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Abstract
This study analysed the changes in El Niño Southern Oscillation (ENSO) dynamics as they are simulated in 25 models of the 
CMIP5 simulations for the RCP8.5 scenario relative to the historical control simulation. The ENSO linear recharge oscillator 
(ReOsc) framework is used to focus on changes in the growth rate of eastern equatorial Pacific sea surface temperature (T) 
and mean equatorial Pacific thermocline depth (h) anomalies, the coupling between the two and the noise forcing driving 
the ENSO variability. We further focused on the feedbacks controlling the growth rate of T, namely the Bjerknes wind to 
sea surface temperature (SST) feedback, the atmospheric net heat flux and the residual oceanic feedback. We find significant 
changes in nearly all of these important elements of the ENSO dynamics, despite the fact that the ensemble shows very little 
changes in the overall ENSO variability. The growth rate of T weakens resulting from a combination of increased negative 
atmospheric net heat flux feedbacks, increased positive Bjerknes wind-SST feedback and increased residual oceanic feed-
backs. Further notable changes are, an increase in the growth rate of h and a stronger coupling of T to h. Sensitivity analysis 
of the ReOsc model can explain why these strong dynamical changes lead to effectively no changes in the overall ENSO 
variability, but are likely to affect the predictability of ENSO.

1 Introduction

Anthropogenic climate change not only alters the mean state 
climate, but also potentially affects the nature of internal 
climate variability. How in detail the internal variability will 
change is an important question of anthropogenic climate 
change research. In particular, the potential changes in the 
most important mode of natural climate variability, the El 
Niño Southern Oscillation (ENSO) mode, are still a subject 
of current research (Collins et al. 2010; Cai et al. 2015b).

Previous studies on changes in the ENSO variability 
primarily focussed on changes in ENSO statistics, such as 
the standard deviation (stdv) of the sea surface temperature 
(SST) variability, the power spectral peak of SST (periodic-
ity) or the changes in the pattern of ENSO SST variability 

(e.g. Van Oldenborgh et al. 2005; Yeh et al. 2009; Collins 
et al. 2010; Stevenson et al. 2012; Chen et al. 2017). Studies 
of future climate change with simulations from the couple 
model intercomparison project (CMIP) found mostly little 
changes in these statistics. The overall stdv of ENSO in the 
CMIP ensemble mean is not changing significantly and the 
periodicity of ENSO is also not changing significantly. How-
ever, there is large spread in the CMIP ensemble with indi-
vidual models showing clear trends in these statistics, but 
with opposing directions, averaging to a near zero ensemble 
mean result.

A number of studies have analysed changes in recent 
observed ENSO variability (Lee and McPhaden 2010; 
McPhaden et al. 2011; McPhaden 2012; Lübbecke and 
Mcphaden 2014; Guan and McPhaden 2016; Capotondi 
and Sardeshmukh 2017). These studies suggest that ENSO 
statistics, dynamics and the pattern have been changing in 
the recent decades relative to previous decades. A recent 
study by Zhao et al. (2016) also suggests that the predict-
ability of ENSO is decreasing in recent decades, indicating 
changes in the dynamics of ENSO. Whether these changes 
are consistent with the CMIP model projections is, how-
ever, unclear. Here it also needs to be considered that 
changes in observed ENSO characteristics are typically 

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0038 2-019-04780 -7) contains 
supplementary material, which is available to authorized users.

 * Dietmar Dommenget 
 dietmar.dommenget@monash.edu

1 School of Earth, Atmosphere and Environment, Monash 
University, Clayton, VIC 3800, Australia

http://orcid.org/0000-0002-5129-7719
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-019-04780-7&domain=pdf
https://doi.org/10.1007/s00382-019-04780-7


4234 D. Dommenget, A. Vijayeta 

1 3

based on a relatively short time period, which will make it 
difficult to distinguish such variations from natural internal 
low-frequency variability (e.g. Wittenberg et al. 2014).

Much of these observed changes in ENSO are linked to 
changes in the tropical Pacific mean state (e.g. McPhaden 
et al. 2011; Zhao et al. 2016). These mean state changes 
themselves have been analysed in several studies (Liu et al. 
2005; Vecchi et al. 2006; Dinezio et al. 2012; England 
et al. 2014; Bayr et al. 2014; Luo et al. 2015, 2017, 2018; 
Kohyama et al. 2017). Many of these studies find large 
differences between observed trends and those project 
by CMIP simulations. In particular, the changes in the 
Walker circulation and associated winds, and changes in 
the equatorial mean SST pattern are inconsistent between 
recent observations and CMIP model projects. These 
diverse results are further complicated by the fact the cur-
rent climate model simulations of ENSO have significant 
common biases in the underlying processes and dynam-
ics (Bellenger et al. 2014; Vijayeta and Dommenget 2017 
hereafter VD18).

Some studies analysed the dynamical changes of ENSO 
in CMIP3 and CMIP5 model simulations (Kim and Jin 2011; 
Chen et al. 2015). Both studies analysed heat budget terms 
of tropical Pacific SST. Kim and Jin (2011) found significant 
change in elements of ENSO dynamics, that due to compet-
ing effects lead to no changes in the stability of ENSO. Chen 
et al. (2015) explored the dynamical elements that lead to 
changes in ENSO amplitude. They found that change in the 
thermocline and zonal advection feedback are the main driv-
ers in ENSO amplitude changes.

The combination of the above-mentioned studies on 
changes in ENSO variability, we find a fairly diverse pic-
ture, with inconsistencies between recent observations and 
models, between different model simulations and significant 
model biases in the ENSO dynamics. Given these uncertain-
ties, it is instructive to gain a better dynamical understanding 
of the changes in the ENSO variability. We therefore focus 
in this study on the changes in dynamics of the ENSO mode 
in future climate change simulations.

The analysis of the ENSO dynamics presented in this 
study will be based on the linear recharge oscillator (ReOsc) 
model (Jin 1997; Burgers et al. 2005; Jansen et al. 2009). 
The ReOsc model is a very effective way of describing the 
essential elements of the ENSO dynamics, such as the SST 
growth rate and the coupling to the SST to the thermocline 
depth, which represents the delayed negative feedback lead-
ing to the observed oscillating nature of ENSO. It can be 
used as an effective diagnostic tool to estimate these impor-
tant dynamical elements of ENSO based on the outputs of 
model simulations or observations. It can further be used to 
understand how changes in important dynamical aspects, 
such as the wind-SST feedback affect ENSO statistics. 
VD18 has illustrated in a recent study that the ReOsc model 

describes the ENSO dynamics and statistics in the diverse 
CMIP ensembles very well.

This study is organized as follows: the next section intro-
duces the CMIP model data, the ReOsc model equations 
and how it is used to estimate the ENSO dynamics. It also 
discusses some of the limitations in this approach. Section 3 
presents the main results of this study, starting with analysis 
of the thermocline depth, some simple ENSO statistics fol-
lowed by an analysis of the ReOsc dynamics, which is the 
main focus of this study. The section will be concluded with 
a look at possible changes in the predictability. The last sec-
tion provides a summary and discussion.

2  Data, models and methods

2.1  CMIP5 model simulations

The analysis is based on CMIP5 model simulation of the 
historical and the RCP8.5 scenario (Moss et al. 2010; Tay-
lor et al. 2012). We use all model simulations that have all 
variables available needed for this analysis. These are 25 
model simulations, see Table 1. The historical scenario over 
the period from 1881 to 1980 is considered as the control 
climate. The RCP8.5 from 2051 to 2100 is considered for 
the climate change period. All data is linearly detrended and 
anomalies relative to the mean seasonal cycle are defined.

2.2  The recharge oscillator model

The linear ENSO dynamics are evaluated on the basis of 
the ReOsc model from Burgers et al. (2005), Frauen and 
Dommenget (2010) and VD18. This model is given by two 
tendency equations of the NINO3 region (150°W–90°W, 
5°S–5°N) SST anomalies, T, and equatorial Pacific 
(130°E–80°W, 5°S–5°N) mean thermocline depth anoma-
lies, h:

The model parameters a11 and a22 represent the growth 
rate (or damping) of T and h, and the parameters a12 and a21 
the coupling between T and h. The two equations are forced 
by stochastic noise terms �T and �h . The parameters of the 
2-dimensinal model Eq. (1) are estimated for each CMIP5 
model simulation by multivariate linear regression the 
monthly mean tendencies of T and h against monthly mean 
T and h, respectively, following the approach in previous 
studies (Burgers et al. 2005; Jansen et al. 2009 and VD18).

(1)

dT(t)

dt
= a

11
T(t) + a

12
h(t) + �T

dh(t)

dt
= a

21
T(t) + a

22
h(t) + �h.
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The ReOsc model approach is different from the widely 
used Bjerknes stability (BJ) index or similar SST heat budget 
analysis (e.g. Jin et al. 2006; Kim and Jin 2011; Kim et al. 
2014; Chen et al. 2015). The terms of the BJ-index analysis 
can in most cases not be directly related to the parameters of 
the ReOsc, and it only discusses SST stability. In turn, the 
advantage of the ReOsc model is that the dynamical param-
eters of the model can be more directly linked to the ENSO 
variability statistics, such as standard deviation (stdv) of T, 
stdv(h), the power spectrum or coupling between T and h, by 
integrating the ReOsc model equations (VD18).

The residual of the linear regression fit for the ReOsc 
model can be interpreted, as the random noise forcings 
with the stdv of the residuals being the stdv of the noise 
forcings for the T and h equations ( �T and �h ). However, it 
also needs to be considered that this simple linear model 
fit does not fully represent the ENSO dynamics in the 
models. Mismatches between the true, more complex, 
dynamics and the ReOsc model fit will also project onto 
the residual noise terms of the model. VB18 did evaluate 
the goodness of fit to the CMIP model. They found that the 

residual noise terms fit well with the white noise assump-
tion, but they also do show some indications of the linear 
ReOsc model does not fully represents the ENSO dynam-
ics in the CMIP models, leading to some enhanced spread 
in the noise terms.

The thermocline depth (h) marks the depth at which 
the vertical temperature gradients are largest, see sketch in 
Fig. 1. It is often estimated on the basis of the depth of 20 °C 
isotherm (Z20), because this is a more robust approximation 
when the data is of coarse resolution (Meyers 1979; Kessler 
1990; Smith 1995; Yang and Wang 2009). Studies of future 
climate change simulations often used the maximum in the 
temperature gradients to estimate the thermocline depth 
(Vecchi and Soden 2007; Yeh et al. 2009). Previous studies 
with the ReOsc model used Z20 to estimate the thermocline 
depth (h) (Burgers et al. 2005; Jansen et al. 2009 and VD18).

However, this poses a problem when studying climate 
change, because a uniformly warming temperature pro-
file will not change the thermocline depth, but will lead to 
deeper Z20 (Yang and Wang 2009), see sketch in Fig. 1. This 
may potentially lead to artificial changes in the ReOsc model 
dynamics, even though nothing may have changed in the 
dynamics. To address this problem, we evaluate the ENSO 
dynamics and the ReOsc model parameters on the basis of 
both, a Z20 and a maximum gradient (maxgrad) estimate of 
the thermocline. Both estimates are based on high-resolution 
(0.1 m) spline fits of the CMIP5 simulation temperature pro-
files. In the following analysis, we will use the maxgrad 
estimate for the thermocline depth if not otherwise noted.

The growth rate of T (a11) in the ReOsc model can be 
split into an atmospheric (a11A) and oceanic contribution 

Table 1  List of CMIP5 models 
used in this study

The numbers in this table refer 
to the numbers used in the fig-
ures

Model

1. ACCESS1-0
2. ACCESS1-3
3. BNU-ESM
4. CESM1-BGC
5. CESM1-CAM5
6. CMCC-CM
7. CNRM-CM5
8. CSIRO-Mk3-6-0
9. CanESM2
10. GFDL-CM3
11. GFDL-ESM2G
12. GFDL-ESM2M
13. GISS-E2-H-CC
14. GISS-E2-H
15. GISS-E2-R-CC
16. GISS-E2-R
17. IPSL-CM5A-LR
18. IPSL-CM5A-MR
19. IPSL-CM5B-LR
20. MIROC-ESM-CHEM
21. MIROC-ESM
22. MIROC5
23. MRI-CGCM3
24. NorESM1-ME
25. bcc-csm1-1
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Fig. 1  Sketch of idealised temperature profiles, Z20 and thermocline 
depth (maxgrad). The blue and red temperature profiles are identical 
with the only difference of a constant off set of 3 °C. The thermocline 
depth is the same for both profiles, but Z20 is deeper in the warmer 
profile
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(a11O) following the approach of (Frauen and Dommenget 
2010 and VD18):

The atmospheric growth rate of T (a
11A ) is estimated as a 

linear combination of atmospheric heat flux feedback (cfT), 
the wind-stress (Bjerknes) feedback (cτT):

c�T is the linear regression of zonal wind stress, �x , in the 
central Pacific region (160°E–140°W, 6°S–6°N) and T, and 
cfT is the linear regression of net atmospheric heat flux in the 
NINO3 region and T. λ is a positive free coupling parameter 
and � the ocean mixed layer depth that are assumed to be 
constant for all simulations (VD18). a

11O is estimated as the 
residual growth rate:

VD18 provided a proof of concept, illustrating this ReOsc 
model approach. They found, for instance, that the ReOsc 
model is capable in reproducing the CMIP model simula-
tions stdv(T) with correlation of 0.99 by integrating Eq. (1) 
with the estimated model parameters. Similarly, other impor-
tant statistics, such as stdv(h), the cross correlation between 
T and h or the power spectral slope (see section below for a 
definition) are also reproduced very well (correlation > 0.8) 
with this approach.

However, the model does have some limitations and it 
does make some simplifications. Some notable limitations 
are, as discussed in VD18: The power spectral distribution 
of variance is wider in the CMIP model simulations than it 
is simulated in the ReOsc fitted to the CMIP models. The 
cross-correlation between T and h is slightly overestimated 
in the fitted ReOsc models, and, as mentioned above, the 
residual noise forcing terms are not just white noise forcings, 
but do partly reflect more complex dynamics that are not 
captured by this linear ReOsc model approach.

Important simplifications of the ReOsc model: It is a lin-
ear approach and therefore does not consider non-linearity in 
the ENSO dynamics or state dependent noise forcings. Fur-
ther, the model describes ENSO in a one-dimensional SST 
index (T), therefore neglecting ENSO diversity in respect to 
regional differences in the ENSO amplitudes (e.g., central 
Pacific vs. east Pacific events).

2.3  Estimation of sensitivities with the recharge 
oscillator model

The sensitivity of ENSO statistics to changes in the ReOsc 
model parameters can be estimated by integrating the ReOsc 
model with white noise forcing (see also VD18). We there-
fore integrate the ReOsc model for 1000 years with all 

(2)a
11

= a
11A + a

11O.

(3)a
11A = a

12
�C�T +

CfT

�
.

(4)a
11O = a

11
− a

11A.

parameters set to the mean values of the historical simula-
tions. Based on the resulting T and h time series we compute 
the control ENSO statistics. In a second integration, we use 
the same white noise forcings, but change one or all of the 
ReOsc model parameters to the mean values of the RCP8.5 
simulations. Based on the resulting T and h time series we 
compute the RCP8.5 ENSO statistics, and the differences to 
the control simulations provides us an estimate of the sensi-
tivity to the parameter changes. Given that we used the same 
white noise forcings in both integrations, these estimates 
have no statistical uncertainties from the integrations.

2.4  The power spectral slope

The spectral power slope is a non-dimensional characteristic 
of a power spectrum that effectively captures the time scale 
behaviour. Following the approach of VD18 we estimated 
the slope (in log-scale) from 1 to 7 years period to capture 
the range of the power spectrum in which the variance is 
strongly increasing with period (decreasing with frequency) 
and where the ENSO variance peaks. Simulations with a 
more pronounced interannual peak tend to have steeper 
slopes (more negative), and those with a less pronounce 
interannual peak or a shift towards low-frequencies tend to 
have a less steep slope (less negative). The spectral power 
slope therefore captures changes in the time scale behaviour 
or periodicity relatively well. This is in particular true for a 
damped oscillation as described by the ReOsc model.

We tested this approach in a wide range of different CMIP 
simulations and ReOsc models (Eq. 1) integrated with dif-
ferent parameters and found this metric to be the best fit 
to describe variations of the peak of the power spectrum. 
An increased (less step or more flat) slope in these simula-
tions corresponds, in statistical average, to a shift in the peak 
towards lower frequencies. In turn, a decreased (stepper or 
less flat) corresponds, in statistical average, to a shift in the 
peak towards higher frequencies. However, it needs to be 
noted that it is only one parameter describing a power spec-
trum that has more than one degree of freedom. Therefore, 
changes in the power spectrum can occur that are no capture 
by this parameter.

2.5  Estimates of uncertainties

In the following analysis, we will estimate uncertainties in 
the ENSO statistics and the ReOsc model parameters in two 
ways: First, we will provide a confidence interval for the 
statistical significance in changes from the historical to the 
RCP8.5 simulation for each individual model. Second, we 
will provide a confidence interval for changes in the ensem-
ble mean values.

The 95% confidence interval for all parameters based 
on regressions (e.g., ReOsc model parameters and power 
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spectral slope), are estimated for each individual model for 
the 50 years period of the RCP8.5 simulations. However, 
instead of presenting the confidence interval for each indi-
vidual simulation we only show the mean 95% confidence 
interval of the ensemble in reference to the one-to-one line 
(e.g. see Figs. 5, 6, 7). This effectively illustrates if indi-
vidual model parameters have changed from the historical 
to the RCP8.5 simulations. For uncertainties in the standard 
deviations, we followed a Chi squared distribution approach 
and assumed that the confidence interval is proportional to 
the expectation value (e.g. see Fig. 5a). The ensemble mean 
uncertainties are presented by 95% confidence interval of a 
Students t test, assuming that each simulation represents an 
independent sample (e.g., see red line in Fig. 5a).

3  Results

3.1  Thermocline depth changes

The thermocline depth is one of the two dynamical variables 
of the ReOsc model, representing a proxy of upper ocean 
heat content. Mean state changes in the thermocline depth 
can affect the dynamics of ENSO, but potentially will also 
affect the estimation of the thermocline depth by Z20 (see 
sketch in Fig. 1). It is therefore a good starting point for the 
analysis of the dynamical changes of ENSO.

Figure 2 shows the mean temperature profiles of the equa-
torial Pacific for the historical and RCP8.5 CMIP5 ensemble 
mean together with thermocline depth estimates. The tem-
perature profile warms on all levels, but the warming is not 
uniform with depth, see Fig. 2b. The strongest warming is 
at the surface and the least amount of warming is very close 
to the mean thermocline depth of the historical simulations, 

followed by stronger warming in deeper layers. This pro-
file is very different from what may have been expected 
from a transient or equilibrium warming (e.g. Manabe et al. 
1991; Rhein et al. 2013; Yoshimori et al. 2016) It suggests a 
dynamical adjustment of the upper equatorial Pacific, which 
leads to reduced warming at the thermocline depth.

The thermocline depth becomes shallower in the RCP85 
scenario, which is due to the fast warming at the surface 
layers. This is consistent with the results of previous studies 
of simulated future thermocline depth changes (Vecchi and 
Soden 2007; Yeh et al. 2009; Kim and Jin 2011; Chen et al. 
2015). In turn, Z20 does deepen, but not as much as one 
may have expected from a homogenous warming. This is 
due to the minimum of warming at the thermocline, which 
counteracts the deepening of Z20.

The different behaviour of the thermocline depth and Z20 
is also reflected in the regional changes of the equatorial 
Pacific, see Fig. 3. The thermocline depth decreases rela-
tively uniformly, but more in the central and west Pacific, 
and less in the east Pacific. Z20 shows a fairly different 
behaviour. It strongly deepens in the eastern Pacific and 
slightly along the equator. Off the equator Z20 becomes 
shallower, in contrast to what you would expect from a 
warming temperature profile. Upper layers (above Z20) of 
the off-equatorial central Pacific cool (not shown), leading 
to a shallowing of Z20. This suggests a strong dynamical 
rearrangement of the upper equatorial Pacific: warm upper 
ocean off-equatorial water shifts into the equatorial region.

These changes in the thermocline depth also affect the 
cross-correlation between T and h (Fig. 4). In the historical 
CMIP5 simulations T and h(Z20) have a very clear out-of-
phase relation, with a strong positive correlation when h 
leads T and a roughly equally strong negative correlation 
when T leads h at about the same lead time of 5–8 months 
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Fig. 2  a CMIP5 equatorial Pacific mean (150°E–80°W, 5°S–5°N) 
temperature profiles of the historical (blue) and RCP8.5 (red) sce-
nario. Estimates of the thermocline depth (maxgrad) and Z20 are 

shown as well. b Difference in the temperature profiles. The dotted 
lines mark the 95% confidence interval
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(Fig.  4a). This does change significantly in the future 
RCP8.5 simulations for Z20 estimates. The cross-correlation 
shifts upwards between the lags − 12 to + 8 months, leading 
to a now significant positive instantaneous (lag = 0) correla-
tion (Fig. 4a). It further leads to a change of the peak cross-
correlation at positive lead times, with a shift to smaller 
lead times and an overall increase in correlation at the peak.

These changes are qualitatively similar in the maxgrad 
estimates, but are much weaker. A notable difference to the 

Z20 estimate can be seen in the mean cross-correlation of 
the historical simulations. The maxgrad estimates has a quite 
significant negative instantaneous (lag = 0) cross-correlation 
and the cross-correlation peak for negative lead times (T 
leads h) is much larger than the one for positive lead times.

The different characteristics of the thermocline depth esti-
mates as discussed in this subsection indicate that they can 
potentially affect the ReOsc model parameters and therefore 
the dynamics of ENSO as estimates by the ReOsc model. 

Fig. 3  Mean changes in a the 
thermocline depth (maxgrad) 
and b Z20 for CMIP RCP8.5 
minus historical simulations 
over the equatorial Pacific 
domain. c Is the difference of 
b–a. Negative values indicate 
shallower thermocline depth in 
the RCP8.5 simulations. Values 
are in m
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values and the grey shaded area mark the standard error for a t-test. 

The red lines are the RCP8.5 ensemble mean values. Positive lag 
times indicate the time evolution of h leads T 
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Fig. 5  Statistics of ENSO variability: a stdv(T), b power spectrum of 
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spectral slope of T variability, d stdv(h) for the Z20 estimate and e 
stdv(h) for the maxgrad estimate. Each blue number marks a differ-
ent model (see Table 1). Ensemble mean values in a, c, d and e are 
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dence interval. The shaded area around the one-to-one line in a, c, 

d and e mark the mean 95% confidence interval for the individual 
models (see Sect. 2 for details). The t values for the ensemble mean 
differences are shown in lower left corner of a, c, d and e. An abso-
lute t value > 2.0 passes the 95% confidence interval. Supplemental 
Table S1 lists all model values shown in a, c, d and e. The two black 
vertical lines in b mark the frequency interval over which the spectral 
slopes have been estimated
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Fig. 6  ReOsc model parameters: left column for the Z20 estimate and 
right column for the maxgrad estimates. Growth rate of T (a11; upper 
row), coupling of T to h (a12; second row from top), coupling of h 

to T (a21; third row from top) and growth rate of h (a11; lowest row). 
Details as in Fig. 5. Supplemental Table S2–3 lists all model values 
shown in this figure
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We will therefore, in the following analysis section, consider 
both thermocline estimates.

3.2  Changes in statistics of ENSO variability

Before we start analysing changes in the ENSO dynamics, 
it is instructive to look at changes in the overall statistics of 
ENSO variability. Similar analysis has been done in previous 
studies, and we therefore will keep this discussion short to 
focus more on the dynamical changes.

Figure 5 shows statistics of T and h variability. In addi-
tion to the standard deviation of T, Z20 and the thermocline 
depth, an estimate of the spectral power of T and its slope 
is shown (see Sect. 2 for details). The standard deviation of 
T (Fig. 5a) is essentially unchanged in most models. How-
ever, some models do show quite significant changes (e.g., 
models 14 or 5).

The power spectrum of T varies from model to model, but 
the historical and RCP8.5 scenario spectra are nearly identi-
cal in ensemble mean, with some reduction in variance on 
the lower frequencies in the RCP8.5 scenario (Fig. 5b). The 
reduction in decadal variability in the RCP8.5 scenario may 
be related to the missing external forcings such as volcanoes 
or variations in aerosols (Maher et al. 2014). The reduction 
in decadal variance is reflected in slightly, but statistically 
not significant, flatter slope in the interannual variability 
(see Fig. 5b, c). This suggests no significant change in the 
periodicity of ENSO is present in the CMIP5 simulations. 
Some models, however, do show some changes in opposite 
directions (e.g., models 5 and 22; Fig. 5c).

The standard deviation of h slightly decreases for both, 
the Z20 and the maxgrad estimates. Indeed, the changes in 
standard deviation of h highly correlate within the CMIP5 
ensemble (correlation 0.9 between the Z20 and maxgrad 

estimates). However, the changes are more significant in the 
Z20 estimate. Overall, the variability statistics show very 
little changes, neither in the ensemble mean nor for most 
individual models. Despite missing changes in the ENSO 
statistics, we cannot conclude that the dynamics of ENSO 
have not changed, as we will illustrate in the following 
subsections.

3.3  Changes in the recharge oscillator dynamics

The ReOsc model parameters give a good first guess esti-
mate of the linear ENSO dynamics. Thus, changes in these 
dynamics provide a good first guess of changes in the linear 
ENSO dynamics. Figure 6 shows the ReOsc model param-
eters and how they change for both thermocline depth esti-
mates (Z20 and maxgrad). A comparison of the Z20 and 
maxgrad estimates of the ReOsc model highlights some 
significant difference in the mean parameters (see Fig. 6 
left vs. right column). In the historical simulations, the 
Z20 estimates of the ReOsc model finds a negative growth 
rate (damping; a11) for all models, whereas the maxgrad 
estimates finds values centred around zero. Somewhat the 
opposite holds for the growth rates of h. It is beyond the 
scope of this study to further explore these differences in the 
mean ENSO dynamics resulting from the Z20 and maxgrad 
estimates. However, future studies should address the impli-
cations of such differences for the understanding of ENSO 
dynamics and the role of the thermocline estimates.

Focussing on the changes in the parameters, we can find 
a significant decrease in the growth rate of T (a11; Fig. 6a, 
b). This is more strongly so in the Z20 estimate, but still 
present in the maxgrad estimates too. In the Z20 estimates 
it decreases in every single model simulation, which for 
most models suggest an increase in the damping (negative 
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growth rate) of T by more than a 100%. This is most strik-
ing considering that increased damping of T should reduce 
stdv(T), but this is not simulated in the CMIP5 simulations 
(Fig. 5a). This apparent mismatch will be discussed further 
in Sect. 2.4, when we discuss the sensitivity of the ENSO 
statistics to the dynamical changes.

The coupling of T to h (a12; Fig. 6c, d) increases signifi-
cantly in nearly all models and in the ensemble mean. This 
indicates that T is becoming more sensitive to variations 
in h. This may be a reflection of the shallower and more 
pronounced thermocline depth (maxgrad) in the RCP85 sce-
nario (Fig. 2a). In turn, the coupling of h to T (a21; Fig. 6e, 
f) also increases slightly. However, this change suggests that 
h is becoming less sensitive to T, since a21 is negative. This 
change is more pronounced in the maxgrad estimate of h. 
The growth rate of h (a22; Fig. 6c, d) increases significantly 
for the Z20 estimates and slightly, but not statistically sig-
nificant, for the maxgrad estimates. This increase in growth 
rate would suggest an increase in stdv(h), but the CMIP5 
simulations show a small decrease (Fig. 5c, d).

In addition, to the ReOsc model parameters, the strength 
of the noise forcings can change [ �T  and �h in Eq. (1)]. 
However, changes in stdv(�T ) and stdv(�h ) are small and not 
statistically significant (not shown). The changes in both 
stdv(�T ) and stdv(�h ), even though not strong, are highly 
correlated (0.9) in the CMIP5 ensemble members between 
the Z20 and maxgrad estimates. This suggest that changes in 
the forcing strength of Z20 and the thermocline (maxgrad) 
behave similarly.

The growth rate of T (a11) can be split into a number 
of atmospheric and ocean processes to further gain insight 
in the changes of ENSO dynamics [see Eqs. (2–4)]. The 

atmospheric feedbacks are a combination of the net heat 
flux feedback (cfT) and the wind-stress (Bjerknes) feedback 
(cτT). Both of these feedbacks show significant changes, see 
Fig. 7. The atmospheric net heat flux feedback becomes 
more negative in every single model simulation with an 
average increase in the negative feedback for each model by 
a factor of 3 (Fig. 7). The change in cfT is consistent with the 
increased overall damping of T (a11). This change in cfT is 
consistent with the increased thermodynamical damping in 
the BJ-index analysis of Kim and Jin (2011). The Bjerknes 
feedback (cτT) increases slightly (~ 15%), but still statistically 
significant. This increase counteracts the increased overall 
damping of T (a11).

The combined contribution of cfT and cτT to the overall 
damping of T (a11) can be summarized to an atmospheric 
damping of T (a11a) and the residual contribution to a11 as 
an oceanic feedback [a11o; see Eq. (4)]. Figure 8 shows the 
distribution of a11 and a11o in the historical and RCP8.5 
scenario simulations. The atmospheric feedbacks (a11a) are 
positive in all model simulations and become even more so 
in the RCP8.5 scenario. The increase in a11a illustrates that 
the slight increase in cτT overcompensates the decrease in 
cfT. Similarly, but with revised sign, the oceanic feedbacks 
(a11o) are negative in all model simulations and become even 
more so in the RCP8.5 scenario, which, combined with the 
changes in a11a, gives a shift in the distribution to the upper 
left in Fig. 8. The overall increased damping of T (a11) is a 
combination of increased ocean and atmospheric net heat 
flux damping and counteracting increased positive Bjerknes 
feedback.

In summary, we found stronger and more significant 
changes in the ENSO dynamics (Figs. 4, 6, 7, 8) than in 
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the statistics of the ENSO variability (Fig. 5). All of these 
dynamical changes are qualitatively similar in the Z20 and 
maxgrad estimates of h, but in most of them are more pro-
nounced in the Z20 estimates. The qualitative agreement in 
the Z20 and maxgrad estimates suggests that these results 
are robust, independent of how the thermocline depth varia-
bility (h) is estimated. The significant changes in the dynam-
ics in the absence of equally significant changes in the sta-
tistics of the ENSO variability suggests that the changes in 
the dynamics must have counteracting effects on the ENSO 
variability. This will be explored further in the following 
subsection.

3.4  Sensitivity of ENSO variability to the changes 
in the dynamics

We can use the ReOsc model to evaluate how the changes 
in the ENSO dynamics would affect the ENSO variability 

(see Sect. 2 for details). Figure 9 shows the sensitivities for 
stdv(T), stdv(h), the slope of the T power spectrum and the 
cross-correlation between T and h. Here we focus on the Z20 
estimates and do not discuss the maxgrad estimates, as they 
are qualitatively similar.

We can first of all note that the changes in the statistics 
of the ENSO variability in the CMIP5 simulations are very 
well captured by the integrations of the ReOsc model with 
changes in the parameters, for all four statistics of the ENSO 
variability (compare CMIP5 with all in Fig. 9a–c). Thus, the 
ReOsc model is a good approximation of how these changes 
in ENSO statistics relate to changes in the ENSO dynamics.

The sensitivity to the individual ReOsc parameters shows 
some clear counteracting effects for the different ENSO sta-
tistics. The stdv(T) has overall very little change, resulting 
from a compensation of decreased variability due to the 
increased damping of T (a11) and an increased variability 
due to the decreased damping of h (a22; Fig. 9a). The stdv(h) 

Fig. 9  Changes in statistics of ENSO variability due to changes in 
the ReOsc parameters: a differences in stdv(T) vs. stdv(h), b differ-
ences in stdv(T) vs. spectral slope of T and c the differences in cross-
correlation of T vs. h. CMIP5 model ensemble mean changes are 
marked by “CMIP” and changes in the ReOsc model integrations due 

to changes in one or all parameters are marked by the coloured mark-
ers or lines. Positive changes in all statistics imply larger values in the 
RCP8.5 simulations relative to the historical. Positive lag times in c 
indicate the time evolution of h leads T 
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behaves similarly, but with opposite signs for sensitivities in 
a11 and a22. In addition, the increased coupling of T to h and, 
to a lesser extent, the decreased coupling of h to T reduces 
the variability in h (Fig. 9a).

The sensitivity of the power spectral slope of T variabil-
ity is anti-correlated to the sensitivity of stdv(T) (Fig. 9b), 
suggesting that increased T variability goes along with a 
more strongly negative slope in the power spectrum of T. 
The latter is, in statistical average, an indication of a more 
pronounced interannual variability (peak). Subsequently, the 
decreased damping of h increased the interannual variability 
(peak), and in turn the increased damping of T decreased 
it, combined leading to essentially no change in the power 
spectral slope.

The cross-correlation between T and h is mostly shifting 
upwards between the lags − 10 to + 8 months (Fig. 4a). This 
difference in cross-correlation is well captured by the ReOsc 
model integration (Fig. 9c). It results from a combination of 
changes in mostly a11 and a22. The increased damping in T 
essentially reduces the cross-correlation between T and h, 
since the changes (Fig. 9c) are roughly the opposite of the 
mean cross-correlation (Fig. 4a). The decreased damping 
in h is somewhat opposing the effect of increased damping 
in T for longer lag/lead times. However, the instantaneous 
(lag = 0) correlation is increased by both changes in a11 and 
a22. This results in the future RCP8.5 cross-correlation being 
now much more in-phase, rather than a clear out-of-phase 
relation.

The changes in the coupling of T to h have a somewhat 
weaker, but still relevant impact on the cross-correlation. 
They show a somewhat higher frequency oscillation (red 
line in Fig. 9c) than the overall cross-correlation (Fig. 4a) 
with the same signs for shorter lag/lead times as the overall 
cross-correlation. This suggests a shift of the peaks of the 
overall cross-correlation (at about − 8 and + 6 months; see 
Fig. 4a) towards shorter lag/lead times (as seen in Fig. 4a). 
The changes in coupling of h to T (a21), in turn, contribute 
very little to the changes in the cross-correlation.

3.5  Sensitivity of ENSO predictability 
to the changes in the dynamics

The changes of the ENSO dynamics we described above 
have the potential to affect the predictability of ENSO. The 
CMIP5 simulations do not give any indication of predict-
ability of ENSO or changes thereof, as the ensemble does 
not include forecast runs. We can use the ReOsc model 
integrations to approximate the predictability of ENSO in 
the CMIP5 simulations based on the model parameters and 
changes thereof. This, however, should only be considered 
with some caution, as it does not fully reflect the dynamics 
and predictability of ENSO in the CMIP models. Thus, it 
is an outlook to motivate further studies on change in the 

predictability of ENSO. Again, we will focus on the Z20 
estimates and do not discuss the maxgrad estimates, as they 
are qualitatively similar but weaker.

We conduct a long ReOsc model control integration with 
the mean model parameters from the CMIP5 historical simu-
lations. We then start forecast runs at 400 different initial 
conditions from the control run, each being 5 years apart 
from each other. In the forecast runs the noise forcings of 
the ReOsc model is chosen to be different from the control 
run, creating a new independent realization of the T to h 
evolution. The forecast skill is evaluated by the correlation 
between the control and forecast run at different lead times, 
see Fig. 10a. We repeat these simulations with the same 
noise values, but with the mean model parameters from the 
CMIP5 RCP8.5 simulations (Fig. 10a). The difference in 
the forecast correlation skill between the historical and the 
RCP8.5 simulation result purely from the difference in the 
model parameters. Since the noise forcings are identical in 
these runs there are no statistical uncertainties in the differ-
ences between the runs resulting from the random noise.

We can first of all note that the correlation skill scores of 
the CMIP5 historical runs are decreasing relatively fast, if 
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compared to published ENSO forecast skills (Jin et al. 2008). 
This mostly reflects the limited skill of the ReOsc model, but 
does not suggest that the CMIP5 have lower ENSO predict-
ability than state-of-the-art forecast models. We therefore 
have to take these results with a grain of caution, as the 
true ENSO predictability in the CMIP5 model simulations 
is likely to be significantly larger than presented in these 
ReOsc model runs.

The RCP8.5 runs show a clear change in forecast correla-
tion skill relative to the historical run, with larger forecast 
skill for shorter (< 10 months) lead times and smaller fore-
cast skill for longer lead times (Fig. 10a, b). We can evaluate 
the sensitivity of these changes in the forecast skills to the 
individual ReOsc model parameters by repeating these simu-
lations with the same noise values, but with the mean model 
parameters from the CMIP5 historical simulations and a sin-
gle parameter from the RCP8.5 simulations (Fig. 10b).

The changes in the parameters a11 and a22 have the larg-
est impact on the predictability. The increased damping of 
T (a11) results into decreased forecast correlation skill on all 
lead times. In turn, the decreased damping of h (a22) results 
into increased forecast correlation skill on all lead times, 
mostly compensating the changes from a11. The changes in 
the coupling of T to h (a12) most closely follow the overall 
change in the correlation skill (Fig. 10b), suggesting that 
they contribute significantly to the overall shift in forecast 
skill.

4  Summary and discussion

In this study, we analysed the changes in the linear ReOsc 
model dynamics, as they are simulated in CMIP5 simula-
tions for the RCP8.5 scenario relative to the historical con-
trol simulation. The primary focus in this study was on the 
growth rate of T and h, the coupling between the two and 
the noise forcing driving the ENSO variability. We further 
focused on the feedbacks controlling the growth rate of T, 
namely the Bjerknes wind-SST, the atmospheric net heat 
flux and the residual oceanic feedback. The CMIP5 ensem-
ble shows fairly significant changes in nearly all of these 
important elements of the ENSO dynamics, despite the fact 
that the ensemble shows very little changes in the overall 
ENSO variability strength or periodicity (time scale behav-
iour of the power spectrum).

The growth rate of T weakens in nearly all simulations, 
reflecting more strongly damped ENSO dynamics. This 
results from a combination of changes in the main feed-
backs. The atmospheric net heat flux feedbacks become 
more strongly damped in all simulations, supporting the 
overall decrease in growth rate of T. However, this is over-
compensated by an increased Bjerknes wind-SST in most 
simulations. The increased Bjerknes feedback leads to an 

increased growth rate of T, which in combination with the 
also increased negative net heat flux feedbacks still leads to 
an overall atmospheric growth rate change that is positive. 
The residual oceanic feedbacks are becoming more negative 
and therefore lead to the overall decrease in growth rate of T.

Other notable changes in the ENSO dynamics are an 
increase in the growth rate of h in most simulations, lead-
ing to a less damped h variability. The coupling of T to h 
is also increasing in most simulations, reflecting a T vari-
ability that is more strongly influenced by variation in h. 
In turn, the coupling of h to T is becoming weaker (less 
negative), indicating that h becomes slightly less sensitive 
to T. The strength in noise forcings on T or h shows little to 
no changes.

The ReOsc model framework allows us to estimate the 
sensitivity of ENSO variability to these dynamical changes. 
It can also explain why there is essentially no changes in 
ENSO variability, while there are significant changes in the 
ENSO dynamics. The strength of the ENSO variability (T) 
is not changing due to compensating effects of the decrease 
in growth rate of T that is concurrent with an increase in 
growth rate of h. Similarly, the periodicity or time scale 
behaviour of ENSO is not changing due to compensating 
effects. The decreases in the growth rates of T alone, would 
reduce the interannual ENSO oscillations, which would be 
reflected in an increase in the spectral slope (slope flattens). 
This is, however, compensated by the increase in the growth 
rates of h and by the increased coupling of T to h, leading 
effectively to no changes in spectral slope.

It is difficult to compare these findings in changes of 
ENSO dynamics with previous studies based on the BJ-
index stability or SST heat budget analysis, due to the inher-
ently different approaches taken and due to the different set 
of models analysed (Kim and Jin 2011; Chen et al. 2015). 
However, we think that there is some agreement between 
these studies. Reported changes in atmospheric feedbacks 
(cfT and cτT) and mean thermocline depth are largely consist-
ent. Compensating effects in different dynamics leading to 
no overall changes in stability found in Kim and Jin (2011) 
appears to be consistent with our findings. Further studies 
should, however, combine the ReOsc modelling approach 
with the BJ-index stability analysis to gain better under-
standing of the process controlling the ENSO dynamics in 
a changing climate.

While the above described dynamical changes may effec-
tively not change the overall ENSO variability statistics, 
they can potentially affect the predictability of ENSO. The 
CMIP5 ensemble does not allow to directly evaluate the pre-
dictability of ENSO, but the ReOsc model framework can be 
used to get some approximation of predictability changes in 
the CMIP5 simulations. The ReOsc model analysis indicates 
that the predictability of ENSO increases for shorter lead 
times (< 9 months), but decreases on longer lead times. This 
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is due to reduced predictability by the decreased growth rate 
of T, and an increased predictability due to the increased 
growth rate of h. The shift towards higher predictability at 
shorter lead times and lower predictability longer lead times 
is linked to the increased coupling strength of T to h. This 
is also reflected in the changes in cross-correlation between 
T and h, which shifts to shorter lead times when h leads T. 
However, we have to keep in mind that we used the ReOsc 
model as surrogate model of the CMIP simulations. Further, 
more in-depth studies using CMIP models are required to 
address the predictability changes in more detail.

The CMIP5 ensemble also shows significant changes in 
the mean thermocline depth, which are likely to contribute 
to the dynamical changes found. Here it does matter whether 
thermocline depth is estimated by Z20 isotherm or by 
maxgrad. The latter should be more appropriate for climate 
change studies, as it is not affected by the mean temperature 
of the profile, but it does reflect the ‘true’ thermocline depth. 
The changes in temperature profile show a remarkable mini-
mum change at the depth that coincides with the historical 
mean thermocline depth. This suggest a significant dynami-
cal adjustment of the upper equatorial Pacific that is not just 
a reflection of a transient warming with more warming at the 
surface and less warming in deeper layers.

It is beyond the scope of this study to fully analysis why 
we observe the dynamical changes described above. How-
ever, some indications may be given from the analysis pre-
sented here. The increased negative net heat flux feedback 
and the increased positive Bjerknes feedback are both likely 
to be related to the El Niño like mean state changes. At least 
this would be consistent with some previous findings: first 
it was shown before that the CMIP5 ensemble has a mean 
cold tongue bias in the SST and too weak net heat flux and 
positive Bjerknes feedback (Bellenger et al. 2014; VB18). 
It was further shown that these two feedbacks are indeed 
related to the mean sst biases (Lloyd et al. 2012; Bayr et al. 
2018). If we further consider that the CMIP5 ensemble has 
an El Niño like mean state changes in the RCP8.5 scenario 
(Collins et al. 2010; Liu et al. 2005), then the mean SST 
in the RCP8.5 scenarios is effectively reducing the CMIP5 
ensemble mean state cold tongue biases. Subsequently, the 
negative net heat flux and the positive Bjerknes feedback are 
both expected to increase too.

The increase in the growth rate of the thermocline, the 
reduced overall variability of h and the changes in the cou-
pling between T and h is likely to partly result from the shal-
lower mean thermocline depth with a sharper temperature 
gradient in the RCP8.5 scenario. Since thermocline depth 
is a positive definite number, it is likely that its variabil-
ity is proportional to its mean value, if no other dynamical 
changes occur. Thus, a shallower mean h would go along 
with a reduced variability of h. The sharper temperature pro-
file in the RCP scenario can potentially support less damped 

variability of h, and therefore supports an increased growth 
rate. However, the picture is more complex with different 
behaviours in the mean Z20 and maxgrad estimates, with 
additional different regional changes and other dynamical 
changes occurring.

The linear ReOsc model approach presented here, 
neglects non-linearities in the ENSO dynamics and there-
fore cannot make any statements on how non-linear ENSO 
dynamics may change in the future climate change. It fur-
ther also does not consider regional shifts in ENSO, such 
as shifts towards more east or central Pacific events. How-
ever, non-linear dynamics or regional patterns of ENSO 
are important aspects of ENSO dynamics and studies have 
shown that they can potentially change (Yeh et al. 2009; 
Boucharel et al. 2011; Cai et al. 2015a). It is therefore inter-
esting to see how this ReOsc modelling approach could be 
used to address such problems. This will be addressed in 
future studies.

Finally, we have to give some caveat note about this 
CMIP5 ensemble result.

Although, we find highly significant changes in the 
dynamics of ENSO in the CMIP5 ensemble this does not 
necessarily imply that the real world will respond in the 
same way. The CMIP5 ensemble has substantial common 
biases in the ENSO dynamics discussed here and in its mean 
state (Bellenger et al. 2014; VB18). Furthermore, the CMIP5 
ensemble does have a significant spread in its mean state, the 
mean ENSO dynamics and how it responses in the RCP8.5 
scenario. Combined, these common model biases and spread 
undermine the reliability of these results. It also illustrates 
that ENSO in a climate system with slightly different mean 
states and slightly different mean ENSO dynamics, as simu-
lated in individual CMIP5 models, can respond differently 
to climate change. It thus requires better understanding of 
the underlying processes and resolving the common model 
bias issues to gain more confidence about future changes in 
ENSO dynamics.
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