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Abstract
The present study evaluates the potential predictability, and prediction skill of surface air temperature (SAT) over the Arabian 
peninsula (AP) referred to as AP-SAT hereafter, during boreal summer (June–July–August: JJA) from 1982 through 2017. The 
study was made by considering the single model, and a multimodel ensemble (MME) approach. The seasonal prediction data 
for JJA SAT initialized at May (Lead-1), and April (Lead-2) observed initial conditions, from six coupled atmosphere–ocean 
global circulation models included in the North American Multimodel Ensemble, is utilized. The potential predictability 
(PP) is estimated through the estimation of the signal-to-noise ratio (S/N ratio) and perfect model correlation (PMC), while 
prediction skill is computed by the temporal anomaly correlation coefficient (TCC). All models show a decrease in poten-
tial predictability and prediction skill with an increase in lead time. The CFSv2 and NASA models show higher PP, which 
indicates a high potential predictive skill for summer AP-SAT in these models. However, both models show quite low values 
of TCC all over the AP domain, which is an indication of overconfident predictions. The three geophysical fluid dynamics 
laboratory models show high prediction skill at both leads. An essential finding of the predictive analysis (PMC and TCC) 
is that the MME does outperform the individual model at both leads for summer AP-SAT. Each model captures the observed 
relationship between spatially averaged AP-SAT with sea surface temperature (SST) and 200 hPa geopotential height (Z200) 
during JJA, with varying details. Persistent model biases impact negatively model predictability and skill, and better AP-SAT 
and SST teleconnection pattern in models lead to higher predictability. Improvements in initial conditions, model physics, 
and larger ensemble size are necessary elements to enhance the summer AP-SAT potential predictability and skill.

Keywords Arabian peninsula · Saudi Arabia · Hajj · Air temperature · JJA · NMME · Potential predictability · Atlantic 
Ocean

1 Introduction

Skillful prediction of surface air temperature (SAT) over 
the Arabian peninsula (See supplementary material, Figure 
and Text S1), is of great importance due to many societal 
endeavors. SAT predictability at seasonal time scale has 
not been examined before over the Arabian peninsula (AP). 
This topic has a massive societal relevance now because dur-
ing the next decade, “Hajj,” the largest annual gathering of 
Muslims (several million), will occur during boreal summer 
months (June–July–August: JJA). Millions of Muslims from 
across the world will travel to Saudi Arabia to perform the 
Hajj pilgrimage in the holy city of Makkah and spend part 
of that time outdoors. Therefore, skillful seasonal predic-
tion of summer AP-SAT could help government agencies 
to adopt timely appropriate adaptation strategies that may 
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provide ease and comfort to pilgrims performing the ritual 
while outdoor.

The temperature over the AP regularly reaches 40 °C 
during the summer months. Recently, however, the tem-
perature in Jeddah broke all records and reached 52 °C, on 
22 June 2010. Based on the ensemble of high-resolution 
regional climate model simulations, it has been claimed that 
the future SAT in some regions of the Arabian peninsula 
may likely approach and exceed the critical threshold limit 
of human habitability (Pal and Eltahir 2015). Studies have 
shown a substantial increase in annual as well as seasonal 
mean temperature over Saudi Arabia, which represents 80% 
of the AP (e.g., Almazroui et al. 2012a, b). These changes 
indicate a warming trend, and an increase of temperature-
related extremes, both in magnitude and frequency over 
the region (Lelieveld et al. 2012; Almazroui et al. 2014; 
Mustafa and Rahman 2018; Abutaleb et al. 2018). Previ-
ous studies have suggested relationships between large-scale 
forcings and variability of the temperature of Saudi Arabia 
(Almazroui 2012a, b) and United Arab Emirates (Chan-
dran et al. 2015) using correlation analysis. AP-SAT tends 
to increase (decrease) during the negative (positive) phase 
of North Atlantic Oscillation (NAO) and Arctic Oscilla-
tion (AO) in almost all seasons, but their impact is more 
robust during boreal winter. The warm phase of the El Niño-
Southern Oscillation (ENSO) during boreal springtime 
tends to decrease AP-SAT. The primary climatic memory 
on the timescales of months to years is located in the tropi-
cal oceans (Ropelewski and Halpert 1986; 1987). However, 
prediction skill for land surface temperature or even sea sur-
face temperature (SST) outside the Tropics is irregular and 
remains quite low.

Several studies have examined the temperature and 
precipitation variability over Northern Hemisphere dur-
ing different seasons (Li et al. 2013; Coumou et al. 2018; 
Chen and Wu 2017; Chen et al. 2016; Chooprateep and 
McNeil 2016; Miralles et al. 2014) including some stud-
ies specifically focusing over the Middle East and North 
Africa (MENA) region (de Vries et al. 2013; Donat et al. 
2014; Evan et al. 2015; Sun et al. 2017; Ehsan et al. 2017a; 
Almazroui et al. 2017; de Vries et al. 2018). The boreal sum-
mer climate variability over Arabian peninsula is linked to 
various large-scale and regional processes, such as El Niño 
Southern Oscillation, Indo-Pacific warm pool, tropical North 
and South Atlantic, Western Hemisphere warm pool, the 
North Atlantic and Arctic Oscillations as well as South 
Asian summer monsoon through well-known monsoon-
desert mechanism (Rodwell and Hoskins 1996; Almazroui 
2012a, b; Hasanean and Almazroui 2017; Abid et al. 2018; 
Attada et al. 2018a, b). A wide range of seasonal climate 
predictability studies have been conducted previously by 
using the coupled global climate model (CGCM) prediction 
data over different regions, seasons and climate variables 

(Tang et al. 2014a, b; Jia et al. 2015; Tippett et al. 2015; 
Abid et al. 2016; Ehsan et al. 2017b; Osman and Vera 2017; 
Delsole et al. 2017; Vigaud et al. 2018; among many others). 
The North American Multimodel Ensemble (NMME) is a 
research and operational multimodel seasonal forecasting 
system consisting of coupled models from US and Canadian 
modeling centers (Kirtman et al. 2014). The project provides 
a real-time seasonal forecast, as well as a comprehensive 
set of hindcast datasets for model performance evaluation 
and calibration. The NMME database availability provides 
a unique opportunity to examine predictability and predic-
tion skill on seasonal time scales worldwide. Temperature 
predictability at seasonal time scale has not been examined 
before over the Arabian peninsula (AP). The main aim of 
this work is then to document the summer AP-SAT potential 
predictability and prediction skill depicted by individual and 
multimodel ensemble (MME) approach.

The article is organized as follows. Section 2 introduces 
the NMME forecasting system, prediction, observational and 
reanalysis datasets. It also describes the methodology used 
to assess the potential predictability and skill of the sum-
mer AP-SAT. Observed and predicted mean and variability 
analysis of summer AP-SAT, potential predictability and 
skill assessment as well as observed and predicted telecon-
nection patterns are presented in Sect. 3. A summary and 
conclusions are given in Sect. 4.

2  Data and methodology

2.1  NMME data

Prediction data used in this work come from the North 
American Multimodel Ensemble (NMME) project (Kirtman 
et al. 2014). The NMME is an ensemble forecasting system 
consisting of coupled atmosphere–ocean models from US 
and Canadian research and operational centers. Real-time 
predictions have been started since August 2011, and there 
is hindcast available (forecast in the past) for each model 
that includes the period from 1982 to 2010. Throughout the 
NMME project, some models have been left and new mod-
els introduced, and some upgraded to new versions. Also, 
the initialization method, prediction length and ensemble 
members vary by model. From all the models available in 
the NMME collection, we selected the six that had the most 
extended forecast period in common. The models used in 
this study are listed in Table 1. Here we use integration 
with May and April start dates from the hindcast period 
(1982–2010) and the real-time period (2011–2017) for a 
total 36 years. We make no distinction between hindcast and 
real-time forecast in our analysis and refer to both as predic-
tions. Predictions for the lead time of up to 2 months are ana-
lyzed in this study. “Lead-1-month or Lead-1″ prediction is 
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based on May initial conditions (IC), and it is the prediction 
for June. The prediction for May itself considered as “Lead-
0-month or Lead-0″ prediction. Following this, the seasonal 
Lead-1 forecast is for the three months (June–August: JJA) 
following the initial month: in the May IC example. Hindcast 
and real-time prediction of monthly averages of surface air 
temperature, sea surface temperature and geopotential height 
at 200 hPa are available for download from the International 
Research Institute for Climate and Society (IRI) (https ://iridl 
.ldeo.colum bia.edu/SOURC ES/.Model s/.NMME/).

2.2  Observational data

We use several monthly mean observational and reanalysis 
datasets, including geopotential height from NCEP-DOE 
(National Centers for Environmental Prediction-Depart-
ment of Energy) AMIP-II Reanalysis products ( 2.5◦ × 2.5◦ ) 
(Kanamitsu et al. 2002), land surface temperature from the 
Global Historical Climatology Network + Climate Anomaly 
Monitoring System ( 0.5◦ × 0.5◦ ) (GHCN + CAMS v2: Fan 
and Dool 2008), and sea surface temperature (SST) from 
the Hadley Centre SST dataset HadISST1.1 ( 1.0◦ × 1.0◦ ) 
(Rayner et al. 2003). All these observational datasets are 
at different resolutions and were converted to a ( 1.0◦ × 1.0◦

) resolution using bilinear interpolation common to NMME 
prediction data.

2.3  Statistical methods

This work presents an assessment of potential predictabil-
ity (PP) and skill of boreal summer (June–July–August: 
JJA) surface air temperature over the Arabian penin-
sula from initial conditions observed in April and May 
(Lead-2 and 1). We define the Arabian peninsula (AP) 
domain to be all the land points included within 35°–60°E 
and 12°–32°N. Boreal summer seasonal anomalies for 
each model and observation are computed relative to the 
36-year climatology period 1982–2017. Different statisti-
cal measures (mean, standard deviation, correlation, bias) 

are used to validate the model predictions. The Taylor 
diagram (Taylor 2001) is employed to summarize the per-
formance of individual model. The relevant statistics are 
the pattern correlation, the ratio of the normalized root-
mean-square difference and relative bias (%) estimation 
to quantify the each model inaccuracy as compared to 
observation (Details about Taylor diagram can be found 
at https ://www.ncl.ucar.edu/Appli catio ns/taylo r.shtml ). 
For a good model, the correlation between prediction and 
observation is high, root-mean-square different must be 
small, and the variances must be similar.

The potential predictability of summer AP-SAT is 
assessed as the interannual variability of the ensemble 
mean, and the variability of individual members from the 
ensemble mean (Rowell 1998), also known as “Signal 
or external variance,” and “Noise or internal variance” 
respectively. Following Rowell et al. (1995), internal vari-
ance or noise can be expressed as;

where T is the surface air temperature, k indicates the indi-
vidual year, m denotes ensemble members, and Tk is the 
ensemble mean. The external variance or signal can be 
expressed as;

where T is the climatological mean of the ensemble mean 
given by T =

1

Nn

∑N

k=1

∑n

m=1
Tkm . The ratio of signal and 

noise variances (S/N ratio) defines potential predictability 
(Kang and Shukla 2006). The potential predictability for 
summer AP-SAT is measured here in terms of classical “per-
fect model correlation: PMC”. It is the correlation calculated 
by considering one-member prediction as observation and 
ensemble average of the rest of the members (Ehsan et al. 

Noise =
1
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N
∑

k=1

n
∑

m=1

(

Tkm − Tk

)2

,

Signal =
1

N − 1

N
∑

k=1

(
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,

Table 1  Six NMME models used in this work

a Only June start date have 12 members. No real-time forecast now available for this version. NASA switched to newer version

Model Acronym used Ensemble 
members

Native atm. res. Native ocn. res. Predic-
tion length 
(months)

References

NCEP-CFSv2 CFSv2 24 T126L64 MOM4L40 0.25° Eq. 10 Saha et al. (2014)
NASA-GAMO-062012 NASA 11a 1.0° × 1.25° L72 MOM4L40 0.25° Eq. 9 Vernieres et al. (2012)
COLA-RSMAS-CCSM4 COLA 10 1.25° × 0.9° L26 POPL60 0.27o Eq. 12 Gent et al. (2011)
GFDL-CM2p1-aer04 GFDL-Aer 10 2.0° × 2.25° L24 MOM4L50 0.3o Eq. 12 Delworth et al. (2006)
GFDL-CM2p5-FLOR-A06 GFDL-FLOR-A 12 C18L32 (50 km) MOM4L50 0.3o Eq. 12 Vecchi et al. (2014)
GFDL-CM2p5-FLOR-B01 GFDL-FLOR-B 12 C18L32 (50 km) MOM4L50 0.3o Eq. 12 Vecchi et al. (2014)

https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
https://www.ncl.ucar.edu/Applications/taylor.shtml
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2013) and can provide predictive information available in 
that ensemble member. Following the number of ensemble 
members, correlations are averaged, after applying Fisher Z 
transformation (Faller 1981). Finally, the prediction skill of 
summer AP-SAT is assessed here is through the computa-
tion of the temporal anomaly correlation coefficient (TCC) 

maps between the ensemble mean and observed time series. 
The statistical significance of the correlation is estimated by 
using the t test (Wilks 2006). Our threshold for significance 
is 0.05.

Spatially average observed (Fig.  1c) and predicted 
(Fig. 5a) summer SAT over AP exhibits a strong positive 
trend, which is undoubtedly related to global warming or 
climate change. We remove the long-term linear trend in all 
variables (observation and predictions) for all 36 summers 
by using the least squares method. The idea behind removing 
the long-term trend is to remove the global warming signal 
from the original time series, which has a stronger influence 
in the surface air temperature. Consequently, calculation of 
summer AP-SAT potential predictability (Signal, Noise, S/N 
ratio, PMC), skill (TCC) and teleconnection analysis are all 
based on the detrended data as shown in Fig. 5b.

3  Results

3.1  Observed and predicted summer AP‑SAT mean 
and variability

The annual cycle of the AP-SAT presented in Fig. 1a shows 
temperature (> 30 °C) from June through August, with July 
as the hottest month and boreal summer (June–August: 
JJA) is the warmest season of the AP. JJA climatology of 
SAT over the AP for the period 1982–2017 is shown in 
Fig. 1b (shaded). The summer SAT along the Red and Ara-
bian seas coastlines remain moderate (< 30 °C). The strong 

Fig. 1  a Annual cycle of the surface air temperature (SAT) over the 
AP domain. b Summer SAT climatology (shaded) and standard devi-
ation (contour) during the period 1982–2017. c The area averaged 
summer mean SAT anomaly time series over the AP. Unit of SAT 
is  °C

Fig. 2  Taylor diagram describing the six model’s performance in pre-
dicting summer AP-SAT (initialized in May/Lead-1) in comparison to 
observation
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cross-equatorial flow along the eastern side of the AP during 
summer induces upwelling over the western Arabian Sea, 
which cools the SST and consequently decreases tempera-
tures over the eastern side of the AP particularly over Yemen 
and Oman. However, the Arabian Gulf side depicts high 
summer SAT (> 35 °C), which may be due to its shallow 
depth (See Supplementary Material, Figure and Text S1), 
low albedo and relatively shallower boundary layer depth 
that retain heat and moisture closer to the surface. Away 
from coastlines, the summer SAT distribution is more uni-
form, with highest temperature (> 40 °C) observed over the 

central-eastern region. The summer AP-SAT standard devia-
tion varies between 0.8 °C and 1.5 °C (Fig. 1b: contour). A 
high spatial variation in summer SAT is evident over the 
northern and southwestern regions of the AP, which shows a 
noticeable regional temperature variability over the AP. The 
time series of spatially averaged summer SAT over the AP 
domain shows increasing trend (Fig. 1c) during the period 
of 1982–2017, which is in agreement with earlier findings 
(Almazroui et al. 2012b).

Before proceeding to investigate the potential predictabil-
ity and skill of summer SAT, we examine the fidelity of six 

Fig. 3  Predicted (initialized in May/Lead-1) summer SAT climatology (shaded) and standard deviation (contour) for a CFSv2, b NASA, c 
COLA, d GFDL-Aer, e GFDL-FLOR-A, and f GFDL-FLOR-B during the period 1982–2017. Unit of SAT is °C
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NMME models in predicting the summer SAT climatology 
and variability at Lead-1 over the AP. Immediate visualiza-
tion of differences in the performance of each prediction 
model is obtained by using the Taylor diagram (Taylor 
2001) as shown in Fig. 2. The pattern correlation between 
different model predictions and observation is found rang-
ing from 0.54 to 0.76. The normalized standard deviation 
also diverges from the reference value for all models except 
COLA. Also, all models show positive relative bias as com-
pared to the observation, except COLA model that shows 
negative SAT bias. As the Taylor diagram show summary 
statistics, it is desirable that spatial maps may be presented 

to highlight further details. The spatial distribution of pre-
dicted summer SAT climatology (shaded) and interannual 
variability represented by the standard deviation (contour) 
over the AP is shown in Fig. 3. Relative to the observation, 
all models strongly overestimate summer SAT along the 
periphery of the AP and underestimated in the central parts 
of the AP. Except for COLA, all models underestimated the 
summer SAT variability over the AP. Overall CFSv2 shows 
less mean bias (Fig. 4a). COLA (Fig. 4c) and GFDL-Aero 
(Fig. 4d) show a strong negative bias over the central-eastern 
AP. The significant error in predicted SAT may be related 
to the way how the models handle the surface-atmosphere 

Fig. 4  Mean summer SAT bias (Model–OBS) estimated based on 36-year prediction data (initialized in May/Lead-1) for a CFSv2, b NASA, c 
COLA, d GFDL-Aer, e GFDL-FLOR-A, and f GFDL-FLOR-B. Unit of SAT is  °C
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coupling processes, including the input land-surface forcing 
data (Bonan 2008; Rahman et al. 2018).

Spatially averaged predictions of summer SAT over 
AP depict gradually increasing trend (Fig. 5a) and statisti-
cally significant correlation coefficients between observed 
and predicted summer AP-SAT time series. However, the 
COLA model shows low correlation coefficient (0.6), which 
shows the modest performance of this particular model. The 
higher correlation between predicted and observed anoma-
lies is indeed related to global warming or climate change 
that has a stronger influence in the surface air temperature. 
The detrended summer AP-SAT time series is shown in 
Fig. 5b. After removing long-term trend, correlation coef-
ficient in predicted and observed summer AP-SAT time 
series is reduced (about 40%), which shows the substantial 
impact of global warming signal over summer AP-SAT. In 
our gradually warming climate, recent years are warmer, so 
a summer forecast for above average temperature relative to 
its climatology can be skillful on its own. Thus, the potential 
predictability and skill assessment of summer AP-SAT are 
based on the detrended data.

3.2  Predictability assessment of individual 
and multi‑model ensemble

The spatial distributions of signal, noise, and signal-to-noise 
ratio are illustrated in Figs. 6, 7, and 8, respectively, after 
removing trend from prediction data (initialized in May/
Lead-1) for each model. Spatial distribution and magnitude 
of signal and noise variances over the AP domain vary by 
model. Signal variance is quite weak (Fig. 6) as compared to 
noise variance, which shows quite high values in all models 
(Fig. 7). Northern and south-western AP regions show high 
signal variance, while noise variance is almost uniformly 
distributed over the whole AP domain. Models like COLA 
and GFDL-Aer that show large signal variance also tend to 
have even larger noise variance. The CFSv2, NASA, GFDL-
FLOR-A, and GFDL-FLOR-B show higher S/N ratio over 
the AP (Fig. 8). Figure 9 shows the geographical distribu-
tion of perfect model correlation (ensemble member against 
ensemble mean) as estimated with six models individually. 
PMC values show the upper limit of the dynamical seasonal 
prediction skill that can be reached with a perfect model (a 
model that forecasts perfectly its own climate) and perfect 
boundary conditions. The figure indicates that the poten-
tial predictability of the summer AP-SAT is relatively low 
(PMC ranging between 0.3 and 0.6). The CFSv2 and NASA 
models show higher PP, which indicates a high potential 
predictive skill for summer AP-SAT in CFSv2 (Fig. 9a). 
Figure 10 shows the spatial distribution of prediction skill 

for summer SAT in terms of TCC (ensemble mean against 
observation). In contrast to PMC, CFSv2 and NASA models 
(Fig. 10a, b) show quite low values of TCC all over the AP 
domain, which is an indication of overconfident forecasts 
(Eade et al. 2014) in which ensemble members agree well 
with each other (high PMC) but do not capture the observed 
variations (low TCC). The two versions of GFDL (FLOR-A 
and FLOR-B) show PP and skill of the summer AP-SAT 
quite close to each other, because two versions have identi-
cal atmospheric, land, and sea ice configurations but have 
slightly different ocean setups (Vecchi et al. 2014). The spa-
tial distributions of PMC and TCC for Lead-2 prediction 
data (initialized in April) are elucidated (See Supplementary 
Material, Figures S2 and S3). All models show a decrease in 
potential predictability and prediction skill with an increase 
in lead time.

Fig. 5  Predicted (initialized in May/Lead-1) summer AP-SAT anom-
alies (spatially averaged over AP domain) for a undetrended, and b 
detrended data for the period 1982–2017. Each model is described in 
different color. For undetrended data all NMME models show statisti-
cally significant correlation (number show in bracket). For detrended 
data CFSv2, NASA, GFDL-Aer, GFDL-FLOR-A show statistically 
significant, while COLA and GFDL-FLOR-B show nonsignificant 
correlation at 5% confidence level, using a t test. Unit of SAT is  °C
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Finally, we now demonstrate the potential predictability 
and skill of a multi-model ensemble (MME: a combination 
of six models and 79 ensemble members). Several previous 
studies have confirmed the superiority of multi-model pre-
dictions over that of a single-model (e.g., Palmer et al. 2004; 
Hagedorn et al. 2005; Kang and Yoo 2006; DelSole and Tip-
pett 2014; DelSole et al. 2014). The potential predictability 
and skill of MME at Lead-1 and Lead-2 is shown in Fig. 11. 
The figure immediately reveals the advantage of the MME 

(higher PMC and TCC) compared to the individual models 
(Figs. 9, 10) in predicting summer AP-SAT.

3.3  Teleconnections pattern in observation 
and prediction data

The goal of this discussion is to identify relationships 
between summer AP-SAT and global JJA SST and 
other atmospheric parameters in observation, and their 

Fig. 6  Signal variance estimated based on 36-year prediction data (initialized in May/Lead-1) for a CFSv2, b NASA, c COLA, d GFDL-Aer, e 
GFDL-FLOR-A, and f GFDL-FLOR-B. Unit of signal variance is °C2
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reproducibility in prediction data with an argument that 
better teleconnection leads to higher potential and actual 
predictability (Ehsan et al. 2017b). Figure 12a shows the 
correlation between area-averaged AP-SAT and SST anoma-
lies during JJA for the period 1982–2017. Summer AP-SAT 
is highly positively correlated with the equatorial Indian 
Ocean and tropical North Atlantic SSTs along with local 
SSTs (located in Mediterranean and Red seas and Ara-
bian Gulf) and a nonexistence of signal over Pacific region 

(commonly known as ENSO). We plotted the correlation 
between summer AP-SAT and 200 hPa geopotential height 
(Z200) to show the influence of large-scale circulation on the 
summer AP-SAT (Fig. 12b). Positive Z200 anomalies were 
found over the AP and whole Mediterranean and eastern 
Europe region and negative values are observed over the 
northern Pakistan and Afghanistan. We also calculated the 
correlation between the summer AP-SAT and atmospheric 
thickness (not shown) from the surface to the upper level 

Fig. 7  Noise variance estimated based on 36-year prediction data (initialized in May/Lead-1) for a CFSv2, b NASA, c COLA, d GFDL-Aer, e 
GFDL-FLOR-A, and f GFDL-FLOR-B. Unit of noise variance is °C2



4258 M. A. Ehsan et al.

1 3

(1000–300 hPa). This is in good agreement with the above 
normal Z200 (Fig. 12b) and closely related with the warm 
temperature anomalies over the AP during summer. The sta-
tistically significant correlation between summer AP-SAT 
and SST anomalies in the equatorial Indian (EIO: 40–80 E, 

10 S–15 N), and tropical North Atlantic (ATL: 300–340 E, 
0–23 N) oceanic regions is 0.63 and 0.61, respectively 
(Fig. 12c). These results are in agreement with the earlier 
findings (Hasanean and Almazroui 2017; Attada et al. 2018a, 
b), which documented that summer AP-SAT variability is 

Fig. 8  Signal-to-Noise ratio (S/N ratio) estimated based on 36-year prediction data (initialized in May/Lead-1) for a CFSv2, b NASA, c COLA, 
d GFDL-Aer, e GFDL-FLOR-A, and f GFDL-FLOR-B. S/N ratio is unitless
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Fig. 9  Perfect model correlation estimated based on 36-year predic-
tion data (initialized in May/Lead-1) for a CFSv2, b NASA, c COLA, 
d GFDL-Aer, e GFDL-FLOR-A, and f GFDL-FLOR-B. A correlation 

coefficient higher than 0.32 is statistically significant at 5% confi-
dence level, using a t test
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Fig. 10  Prediction skill (correlation between ensemble mean and 
observed detrended anomalies) for a CFSv2, b NASA, c COLA, d 
GFDL-Aer, e GFDL-FLOR-A, and f GFDL-FLOR-B at Lead-1. A 

correlation coefficient higher than 0.32 is statistically significant at 
5% confidence level, using a t test
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associated with the SSTs located in Indo-Pacific warm pool, 
tropical North and South Atlantic Ocean and western hemi-
sphere warm pool regions. The geographical distribution of 
correlation between predicted AP-SAT and SST anomalies 
in each model for JJA is shown in Fig. 13. Each model cap-
tures the observed JJA AP-SAT-SST relationship, with vary-
ing details. NCEP (Fig. 13a) and NASA (Fig. 13b) models 
show strong correlation over the equatorial Indian Ocean as 
well as North Atlantic Ocean, which is even stronger than 
the observation (Fig. 12c). Three GFDL models (GFDL-
Aer, GFDL-FLOR-A and GFDL-FLOR-B) also captures 
the observed JJA AP-SAT-SST relationship as shown in 
Fig. 13d–f. The JJA AP-SAT-SST teleconnection pattern in 
COLA model (Fig. 13c) shows strong positive correlation 
in Pacific and weak negative values in Atlantic and Indian 
Ocean basin, which is quite different from the observed pat-
tern. This diverse behavior of COLA model is also evident in 
the JJA AP-SAT-Z200 analysis, which shows strong negative 

values over the northern AP and whole Mediterranean and 
eastern Europe region as compared to observed correla-
tion (Fig. 12b). This clearly indicates that the predicted 
teleconnection pattern in the COLA model is quite differ-
ent from the observed pattern, that may impact the summer 
AP-SAT predictability in this model. GFDL-FLOR-A and 
B (Fig. 14e, f) captures the JJA AP-SAT-Z200 quite well as 
compared to observation (Fig. 12b), which could cause a 
moderate level of potential predictability and skill in these 
models.  

4  Summary and conclusions

Forecasting the seasonal climate over a region is an impor-
tant issue, both for the physical perspective of the climate 
drivers and for decision makers to have sufficient time 
to take pre-emptive actions. In this study, we assess the 

Fig. 11  a Perfect model correlation for MME (six models and 79 
members) estimated based on 36-year prediction data (initialized in 
May/Lead-1) and b prediction skill (correlation between MME and 
observed detrended anomalies). c, d same as (a and b) but for predic-

tion data initialized in April/Lead-2. A correlation coefficient higher 
than 0.32 is statistically significant at 5% confidence level, using a t 
test



4262 M. A. Ehsan et al.

1 3

potential predictability and prediction skill of boreal sum-
mer surface air temperature over the Arabian peninsula by 
utilizing seasonal prediction data of six models from the 
North American Multimodel Ensemble project. Predictions 
for the lead time of up to 2 months are analyzed in this 
study. “Lead-1-month or Lead-1″ prediction is based on May 
initial conditions (IC), and it is the seasonal prediction for 
the 3 months (June–August), following the initial month of 
May. The Lead-2-month or Lead-2 prediction is based on the 
observed April IC. The study was made by considering the 
single model, and a multimodel ensemble (MME) approach.

Relative to the observation, all models strongly over-
estimate summer SAT along the periphery of the AP and 
underestimated in the central parts of the AP. The observed 
and predicted summer SAT over AP shows a strong posi-
tive trend and high correlation coefficient (Before removal 
of trend) for each model. The correlation coefficient in 
detrended predicted and observed summer AP-SAT time 
series is reduced drastically, which shows the significant 
impact of the global warming signal over the SAT. There-
fore, predictability analysis presented in this work is based 
on the detrended data. The CFSv2 and NASA models show 
higher PMC, which indicates a high potential predictive 
skill. However, both models show quite low values of TCC 
all over the AP domain, which shows an overconfident sum-
mer AP-SAT prediction in these models. The three Geo-
physical Fluid Dynamics Laboratory (GFDL) models show 
good prediction skill at both leads while the COLA model 
shows the lowest values. All models show a decrease in 
potential predictability and prediction skill with an increase 
in lead time. An essential finding of the predictive analysis 
(PMC and TCC) is that the MME, which is a combination of 
six models and 79 ensemble members, does outperform the 
individual model at both leads. Summer AP-SAT is highly 
positively correlated with the equatorial Indian Ocean, tropi-
cal North Atlantic SSTs along with local SSTs, located in 
the Mediterranean and Red seas and Arabian Gulf and the 
absence of signal in the Pacific region. Each model cap-
tures the observed relationship between spatially averaged 
AP-SAT with sea surface temperature (SST) and 200 hPa 
geopotential height (Z200) during JJA, with varying details. 
This study implies that persistent model biases impact badly 
model potential predictability and skill, better teleconnection 
pattern in prediction data accompanied by larger ensemble 
size lead to higher predictability of the regional climate.

Fig. 12  The correlation of AP-SAT to a SSTs and, b Z200 detrended 
anomalies for JJA at each grid, during 1982–2017. c The detrended 
spatially averaged time series of summer AP-SAT and SST in EIO 
and ATL regions. The correlation between them is shown in bracket. 
A correlation coefficient higher than 0.32 is statistically significant at 
5% confidence level, using a t test
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Fig. 13  The correlation AP-SAT to SSTs detrended anomalies for JJA 
at each grid, during 1982–2017 for a CFSv2, b NASA, c COLA, d 
GFDL-Aer, e GFDL-FLOR-A, and f for GFDL-FLOR-B, respectively 

at Lead-1. A correlation coefficient higher than 0.32 is statistically 
significant at 5% confidence level, using a t test
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