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Abstract
Future climate is typically projected using multi-model ensembles, but the ensemble mean is unlikely to be optimal if 
models’ skill at reproducing historical climate is not considered. Moreover, individual climate models are not independent. 
Here, we examine the interplay between the benefits of optimising an ensemble for the performance of its mean and the the 
effect this has on ensemble spread as an uncertainty estimate. Using future Australian precipitation change as a case study, 
we perform optimal subset selection based on present-day precipitation, sea surface temperature and/or 500 hPa eastward 
wind climatologies. We use either one, two, or all three variables as predictors. Out-of-sample projection skill is assessed 
using a model-as-truth approach (rather than observations). For multiple variables, multi-objective optimisation is used to 
obtain Pareto-optimal subsets (an ensemble of model subsets), to gauge the uncertainty in optimisation arising from the 
multiple constraints. We find that the spread of climate model subset averages typically under-represents the true projection 
uncertainty (overconfidence), but that the situation can be significantly improved using mixture distributions for uncertainty 
estimation. The single best predictor, present-day precipitation, gives the most accurate results but is still overconfident—a 
consequence of calibrating too specifically. It is only when all three constraints are used that projection skill is improved and 
overconfidence is eliminated, but at the cost of a poorer best estimate relative to one predictor. We thus identify an important 
trade-off between accuracy and precision, depending on the number of predictors, which is likely relevant for any subset 
selection or weighting strategy.

Keywords Multi-objective optimisation · Pareto optimality · Constraint · Multi-model ensemble · Prediction · Model-as-
truth experiments

1 Introduction

Multi-model ensembles such as that from the Climate Model 
Intercomparison Project phase 5 (CMIP5) (Taylor et al. 
2012) are an indispensable tool for projections of climate 
change. The CMIP5 archive is often referred to as an ensem-
ble of opportunity given that its composition is determined 
by the ability of international modelling centers to contrib-
ute to them (Knutti et al. 2010a; Tebaldi and Knutti 2007). 
There is a lack of systematic sampling of the uncertainties 
affecting their projections, and the multi-model ensemble 
thus does not necessarily span what we think the true uncer-
tainty range of projections is. Due to a lack of agreed-on 
alternatives, the equally-weighted multi-model mean is most 
often used as a best estimate if a set of climate models is 
available (Knutti et al. 2010a). Even though this ensem-
ble mean usually outperforms most or all of the individual 
models due to the cancelling of non-systematic errors, this 

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0038 2-019-04690 -8) contains 
supplementary material, which is available to authorized users.

 * Nadja Herger 
 hergernadja@gmail.com

1 Climate Change Research Centre, ARC Centre of Excellence 
for Climate System Science, UNSW Australia, Sydney, 
NSW 2052, Australia

2 Climate Change Research Centre, ARC Centre of Excellence 
for Climate Extremes, UNSW Australia, Sydney, NSW 2052, 
Australia

3 Institute for Atmospheric and Climate Science, ETH Zurich, 
Zurich, Switzerland

4 School of Mathematics and Statistics, UNSW Australia, 
Sydney, NSW 2052, Australia

5 ARC Centre of Excellence for Climate Extremes, UNSW 
Australia, Sydney, NSW 2052, Australia

6 ARC Centre of Excellence for Mathematical and Statistical 
Frontiers, UNSW Australia, Sydney, NSW 2052, Australia

http://orcid.org/0000-0002-7971-9020
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-019-04690-8&domain=pdf
https://doi.org/10.1007/s00382-019-04690-8


1582 N. Herger et al.

1 3

one-model-one-vote approach has increasingly been criti-
cised (Knutti et al. 2010b). Different research groups share 
ideas, literature, parameterisations, observational datasets 
for model evaluation, and sometimes even code of whole 
model components. Individual model simulations therefore 
do not represent truly independent estimates (Abramowitz 
2010). A failure to address this issue can likely lead to over-
confidence in our results (Knutti et al. 2010a), biases in the 
ensemble mean and variance, and potentially spurious cor-
relations in the archive due to model replication (Caldwell 
et al. 2014; Sanderson et al. 2015b).

Different approaches have recently been proposed to 
account for these issues by either weighting or subsampling 
climate models (Bishop and Abramowitz 2013; Sanderson 
et al. 2015a, 2017; Leduc et al. 2016; Annan and Hargreaves 
2017; Knutti et al. 2017; Herger et al. 2018). Most of these 
approaches optimise a single cost function, resulting in a sin-
gle best weighted ensemble or subset. However, often mul-
tiple sets of variables or functional forms of cost functions 
can plausibly be useful for constraining the future climate 
response. This is also the case for future Australian pre-
cipitation change, which is characterised by notable model 
disagreement and is potentially influenced by a large range 
of climate processes. The CMIP5 models do not agree on the 
sign and magnitude of precipitation change over Australia 
(IPCC 2013), which makes it an interesting case study for us.

Despite being imperfect approximations of reality (Box 
and Draper 1987), climate models can be used to con-
strain future projections based on how well they agree with 
observations in the instrumental period. A recent paper by 
Langenbrunner and Neelin (2017) (hereafter referred to as 
LN17) applied this idea to constrain end-of-century Califor-
nia wet season precipitation change, which is characterised 
by large inter-model disagreement. Multi-objective optimi-
sation was conducted based on the CMIP5 models’ histori-
cal performance in tropical Pacific sea surface temperature, 
upper level zonal winds in the midlatitude Pacific, and Cali-
fornia precipitation. Using multi-objective optimisation 
(optimising simultaneously on three separate cost functions), 
they identified a set of Pareto-optimal subsets (an ensemble 
of subset means), which built the basis for the constraint. 
The set was found to narrow the range of projected Califor-
nia precipitation, increasing confidence in a positive mean 
precipitation change.

Multi-objective optimisation is a step towards more gen-
eralised calibration. In the related emergent constraints lit-
erature, calibration is most commonly implemented based on 
a single cost function. The aim is to identify a well-observed 
metric in the current climate that correlates well with end-
of-century projections of a variable of interest across differ-
ent climate models to end up with more reliable projections 
(Boé et al. 2009; Knutti et al. 2017). However, often multiple 
relevant metrics should be minimised or maximised at the 

same time (rather than their sum) to constrain a given target 
projection. In such cases, multi-objective optimisation can 
be used to quantify performance trade-offs between those 
predictors. Multiple observational constraints can be used 
to reduce the large disagreement across models.

Apart from identifying a decreased ensemble spread of 
projected California precipitation, no out-of-sample testing 
was conducted by LN17. In-sample skill, calculated based 
on the same time period in which the calibration was per-
formed, does not guarantee out-of-sample skill for projected 
climate change. One way to account for this is the use of 
model-as-truth experiments (Sanderson et al. 2017; Knutti 
et al. 2017; Abramowitz and Bishop 2015). Such experi-
ments give us pseudo-observations in the historical period 
and for the projections in form of a model considered as the 
“truth”. This allows us to test our ensemble subselection 
approach in a period where we have no real observations.

Moreover, in LN17, the sensitivity of the constraint to the 
number of predictors was not tested. Sanderson et al. (2017) 
highlight the difficulty of choosing the metrics most suitable 
to constrain a particular projection. Compared to targeted 
metrics, multi-variate metrics were found to be more robust 
to changes in the spatial domain. Borodina et al. (2017) stud-
ied future changes in high-latitude temperature variability 
by finding relationships with the models’ present-day per-
formance in sea-ice related metrics. Following the emergent 
constraint procedure, a reduction in spread compared to the 
full ensemble was found for many metrics. A robust and 
physically meaningful constraint was found when combin-
ing multiple metrics across all seasons (a so-called “broad 
constraint”). Having such an aggregated constraint leads to 
higher probability of capturing the relevant processes for 
the future climate. Narrow constraints, which only con-
sider one metric or season, were found to potentially lead 
to overfitting. In contrast to LN17, Sanderson et al. (2017) 
and Borodina et al. (2017) both considered multiple predic-
tors but combined them in a single cost function rather than 
conducting multi-objective optimisation.

Here, we build on the idea of LN17 by assessing the 
potential of Pareto-optimal estimates to constrain future 
Australian precipitation change, which is characterised by 
large model disagreement. Different to LN17, no observa-
tional constraint is provided as the goal is not to show actual 
projections for Australia precipitation but rather to explore 
the potential and caveats of using a model subset-selection 
approach to narrow constraints of future climate change 
and how it affects our uncertainty estimates. The constraint 
is based on models’ ability to appropriately simulate pre-
sent-day total precipitation in Australia, Pacific sea surface 
temperature, and high latitude 500 hPa eastward wind cli-
matologies of a given model as “truth”. Those predictors 
are chosen based on their physical connection to Australian 
precipitation. We use either one, two, or all three variables 
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as predictor(s). When using more than one predictor, we 
apply the concept of Pareto optimality, which results in an 
ensemble of model subsets. Out-of-sample skill of the cali-
brated subsets is then tested using a range of model-as-truth 
experiments. As the spread of an ensemble consisting of 
subset averages is typically too narrow (overconfidence), we 
apply mixture distributions for better uncertainty estimation. 
Skill is then assessed by comparing the calibrated subsets to 
the individual CMIP5 models and by studying the accuracy 
and precision of the projected change.

2  Brief overview

Our goal is to examine the potential of constraining future 
Australian precipitation change using climate model sub-
sets, which are optimally chosen based on each models’ 
historical performance. More specifically, we are trying 
to address the following questions: is a model subset 
that performs well in-sample still skillful out-of-sample? 
How much real skill can be gained from optimal subset 

selection relative to random sampling or the full ensem-
ble? How sensitive are the results to the chosen number 
of predictors and what those predictors are? How can we 
interpret the spread of an ensemble consisting of subset 
averages?

Different from LN17, no observations and reanalyses 
were used to come up with a best possible way to constrain 
end-of-century Australian precipitation change. This is a 
methodological study first and foremost in which the out-
of-sample testing of calibration approaches is encouraged, 
and multi-objective optimisation is explored. However, 
assessing the full extent of projected changes that apply-
ing this approach has to Australian precipitation change is 
a potential future study.

We use the flowchart shown in Fig. 1 to guide us through 
the process. Generally, the process can be split into three 
parts: data preparation (grey); calibrating ensembles in-sam-
ple based on historical performance (green); and applying 
those subsets out-of-sample to climate change projections 
(blue). The whole study is based on model-as-truth, or “per-
fect model” experiments which are introduced in Sect. 3.2.

Calculate four metrics to identify if / where the Pareto-optimal subsets (2D, 3D) or optimal subset

Generate weighted mixture distributions for ensembles② and③ in the 2D and 3D cases.

Calculate the end-of-century precipitation change (2071-2100 minus 1981-2010) at every grid
cell in Australia for:① Full ensemble,② Optimal subset / Pareto-optimal subsets,③ Random
ensemble.

Calculate the historical RMSE between the climatology
of the truth model and different subsets for precip./
SST/U500. We either consider one variable (1D case),
two variables (2D case) or all three variables (3D case)
as predictors.

Find the optimal subset (1D case)
or Pareto-optimal subsets (2D
and 3D cases) based on the
individual models and model
combinations.

Identify domains with high correlations between the historical
climatology (1981-2010) of precip./SST/U500 at each grid cell and
average precip. change (2071-2100 minus 1981-2010) over
continental Australia across 16 CMIP5 models.

Select one model per
modelling institution
for the model-as-truth
experiments.

OUT OF SAMPLE

IN SAMPLE

PREPARATION

Sec
. 3.2 Sec

. 3.3

Sec
. 3.4

Sec
. 3.4

Sec
. 3.5

Sec
. 3.5

.1

Sec
. 3.5

.2

Fig. 1  Flowchart of the data preparation, in-sample and out-of-sample steps. More information about the specific steps can be found in the sec-
tions referred to in the small white boxes
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Section 3 contains a description of the method used. 
This includes an introduction to the model data and vari-
ables used throughout this study (Sect. 3.1), model-as-truth 
experiments (Sect. 3.2), and the identification of the relevant 
spatial domains for each variable separately (Sect. 3.3). We 
also discuss how we calibrate ensembles in-sample for a 
varying number of predictors (Sect. 3.4) before we apply 
them to constrain future Australian precipitation change in 
Sect. 3.5. This is also where we discuss the use of mixture 
distributions to obtain a more meaningful estimate of ensem-
ble spreads and the metrics used to assess skill. In Sect. 4 we 
present the results, explained in terms of both accuracy and 
precision. Finally, Sect. 5 contains a discussion and Sect. 6 
the conclusions.

3  Method

3.1  Model data

We use 16 CMIP5 model runs, each from a different 
modelling institution, which cover the historical period 
(1981–2010; RCP8.5 after 2005) and the RCP8.5 future 
projection scenario (2071–2100); see Table S1 in the Sup-
plement. We motivate why one model per modelling institu-
tion was chosen in Sect. 3.2. Our study is based on absolute 
values of gridded monthly total precipitation (Precip.; model 
variable: pr), sea surface temperature (SST; model variable: 
tos), and 500 hPa eastward wind (U500; model variable: 
u500). Historical climatologies (1981–2010) of those vari-
ables were used to constrain end-of-century precipitation 
change (2071–2100 relative to 1981–2010) over Australia. 
The model output was regridded to a common 2.5◦ × 2.5◦ 
grid using bilinear interpolation. Maps of historical clima-
tologies for those three variables are presented in the Sup-
plementary Fig. S1.

Figure 2 shows the end-of-century precipitation change 
based on the periods 2071–2100 and 1981–2010 for the 
multi-model mean of 16 CMIP5 models. Stippling indicates 
that at least 80% of the models agree on the sign of the 
change. The multi-model mean projects a general decrease 
in total precipitation for Australia, but it is evident that there 
is no strong model agreement (no stippling). When looking 
at the maps of end-of-century precipitation change for the 
individual models (Supplementary Fig. S2) the extent of this 
disagreement becomes evident. No observational products 
were used for this study as model-as-truth experiments were 
conducted instead (see Sect. 3.2).

3.2  Model‑as‑truth experiment

As we will explain in later sections, model subsets are 
selected based on the models’ historical performance. To 

test whether a given subset selection strategy is skillful for 
projections (when no observations are available), we conduct 
a series of model-as-truth experiments (often also referred 
to as perfect model tests). Such experiments are sometimes 
used in climate science (e.g., Abramowitz and Bishop 2015; 
Knutti et al. 2017; Sanderson et al. 2017) to ensure that a 
particular pattern found in-sample—where we are calibrat-
ing our ensemble—persists into the future, which we refer 
to as out-of-sample. Cross-validation could be considered as 
the equivalent technique in statistics. For the model-as-truth 
experiments, one simulation per modelling institution is 
used as the “truth”, as if it were observed data. The calibra-
tion is then conducted on the remaining 15 models based on 
the in-sample period 1981–2010 and a given set of variables 
(see Sect. 3.4). The skill of the calibrated ensemble can sub-
sequently be tested out-of-sample given that “pseudo-obser-
vations” are now available until the end of the 21st century 
(see Sect. 3.5). This experiment is repeated for all models as 
truth and results are averaged across all experiments. We use 
one simulation per modelling institution from the original 
ensemble as initial condition members from one model, or 
simulations from closely related model versions of the same 
institution (Knutti et al. 2013; Boé 2018) are likely to be 
much closer to each other than to a real observational prod-
uct. This step is required if we want our results to be trans-
ferable to a real world situation. This is consistent with sug-
gestions by Leduc et al. (2016) and Sanderson et al. (2017). 
Note, that model-as-truth experiments should be considered 
to be a necessary but not sufficient condition for true out-
of-sample skill. One reason being that shared assumptions 
in models (which adds to the dependence issue) are likely 
not detected by assessing model-model similarity relative to 
model-observation similarity during the model pre-selection 
process. Other studies account for model dependence by 

Fig. 2  End-of-century precipitation change (2071–2100 relative to 
1981–2010) averaged across all CMIP5 models. Stippling indicates 
that at least 80% of the models agree on the sign of the precipitation 
change
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downweighting models that have similar biases (Sanderson 
et al. 2015b; Knutti et al. 2017; Lorenz et al. 2018). Another 
aspect to be aware of when using model-as-truth experi-
ments is that a climate model could potentially simulate cli-
mate states that may not be observable in the real world. So, 
calibrating towards such a truth might be erroneous. While 
model-as-truth experiments are useful out-of-sample tests 
for long-term climate change, it could in some cases be suf-
ficient to make use of long observational records. This is 
particularly the case when the intended application of the 
weighting or subset selection approach is not characterised 
by significantly different forcing conditions compared to 
what has been observed in the past. The issue with such an 
approach is the limited availability of long observational 
records (for most variables and regions) and the quality of 
those observational products might change over time. In any 
case, ensuring that the out-of-sample test mimics as well as 
possible to intended application is essential.

3.3  Identifying the spatial domains

We identify a spatial domain separately for each variable 
which is used to constrain future precipitation change over 
Australia (grey box in Fig. 1). Precipitation, sea surface tem-
perature and 500 hPa eastward wind fields are potentially 
relevant for future precipitation change over the Australian 
domain. Grid point correlation maps across models as shown 
in Fig. 3 were used to help select the appropriate spatial 
domains. The idea is shown in Fig. 3a for a grid cell over 
Australia (marker X in b). There are 16 markers, one for each 
climate model. A high correlation between historical CMIP5 
model precipitation climatology at this grid cell and end-of-
century precipitation change averaged over Australia (38.75◦

S–11.25◦ S and 111.25◦E–153.75◦ E; orange rectangle on the 
maps) is shown. In Fig. 3b we repeat this idea for every grid 
cell separately. This is equivalent to what LN17 did in their 
Fig. 4a, b. Here, significant Pearson correlation coefficients 

Fig. 3  a Correlation across climate models between the historical 
precipitation climatology at the grid cell highlighted with a black 
cross in b and future precipitation change averaged over Australia. 
Correlation is computed across 16 CMIP5 models (black circular 
markers). The remaining panels show correlation maps used to iden-
tify the spatial domains for precipitation (b), sea surface tempera-
ture (c), and 500 hPa eastward wind (d). Correlations are calculated 

between historical climatologies at every grid cell and end-of-century 
precipitation change averaged over the Australian continent (orange 
box). As in a, Pearson correlation coefficients are computed across 16 
different models. Stippling is used to highlight significant correlations 
(p < 0.05). Black dashed boxes show the identified domains which 
are used during the calibration process of our subsets
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(p < 0.05) are highlighted with stippling. Generally, regions 
of high (positive or negative) correlations are our domains 
of interest. For precipitation, we decide to use continental 
Australia as our domain. This is the same spatial domain 
as we use later on for precipitation change. Grid point cor-
relation maps are also created for the other two variables. 
For sea surface temperature (Fig. 3c) we select the whole 
Pacific (48.75◦S–48.75◦ N and 141.25◦E–281.25◦ E; black 
dashed rectangle) and for 500 hPa eastward wind (3d) we 
decide to use the high latitude band in the Southern Ocean as 
our domain (71.25◦S–43.75◦ S and 1.25◦E–358.75◦ E; black 
dashed rectangle).

Note that statistical relationships found between a pre-
sent-day metric and projections with some plausible under-
lying physical mechanism are more likely to prove robust, 
whereas the relationship is more likely to be spurious for 
those with a lack of physical explanation. Perkins and Pit-
man (2009) found that omitting weak climate models in 
terms of simulating the observed probability density func-
tion of precipitation helps to better explain future climate 
changes over Australia. It leads to changes in the projected 
patterns of precipitation change and the frequency of rainfall 
(Pitman and Perkins 2008). They argue that a model that is 
unable to simulate the present day climate is not suited to 
simulate the future, as it likely cannot simulate the driv-
ers and associated feedbacks appropriately. This argument 
motivates the use of Australian precipitation climatology as 
a predictor in our study. Using Pacific SSTs as a predictor 
for Australian precipitation change is reasonable, given that 

the correlation map (Fig. 3c) shows a pattern that resembles 
the El Niño-Southern Oscillation (ENSO). The relation-
ship between ENSO and Australian climate in both models 
and observations has been studied extensively (e.g., Power 
et al. 2006; King et al. 2015). ENSO drives rainfall changes 
over Australia, with predominantly dry conditions during El 
Niño years and wet conditions during La Niña years. Finally, 
we have chosen the 500 hPa eastward wind field south of 
Australia to incorporate the effect of changing wind speed 
and position on future Australian precipitation change. The 
Southern Annular Mode describes variability in the westerly 
jet that circles Antarctica, dominating the middle to higher 
latitudes of the Southern Hemisphere. A change in the posi-
tion of this westerly wind belt can influence Australia’s rain-
fall variability (Risbey et al. 2009).

Despite deciding on these domains based on correlation 
maps (as is commonly done in empirical prediction studies) 
with the potential of spurious correlations, we have reason-
able confidence they are appropriate, given that there are 
physical links present (as described above). Other methods 
would likely come up with slightly different domains. Here, 
the goal is not to come up with the best possible constraint 
of Australian precipitation change, but rather to introduce a 
novel method based on Pareto-optimal subsets and model-
as-truth experiments that can help us to quantify how pre-
diction accuracy and precision are affected by calibration 
approaches (such as subset selection or model weighting). 
We generally choose large domains to avoid the risk of over-
fitting and thus making the result sensitive to the ensemble 

Fig. 4  a Three dimensional 
space of RMSE values for total 
precipitation, SST and U500 
calculated from the individual 
models and model averages 
with the CESM1-CAM5 
(r1i1p1) model as truth. Results 
are based on historical clima-
tologies (1981–2010) using 
the spatial domains found in 
Sect. 3.3. Different markers are 
explained in the legend together 
with the subset size K and the 
number of models/subsets in 
square brackets. b The three 
axes separately. Low (left) and 
high (right) normalised RMSE 
values of the individual CMIP5 
models and subsets for the 3D 
case are displayed. Colours are 
equivalent to what has been 
used in a 
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at hand, as motivated by LN17. If the goal was to constrain 
future Australian precipitation change with real observa-
tions and provide a best estimate of the change that can be 
expected, then a more rigorous approach of domain and vari-
able selection could and should be considered. However, this 
is not the aim of this study and identifying the best possible 
variables and corresponding spatial domains should be the 
focus of a separate study.

3.4  Calibrating ensembles in‑sample

After identifying a spatial domain for each predictor vari-
able, we start the ensemble calibration process using the 
model-as-truth setup (green box in Fig. 1). Similar to Herger 
et al. (2018), we calculate the historical performance in 
terms of area-weighted root mean square error (RMSE) 
between the climatology (1981–2010) of the truth model 
and different models/subsets for each variable. The area-
weighted RMSE of each variable is calculated over the 
domains identified in the previous step. This is done sepa-
rately for each model-as-truth.

3.4.1  Results based on one variable (1D case)

We first consider the case where we try to constrain precipi-
tation change using each of the three predictor variables sep-
arately. We refer to this as the 1D case. For a given model-
as-truth, we compute the historical RMSE between that truth 
and all 15 individual CMIP5 model estimates based on the 
domain identified in Fig. 3 and Sect. 3.3. In addition to the 
performance of the individual models and the multi-model 
mean of those 15 models, we compute performance of the 
multi-model mean of subsets, with subset sizes K = 2,...,14 
and ensure that the RMSE between the subset average and 
the truth is minimised. So, for each subset size 2,...,14 we 
obtain a single best subset. This is done using the state-of-
the-art mathematical programming solver Gurobi (Gurobi 
2015). Rather than going through all possible combinations 
of K models, computing the RMSE for each combination 
and then finding the one with the smallest RMSE compared 
to the truth, Gurobi finds a much quicker solution using a 
branch-and-cut algorithm (Mitchell 2002). We refer to this 
as a mixed integer quadratic programming problem because 
the decisions are binary (model simulation is part of the sub-
set or not), the cost function is quadratic, and the constraint 
is linear. This idea of optimising a single cost function is 
very similar to what has been done by Herger et al. (2018). 
Indeed, we use the same code to find the subsets as in their 
study.

The optimal subset is identified as the subset (or indi-
vidual model) with the overall smallest RMSE compared to 
the truth across all subset sizes for that particular variable 
and spatial domain. Evidently, a different optimal subset will 

likely be found for each model-as-truth and variable. Given 
that we identified three variables to be potentially impor-
tant for constraining end-of-century Australian precipitation 
change, we end up with three different 1D cases (one per 
variable). By finding the model subset of a given size that 
minimises the RMSE compared to a model-as-truth, we end 
up with an optimal subset typically consisting of models that 
are more independent of one another. The reason for this is 
that regional biases are more likely to differ within the sub-
set, and hence cancel in the subset mean if the models are 
more independent and therefore closer to a random sample 
(Herger et al. 2018).

3.4.2  Results based on two or three variables (2D and 3D 
cases)

We can now expand on the idea discussed above by add-
ing one (2D case) or two additional variables (3D case) as 
constraints in the subset selection process. We consider the 
2D case first.

Suppose we want to use the models’ ability to reproduce 
precipitation and sea surface temperature climatology fields 
to constrain future Australian precipitation change. There are 
at least two approaches to doing this. The first is to combine 
the skill metrics (in our case RMSE of both variables) into a 
single weighted cost function. The problem with this is that 
we would have to come up with an arbitrary normalisation 
factor or weighting of the individual terms in this cost func-
tion. Moreover, it is challenging to separately investigate the 
uncertainties coming from those two variables. An alter-
native option is multi-objective optimisation (Deb 2014). 
Rather than combining those two objective functions into 
one, we optimise for both at the same time, and consider 
the trade-off between the two variables. What we end up 
with is not a single best solution, but rather an ensemble of 
“good” solutions (Pareto 1906). This ensemble of solutions 
is referred to as the Pareto front consisting of a non-inferior 
set of solutions. A subset (or individual model) is part of 
the Pareto front if it is impossible to improve on one vari-
able (e.g., reduce precipitation RMSE) without making the 
performance of the other variable worse (e.g., increase SST 
RMSE).

For the 2D case, there are three combinations of two vari-
ables. We first illustrate the idea of multi-objective optimi-
sation using historical precipitation and sea surface tem-
perature as predictors (see Fig. S3). The procedure for the 
other two variable combinations is equivalent. For a given 
model-as-truth and variable, we first compute area-weighted 
RMSE values of 15 individual CMIP5 models and the multi-
model mean consisting of the 15 models for the relevant 
spatial domain, as for the 1D case. In addition to that, we 
find the best subset based on precipitation climatology for 
subset sizes 2,...,14 using Gurobi (one subset per size) and 
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compute the corresponding RMSE values for sea surface 
temperature in order to obtain a dot in an imaginary two-
dimensional performance space. We then repeat this pro-
cedure the other way around by calibrating on sea surface 
temperature fields and calculating RMSE values of those 13 
subsets (K = 2,...,14) for precipitation. As we only find the 
single best subset for each subset size (K = 2,...,14), we also 
add 1000 subsets of randomly selected ensemble members 
(with replacement) per subset size to potentially sample the 
Pareto front better. This is slightly different from what LN17 
did. In their study, they calculated all possible combinations 
of models for subset sizes one through five, rather than just 
the single best combination per size. They decided not to go 
to any larger subset sizes due to the computational cost of 
calculating all possible combinations for larger sizes. We 
avoid this problem by using the solver Gurobi.

Once the two-dimensional space with RMSE values of 
precipitation climatology (for the Australian domain) against 
the truth on one axis and RMSE of sea surface temperature 
climatology (over the Pacific) on the other axis is populated 
with models and model averages, the next step is to iden-
tify the Pareto front. We identify the Pareto front based on 
the data points mentioned above (first five legend entries in 
Fig. S3) using a Python implementation of the Simple Cull 
algorithm. The number of subsets that are part of the Pareto 
front changes depending on the model-as-truth and variable 
combination. On average, approx. 11 subsets were found to 
be part of the Pareto front with an average subset size of 4 
climate models (see Fig. S4b–d). We refer to the subsets part 
of the Pareto front as Pareto-optimal subsets (Pareto-optimal 
subensembles in LN17).

The procedure for the 3D case is similar to the 2D case, 
just with an additional variable on the third axis, see Fig. 4a. 
This space is filled with RMSE values of the 15 individual 
models (K = 1; black markers), the multi-model mean (K 
= 15; black cross), 13 subsets calibrated on precipitation 
(K = 2,...,14; blue dots), 13 subsets calibrated on sea sur-
face temperature (K = 2,...,14; green dots) and 13 subsets 
calibrated on 500 hPa eastward wind (K = 2,...,14; purple 
dots). In addition to that, we add 1000 subsets consisting of 
randomly chosen ensemble members for each subset size 
between 2 and 14 (with replacement; grey dots). The algo-
rithm which finds the subsets that are part of the Pareto front 
uses all the above mentioned points in the cloud (first six 
legend entries) as an input. We do not expect the readers to 
see every single point in this cloud but have chosen this 3D 
graph as an illustration to show which models and model 
subsets go into the algorithm. The resulting Pareto-optimal 
subsets in this three-dimensional space are highlighted with 
red circular markers in Fig. 4a. Note that a perfect model or 
subset mean would be positioned at the origin of this space 
(closest corner with respect to the viewer). For the 3D case, 
around 50 subset means are part of the Pareto front across all 

models-as-truth with an average subset size of 4.7 (see Fig. 
S4a). In LN17, only the three-dimensional Pareto front was 
used for constraining Californian precipitation change. Here 
we are interested in comparing the Pareto-optimal subsets of 
the 3D case with the subsets of the 2D case and the optimal 
subset of the 1D case.

Figure 4b confirms that the subsets that make up the 
Pareto front behave as expected in the 3D case: there is a 
performance trade-off between the three variables. The three 
horizontal strips represent normalised in-sample RMSE 
values, sorted from low (left) to high (right), for the three 
predictor variables using the CESM1-CAM5 model as the 
truth as an example. Those strips are essentially equivalent 
to the three axes in the 3D space shown in a. Blue line seg-
ments indicate subsets (K = 2,...,14) calibrated on precipi-
tation, green is used for subsets calibrated on sea surface 
temperature and purple for subsets calibrated on 500 hPa 
eastward wind. Black line segments are used for individual 
CMIP5 models, whereas the thick black cross shows the 
multi-model mean (K = 15). Random subsets are shown 
in grey. Thicker and slightly longer line segments indicate 
average RMSE values for the respective colours. Lastly, red 
crosses are used to highlight ensemble members which are 
part of the Pareto front. Equivalent Pareto-optimal subsets 
are connected across the three strips using thin red lines.

As expected, the subset with the overall best performance 
(lowest RMSE) for precipitation is a subset calibrated on 
precipitation (blue line segment furthest to the left). The 
same is true for sea surface temperature and 500 hPa east-
ward wind (green/purple line segment is furthest to the left). 
Also unsurprisingly, the subset averages clearly show bet-
ter performance compared to the individual models (Knutti 
et al. 2010b).

3.5  Applying the calibrated ensembles to future 
precipitation change

In the previous section we identified the optimal subset in 
the 1D case and Pareto-optimal subsets in the 2D and 3D 
cases based on historical performance (in terms of in-sample 
RMSE). As a next step (blue box in Fig. 1), we calculate 
end-of-century precipitation change (2071–2100 relative to 
1981–2010) at every grid cell in Australia using the subsets 
identified in the previous sections. For each model as truth, 
our goal is to assess out-of-sample skill of the following 
three ensembles:

Full ensemble This ensemble consists of the original 15 
CMIP5 models.

Optimal subset and Pareto-optimal subsets These con-
sist of subsets or individual models which are part of the 
Pareto front (2D and 3D cases) or the optimal subset (1D). 
The subset sizes (and number of subsets) differ depending 
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on the model considered as truth and variable(s) used as 
predictor(s).

Random ensemble In the 1D case, the random ensemble 
consists of 1000 randomly chosen subsets (with replace-
ment) with the same ensemble size as the optimal subset. 
For the 2D and 3D cases, we have 1000 randomly chosen 
subsets for each subset size that is part of the Pareto front, 
chosen so that the relative occurrence of ensemble sizes is 
equivalent to that in the Pareto-optimal subsets. Note that 
this random ensemble is different from the random ensemble 
(grey dots) shown in Fig. 4, which was generated to more 
densely populate the cloud in-sample.

LN17 assessed the skill of their Pareto-optimal subsets 
through comparison of the spread of subset means with 
those of the original CMIP5 models (full ensemble in our 
case) and the means of all subensembles (all possible sub-
sets of sizes K = 1–5). This is however not a fair compari-
son given that a distribution of ensemble averages (as is the 
case for the Pareto-optimal subsets) will be narrower than 
a distribution which contains individual models (e.g., the 
“Original CMIP5 models” and more importantly, the “All 
subensembles” case in LN17) as a result of regional dif-
ferences and internal variability being reduced more when 
averaging over models. We have overcome this problem by 
generating the random ensemble, which consists of the same 
relative occurrence of subset sizes as the Pareto-optimal sub-
sets. This enables us to make a fair comparison between the 
Pareto-optimal subsets and the random ensemble, without 
having to deal with the issue of varying subset sizes.

However, a comparison between those two distribu-
tions and the distribution of the full ensemble (or a sca-
lar truth) still cannot be made due to the cancellation of 
errors when averaging model patterns together (Knutti et al. 
2010b; Annan and Hargreaves 2011; Pincus et al. 2008). The 
spread of an ensemble consisting of subset averages would 
therefore typically under-represent the true uncertainty, so 
this interpretation represents overconfidence. An improved 

uncertainty estimation is achieved using weighted mixture 
distributions, as described below.

3.5.1  Mixture distributions

As mentioned above, the subsets part of the Pareto front in 
the 2D and 3D cases (and therefore the random ensemble) 
consist of subset averages of varying subset sizes. Naively 
interpreting the spread of an ensemble consisting of subset 
means as uncertainty (as shown with the blue distribution in 
Fig. 5a) is not appropriate due to the reduced variability that 
is a consequence of the averaging process. We therefore need 
to come up with a way to make them comparable. This trans-
formation is done using a weighted mixture distribution.

As an example, assume that our Pareto front consists of 
five Pareto-optimal subsets, each with a different subset size 
(e.g., K = 10, 4, 7, 9, 5 members). As a first step, we fit a 
Gaussian distribution to estimates of precipitation change (at 
a given grid cell) separately to each of those five subsets. We 
end up with five Gaussian distributions with different means 
and standard deviations (black distributions in Fig. 5a). We 
assign different mixture weights w

i
 to those Gaussian dis-

tributions (often referred to as mixture components) which 
are proportional to the subset size (in the example above: 
w
i
 = 0.29, 0.11, 0.20, 0.26, 0.14). From those five distribu-

tions we can generate a weighted mixture distribution (red 
distribution in Fig. 5a) by randomly sampling estimates of 
precipitation change from each distribution. This random 
sampling is done proportional to the weights w

i
 . So, the 

higher w
i
 , the higher the chance that we sample from the 

corresponding Gaussian distribution to obtain values for the 
mixture distribution. We have now successfully transformed 
an ensemble of subset averages into a single mixture distri-
bution, which can now be compared to a scalar truth.

This procedure is then repeated for each grid cell in 
Australia (120 in our case), each model-as-truth, and each 
ensemble of model subsets.

Fig. 5  a Schematic of the concept of a mixture distribution (red) 
based on five Gaussian distributions (black) with their respective 
weights w

i
 . The blue distribution is simply the distribution of the 

mean of draws from each black distribution. b Three out of the four 
metrics used in this study to assess skill. A: absolute error, B: ensem-

ble spread, C: overconfidence bias. Note that the length of arrow A 
correctly depicts the error metric whereas this is not the case for the 
arrows B and C, which are only there for illustration. We refer to 
Sect. 3.5.2 for more details on those metrics
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3.5.2  Metrics used to assess skill

The following four metrics are used to compare out-of-
sample results across 1D, 2D and 3D cases and the three 
ensembles listed above (see Fig. 5b and last step in Fig. 1):

Absolute error For any given grid cell, we calculate 
the absolute distance between the truth and the ensemble 
mean, and then average across models-as-truth to gauge 
how close the distribution is from the truth. We refer to 
this as accuracy. The goal is of course to maximise accu-
racy. See arrow A in Fig. 5b for a graphical representation 
of this metric.

Ensemble spread For any given grid cell and model-as-
truth, we calculate the standard deviation of the precipita-
tion change distribution to get an estimate of the ensemble 
spread. This is often referred to as precision. We are aim-
ing to increase precision by reducing the ensemble spread 
(without being overconfident). See arrow B in Fig. 5b for a 
graphical representation of this metric.

Overconfidence bias For a given grid cell, we compute the 
10th and 90th percentiles of the distribution. We then count 
how often the truth is within this range across all models-
as-truth. We would of course expect the truth to be on aver-
age 80% of the time within the 10th–90th percentile range 
if the truth was a random draw from the same distribution. 
This metric helps us determine if our distribution is over-
confident, if the truth is less than 80% of the time within the 
10th–90th percentile range. This statistical concept is also 
called coverage. Arrows C in Fig. 5b illustrates this idea.

Ranked probability skill score The ranked probability 
skill score (RPSS) is a metric often used in weather forecast-
ing, but not commonly used in climate science (Weigel et al. 
2007). It is essentially a combination of accuracy and preci-
sion. We define the RPSS between two distributions d1 and 
d2 as RPSS = 1 − RPS

d1
∕RPS

d2
 . Here, RPS

d1
 is defined as 

the integral of the squared difference (and not area) between 
the empirical cumulative distribution (ECDF) of d1 and the 
scalar truth (whose ECDF is a step-function). An example 
is shown in Fig. S5 in the supplementary information. RPS 
therefore penalises distributions with low precision and 
accuracy. A negative RPSS value indicates higher skill of d2 
compared to d1. Higher skill of d1 relative to d2 means that 
RPS

d1
< RPS

d2
 , which leads to positive RPSS values. RPSS 

values in the results section are shown as maps of Australia 
averaged across all 16 models-as-truth experiments.

In the following results section, maps of these metrics are 
shown to compare the full ensemble consisting of 15 indi-
vidual models with (Pareto-)optimal subsets (after convert-
ing them to mixture distributions). Results with the random 
ensemble as the reference product are very similar and are 
thus not shown. Note however that this similarity in results 
is not guaranteed for different uses cases or ensembles and 
we therefore recommend to perform a comparison to random 

sampling when applying this approach to a different situa-
tions (or when using real observations).

4  Results

As discussed in the previous section, the skill of different 
ensembles is assessed based on four different metrics. For 
each metric, we first present a summary figure comparing 
the different cases with varying numbers of predictors (3D, 
2D and 1D cases) and then show maps of Australia for three 
of those cases to investigate the spatial pattern of the con-
straint. All results are based on end-of-century Australian 
precipitation change predicted via the ensembles described 
at the beginning of Sect. 3.5. For ensembles consisting of 
model subsets, we first transform the distribution consisting 
of subset averages into a weighted mixture distribution, as 
described in Sect. 3.5.1. The goal is to investigate if multi-
objective optimisation leads to more accurate (reduced bias) 
and precise (reduced variance) probabilistic projections 
compared to single-objective optimisation. Those two terms 
were introduced in the previous section.

4.1  Accuracy

We first consider how close the means of Pareto-optimal 
subsets (3D and 2D) or optimal subset (1D) are on aver-
age from the truth compared to the full ensemble. As noted 
above, this metric is closely related to accuracy. Here and in 
the remaining results section when comparing two ensem-
bles A and B, we refer to improvement in B relative to A if 
((metric

A
− metric

B
)∕metric

A
) > 0 , where metric

A
 is a meas-

ure of the skill of ensemble A compared to a given truth.
Figure 6a shows a plot of the mean absolute error (MAE) 

improvement for the 3D case in blue, the 2D cases in green 
and the 1D cases in magenta. Values shown are area-aver-
ages across Australia and all model-as-truth experiments. 
The variables used as predictors are given at the bottom of 
the plot. We observe the largest MAE improvement for his-
torical precipitation as single predictor. The other two vari-
ables do not seem to be of large importance. The general 
decrease in MAE improvement when moving towards more 
predicting variables makes sense as we include “worse” vari-
ables (see the relatively low skill of SST and U500 alone and 
their combination in the 2D case).

The remaining panels in Fig. 6 show maps of Australia 
for the 3D case (b), the 2D case with precipitation and SST 
as predictors in (c) and precipitation as the single predictor 
in (d). Red colour indicates improved skill of the Pareto-
optimal subsets (3D or 2D cases) or optimal subset (1D) 
compared to the full ensemble. Results are averages across 
all model-as-truth experiments. It supports what has already 
been shown in (a). The fewer variables we use to constrain 
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future precipitation change, the closer we are on average to 
the truth. In the 3D case, we observe the largest improve-
ment in the Northern part of Western Australia. This area 
of highest improvement expands further east when remov-
ing additional predictors. Results are very similar if we use 
the random ensembles as the reference instead of the full 
ensemble (not shown). Results for the remaining variable 
combinations are shown in Fig. S6.

4.2  Precision

As motivated earlier, the spread of a distribution consist-
ing of subset averages cannot be interpreted as a measure 
of uncertainty. Such a distribution would automatically be 
too narrow due to the effect of cancellation of errors. The 
mixture model (as explained in Sect. 3.5.1) was introduced 
as a way to overcome this problem. A comparison between 
the ensemble spread of those two distributions and the full 
ensemble is shown in Fig. 7a. Light colours are used for the 
distribution of the subset averages and darker colours for the 
mixture distributions. The 1D case only shows results based 
on the “corrected” spread (via mixture model) as a spread 

estimate cannot be obtained from a single optimal subset 
mean. Figure 7a shows a general decrease in spread relative 
to the full ensemble for all cases. As expected, the ensemble 
spread consisting of subset averages is significantly smaller 
than the spread of the mixture distribution. The largest 
reduction in spread occurs in the 1D case. This is also illus-
trated by the maps in Fig. 7b–d, where blue colours indicate 
a decrease in spread of the underlying mixture distribution 
compared to the full ensemble. The spread decreases with 
fewer predictors. We observe a mean decrease in spread of 
up to 20% in the case when precipitation acts as the sole 
predictor for future precipitation change. Overall, the areas 
of largest spread decrease are consistent with areas of larg-
est improvement in mean absolute error. We also generally 
observe a more homogeneous pattern as we move to fewer 
predictors. Results for the remaining cases are shown in Fig. 
S7. If we use the random ensemble rather than the original 
ensemble as our reference, we obtain very similar results 
(not shown).

Keep in mind that a spread decrease is generally desir-
able, but only if the distribution decreases while centred 
near the truth. We therefore next consider a metric which 

Fig. 6  a A comparison of 
mean absolute errors averaged 
over the Australian continent 
for all cases (1 × 3D case, 3 
× 2D case and 3 × 1D case) 
based on the mixture distribu-
tions. The marker indicates the 
mean across all model-as-truth 
experiments. The maps of 
Australia show improvement 
in mean absolute error of the 
Pareto-optimal subsets (3D and 
2D cases) or optimal subset 
(1D case) compared to the full 
ensemble. b Results for the 3D 
case, where we simultaneously 
calibrate on precipitation, sea 
surface temperature and 500 
hPa eastward wind, c is one of 
the 2D cases, where we drop 
500 hPa eastward wind. After 
additionally dropping sea sur-
face temperature as a predictor, 
we end up with the 1D case as 
shown in d. Maps are based on 
averages across all 16 models-
as-truth
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additionally takes the position of the truth into account. In 
Fig. 8 we test how often the truth is within the 10th–90th 
percentile range of the Pareto-optimal subsets (3D and 2D 
cases) and the optimal subset (1D case). If the truth was a 
draw from the same distribution, then we would expect it 
to be within the 10th–90th percentile range approximately 
80% of the time. In Fig. 8a we see that all the markers are 
below the horizontal 80%-line, even for the 3D case. For the 
mixture distributions (darker markers), this might be related 
to the fact that we assumed Gaussianity when computing the 
percentile range. The estimated coverage probability for the 
distribution based on subset averages (lighter markers) are 
significantly smaller, as expected from the previous figure. 
This shows how effective the mixture model is in nearly 
eliminating the overconfidence bias. For both distribu-
tions, coverage probability decreases as fewer variables are 
included as predictors. Note that for Fig. 8a, no uncertainty 
bars were plotted, as information from all 16 model-as-truth 
experiments were required to obtain the percentage of a truth 
being within the 10th–90th percentile range. Coverage prob-
abilities are slightly higher for the case when we use the 
random ensemble as our reference (not shown).

From Fig.  7 we learned that the ensemble spread 
decreases most for the 1D cases. However, this comes at 
a cost as this decrease in spread is likely to lead to over-
confidence. Our optimal subset is under-dispersive and 
therefore fails to encompass the truth regularly. Fig. 8b–d 
show similar information to (a), but this time separately 
for each grid cell in Australia based on the mixture dis-
tributions. Blue colour indicates that the truth lies within 
the 10th–90th percentile range less often than 80% of the 
time. As expected from (a), this probability decreases 
when moving from the 3D case to the 2D case and even-
tually to the 1D case. This clearly indicates that a decrease 
in spread is not necessarily an indication for improved 
accuracy. Results for the remaining predictor combinations 
are shown in Fig. S8.

Sanderson et al. (2017) showed that a stronger skill 
weighting has a more significant effect on projected 
changes, but also leads to a higher risk of increased under-
dispersion. We can understand this as an analogue to our 
1D case, where the best estimate of projected change 
is adjusted the strongest, but at a cost of substantial 
overconfidence.

Fig. 7  Similar to Fig. 6, but 
for change in spread (standard 
deviation of the underly-
ing distribution). a Boxplots 
containing all 16 model-as-truth 
experiments. The box repre-
sents the interquartile range 
(IQR; extends from Q1 to Q3 
of the data), with a horizontal 
line for the mean estimate. The 
whiskers show the range of the 
data and are at 1.5 IQR. Results 
based on the mixture model 
distributions are shown in 
darker colours and results based 
on the subset averages in lighter 
colours. b–d Spatial maps of 
changes in spread for three dif-
ferent cases based on the mix-
ture model results. Blue colours 
indicate a decrease in spread of 
the Pareto-optimal subsets or 
optimal subset compared to the 
original ensemble
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4.3  Combining accuracy and precision

After looking separately at accuracy and precision, we can 
now combine those two metrics into a single metric to get 
additional insights. As introduced in Sect. 3.5.2, the Ranked 
Probability Skill Score (RPSS) is a metric that takes into 
account both the width of the distribution and its position 
relative to the truth.

Figure 9a shows RPSS values for the different cases 
across all models-as-truth experiments. Positive values indi-
cate improved skill of the Pareto-optimal subsets (for 3D 
and 2D cases) or optimal subset (for 1D case) compared to 
the full ensemble. We observe positive mean values for the 
3D case and one of the 2D cases. For the remaining cases, 
mean RPSS values are either zero or negative, indicating 
that there is no benefit of using a subset instead of the full 
ensemble. The fewer variables are used for the calibration, 
the lower the RPSS value tends to be. Interestingly, the error 
bars for the 1D case are the largest indicating how risky it is 
to trust a result solely based on one predictor. One can either 
obtain very large improvements or end up much worse than 
the original ensemble, but on average the skill will be worse 
than without calibration. This is consistent with the results 

by Weigel et al. (2010). The range of outcomes for the 3D 
case is much smaller. When using the random ensemble as a 
reference instead, markers are very similar (not shown here).

The maps in Fig. 9 show RPSS values at every grid cell 
in Australia for the 3D case (b), one of the 2D cases (c) and 
one of the 1D cases (d). Results are averaged across all 16 
model-as-truth experiments. Overall positive RPSS values 
are found in (b, c). For the 1D case in which we use his-
torical precipitation climatology as our only predictor, we 
see patches of strongly positive and other patches of very 
negative RPSS values. The RPSS averaged over the whole 
continent is negative, as confirmed by Fig. 9a. This makes 
the 1D case a risky candidate, as it is prone to overfitting. 
RPSS maps for the remaining variable combinations are 
shown in Fig. S9.

5  Discussion

This study expands on the ideas introduced by LN17 and 
Herger et al. (2018). Despite not having the exact same 
experiment setup as LN17, the main conclusions made here 
are still largely applicable to their study. Different to the 

Fig. 8  Similar to Fig. 6 but 
for the percentage of time the 
truth lies within the 10th–90th 
percentile range of the Pareto-
optimal subsets (3D or 2D 
cases) or optimal subset (1D 
case) across all models-as-truth 
experiments. Darker colours in 
a are used for results based on 
the mixture distributions and 
lighter colours based on the 
distributions of subset averages. 
Overconfidence bias maps are 
based on the mixture model 
distributions. Different to Fig. 6, 
no improvement relative to the 
full ensemble is shown
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methods of LN17, we studied a varying number of predictors 
and also tested the subsets’ out-of-sample skill based on a 
series of model-as-truth experiments. As model averaging 
automatically reduces the ensemble spread, and thus cannot 
be compared to the ensemble spread consisting of the origi-
nal CMIP5 models, we introduced the concept of mixture 
models, which improves our uncertainty estimation. Having 
a truth available for future precipitation change, we assess 
skill of our calibrated ensembles using a range of differ-
ent metrics. Instead of simply drawing conclusions from a 
decrease in spread as implemented in LN17, we managed to 
study mean absolute error, overconfidence of the ensemble, 
and the ranked probability skill score.

We also highlight the importance of out-of-sample test-
ing when creating subsets or introducing weighting strat-
egies. Only once our approach passes the model-as-truth 
experiments and we have a handle on the risk of potentially 
being overconfident, should real observations be used for 
the constraint. This is also true in the emergent constraints 
literature, which has a similar aim to what we are doing 
here. For emergent constraints, often a single variable is 
used to constrain an ensemble of models with present-day 

observations, which ideally leads to a narrower spread 
across their members than across the full ensemble. This 
danger of overfitting when weighting too specifically with 
a small number of predictors has recently also been studied 
by Borodina et al. (2017); Lorenz et al. (2018). This is also 
consistent with findings by Knutti et al. (2017), where an 
aggressive performance weighting leads on the one hand to 
higher correlation between the true and predicted September 
sea ice extent, but on the other hand to projection uncertain-
ties that are too narrow. The use of Pareto-optimal subsets 
is a potential way to combine multiple emergent constraints 
that try to constrain the same target variable. This would also 
allow for some physical consistency across predictors. Note 
that just as for emergent constraints, results should ideally 
not change fundamentally based on the chosen ensemble, as 
this would indicate that the patterns found are not necessar-
ily physical ones.

More work is required to guide the community regard-
ing how to work with an ensemble of model subsets. The 
introduction of mixture models is already a first step which 
can help with the interpretation of an ensemble spread 
consisting of model means. This issue of averaging is 

Fig. 9  Similar to Fig. 7 but for 
RPSS values of the Pareto-opti-
mal subsets (3D or 2D cases) 
or optimal subset (1D case) 
relative to the full ensemble. 
Results are based on the mixture 
model distributions
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likely also a problem in many studies when model aver-
ages consisting of different numbers of simulations are 
compared. The idea of having a range of “good” solutions 
(and therefore potentially multiple projections) rather than 
a single best solution is certainly something that adds com-
plexity. However, this can be justified in many cases where 
multiple variables, spatial scales, observational products 
and so on are of relevance for the variable of interest.

We note that the Australia-specific metrics chosen 
here are not exhaustive; other objective functions may 
be important for precipitation change and its uncertainty 
in this region. We have identified the role of historical 
precipitation to be much larger than the ones of SST and 
U500. For a different application, where the importance 
of the predictors is more even and is not dominated by a 
single variable, we may have come to slightly different 
conclusions. Apart from different variables, one could also 
include different seasons.

In our study, a subset is “optimal” if its RMSE with 
respect to a model-as-truth is minimised compared to all 
the other subsets of the same size. RMSE as a cost func-
tion that is being minimised is of course not always ideal. 
In a future study it might be interesting to include some 
measure of ensemble spread in the definition of optimal-
ity. One could even think of a scenario when our subset 
should maximise the RPSS, which combines precision and 
accuracy.

The choice of Gaussian distributions as building blocks 
for the weighted mixture distributions is an assumption that 
may not hold perfectly (especially for small sample sizes). 
However, it is still an advancement when interpreting an 
ensemble of subset averages.

The choice of predictors and cost function that is being 
minimised in-sample are central for the success of the 
approach introduced here. For a weighting approach, Weigel 
et al. (2010) found that the prediction can be worse than 
no weighting if the weights are not applied appropriately. 
This idea is certainly also valid for the subset selection 
implemented here. If the calibration is not adequate for the 
intended application, the resulting calibrated subset will 
likely be a worse predictor than the original ensemble.

The choice of the ideal number of predictors is not 
straight-forward. Sanderson et al. (2017) found that the 
effect of their weighting strategy got weaker as more vari-
ables were considered. So, their results were not too dif-
ferent from a naive model democracy approach. A recent 
paper by Lorenz et al. (2018) studied the effect of different 
predictors on future North American maximum summer 
temperatures and came to the conclusion that ideally more 
than one predictor should be used. Model-as-truth experi-
ments as conducted in this study can help guide the user in 
a direction where skill improves without the danger of being 
overconfident.

6  Conclusion

We presented a method that constrained end-of-century 
Australian precipitation change based on a varying num-
ber of predictor variables and different ensembles. Con-
straining was implemented based on an optimal subset that 
minimises a single cost function if only one variable is 
used as predictor, or multi-objective optimisation and the 
resulting Pareto-optimal subsets if more than one variable 
was considered to be important. We introduced a mixture 
model approach to better assess how ensemble calibra-
tion affects projection uncertainty, and highlighted the 
importance of out-of-sample testing as a necessary but 
not sufficient condition for confidence in projections, using 
model-as-truth experiments.

We found that predicting future precipitation change 
solely based on present-day precipitation climatology led 
to the largest decrease in mean absolute error compared to 
either the original ensemble or a random ensemble. How-
ever, the ensemble spread was decreased to such a degree 
that the truth was too frequently outside the ensemble 
range, which we refer to as overconfidence. When adding 
more predictors and therefore dealing with Pareto-optimal 
subsets rather than a single best solution, the ensembles 
were on average further away from the truth but at the 
same time reduced the risk of overconfidence. This illus-
trates an important trade-off between accuracy (How close 
is my ensemble to the truth?) and precision (How narrow 
is my ensemble?), all controlled by the number of pre-
dictors. This is an important finding which is likely true 
irrespective of whether one uses the Pareto-optimal subset 
selection approach as done here or any other weighting 
strategy.
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