhaustive 
use of these calibration techniques. To keep the compari-
son simple, we followed the postprocessing for CanSIPS 
described in Sects. 3.a and 3.b of (Kharin et al. 2017) for 
deterministic and parametric probability forecasts, respec-
tively. The statistical adjustment used by the authors is based 
on a linear rescaling of the ensemble mean and standard 
deviation of the anomaly forecast. The regression coeffi-
cients are obtained by minimizing the MSE and CRPS of 
the ensemble forecast in some verification period.

It can be easily shown that, after the recalibration, their 
method will lead to the optimal expression for CRPS given 
by Eq. (45) when ESS = 1 : CRPS = RMSE∕

√
� . The recali-

bration method can be reduced to using—as optimal deter-
ministic predictor—the projection of the ensemble mean that 
minimizes the MSE in some verification period. Then, for 
the probability distribution forecast, the standard deviation 
is made equal to the RMSE of the adjusted deterministic 
forecast instead of calculating it from the intra-ensemble 
spread. In that sense, the ensemble members are only useful 
for obtaining the ensemble mean. They do not contribute 
further to the forecast as the optimal probabilistic scores are 
obtained from the condition ESS = 1.

In their paper, (Kharin et al. 2017) also show that the opti-
mal average skill scores are obtained when time-invariant 
(independent of the season) coefficients are used. We will 

Fig. 15  CRPS as a function of the forecast horizon, k , calculated 
in the verification period 1931–2017 for the probabilistic forecast 
of the monthly temperature anomalies of the Mean-G dataset. In 
red circles  we show the CRPS for the forecast of the raw anoma-
lies, for which both the natural variability and the anthropogenic 
trend have to be forecast. The line in blue with squares, almost 
coincident with the red line, shows the function RMSEraw(k)∕

√
� , 

in perfect agreement with the theoretical prediction for the optimal 
value �min = 1 in Eq.  (45). In green triangles we included the CRPS 
of the reference climatology forecast of the detrended anomalies, 
CRPSclim

nat
= 0.083 °C

http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php
http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php
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use this result here and, instead of using only 30 years for 
estimating individual coefficients for each month, we use 
the monthly series to estimate constant coefficients based 
on 360 months that only depend on the lead time. These 
coefficients are more stable and do not significantly degrade 
the accuracy of the forecast due to sampling errors as would 
season-dependent coefficients.

In Fig. 16, we show an example of a  forecast for the 
12 months following April 1982 for both StocSIPS and 
CanSIPS. In red we show the verification curve of obser-
vations for the Mean-G dataset. In blue, the median hind-
casts for StocSIPS, with the corresponding 95% confidence 
interval based on the RMSE for the verification period. The 
ensemble mean for CanSIPS is shown in black, with each 
of the 20 members shown in dashed light colors and the 
95% confidence interval based on the RMSE of the hindcasts 
represented in grey. The  CO2eq trend for the Mean-G dataset 
(green line) was added as a reference of the long-term equi-
librium of the temperature fluctuations.

As expected, the dispersion of the different ensemble 
members for the dynamical model increases as the hori-
zon increases, which shows the stochastic-like character of 
GCMs for long-term predictions with the consequent loss 
in skill. Despite this increase in the spread of the ensemble, 
the dynamical model is underdispersive for all horizons. The 
ESS (see Eq. (39) in Sect. 3.4.4) is in the range 0.57–0.74 for 
all lead times, except for zero months lead time where ESS = 
0.40. (Kharin et al. 2017) show that inflating the ensem-
ble spread to satisfy the condition ESS = 1 , results in more 

conservative estimates for the forecast probabilities of the 
three categories and improved reliability of the probability 
forecast and overall probabilistic skill scores.

3.5.1  Deterministic forecast comparison and seasonality

In this section we present scores for the deterministic fore-
cast (ensemble mean forecast) for both models using for 
verification the Mean-G dataset in the period 1981–2010. In 
all cases we used the calibrated ensemble mean for CanSIPS, 
unless stated otherwise. In Fig. 17, we show density plots 
of the RMSE as a function of the forecast horizon and the 
initialization month for StocSIPS and CanSIPS [panels (a) 
and (b), respectively]. For both models, there is a seasonality 
pattern with large errors during the Boreal winter months. 
In the case of StocSIPS, the largest values of the RMSE are 
found for February, January and March, in that order, while 
CanSIPS has the largest errors for the forecasts of November 
and February. In Fig. 17c, we show the difference between 
CanSIPS RMSE and StocSIPS RMSE ; positive values indi-
cate that StocSIPS has better skill. StocSIPS outperforms 
CanSIPS for most of the horizons and initialization months, 
except for the forecasts of January and February and some 
other initialization dates for k = 1 month. The overall values 
of RMSE vs. k—averaging for all the months in the verifi-
cation period independently of the initialization date—are 
shown in Fig. 17d. The curve for StocSIPS is represented in 
red line with solid squares. For CanSIPS, we show in solid 
blue line with empty squares the RMSE for the calibrated 

Fig. 16  One example of forecast 
for the 12 months following 
April 1982 for both Stoc-
SIPS and CanSIPS. In red we 
show the verification curve of 
observations for the Mean-G 
dataset. In blue, the median 
hindcasts for StocSIPS, with the 
corresponding 95% confidence 
interval based on the RMSE 
for the verification period. The 
ensemble mean for CanSIPS 
is shown in black, with each 
of the 20 members shown in 
dashed light colors and the 95% 
confidence interval based on the 
RMSE of the hindcasts repre-
sented in grey. The  CO2eq trend 
for the Mean-G dataset (green 
line) was added as a reference 
of the long-term equilibrium of 
the temperature fluctuations
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ensemble mean and in dashed blue line with solid circles 
the values for the unadjusted model. We can see that the 
improvement in the RMSE due to the recalibration is very 
small. We included, for comparison, the curves obtained 
from hindcasts using persistence (black-triangles). That is, 
for horizon k , assuming that the temperature k months into 
the future is predicted by the present value. The standard 
deviations for the detrended and for the raw series in the 
verification period were also included for reference ( SDT 
and SDraw , respectively).

Similar results are reported in Fig. 18 for the MSSS and 
for the ACC . From the density plots [panels (a) and (c)] 
we can reach the same conclusion based on these scores: 
StocSIPS is better than CanSIPS for most of the horizons 
and initialization months, except for the forecasts of January 

and February. In panels (b) and (d), we show the all-months 
average scores without considering the initialization dates. 
The results for StocSIPS are shown in red line with solid 
squares and for CanSIPS in blue line with circles. In the 
MSSS graphs, we only show the results for the calibrated 
model. For the ACC , as the calibration for CanSIPS is just 
a rescaling of the ensemble mean, the correlations with or 
without the calibration are the same. The curves obtained 
from hindcasts using persistence were also included for com-
parison (black-triangles).

For the MSSS , we choose the climatology as reference 
forecast with MSEref = SD2

raw
 being the variance of the raw 

series. We use accordingly the notation MSSS = MSSSraw . 
The horizontal line (green empty squares) included 
in the graph represents the value of skill obtained by 

(a) (b)

(d)(c)

Fig. 17  Density plots of the RMSE as a function of the forecast hori-
zon, k , and the initialization month for StocSIPS and CanSIPS (a, 
b, respectively). For both models, there is a seasonality pattern with 
large errors during the Boreal winter months. In c, we show the dif-
ference between CanSIPS and StocSIPS RMSE ; positive values indi-
cate that StocSIPS has better skill. StocSIPS outperforms CanSIPS 
for most of the horizons and initialization months, except for the fore-
casts of January and February and some other initialization dates for 
k = 1 month. The overall values of RMSE vs. k—averaging for all the 
months in the verification period independently of the initialization 

date—are shown  in d. The curve for StocSIPS is represented in red 
squares. For CanSIPS, we show in solid blue line with empty squares 
the scores for the calibrated ensemble mean and in dashed blue line 
with solid circles the RMSE for the unadjusted model. We can see 
that the improvement in the RMSE due to the recalibration is very 
small. We included, for comparison, the curve obtained from hind-
casts using persistence (black-triangles). The standard deviations for 
the detrended and for the raw series in the verification period were 
also included for reference ( SDT and SDraw , respectively)
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projecting the  CO2eq trend with respect to the climato-
logical forecast. The MSSS can be easily computed as 
MSSSCO2eq trend

raw
= 1 − SD2

T
∕SD2

raw
 ( ≈ 0.59 for the Mean-

G dataset) because the errors of the forecast would be the 
amplitude of the detrended anomalies. The values obtained 
using this equation do not vary significantly for different 
horizons in the period analyzed. The extra contribution in 
the skill for StocSIPS comes from the forecast of the natural 
variability component.

The ACC , in the case of persistence, is the same as the 
autocorrelation function with lag k of the reference series. 
As mentioned before, the values obtained for the ACC (even 
for the poor persistence forecasts), are spuriously high due 
to the anthropogenic trends superimposed on the series. 
Many authors report similarly high values without taking 

this fact into consideration. More realistic values would be 
obtained for the forecast of the detrended series, but there is 
no impartial way of removing the anthropogenic component 
for CanSIPS. The anthropogenic forcing is an intrinsic part 
of the GCM and to have a prediction of the natural variabil-
ity only, we would have to remove its contribution before 
running the dynamical model. The autocorrelation function 
for the detrended series (natural variability component), 
which is the same as the ACC for the forecast of that series 
using persistence, was included for comparison as a dashed 
black curve ( ACCnat

persistence
 in the figure).

With respect to the comparison of the two models for 
the deterministic forecast, the conclusion is clear: StocSIPS 
presents better skill than CanSIPS on average for all the 

(b)

(d)

(a)

(c)

Fig. 18  Density plots for the MSSS and for the ACC (a, c, respec-
tively) as a function of the forecast horizon and the initialization date. 
The positive values indicate that StocSIPS is better than CanSIPS for 
most of the horizons and initialization months, except for the fore-
casts of January and February. In b, d, we show the all-months aver-
age scores without considering the initialization dates. The results for 
StocSIPS are shown in red line with solid squares and for CanSIPS in 
blue line with circles. In the MSSS graphs, we only show the results 
for the calibrated model. The horizontal line (green line with empty 
squares) included in the graph represents the value of skill obtained 

by projecting the  CO2eq trend with respect to the climatological fore-
cast. For the ACC , as the calibration for CanSIPS is just a rescaling of 
the ensemble mean, the correlations with or without the calibration 
are the same. The curves obtained from hindcasts using persistence 
were also included for comparison (black-triangles). The autocorrela-
tion function for the detrended series (natural variability component), 
which is the same as the ACC for the forecast of that series using 
persistence, was included for comparison as a dashed black curve 
( ACCnat

persistence
 in the figure)
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measures used and for all horizons except for k = 1 month, 
where CanSIPS is slightly better. This was expected as, for 
the case of GCMs, 1 month is still close to the deterministic 
predictability limit imposed by the chaotic behavior of the 
system (~ 10 days for the atmosphere and 1–2 years for the 
ocean). After 1 month, the relative advantage of StocSIPS 
increases as the horizon increases. The reduced skill of Stoc-
SIPS for January and February are related to the intrinsic 
seasonality of the globally-averaged temperature. In future 
work, this seasonality in the variability could be removed 
by pre-processing, presumably resulting in further error 
reduction.

3.5.2  Probabilistic forecast comparison

In the previous section we showed how the two systems 
(CanSIPS and StocSIPS) compare for deterministic fore-
casts where the scores only depend on the ensemble mean. 
In Fig. 17d, we showed that the reduction in the RMSE of 
CanSIPS due to the recalibration is very small. In this sec-
tion we show how this improvement is more noticeable if 
probabilistic scoring rules are used, as they are influenced 
not only by the ensemble mean, but also by the ensemble 
spread which is readjusted to maximize the CRPS using the 
condition ESS = 1 mentioned before.

Examples of probabilistic forecasts for July 1994 are 
shown in Fig.  19 for StocSIPS (left) and for CanSIPS 

(right) for horizon k = 2 months (one month lead time; i.e. 
using data up to May 1994). The normal PDF in grey rep-
resents the climatological distribution of the monthly tem-
peratures for the Mean-G dataset for the verification period 
1981–2010. The terciles of the climatological distribution 
are indicated by vertical dashed lines. These vertical lines 
define three equiprobable categories of above normal, near 
normal, and below normal monthly temperatures observed 
in the verification period. In the left, the forecast distribu-
tion for StocSIPS is indicated by the black curve with the 
forecast mean 𝜇f = T̂(July 1994) = − 0.105 °C and standard 
deviation �f = RMSEStocSIPS = 0.109 °C for k = 2 months. 
In the right, the distribution in dashed black line repre-
sents the unadjusted forecast of CanSIPS for k = 2 months 
with parameters �f = − 0.051  °C (ensemble mean) and 
�f = �ensemble = 0.084 °C (intra-ensemble standard devia-
tion). The calibrated forecast PDF for CanSIPS is shown 
in solid black in the right panel. The adjusted mean for this 
distribution is �f = − 0.062 °C and the inflated standard 
deviation �f = RMSECalibrated

CanSIPS
= 0.112 °C. The areas under 

the forecast PDF’s in different colors indicate probabilities 
of below normal (blue), near normal (yellow), and above 
normal (pink) temperatures. These probabilities are sum-
marized in the top-left corner as bar plots. The climato-
logical probability of 33% is indicated by the horizontal 
dashed line. The observed temperature for that specific date, 
Tobs = −0.127 °C, is represented by the vertical green line. 

Fig. 19  Examples of probabilistic forecasts for July 1994 are shown 
for StocSIPS (left) and for CanSIPS (right) for horizon k = 2 months 
(1  month lead time; i.e. using data up to May 1994). The normal 
probability density function in grey represents the climatological 
distribution of the monthly temperatures for the Mean-G dataset for 
the verification period 1981–2010. The terciles of the climatological 
distribution are indicated by vertical dashed lines. The colored areas 
under the forecast density function are proportional to the forecast 
probabilities for each category: below normal (blue), near normal 

(yellow) and above normal (pink). These probabilities are summa-
rized in the top-left corner as bar plots. The climatological probability 
of 33% is indicated by the horizontal dashed line. The observed tem-
perature for that specific date, Tobs = −0.127 °C, is represented by the 
vertical green line. In the right, the distribution in dashed black line 
represent the unadjusted forecast of CanSIPS for k = 2 months and 
the calibrated forecast PDF is shown in solid black. The parameters 
for all the distributions are included in the legends
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For the unadjusted distribution of CanSIPS, the standard 
deviation for each specific month and lead time is estimated 
from the intra-ensemble spread and, as the model is underd-
ispersive, it is generally lower than the standard deviation of 
the calibrated forecast distribution, which is estimated from 
the whole verification period and is constant for all months 
for a particular lead time.

The combined contingency table for the forecasts of Stoc-
SIPS (grey rows) and CanSIPS (white rows with the values 
of the unadjusted forecast in parenthesis) for k = 1 month 
is shown in Table 2. For observational reference we used 
the Mean-G dataset for verification in the period January 
1981–December 2010 (360 months). The number of hits 
and total number of events are shown in bold in the main 
diagonal.

The reduced number of observation events in the near-
normal category is a consequence of the deviation from 
Gaussianity of the undetrended anomalies in the verification 
period 1981–2010. Specifically, there is a reduced kurtosis 
caused by the presence of the anthropogenic trend, as can 
be clearly seen in Fig. 5. The distribution of the detrended 
anomalies, Tnat , is much closer to a Gaussian (see Appendix 
2). In Table 3, we show the contingency table for the fore-
cast of this series using StocSIPS. Now the total number of 
observations are almost equally distributed among the three 
categories obtained using the climatological distribution 
based on the detrended series.

From the diagonal elements in Table  2 we get the 
following PC scores for k = 1 month: for StocSIPS, 
PCStocSIPS ≈ 78% and for CanSIPS we get PCCalibrated

CanSIPS
≈ 76% 

and PCUnadjusted

CanSIPS
≈ 74% for the calibrated and the unadjusted 

forecasts, respectively. These values are spuriously high 
due to the presence of the trend in the raw series. Just from 
direct inspection of the reference series (red curve in Fig. 5), 
by projecting the trend we could predict that most of the 

temperature values in the decade 2001–2010 would fall in 
the above normal category, while most of the events in the 
decade 1981–2000 would fall in the below normal category. 
The PC score obtained from Table 3 for the forecast of the 
natural variability component with k = 1 month using Stoc-
SIPS is more realistic: PCNat

StocSIPS
≈ 57% . As we mentioned 

before, we cannot perform a similar forecast using Can-
SIPS since the anthropogenic forcing is an intrinsic part of 
the GCM. To obtain a prediction of the natural variability 
only, we would have to remove its contribution before run-
ning the dynamical model.

The PC scores for all horizons from k = 1 to 12 months 
are shown in Fig. 20. In blue squares we show the PC scores 
for StocSIPS and in red circles and green triangles for Can-
SIPS, calibrated and unadjusted forecasts, respectively. The 
solid black line shows the skill of StocSIPS for the forecast 
of the detrended series. The values obtained in this case 
are lower than those obtained for the raw anomalies. Those 

Table 2  Contingency table for 3 category probabilistic forecasts (below normal, near normal and above normal) for the raw (undetrended) 
Mean-G dataset with zero months lead time ( k = 1 month)

The verification period is January 1981–December 2010 (360 months). The number of hits and total number of events are shown in bold in the 
main diagonal. Here we compacted in one table the results for the forecasts of StocSIPS (grey rows) and CanSIPS (white rows with the values of 
the unadjusted forecast in parentheses)

Table 3  Contingency table for  StocSIPS 3 category probabilis-
tic forecasts (below normal, near normal and above normal) for the 
detrended series ( Tnat , red curves in Fig. 10) of the Mean-G dataset 
with zero months lead time ( k = 1 month)

The verification period is January 1981–December 2010 
(360  months). The number of hits and total number of events are 
shown in bold in the main diagonal. Here we use the climatology 
obtained from the detrended anomalies with �clim = SDT = 0.130 °C

Contingency table for the 
detrended anomalies, Tnat

Forecasts Total

Below Normal Above

Observations
 Below 83 25 12 120
 Normal 39 39 40 118
 Above 12 27 83 122

Total 134 91 135 360
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values are a better measure of the actual quality of the fore-
casting system since the spurious effects of the trend are 
removed. The dashed line at 33.3% is a reference showing 
the skill of the climatological forecast.

Three main conclusions can be obtained from the analysis 
of Fig. 20. First, there is an improvement on the probabilistic 
forecast skill of CanSIPS thanks to the recalibration. This 
improvement is small but is more noticeable than the one 
obtained for the deterministic scores (e.g. RMSE , MSSS ). 
Second, StocSIPS performs better than CanSIPS for all lead 
times and the relative advantage increases with the forecast 
horizon up to k = 7 months. Finally, from the comparison of 
the blue and the solid black curves for the StocSIPS forecasts 
of the raw and the detrended series, respectively, we can 
notice that most of the skill comes from the projection of the 
trend and for k > 8 months this is the only source of skill.

Although the PC score for StocSIPS is larger for all hori-
zons, it is difficult to evaluate the relative advantage over the 
probabilistic CanSIPS forecasts based on that score alone. 
The PC is influenced by the climatological distribution used 
for defining the categories and mainly by the presence of 
the trend. A more realistic comparison should be based in 
absolute scores that only depend on the forecast system and 
are independent of the base-line or the climatology chosen. 
The dependence of the CRPS with the forecast horizon is 
shown in Fig. 21 for both models in the verification period 
1981–2010 for the Mean-G dataset. In red, we show the 
CRPS for StocSIPS and in blue for CanSIPS with dotted line 
and solid circles for the unadjusted forecast and solid line 
with open squares for the calibrated forecast. The function 

RMSECalibrated
CanSIPS

(k)∕
√
� is shown in dashed black line with 

triangles. There is perfect agreement between these opti-
mal values and the CRPS of CanSIPS after the calibration, 
in correspondence with Eq. (45). The score for the clima-
tological forecast was included in the legend for reference 
( CRPSClimate = 0.117  °C).

If we compare Fig. 21 with Fig. 17d, we can see that 
the effect of the calibration of the CanSIPS output is more 
noticeable for the CRPS than for the RMSE . The probabil-
istic forecast gains from both the inflation of the standard 
deviation and the scaling of the ensemble mean, while 
only the latter influences the deterministic forecast. After 
the adjustment, CanSIPS forecast is better for zero months 
lead time, but for the rest of the forecast horizons StocSIPS 
shows more skill. The relative advantage of the stochastic 
model over the GCM increases the further we forecast into 
the future. For the first month, the numerical model forecast 
still falls in the deterministic predictability limit.

4  Discussion

Over the last decades, conventional numerical approaches 
have developed to the point where they are now skillful at 
lead times that approach their theoretical (deterministic) 
predictability limits—itself close to the lifetimes of plan-
etary structures (about 10 days). This threshold is due to the 

Fig. 20  PC as a function of k for StocSIPS (blue squares) and for 
CanSIPS, calibrated and unadjusted forecasts in red circles and 
green triangles, respectively. The solid black line shows the skill of 
StocSIPS for the forecast of the detrended series. The dashed line at 
33.3% is a reference showing the skill of the climatological forecast

Fig. 21  CRPS vs. k for both models in the verification period 1981–
2010 for the Mean-G dataset. In red, we show the CRPS for StocSIPS 
and in blue for CanSIPS with dotted line and solid circles for the 
unadjusted forecast and solid line with open squares for the calibrated 
forecast. The function RMSECalibrated

CanSIPS
(k)∕

√
� is shown in dashed 

black line with triangles. There is perfect agreement between these 
optimal values and the CRPS of CanSIPS after the calibration, in cor-
respondence with Eq. (45). The score for the climatological forecast 
was included in the legend ( CRPSClimate = 0.117 °C)
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nonlinearity and complexity of the equations of atmospheric 
dynamics and their sensitive dependence on initial condi-
tions (butterfly effect) (Lorenz 1963, 1972), and it cannot 
be overcome using purely deterministic models, not even by 
using combinations of deterministic-stochastic approaches 
such as recent stochastic parameterization models (Berner 
et al. 2017). In the macroweather regime (from 10 days to 
decades), GCMs become stochastic: the model integrations 
are extended far beyond their predictability limits produc-
ing “random” outputs that are finally averaged to obtain the 
forecast as the model ensemble mean.

The convergence of the dynamical models to their own 
climate follows from the macroweather property of internal 
fluctuations to decrease with time scale (see Fig. 6 for the 
case of natural variability—including volcanic and solar 
forcings). This scaling behavior with negative fluctuation 
exponent is present in real data and in GCM control runs, so 
the statistics of conventional numerical models’ variability 
is of similar type to that found in the real-world temperature 
series. The main problem is that each GCM converges to 
its own model climate, which is different from the actual 
climate. Also, the models cannot fully reproduce the actual 
high frequency weather noise even if the statistics of the 
noise they generate is similar to the real-world one.

In that sense, the SLIMM model, developed in Lovejoy 
et al. (2015), uses real data to generate the high-frequency 
noise with the correct statistical symmetries for the fluctua-
tions and with a realistic climate. The main characteristics 
of SLIMM were summarized in Sect. 2.1. In this paper we 
presented the Stochastic Seasonal to Interannual Prediction 
System (StocSIPS), which includes SLIMM as the core 
model to forecast the natural variability component of the 
temperature field. StocSIPS also represents a more general 
framework for modelling the seasonality and the anthropo-
genic trend and the possible inclusion of other atmospheric 
fields at different temporal and spatial resolutions. In this 
sense, StocSIPS is the general system and SLIMM is the 
main part of it dedicated to the modelling of the stationary 
scaling series.

StocSIPS is based on some statistical properties of the 
macroweather regime such as: the Gaussianity of tempera-
ture fluctuations (as justified in Appendix 2) and the tempo-
ral scaling symmetry of the natural variability with negative 
fluctuation exponents, as shown in Sect. 3.2. It also assumes 
the independence between the high frequency natural vari-
ability of the temperature field and the low frequency com-
ponent dominated by anthropogenic effects. The anthropo-
genic component is represented as a short memory linear 
response to equivalent  CO2 forcing. The natural variability 
component is modeled and predicted using the stochastic 
approach originally proposed in SLIMM.

The scaling of the fluctuations implies that there are 
power-law decorrelations in the system and hence a large 

memory effect that can be exploited. The simplest stochastic 
model that includes both the Gaussianity and the scaling of 
the fluctuations is the fGn process. The Gaussian statistics 
of the temperature natural variability fluctuations allowed 
us to use the mean square prediction framework to build an 
optimal conditional expectation predictor based on a linear 
combination of past data.

In Sects. 2 and 2.1 we discuss how fGn can be obtained 
in SLIMM as the solution of a fractional order differential 
equation, which in turn is a generalization of the integer 
order stochastic differential equation in LIM models. The 
fractional derivative is introduced to account for the large 
memory effect given by the power-law behavior of the cor-
relation function, in contrast, integer order derivatives imply 
short memory autoregressive moving average processes with 
asymptotic exponential decorrelations. The fractional dif-
ferential equation can be obtained as the high frequency 
limit of a fractional energy balance equation in which the 
usual (exponential) temperature relaxation to equilibrium 
is replaced by power-law relaxation (work in progress). The 
main characteristics of SLIMM are summarized in Sect. 2.1, 
including the formal expression for the predictor as an inte-
gral of innovations going an infinite time into the past. 
Physically, the source of the long-range memory is energy 
stored in ocean gyres, eddies, at depth, or over land, in ice, 
soil moisture, etc.

The original technique that was used to make the SLIMM 
forecasts was basically correct, but it made several approxi-
mations (such as that the amount of data available for the 
forecast was infinite) and it was numerically cumbersome. 
Most of this work was dedicated to improving the math-
ematical treatment and the numerical techniques of SLIMM 
and validate them on ten different global temperature series 
since 1880 (five globally averaged and five over land).

The main improvement included in StocSIPS for the pre-
diction of temperature series is the application of discrete-
in-time fGn to obtain an optimal predictor based on a finite 
amount of past data. In Sect. 2.2.1 we give the theoreti-
cal expressions for the predictor coefficients and the skill 
as functions of the fluctuation exponent alone. This repre-
sents an advantage over other autoregressive models (AR, 
ARMA) which do not include fractional integrations that 
account for the long-term memory and hence do not consider 
the information from the distant past. An additional limita-
tion of these approaches is that, in order to predict, the auto-
correlation function for each time lag, C(Δt) , must be esti-
mated directly from the data. Each C(Δt) will have its own 
sampling error, this effectively introduces a large “noise” 
in the predictor estimates and a large computational cost if 
many coefficients are needed. In our fGn model the coef-
ficients have an analytic expression which only depends on 
the fluctuation exponent, H , obtained directly from the data 
exploiting the scale-invariance symmetry of the fluctuations; 
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our problem is a statistically highly constrained problem of 
parametric estimation ( H ), not an unconstrained one (the 
entire C(Δt) function).

Other technical details of discrete-in-time fGn models are 
given in Appendix 1. We discuss how to produce exact reali-
zations of fGn processes with a given length, N and family 
of parameters � , � and H . The inverse process of obtaining 
those parameters for a given time series is also discussed. 
Other important results shown in Appendix 1 are an algo-
rithm called quasi maximum likelihood estimation (QMLE) 
for obtaining the parameter H , and the derivation of some 
ergodic properties of fGn processes. The QMLE method is 
slightly less accurate—but much more efficient computation-
ally—than the usual maximum likelihood method. It has the 
advantage of being part of the verification process as it mini-
mizes the mean square error of the hindcasts. The ergodicity 
of the variance of the process, expressed in Eq. (62), besides 
proving the convergence of the temporal average estimate of 
the variance to the ensemble variance, also shows that this 
convergence is ultra slow for values of H close to zero. This 
fact implies a strong dependence of the value of the resulting 
skill score with the length of the hindcast series used for ver-
ification. It could potentially impact statistical methods that 
depend on the covariance matrix, e.g. empirical orthogonal 
functions (EOF) and empirical mode decomposition (EMD).

The main result of this work is the application of Stoc-
SIPS to the modeling and forecasting of global tempera-
ture series. With that purpose, we selected the five major 
observation-based global temperature data series which are 
in common use (see Sect. 3.1).

Over the last century, low frequencies are dominated 
by anthropogenic effects and after 10–20 years the scaling 
regime changes from a negative to a positive value of H (see 
Fig. 6). The anthropogenic component was modelled as a 
linear response to equivalent  CO2 forcing and removed. The 
residual natural variability component was then modeled and 
predicted using the theory presented in Sect. 2 and Appendix 
1. The quality of the fit of the fGn model to the real data was 
evaluated in detail in Appendix 2.

To validate our model, we produced series of hindcasts 
for the period 1931–2017 with forecast horizons from 1 to 
12 months. These series were stratified to obtain the depend-
ence of the forecast skill with the forecast horizon and the 
initialization time. The RMSE of the hindcasts was lower 
than the standard deviation of the verification series for all 
horizons, showing positive skill. The values obtained for the 
all-month average results were in good agreement with the 
theoretical predictions. Other skill scores, such as the MSSS 
and the ACC were obtained.

StocSIPS source of predictability is based on the strong 
long-range correlations present in the temperature time 
series. In that sense, there is no source of skill coming from 
interannual variations since the model assumes that the 

seasonality, as well as the low frequency trend in the raw 
data, are deterministic. Theoretically, we should not expect 
a dependence of the skill on the initialization time. However, 
the stratification of the data shows that there is a multiplica-
tive seasonality effect that makes the variability different for 
each individual month (see Fig. 11). The standard deviation 
of the temperature for the Boreal winter months is consider-
ably larger than for the rest. This affects the skill of StocSIPS 
for those months and is a discrepancy with respect to the 
stationarity hypothesis. In future work, we could compensate 
for this effect through preprocessing of the time series and 
study the implications in StocSIPS forecast skill.

In Sect. 3.4.4 we showed how to make parametric proba-
bility forecasts using StocSIPS. For a prediction system with 
Gaussian errors, we derived a theoretical relation between 
the deterministic score RMSE and the probabilistic CRPS. 
We also showed that StocSIPS is—by definition—a nearly 
perfectly reliable system and that this theoretical relation is 
satisfied by the verification results.

Finally, in Sect. 3.5 we compared StocSIPS with the 
Canadian Seasonal to Interannual Prediction System (Can-
SIPS), which is one of the GCMs contributing to the Long-
Range Forecast project of the World Meteorological Organi-
zation. Deterministic and probabilistic forecast skill scores 
for StocSIPS and for the CanSIPS were compared for the 
verification period 1981–2010.

The main conclusion is that, for the overall forecast 
including all the months in the verification period and with-
out considering different initialization times, StocSIPS has 
higher skill than CanSIPS for all the metrics used and for all 
horizons except for k = 1 month, where CanSIPS is slightly 
better. This was not surprising since for GCMs, 1 month 
is still close to the deterministic predictability threshold 
imposed by the chaotic behavior of the system (~ 10 days 
for the atmosphere and 1–2 years for the ocean). Beyond 
1 month, the relative advantage of StocSIPS increases as the 
horizon increases. The seasonal stratification of the verifica-
tion shows that, due to the interannual variability, CanSIPS 
performs better than StocSIPS for the forecasts of January 
and February. For other months (beyond zero months lead 
times) StocSIPS has better skill.

5  Conclusions

In this paper we presented the Stochastic Seasonal to Inter-
annual Prediction System (StocSIPS), which is based on 
some statistical properties of the macroweather regime such 
as: the Gaussianity of temperature fluctuations and the tem-
poral scaling symmetry of the natural variability. StocSIPS 
includes SLIMM as the core model to forecast the natural 
variability component of the temperature field. Here we 



4402 L. Del Rio Amador, S. Lovejoy 

1 3

improved the theory and numerical methods of SLIMM for 
its direct application to macroweather forecast.

In summary, StocSIPS models the temperature series as a 
superposition of a periodic signal corresponding to the annual 
cycle, a low frequency deterministic trend from anthropogenic 
forcings and a high frequency stochastic natural variability 
component. The annual cycle can be estimated directly from 
the data and is assumed constant in the future, at least for 
horizons of a few years. The anthropogenic component is 
represented as a linear response to equivalent  CO2 forcing 
and can be projected very accurately 1 year into the future by 
using two parameters, the climate sensitivity and an offset, 
which can be obtained from linear regression given histori-
cal emissions. Finally, the natural variability is modeled as a 
discrete-in-time fGn process which is completely determined 
by the variance and the fluctuation exponent. That gives a 
total of only four parameters for modeling and predicting the 
temperature series. Those parameters are quite stable and can 
be estimated with good accuracy from past data.

The comparison with CanSIPS validates StocSIPS as a 
good alternative and a complementary approach to conven-
tional numerical models. The reason is that whereas Can-
SIPS and StocSIPS have the same type of statistical vari-
ability around the climate state, the CanSIPS model climate 
is different from the real-world climate. In comparison, 
StocSIPS uses historical data to force the forecast to the 
real-world climate. From a forecast point of view, in general, 
GCMs can be seen as an initial value problem for generat-
ing many “stochastic” realizations of the state of the atmos-
phere, while StocSIPS is effectively a past value problem 
that directly estimates the most probable future state.

The prediction of global average temperature series pre-
sented in this paper is based on some symmetries of the 
macroweather regime: scale-invariance and low intermit-
tency (rough Gaussianity). In a future paper (currently in 
preparation), we show how another macroweather symmetry, 
the statistical space time factorization (Lovejoy and de Lima 
2015), can be included to extend the application of StocSIPS 
to temperature forecasts at a regional level with any arbitrary 
spatial resolution without need for downscaling. Another 
future application of StocSIPS that can be derived from this 
work is that, due to its qualitatively different approach with 
respect to traditional GCMs, it is possible to combine Can-
SIPS and StocSIPS into a single hybrid forecasting system 
that improves on both, especially at zero lead times. We 
have already obtained some predictions with the combined 
model, “CanStoc”, and we are currently working on a future 
publication on these results. We are also working on the 
application of StocSIPS to the forecast of GCMs preindus-
trial control runs to show that they satisfy the same mac-
roweather symmetries as real-world data and hence, together 
with their deterministic predictability limits, there are also 
stochastic predictability limits applicable to GCMs. These 

limits correspond to the maximum possible skill that can 
be achieved by a stochastic Gaussian scaling system with 
a given scaling exponent (measure of the memory and the 
predictability in the data).

In May 2016, we created the website: http://www.physi 
cs.mcgil l.ca/StocS IPS/, where global average and regional 
temperature forecasts at monthly, seasonal and annual reso-
lutions using StocSIPS are published on a regular basis.

Appendix 1: Simulation, parameters 
estimation, ergodicity and model adequacy

Simulation

When modeling real time series and testing numerical algo-
rithms, it is often useful to obtain synthetic realizations 
of fGn processes. There are many methods for simulating 
approximate samples of fGn, e.g.: (1) type 1 (Mandelbrot 
and Wallis 1969), (2) type 2 (Mandelbrot and Wallis 1969), 
(3) fast fGn (Mandelbrot 1971), (4) filtered fGn (Matalas and 
Wallis 1971), (5) ARMA(1,1) (O’Connell 1974), (6) broken 
line (Garcia et al. 1972; Mejia et al. 1972; Rodriguez-Iturbe 
et al. 1972; Mandelbrot 1972), (7) ARMA-Markov mod-
els (Lettenmaier and Burges 1977) and some approximate, 
more efficient, recent methods (Paxson 1997; Jeong et al. 
2003). We can choose among these methods based on their 
strengths and weaknesses, depending on the specific appli-
cation we need.

Nevertheless, instead of using short memory approxima-
tions for simulating fGn, it is possible to generate exact reali-
zations by applying the following procedure (Hipel and 
McLeod 1994; Palma 2007). In Eq. (20) we gave the MA 
representation of our series for any time, t  , based on the 
knowledge of an infinite past of innovations, 

{
�t−j

}
j=1,…,∞

 
with �t ∼ NID(0, 1) and ⟨�i�j⟩ = �ij . If we want a series with 
specific length, N , mean � , variance �2

T
 and fluctuation expo-

nent H , we can work in a similar way as we did with the AR 
representation for obtaining the predictor. By replacing the 
coefficients, �j , we could write instead the finite sum:

for t = 1,… ,N , where the optimal coefficients mij are the 
elements of the lower triangular matrix �N

H,�T
 given by the 

Cholesky decomposition of the autocovariance matrix, 
�N

H,�T
=

[
CH,�T

(i − j)
]
i,j=1,…,N

 ; that is:

(46)Tt = � +

t∑
j=1

mtj�t+1−j = � + mt1�t +⋯ + mtt�t,

(47)�N
H,�T

= �N
H,�T

(
�N

H,�T

)T

,

http://www.physics.mcgill.ca/StocSIPS/
http://www.physics.mcgill.ca/StocSIPS/
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with mij = 0 for j > i . In summary, for obtaining an fGn 
realization of length N , we need to generate a white-noise 
process 

{
�t
}
t=1,…,N

 with an appropriate method, obtain the 
autocovariance matrix �N

H,�T
 using Eq. (7.iii), then get �N

H,�T
 

from the Cholesky decomposition of �N
H,�T

 , and finally apply 
Eq. (46) for every t to obtain our 

{
Tt
}
 series. The variables 

Tt will be NID
(
�, �2

T

)
 and the process will have fluctuation 

exponent H in the interval (−1, 0).

Maximum likelihood estimation

If instead of simulating an fGn process, we are interested 
in the opposite operation of finding the parameters that 
best fit a given time series, the most accurate method to 
use is based on maximizing the log-likelihood function 
(Hipel and McLeod 1994). Suppose that we have our vec-
tor �N =

[
T1,… , TN

]T that represents a stationary Gaussian 
process. Then the log-likelihood function of this process is 
given by:

where �̃N,𝜇 =

[
T1 − 𝜇,… , TN − 𝜇

]T is a vector formed by 
our original series after removing the mean.

For fixed H , the maximum likelihood estimators (MLE) 
of � and �T are:

and

where �N = [1, 1,… , 1]T is an N × 1 vector with all the ele-
ments equal to 1 and �̃N

H
= �N

H,𝜎T
∕𝜎2

T
 is the autocorrelation 

matrix, which only depends on H.
Substituting these values into Eq. (48), we obtain the 

maximized log-likelihood function of H:

The estimate for the fluctuation exponent, Ĥl , is obtained 
by maximizing max(H) and can be used then to obtain �̂� and 
�̂�2
T
 using Eqs. (49) and (50).

Ergodicity

It is worth noticing here that �̂� and �̂�2
T
 are estimates of the 

ensemble mean � = ⟨Tt⟩ and variance �2
T
= ⟨�Tt − �

�2⟩ of 
the fGn process, respectively (see Sect. 2.1). If we try to 

(48)

�
(
𝜇, 𝜎T ,H

)
= −

1

2
log

[
det

(
�N

H,𝜎T

)]
−

1

2
�̃T
N,𝜇

(
�N

H,𝜎T

)
−1

�̃N,𝜇

(49)�̂� =

�T
N

(
�̃N

H

)
−1
�N

�T
N

(
�̃N

H

)
−1
�N

(50)�̂�2
T
=

1

N
�̃T
N,�̂�

(
�̃N

H

)
−1
�̃N,�̂�,

(51)
�max(H) = −

1

2
log

[
det

(
�̃N

H

)]
−

N

2
log

[
1

N
�̃T
N,�̃�

(
�̃N

H

)
−1
�̃N,�̃�

]
.

estimate these parameters based on temporal averages of 
a single realization, some differences may arise with the 
values obtained using Eqs. (49) and (50). To explain these 
differences, we briefly discuss some ergodic properties of 
fGn processes.

Let

and

be the temporal average estimates of the mean and the vari-
ance of our process, respectively (the overbar indicates tem-
poral averaging, N is considered large here), SD indicates 
“standard deviation”.

Using the relationship between fBm and fGn (Eq. (5)), 
we can write the temperature as:

The fBm process has the following properties:

Usually, the condition BH� (0) = 0 is added to this defini-
tion. Using this and Eq. (54), by telescopic sum all addends 
cancel except for the last one and we obtain:

Taking ensemble averages and using Eqs. (55) (ii) and 
(iii) we get:

and

where we replaced H�
= H + 1.

(52)TN =

∑N

t=1
Tt

N

(53)
SD2

T
=

∑N

t=1

�
Tt − TN

�2

N
=

�
TN − �

�2
−

�
TN − �

�2

(54)Tt = �T
[
BH� (t) − BH� (t − 1)

]
.

(55)

(i) B
H� (t) is Gaussian with stationary increments;

(ii) ⟨B
H� (t)⟩ = �t∕�

T
for all t

(the notation ⟨⋅⟩ denotes ensemble averaging)

(iii) C
B
H�
(t, s) =

��
B
H� (t) − �t∕�

T

��
B
H� (s) − �s∕�

T

��

=

�
�t�2H�

+ �s�2H�

− �t − s�2H�

�
∕2

(56)TN =
1

N
�TBH� (N).

(57)
⟨
TN

⟩
= �

(58)

⟨(
TN − �

)2
⟩

=
1

N2
�2
T

⟨[
BH� (N) − �N∕�T

]2⟩
= �2

T
N2H ,
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Consequently, since the process BH� (t) is Gaussian, we 
conclude that, the temporal average estimate of the mean 
satisfies:

Now, taking the ensemble average of Eq. (53), we get:

The ensemble and the time averaging operations com-
mute in the first term of the right-hand side of Eq. (60):

(59)TN ∼ N
(
�, �2

T
N2H

)
.

(60)
⟨
SD2

T

⟩
=

⟨(
TN − �

)2⟩
−

⟨(
TN − �

)2
⟩
.

(61)
⟨(

TN − �
)2⟩

=

⟨(
TN − �

)2⟩
= �2

T
.

Using this and Eq. (58) for the last term in Eq. (60), we 
finally get:

meaning that the temporal average SDT is a biased estimate 
of the variance of the process, �2

T
 . An unbiased estimate 

would then be SD2
T
∕

(
1 − N2H

)
 . The variance of this estima-

tor is more difficult to obtain. Its derivation, together with 
potential applications for treating climate series, will be pre-
sented in a future paper (currently in preparation).

In the limit N → ∞ , as −1 < H < 0 , we have SD2
T
→ �2

T
 , 

meaning that the process is ergodic (the temporal average 
and the ensemble average coincide for infinitely long series). 
Nevertheless, for H → 0 this convergence is very slow, and 

(62)SD2
T
= �2

T

(
1 − N2H

)
,

Table 4  Average estimates of H for 200 realizations of simulated fGn with length N = 1656 and parameters � = 0 , �
T
= 1 and H corresponding 

to the values in the first column

The values in parentheses represent the standard deviation for each ensemble. The following methods were used: QMLE ( Ĥq ), MLE ( Ĥl ), Haar 
fluctuations ( Ĥh ) and spectral analysis ( Ĥs ). For these last three methods, direct ensemble estimates were also obtained ( Ĥ

−,ens ); Ĥ−
 could be 

seen as the mean of all the Ĥ
−
 ’s while Ĥ

−,ens is the Ĥ
−
 of the mean. The last three columns show the average estimates �̂�T , SDT and the confirma-

tion of their relationship given by Eq. (62)

H Ĥq Ĥl Ĥl,ens Ĥh Ĥh,ens Ĥs Ĥs,ens
�̂�T SDT

SDT√
1−N2H

− 0.45 − 0.45 (0.02) − 0.45 (0.02) − 0.45 − 0.48 (0.07) − 0.45 − 0.51 (0.06) − 0.44 1.00 1.00 1.00
− 0.40 − 0.40 (0.01) − 0.40 (0.01) − 0.40 − 0.42 (0.07) − 0.40 − 0.45 (0.05) − 0.39 1.00 1.00 1.00
− 0.35 − 0.35 (0.02) − 0.35 (0.02) − 0.35 − 0.37 (0.07) − 0.35 − 0.40 (0.06) − 0.33 1.00 1.00 1.00
− 0.30 − 0.30 (0.02) − 0.30 (0.02) − 0.30 − 0.34 (0.08) − 0.30 − 0.35 (0.06) − 0.28 1.00 0.99 1.00
− 0.25 − 0.26 (0.02) − 0.25 (0.02) − 0.25 − 0.28 (0.08) − 0.25 − 0.29 (0.05) − 0.24 1.00 0.99 1.00
− 0.20 − 0.21 (0.02) − 0.20 (0.02) − 0.20 − 0.24 (0.08) − 0.20 − 0.24 (0.06) − 0.18 1.00 0.97 1.00
− 0.15 − 0.17 (0.02) − 0.15 (0.02) − 0.15 − 0.18 (0.09) − 0.15 − 0.19 (0.06) − 0.12 0.99 0.94 1.00
− 0.10 − 0.12 (0.02) − 0.10 (0.02) − 0.10 − 0.12 (0.07) − 0.10 − 0.13 (0.05) − 0.07 1.00 0.88 1.00
− 0.05 − 0.08 (0.01) − 0.06 (0.02) − 0.05 − 0.08 (0.08) − 0.05 − 0.09 (0.06) − 0.02 0.98 0.71 0.99

Table 5  Values of the parameters obtained for the ten datasets and the corresponding mean series for global and for land

From left to right we have estimates of H using the following methods: MLE ( Ĥl ), QMLE ( Ĥq ), Haar fluctuations ( Ĥh ) and spectral analysis 
( Ĥs ); estimate of the standard deviation of the ensemble using MLE ( ̂𝜎T ); amplitude of each series ignoring the correlations ( SDT ); confirmation 
of the relationship between �̂�T and SDT given by Eq. (25); the climate sensitivity and offset used to remove the anthropogenic trend, �2×CO2eq

 and 
T0 , respectively (Eq. (27)). Uncertainty estimates are given in parentheses

Dataset Ĥl Ĥq Ĥh Ĥs
�̂�T SDT

SDT√
1−N2H

�2×CO2eq
T0

NASA − 0.08 − 0.10 − 0.11 (0.02) − 0.08 (0.04) 0.183 0.155 0.184 2.10 (0.03) − 0.391 (0.006)
NOAA − 0.06 − 0.09 − 0.06 (0.02) − 0.03 (0.04) 0.183 0.144 0.187 2.00 (0.02) − 0.372 (0.006)
HAD4 − 0.07 − 0.08 − 0.06 (0.02) − 0.10 (0.06) 0.194 0.159 0.201 1.89 (0.03) − 0.353 (0.006)
CowW − 0.09 − 0.10 − 0.09 (0.03) − 0.10 (0.05) 0.183 0.163 0.193 1.98 (0.03) − 0.369 (0.006)
Berk − 0.08 − 0.09 − 0.07 (0.02) − 0.12 (0.07) 0.197 0.174 0.209 2.20 (0.03) − 0.410 (0.007)
Mean-G − 0.06 − 0.08 − 0.08 (0.02) − 0.10 (0.06) 0.195 0.153 0.199 2.03 (0.03) − 0.379 (0.006)
NASA-L − 0.25 − 0.24 − 0.21 (0.02) − 0.29 (0.04) 0.373 0.371 0.376 2.96 (0.06) − 0.551 (0.015)
NOAA-L − 0.25 − 0.25 − 0.24 (0.02) − 0.27 (0.03) 0.331 0.325 0.329 2.95 (0.05) − 0.550 (0.013)
HAD4-L − 0.18 − 0.19 − 0.19 (0.02) − 0.24 (0.04) 0.297 0.285 0.295 2.70 (0.05) − 0.503 (0.011)
CowW-L − 0.22 − 0.22 − 0.18 (0.03) − 0.27 (0.04) 0.337 0.333 0.339 2.84 (0.06) − 0.529 (0.013)
Berk-L − 0.23 − 0.23 − 0.21 (0.02) − 0.25 (0.03) 0.348 0.342 0.349 2.81 (0.06) − 0.523 (0.014)
Mean-L − 0.22 − 0.22 − 0.20 (0.02) − 0.26 (0.04) 0.327 0.321 0.327 2.85 (0.05) − 0.531 (0.013)
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a very long series would be needed in order to estimate the 
variance of the process from the sample variance without 
any correction. For example, for H = − 0.1 and N = 1656 
months = 138 years (realistic values for globally-averaged 
t e m p e r a t u r e s ,  s e e  S e c t .   3 ) ,  w e  h a v e 
SD2

T
∕�2

T
=

(
1 − N2H

)
= 0.772 , i.e. a 23% difference between 

both estimates. In the same sense, if we want to estimate �2
T
 

from the sample variance with 95% accuracy, we would need 
a series with N = 3.2 ⋅ 106 (if N is in months that would be 
N = 266,667 years!). The last three columns of Table 4 show 
the average estimates �̂�T =

√
�̂�2
T
 (Eq. (50)), SDT (Eq. (53)) 

and the confirmation of their relationship (Eq. (62)), for 
simulations of fGn with length N = 1656 and parameters 
� = 0 , �T = 1 and values of H in the range (−1∕2, 0) . In each 
case, 200 realizations were analyzed, but only the average 
values of the estimates are shown. The standard deviations 
are always 2–7% of the respective mean values and were not 
reported. Notice that the difference between �̂�T and SDT 
increases as H goes close to zero and the memory effects 
become more important.

Let us return now to the estimates �̂� and �̂�2
T
 given by 

Eqs. (49) and (50), respectively. These ensemble estimates 
are still obtained from the information of only one finite 
series, �N =

[
T1,… , TN

]T , but the presence of the correla-
tion matrix, �̃N

H
 , automatically includes all the information 

from the infinite unknown past. If we make �̃N
H
= �

N
 ( �N is 

the N × N identity matrix) in Eqs. (49) and (50) (or equiva-
lently H = −1∕2 ), we obtain:

and

This means that the temporal average estimates based on 
one realization of the process are only valid for uncorrelated 
process, for which the ensemble and the sample averages are 
equal. When both correlations and memory effects are pre-
sent, this information must be considered. In the case of fGn 
processes, the memory effects are introduced by including 
the correlation matrix which only depends on the fluctuation 
exponent H . The value of this parameter for the process can 
also be obtained from only one realization of the same as 
shown below.

Quasi‑maximum‑likelihood estimation for H

As we mentioned before, the MLE for the fluctuation expo-
nent, Ĥl , is obtained by maximizing max(H) (Eq. (51)). The 

(63)�̂� =

�T
N
�N

�T
N
�N

=

∑N

t=1
Tt

N
= TN

(64)�̂�2
T
=

1

N
�̃T
N,�̂�

�̃N,�̂� =

∑N

t=1

�
Tt − �̂�

�2
N

= SD2
T
.

process of optimization of max(H) could easily be compu-
tationally expensive for large values of N  . To avoid this, 
many approximate methods have been developed. We can 
use Eq. (9) to obtain Ĥs =

(
𝛽l − 1

)
∕2 from the spectral expo-

nent at low frequencies. This method, as well as the Haar 
wavelet analysis to obtain an estimate Ĥh from the exponent 
of the Haar fluctuations, was used in Lovejoy and Schertzer 
(2013) and Lovejoy et al. (2015) to obtain estimates of H for 
average global and Northern Hemisphere anomalies. These 
two methods depend on the range selected for the linear 
regression and, when the graphs are noisy, it could result in 
poor estimates of the exponents. They, nevertheless, have 
the advantage of being more general; they yield H estimates 
even for highly nonGaussian processes. In the present case, 
a more accurate approximation is based on quasi-maximum-
likelihood estimates (QMLE) from autoregressive approxi-
mations (Palma 2007).

Suppose we have a series of N observations, 
{
Tt
}
t=1,…,N

 , 
we can build the one-step predictor for Tt , T̂

p

t (1) from 
Eq.  (22) using a memory of p steps in the past with 
p + 1 < t ≤ N:

Then, the approximate QMLE, Ĥq , is obtained by mini-
mizing the function

Remember that the coefficients �p,j only depend on H . An 
added advantage of this method is that, by construction, it is 
done as part of the verification process based on hindcasts. 
The actual mean square error (MSE) of our one-step predic-
tor with memory p is 1(H)∕(N − p − 1) , so in practice, we 
perform the one-step hindcasts for different values of H in 
the specified range and select the value that gives the mini-
mum MSE. The computation of the coefficients �pj is fast, 
since we do not need to take very large values of p to achieve 
nearly the asymptotic skill, as we showed in Sect. 2.2.1.

In order to compare these different estimation meth-
ods, we performed some numerical experiments. By using 
Eq. (46) for the exact method with parameters � = 0 and 
�T = 1 , we generated fGn ensembles of one hundred mem-
bers of length N = 1656 (see Sect. 3) for each value of 
H ∈ {− 0.45,− 0.40,− 0.35,− 0.30,− 0.25,− 0.20,− 0.15,− 0.10,− 0.05} . 
Then, we estimated H from the four previously mentioned 
methods for each realization. The results are summarized in 
Table 4. The values in parentheses represent the standard 

(65)

T̂
p

t (1) =

0∑
j=−p

𝜙p,j(k)Tt+j−1 = 𝜙p,−p(k)Tt−p−1 +⋯ + 𝜙p,0(k)Tt−1.

(66)

�
1
(H) =

N∑
t=p+2

[
Tt − T̂

p

t (1)
] 2

=

N∑
t=p+2

[
Tt − 𝜙p,−p(1)Tt−p−1 −⋯ − 𝜙p,0(1)Tt−1

] 2
.
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deviations for each ensemble. The maximum likelihood, the 
Haar fluctuation and the spectral methods allow for direct 
estimates of the ensemble values (shown with the subscript 
“ens” in Table 4) by considering the maximum likelihood 
of the vector process, the ensemble of all the fluctuations 
or the average of all the spectra, respectively from all the 
paths instead of from each of the series independently. We 
could say, for example that Ĥs is the mean of all the Ĥs ’s 
obtained from each realization spectrum, while Ĥs,ens is the 
value obtained from the mean of all the spectra. This ensem-
ble estimate reduces the error due to dispersion of each of 
the ensemble members. For the QMLE, a memory p = 20 
was used.

As we can see from Table 4, for the MLE method, there 
is good agreement between the average of the estimates for 
each realization and the direct ensemble estimate. This is 
not the case for the less accurate methods of Haar fluctua-
tion and spectral analysis in the member-by-member cases. 
Comparatively, the standard deviation of these two methods 
(without considering the estimation error for each specific 
realization) is much larger than for the MLE. Neverthe-
less, the ensemble estimates for the Haar are very accurate 
because the dispersion for the ensemble is much lower than 
for each individual graph. In practice, it is almost always the 
case that we only have a given time series to analyze instead 
of multiple realizations of an ensemble. In that sense, unless 
we have more theoretical or empirical justifications for the 
scaling, estimates based on these graphical methods should 
be considered cautiously.

A direct comparison of the second and third columns 
in Table 4 shows the accuracy of the QMLE method if we 
take the MLE as reference. The average values and the stand-
ard deviations for the two methods are very close for small 
values of H , but as we move to values close to zero there 
is a systematic bias in the QMLE method towards slightly 
smaller values than those obtained with the MLE. Never-
theless, the presence of this bias is of little consequence 
from the point of view of forecasting and can be reduced by 
increasing the memory used. As we mentioned before, the 
QMLE method is based on minimizing the MSE—or what is 
the same—maximizing the MSSS obtained from hindcasts. 
Near the extreme, a small variation of the value of H used 
to perform the forecast will produce almost no change on 
the MSSS obtained.

Model adequacy

The final step after finding the parameters � , �2
T
 and H , is to 

check the adequacy of the fitted model to the data. Imagine 
we have a time series 

{
Tt
}
t=1,…,N

 . The residuals of our fGn 
model are obtained from inverting Eq. (46) and calculating 
the vector

If the model provides a good description of the data, the 
elements of the residual vector �N =

[
e1,… , eN

]T should be 
white noise, i.e. they should be NID(0, 1) with autocorrela-
tion function 

⟨
eiej

⟩
= �ij . Many statistical tests for white-

ness of 
{
ei
}
 could be performed, the more descriptive one 

being based on the examination of the graph of the residual 
autocorrelation function (RACF). The RACF at lag l is cal-
culated as:

Asymptotically, rl
(
�N

)
∼ NID(0, 1∕N) for any lag l ≥ 1 

and r0
(
�N

)
= 1 . In the graph of rl

(
�N

)
 vs. l , there should 

not be any point significantly far outside the 95% confi-
dence interval given by the horizontal lines ±1.96∕

√
N  , 

and the number of points outside this range, should repre-
sent around 5% of the total number of points. As additional 
tests, we could verify that the estimates of the fluctuation 
exponent of 

{
ei
}
 , using the previous graphical methods, 

are Ĥs ≈ Ĥh ≈ −0.5 , which is the value for white noise as 
a particular case of fGn. The less important Gaussianity 
assumption could also be verified by visualizing the empiri-
cal probability distribution against a normal distribution and 
checking for the presence of extremes.

Appendix 2: Checking the fGn model fit 
to global temperature data

In Table 5 we show the values of the parameters obtained 
for the ten datasets and the corresponding mean series for 
the globe and for land:

As we can see in Table 5, there is relatively good agree-
ment between the more robust estimates of the fluctuation 
exponent, Ĥl and Ĥq (see Appendix 1 for the notation), 
with the small bias of Ĥq towards smaller values (we used a 
memory p = 20 months for estimating Ĥq ). The estimates 
Ĥh and Ĥs , obtained using the general methods, also roughly 
agree with the MLE and QMLE considering their relatively 
wide one-standard deviation confidence interval (given in 
parentheses in Table 5). Notice the difference between the 
parameter �̂�T and the amplitude of each series, SDT . The 
former is an unbiased estimate of the standard deviation 
for the ensemble process using maximum likelihood, while 
the latter is a biased estimate, where the bias is because 
of the limited time series and autocorrelated samples (see 
Ergodicity in Appendix 1). We also include the values of 
SDT∕

√
1 − N2H  for confirmation of Eq.  (25) ( N = 1656 

(67)�N =

(
�N

H,𝜎T

)
−1

�̃N,𝜇.

(68)rl
�
�N

�
=

∑N−l

t=1
eiei+l∑N

t=1
e2
i

.
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months). The last two columns show the climate sensitivity, 
�2×CO2eq

 , and the parameter T0 (Eq. (27)) used to remove the 
anthropogenic trend in each global series. The value T0 was 
chosen to obtain T̄nat = 0 for each dataset, but this condition 
does not imply that �̂� = 0 in Eq. (49), as this last one is an 
estimate for the ensemble mean. Nevertheless, the values 
obtained for �̂� were too small compared to �̂�T and they were 
not included in Table 5.

With the parameters shown in Table 5 for global temper-
ature series, we can check the fit of the model to the data 
as described at the end of Appendix 1. As an example, in 
Fig. 22 we show the natural variability component for the 
Mean-G dataset, together with its corresponding series of 
residual innovations, 

{
ei
}
 , obtained using Eq. (67). The first 

series should be Gaussian with standard deviations SDT 
while the residuals should be white noises, i.e. they should be 
NID(0, 1) with autocorrelation function 

⟨
eiej

⟩
= �ij . To verify 

the whiteness of the innovations, we should check that the 
residual autocorrelation function (RACF, (Eq. (68)) satisfies 
rl
(
�N

)
∼ NID(0, 1∕N) for any lag l ≥ 1 (for l = 0 , r0

(
�N

)
= 1).

The graph of the RACF for the innovations of the Mean-G 
dataset is shown in Fig. 23 for 0 ≤ l ≤ N∕4 , where N = 1656 
is the total number of points. The inset was obtained by 
dropping the point for zero lag and zooming in the y-axis. 
The theoretical 95% confidence interval, given by the values 
±1.96∕

√
N , is shown in dashed lines. From a direct inspec-

tion, we can see that there are not too many points that fall 
outside the band considered and the extreme values are not 
too far from these thresholds.

With the purpose of checking the Gaussianity hypoth-
esis of the series represented in Figs. 22 and 23, a detailed 
statistical analysis was performed. Extremes in temperature 
natural variability are an important issue for the prediction 
of catastrophic events. Its presence would show as large tails 
in the distributions of temperature anomalies and their corre-
sponding innovations. If this were the case, the model could 
be fixed by assuming white noise with a different distribution 

for the innovations (e.g. a Levy distribution or one from a 
multifractal process). On the other hand, deviations from 
Gaussianity in the RACF distributions would imply a differ-
ent correlation structure and would automatically invalidate 
the applicability of the fGn model.

As an example, in Fig. 24, we show, from top to bottom, 
the results of this analysis for the natural variability compo-
nent of the Mean-G dataset, for its corresponding series of 
residual innovations and for the RACF. In the left, there is a 
visual comparison of the empirical cumulative distribution 
functions, CDF, (blue) to that of the respective fitted Gauss-
ian distributions (red) and in the right the more enlighten-
ing probability graphs where the empirical probabilities 
obtained from the graphs in the left are plotted against the 
theoretical probabilities (blue curve). The reference line 
shown in red corresponds to a perfect fit. The Kolmogo-
rov–Smirnov (K–S) test can be used to create a measure 
that quantifies the behavior in probability graphs. The K–S 
test statistic is equivalent to the maximum vertical distance 
between a point in the plot and the reference line. The closer 
the points are to the reference line, the more probable is the 
data satisfies the fitted theoretical distribution.

In Table 6 we summarize the standard deviations of the 
normal distributions obtained for the series of anomalies 
( SDT ), the series of residual innovations ( SDinnov ) and the 
RACF ( SDRACF ) for each dataset. The mean values of the 
distributions were very small compared to the respective 
standard deviations and they were omitted. The K–S test sta-
tistics with the corresponding p-values are also shown. More 
powerful statistical tests for normality could be performed, 
like the Shapiro–Wilk or the Anderson–Darling tests. How-
ever, these other tests have their own disadvantages, and, for 
the purpose of this work, the conclusions obtained from the 
K–S test to check the Gaussianity hypothesis of the original 
anomalies and the adequacy of the fGn process fit, are good 
enough.

Fig. 22  Natural variability component for the Mean-G dataset, 
together with its corresponding series of residual innovations, 

{
ei
}
 , 

obtained using Eq. (67). The units for the Tnat series are °C, while the 
innovations are unitless

Fig. 23  RACF for the innovations of the Mean-G dataset. The theo-
retical 95% confidence interval, given by the values ±1.96∕

√
N , is 

shown in dashed lines ( N = 1656 is the total number of points)



4408 L. Del Rio Amador, S. Lovejoy 

1 3

Fig. 24  From top to bottom, graphs for the natural variability com-
ponent of Mean-G dataset, for the series of residual innovations and 
for the RACF. In the left, a comparison of the empirical CDF’s (blue 
line with circles) to that of the respective fitted Gaussian distributions 

(red) and in the right the more detailed probability graphs where the 
empirical probabilities obtained from the graphs in the left are plotted 
against the theoretical probabilities (blue line with circles). The refer-
ence line shown in red corresponds to a perfect fit
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The values of SDT  are the same shown previously in 
Table 5. As expected from the theory, SDinnov = 1 for all 
dataset and the values obtained for SDRACF are close to 
the theoretical value 1∕

√
N = 0.025 ( N = 1656 ). With the 

exceptions of the residual innovations of NOAA and HAD4 
for the global datasets, the p-values are above 0.05, so there 
is not enough evidence to reject normality at that level. 
Moreover, the p-values obtained are, in general, larger than 
those obtained for series of the same length based on pseu-
dorandom number generators [for a numerical experiment 
using 10000 samples, the p-values were uniformly distrib-
uted in the range (0–1)]. For the land surface datasets, the 
p-values for the temperature anomalies and the innovations 

are low and a different distribution for the white noise inno-
vations could be proposed.

As we mentioned before, the normality of the innova-
tions is less important to confirm the adequacy of the model 
than its whiteness, which is confirmed by the Gaussianity 
of the RACF in all cases (see the large p-values in the last 
column of Table 6). A main deviation from normal behav-
ior is the existence of extremes in the original data. This 
“fat-tailed” property of the probability distributions was evi-
denced in Lovejoy (2014) in a paper of statistical hypothesis 
testing of anthropogenic warming. In the present work, it 
does not have major implications or compromise the appli-
cability of the model to the global data.

Table 6  Normality tests 
and standard deviations of the 
distributions obtained for the 
series of anomalies ( SD

T
 ), the 

series of residual innovations 
( SDinnov ) and the RACF 
( SDRACF ) for each global dataset

The mean values for each distribution were very small compared to the standard deviations and they were 
omitted. The K–S test statistics with the corresponding p values are also shown

Dataset Temperature anomalies Residual innovations RACF

SDT K–S p value SDinnov K–S p value SDRACF K–S p value

NASA 0.155 0.020 0.497 1.001 0.024 0.277 0.026 0.026 0.939
NOAA 0.144 0.029 0.114 1.000 0.044 0.003 0.025 0.033 0.747
HAD4 0.159 0.016 0.775 1.000 0.041 0.006 0.025 0.021 0.992
CowW 0.163 0.013 0.951 1.000 0.016 0.752 0.025 0.022 0.982
Berk 0.174 0.013 0.922 1.000 0.02 0.485 0.026 0.022 0.986
Mean-G 0.153 0.016 0.755 1.001 0.026 0.193 0.026 0.023 0.979
NASA-L 0.371 0.041 0.008 0.999 0.039 0.011 0.029 0.04 0.511
NOAA-L 0.325 0.040 0.009 1.000 0.051 0.000 0.029 0.063 0.072
HAD4-L 0.285 0.036 0.028 1.000 0.047 0.001 0.028 0.032 0.774
CowW-L 0.333 0.032 0.065 1.000 0.036 0.027 0.03 0.047 0.317
Berk-L 0.342 0.034 0.043 1.000 0.033 0.056 0.032 0.041 0.486
Mean-L 0.321 0.035 0.038 1.000 0.039 0.013 0.03 0.032 0.767

Table 7  Skill scores RMSEraw 
and ACCnat for forecast horizons 
k = 1, 3, 6 and 12 months for 
the twelve datasets, including 
the mean series for the global 
and the land surface

The values MSSSnat and MSSSraw can be obtained from Eqs. (34) taking MSE = RMSE2 and the respective 
MSEref = SD2

T
 or MSEref = SD2

raw
 . The values of �̂�T , were included for reference

Dataset Normalization factor 
(°C)

RMSEraw (°C) ACCnat

�̂�T SDT SDraw k = 1 k = 3 k = 6 k = 12 k = 1 k = 3 k = 6 k = 12

NASA 0.183 0.149 0.315 0.108 0.128 0.139 0.148 0.688 0.515 0.373 0.218
NOAA 0.183 0.140 0.301 0.093 0.113 0.127 0.137 0.744 0.587 0.434 0.264
HAD4 0.194 0.152 0.276 0.100 0.120 0.133 0.145 0.752 0.612 0.487 0.340
CowW 0.183 0.158 0.285 0.107 0.126 0.137 0.147 0.738 0.601 0.497 0.377
Berk 0.197 0.163 0.301 0.109 0.131 0.142 0.151 0.741 0.597 0.497 0.391
Mean-G 0.195 0.147 0.293 0.098 0.119 0.131 0.142 0.743 0.588 0.459 0.314
NASA-L 0.373 0.338 0.509 0.305 0.327 0.332 0.333 0.435 0.257 0.204 0.174
NOAA-L 0.331 0.327 0.521 0.296 0.318 0.324 0.325 0.429 0.238 0.167 0.140
HAD4-L 0.297 0.268 0.449 0.223 0.248 0.256 0.261 0.554 0.375 0.296 0.239
CowW-L 0.337 0.327 0.503 0.286 0.311 0.317 0.320 0.482 0.313 0.249 0.205
Berk-L 0.348 0.331 0.506 0.293 0.318 0.325 0.326 0.462 0.277 0.206 0.168
Mean-L 0.327 0.312 0.492 0.274 0.299 0.305 0.307 0.476 0.293 0.224 0.184
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Appendix 3: Forecast and validation for all 
datasets

Some results of the hindcast validation are summarized in 
Table 7 for the twelve datasets, including the mean series 
for the global and the land surface. Only the error, RMSEnat , 
and the ACCnat , for the natural variability component were 
presented for horizons k = 1, 3, 6 and 12 months. The val-
ues MSSSnat and MSSSraw can be obtained from Eq. (34) 
taking MSE = RMSE2 and the respective MSEref = SD2

T
 or 

MSEref = SD2
raw

 . Also, we can use the values of ACCnat to 
obtain very good approximations of MSSSnat for these hori-
zons thanks to the relationship MSSSnat ≈ ACC2

nat
 (Eq. (38)). 

Only the spurious values of ACCraw cannot be obtained from 
this table, but it is worth mentioning that, even for k = 12 
months, they are higher than 0.75 for all datasets. Notice 
the large difference between the values of SDT and SDraw , 
for the detrended and the raw anomalies respectively, due to 
the presence of the anthropogenic trend. The values of �̂�T , 
were included for reference.
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