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Abstract
Arctic sea ice plays a central role in the Earth’s climate. Changes in the sea ice on seasonal-to-interannual timescales impact 
ecosystems, populations and a growing number of stakeholders. A prerequisite for achieving better sea ice predictions is 
a better understanding of the underlying mechanisms of sea ice predictability. Previous studies have shown that sea ice 
predictability depends on the predictand (area, extent, volume), region, and the initial and target dates. Here we investigate 
seasonal-to-interannual sea ice predictability in so-called “perfect-model” 3-year-long experiments run with six global cli-
mate models initialized in early July. Consistent with previous studies, robust mechanisms for reemergence are highlighted, 
i.e. increases in the autocorrelation of sea ice properties after an initial loss. Similar winter sea ice extent reemergence is 
found for HadGEM1.2, GFDL-CM3 and E6F, while a long sea ice volume persistence is confirmed for all models. The 
comparable predictability characteristics shown by some of the peripheral regions of the Atlantic side illustrate that robust 
similarities can be found even if models have distinct sea ice states. The analysis of the regional sea ice predictability in 
EC-Earth2.3 demonstrates that Arctic basins can be classified according to three distinct regimes. The central Arctic drives 
most of the pan-Arctic sea ice volume persistence. In peripheral seas, we find predictability for the sea ice area in winter but 
low predictability throughout the rest of the year, due to the particularly unpredictable sea ice edge location. The Labrador 
Sea stands out among the considered regions, with sea ice predictability extending up to 1.5 years if the oceanic conditions 
upstream are known.
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1  Introduction

Sea ice is an early indicator of climate change and an ampli-
fier of climatic perturbations (e.g., Serreze and Barry 2011; 
Vihma 2014). At seasonal-to-interannual timescales, sea ice 

may influence the climate of mid and high latitude regions 
(e.g., Deser et al. 2010; Francis and Vavrus 2012; Liu et al. 
2012; Yang and Christensen 2012), as well as the Arctic 
Ocean biology and atmospheric chemistry (Bhatt et  al. 
2014). The rapid decline in sea ice in the past few decades, 
associated with polar temperature amplification, resulted in 
the scientific community paying more attention to predic-
tions at seasonal-to-interannual timescales. For example, 
reliable predictions of sea ice conditions in maritime ship-
ping routes in the Arctic, e.g. the Northwest Passage or the 
Northern Sea Route, would help the planning of shorter and 
cheaper trade routes between the Atlantic and Pacific Oceans 
(Hassol 2004), and could benefit the growing ecotourism 
industry in the Arctic.

Sea ice predictability has been assessed in various frame-
works, including idealized perfect-model experiments. In 
such experiments, model simulations are used as a surro-
gate for the real climate, to estimate the extent to which the 
model can predict itself. Ensemble predictions are initial-
ized from a control run by introducing small perturbations. 
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Potential predictability is a measure of the amplification of 
those perturbations, i.e. the fraction of the signal which is 
inherently not predictable. Such experiments using state-of-
the-art models also provide an indication of the maximum 
level of skill that could be achieved in real predictions if all 
the observations required to initialize the predictions were 
available, and if all processes were perfectly represented by 
the models.

Tietsche et al. (2014) performed the first multi-model 
evaluation of Arctic sea ice potential predictability on sea-
sonal-to-interannual timescales, in a coordinated perfect-
model framework defined in the Arctic Predictability and 
Prediction on Seasonal-to-Interannual Timescales (APPO-
SITE) project (Day et al. 2016; Tietsche et al. 2014). Each 
of the seven participating groups ran a set of 3-year long 
ensemble prediction experiments, initialized from a present-
day control experiment near July 1. They showed that even 
if two models have significant predictability—based on a 
comparison of the ensemble spread and the natural control 
variability—for the sea ice volume (SIV; up to 3 years) for 
similar forecast times, differences in the representation of 
local advective processes could lead to large differences 
in the regional sea ice thickness (SIT) predictability. They 
suggested that advective sea ice processes may induce an 
amplification of forecast errors close to the coasts in the 
Arctic Ocean in winter.

A similar perfect-model approach was also followed by 
Day et al. (2014). In a set of five models, they found similar 
SIE predictability reemergence mechanisms (which is the 
increase of predictability after an initial drop), consistent 
with the summer-to-summer and melt-to-freeze mechanisms 
described by Blanchard-Wrigglesworth et al. (2011). They 
also found that when starting the predictions in May, the 
forecasts lost skill more rapidly in the first 4 months than 
when initialized in January or July. Another robust result 
was that the SIE in the seasonal ice zone of the North Atlan-
tic region is significantly predictable 1.5–2.5 years ahead, 
while in the central Arctic it is less than 1 year (Day et al. 
(2014) defined predictability as the timescale for which the 
ensemble root-mean-square-error (RMSE) is below the cli-
matological RMSE, using an f test for significance).

Several studies have focused on the sea ice predictability 
of different Arctic basins (Bushuk et al. 2018; Cheng et al. 
2016; Day et al. 2014; Koenigk and Mikolajewicz 2009). 
However, the mechanisms behind the regional sea ice pre-
dictability are not yet well established. To understand the 
Arctic sea ice cover predictability, a regional approach is 
needed to disentangle the different drivers of variability, 
which depend on the location (e.g. Bitz et al. 2005; Francis 
and Hunter 2007; Schlichtholz 2011; Tietsche et al. 2016). 
For instance, Bitz et al. (2005) showed that the ocean heat 
flux convergence is a large heat source in the marginal ice 
zone of the Barents Sea, but a relatively small source in 

the Labrador Sea. Likewise, Francis and Hunter (2007) sug-
gested that the zonal wind anomalies influence the Bering 
Sea winter ice edge location, while the Barents Sea ice edge 
seems to be controlled primarily by anomalies in SST during 
the late winter and by anomalous meridional winds.

Regional metrics tend to have lower predictability than 
integrated ones (e.g. Day et al. 2014; Goessling et al. 2016). 
Blanchard-Wrigglesworth et  al. (2016) highlighted this 
contrast between pan-Arctic and regional predictability 
with a multimodel approach, where all models initialized 
with identical SIT could uniformly predict September SIE 
anomalies, but did not show agreement regarding the spatial 
SIC anomalies patterns.

In the present paper, we perform a regional sea ice 
assessment for six of the APPOSITE project models, with 
a focus on the European Consortium Earth System Model 
version 2.3 (EC-Earth2.3 hereafter; Hazeleger et al. 2012), 
since mechanisms of predictability can be investigated in 
greater depth for this model by, for example, projecting 
water mass backward trajectories. In this context, we con-
sider sub-regions in the central Arctic and in the margins 
connecting the Pacific and Atlantic Oceans. We also relate 
the highlighted mechanisms to those previously attributed 
to pan-Arctic sea ice predictability (including persistence 
and reemergence).

This paper is structured as follows: In Sect. 2, we describe 
our methodology, including the experimental protocol and 
the metrics used to quantify sea ice potential predictability. 
Section 3 presents the assessment of Arctic sea ice poten-
tial predictability at the pan–Arctic and regional scale for 
each of the APPOSITE models (except CanCM4). Section 4 
discusses the mechanisms behind the regional sea ice pre-
dictability of EC-Earth2.3 and Sect. 5 provides the main 
conclusions.

2 � Methodology

2.1 � Multimodel analysis and experimental setup

We estimated an upper limit for the predictability of Arctic 
SIE and SIV using six of the seven coupled global climate 
models from the APPOSITE project (Day et al. 2016): EC-
Earth2.3 (Hazeleger et al. 2012), MIROC5.2 (Watanabe 
et al. 2010), HadGEM1.2 (Johns et al. 2006; Shaffrey et al. 
2009), GFDL-CM3 (Donner et al. 2011; Griffies et al. 2011), 
MPI-ESM (Jungclaus et al. 2013; Notz et al. 2013) and E6F 
(Sidorenko et al. 2015). The CanCM4 model was discarded 
because of its short control simulation length. These models 
have already been evaluated in the multimodel assessment 
of Tietsche et al. (2014), and a few characteristics of the 
APPOSITE simulations are shown in Day et al. (2014).
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Each APPOSITE working group provided a control simu-
lation (hereafter referred to as ControlRun) and a set of pre-
dictions that started from the control (hereafter referred to 
as IdealPred). In this paper we use the predictions that were 
started from July. Note that in this perfect-model protocol, 
the ControlRun is also the reference dataset for evaluating 
the performance of the idealized climate predictions.

Each prediction member has a slightly different pertur-
bation of the initial state obtained by introducing a 10−4 K 
magnitude white noise in the sea surface temperature (SST). 
The start dates were selected to sample a range of high, low 
and medium sea ice states, with consideration of the Atlantic 
heat transport into the Arctic (AHT hereafter; calculated as 
the heat transport through the section formed by the sum of 
the Fram Strait plus the Barents Sea Opening, represented 
by the black thick lines in Fig. 1). Start dates are spaced 
sufficiently apart in time to make them as independent as 
possible. More details can be found in Day et al. (2016).

2.2 � Diagnostics

Our analysis is performed using monthly data for the pan-
Arctic SIE and SIV. Regional assessment is done for the 
basins shown in Fig. 1.

In this study, potential predictability is estimated both in 
a prognostic and diagnostic way (Boer 2004). Simple esti-
mates of the diagnostic potential predictability are calculated 

using lagged anomaly correlations in the ControlRun as in 
Blanchard-Wrigglesworth et  al. (2011). The prognostic 
potential predictability uses the methodology described in 
Pohlmann et al. (2004), and is estimated using both the con-
trol simulation and the idealized experiments.

In both cases, anomalies are calculated as follows. For 
each date, a 40-year-window taken from the ControlRun 
and centered around that date is used to filter out low-fre-
quency variability and the remaining long-term drift. The 
mean annual cycle over that period is used as a reference 
to compute the anomalies in the IdealPred experiments. To 
be consistent, we also apply this protocol to determine the 
anomalies across the ControlRun, using 40-year running 
windows, as:

where g is the selected month of the raw data Z, Zg is the 
average of the 40 same calendar months around the selected 
date and Z′

g
 is the anomaly of month g compared to the aver-

age annual cycle of the 40-year window.
Following this, the natural variability is calculated as:

where Z�
g
(y) is the anomaly for month g and year y, Y0 and 

Yl are the first and last year, respectively, considered in the 
summation. Note that the use of the 40-year running win-
dows excludes 20 years at the beginning and end of the 
whole simulation.

The level of potential predictability is estimated using the 
intra-ensemble spread (i.e. the spread around the ensemble 
mean), as a function of the forecast time:

where M is the total number of members, S is the total num-
ber of start dates, Zm,s(t) is the predicted value of our vari-
able at forecast time t for ensemble member m initialized at 
start date s and Zs is the predicted value for the same start 
date and forecast time averaged across the whole ensemble.

We consider the prognostic potential predictability (PPP 
hereafter; Germe et al. 2014; Pohlmann et al. 2004). The 
PPP compares the ensemble spread with an estimate of the 
amplitude of the natural variability of the system based 
on the standard deviation of the control simulation (e.g. 
Koenigk and Mikolajewicz 2009). It is an estimate of the 
initial predictability and is defined as:
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Fig. 1   Map of the Arctic seas as defined in this study. The black lines 
indicate the sections used for the calculation of the Atlantic heat 
transport into the Arctic (Fram Strait plus Barents Sea Opening). The 
GIN region is formed by the Greenland, Icelandic and Norwegian 
seas
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where �2

e
 is the variance across the ensemble members 

(IdealPred) at forecast time t and �2

c
 is the variance of the 

control integration ControlRun for the relevant month g. A 
PPP value of 1 would mean that the system is perfectly pre-
dictable (i.e. the ensemble members of the predictions did 
not diverge over time), whereas a PPP value of zero or less 
indicates that there is no predictability because the ensem-
ble spread is equal to that expected from natural variability 
(Holland et al. 2011). Unlike the RMSE, this metric allows 
us to compare the dispersion of the ensemble with respect 
to the reference variability in a single number, giving us an 
idea of the proportion at every timescale, even when both of 
them are very small and similar.

3 � Multimodel potential predictability 
of pan‑Arctic and regional sea ice

Pan-Arctic sea ice The pan-Arctic SIE PPP decreases at a 
similar rate for the first 6 months after initialization for all 
models (Fig. 2a). From the first December there is a con-
sistent predictability reemergence for HadGEM1.2, GFDL-
CM3 and E6F every winter, but a lack of significant predict-
ability during the summer. The dominance of the positive 
ice-albedo feedback could explain the faster intra-ensemble 
spread growth (the decrease of PPP; see Formula 4) dur-
ing the melting season, whereas the increase in PPP dur-
ing the freezing season could originate from the negative 
ice thickness-growth rate feedback, acting as amplifiers and 
dampeners of the initial perturbations of the sea ice condi-
tions, respectively (Tietsche et al. 2014). This seasonality in 
the signal is not present in MPI-ESM, for which SIE is not 

significantly predictable beyond December Year 1. For EC-
Earth2.3 the PPP decrease is sharper after the first October, 
when the sea ice gradually spreads across the interior of the 
Arctic basin and peripheral seas outside the Arctic Ocean. 
The significant reemergence before the second freezing 
season seems to be characteristic of EC-Earth2.3, although 
MIROC5.2 also presents a significant PPP the second and 
third July. This might be related to an “early” summer-to-
summer predictability mode for July, as can be seen in their 
correspondent lagged correlation matrices (Fig. 2 of the sup-
plementary material). This mechanism does not appear for 
the rest of models in July, but it does in September (Fig. 2 of 
the supplementary material). The summer-to-summer mem-
ory reemergence has its origin in the summer SIT memory 
(from the central Arctic) (Blanchard-Wrigglesworth et al. 
2011). Over three continuous years, the central Arctic Sep-
tember SIV and the SIE are correlated in September (Fig. 3, 
red line) for all models.

The long-lasting IdealPred SIV potential predictability 
(Fig. 2b) is related to the persistence of the SIV, as shown 
by the lagged correlations calculated from the ControlRun 
(Fig. 3 of the supplementary material). HadGEM1.2 does 
not pass the test of significance for the PPP for any leadtime 
due to the strict criteria we applied: we removed the points 
where more than half of the corresponding values are lower 
than 1% of the average anomaly or zero. The persistence of 
the SIV at the pan-Arctic scale arises almost entirely from 
the central Arctic SIV persistence (Blanchard-Wriggles-
worth et al. 2011), as suggested when the lagged correlation 
of the central and pan-Arctic SIV are compared (Fig. 3, blue 
and black lines correspondingly).

In the following, we split the Arctic Ocean and surround-
ing basins considered in Fig. 1 into two groups, based on 
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Fig. 2   Potential predictability of the pan-Arctic a SIE and b SIV 
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lower than the 1% of the average anomaly, for each predictand, month 
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their seasonality: group one is the peripheral basins includ-
ing the summer ice-free regions (Barents Sea, Kara Sea, GIN 
seas, Irminger Sea, Baffin Bay, Labrador Sea, Hudson Bay, 
Bering Sea, Sea of Okhotsk and Chukchi Sea), and group 
two is the internal Arctic seas, or the seas that are entirely 
ice covered during winter (the “central basins”; central Arc-
tic, Canadian Archipelago, Beaufort Sea, East Siberian Sea, 
Laptev Sea).

Peripheral basins A regional analysis revealed large vari-
ations in the SIE and SIV potential predictability (Figs. 4, 
5). Nevertheless, some common features can be seen. For 
instance, in all the peripheral basins (except Hudson Bay 
and Chukchi; Fig. 4a–j) the PPP shows the same temporal 
pattern for the SIE as for the SIV (for each model individu-
ally), which reflects the correlation between ice concentra-
tion and ice thickness in those regions with a thin ice cover. 
In the Barents, Kara and GIN seas, and in Baffin Bay, sea 
ice is present in July at the start of IdealPred for all models. 
The PPP initially decreases, before peaks of reemergence 
occur at different lead times depending on the model and 
basin. The Barents, Kara and Chukchi seas SIV PPP exhibit 
a significant predictability reemergence in summer for most 
models. This might be directly linked to the retreat/advance 

mechanism of predictability (Blanchard-Wrigglesworth et al. 
2011; Stammerjohn et al. 2012). We can cluster the GIN and 
Baffin Bay within the same group: there is an initial predict-
ability drop followed by a memory reemergence in winter, 
which seems robust for all models. On the Pacific side (Ber-
ing and Okhotsk seas) sea ice is not present at the start of 
the predictions (except for HadGEM1.2). For these seas the 
PPP is noisier and less significant than in the Atlantic sector. 
We could not group the rest of peripheral seas because of the 
differences shown in the temporal variability of PPP between 
the models. This is mainly due to the differences in the mean 
sea ice state between the different models. To know more 
about these differences, please see Day et al. (2016). In the 
following section we consider these regions in greater detail 
in EC-Earth2.3.

Central basins The SIE PPP in the interior basins other than 
the central Arctic (Fig. 4l–o) is null during the winter due to 
the extremely low sea ice variability. The central Arctic SIE 
PPP reflects how the different model sea ice conditions (and 
the cycle of variance) impact predictability. In most central 
regions, the PPP of the SIV continuously decays over time 
while remaining statistically significant up to 6–14 months 
(even until the third year for MIROC5.2 in the Canadian 
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Fig. 4   Regional SIE potential predictability measured as the PPP of IdealPred using the natural variability of ControlRun as a reference. Dots 
indicate significant values at the 95% level, estimated by an F test. September and March are marked by thin gray vertical lines
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Fig. 5   Regional SIV potential predictability measured as the PPP of IdealPred using the natural variability of ControlRun as a reference. Dots 
indicate significant values at the 95% level, estimated by an F test. September and March are marked by thin gray vertical lines
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Archipelago). This suggests that the regional SIV is poten-
tially predictable up to one year in advance for the seas with 
perennial sea ice. The significant reemergence of SIV PPP 
in the Beaufort Sea stands out for all models except for EC-
Earth2.3 and HadGEM1.2. The central Arctic region exhib-
its the same PPP characteristics as the pan-Arctic region for 
the SIV, which is an indicator of the origin and sources of 
predictability of the pan-Arctic sea ice.

4 � Identification of mechanisms 
behind the regional sea ice predictability 
in EC‑Earth2.3

In this section we focus on the predictability mechanisms of 
EC-Earth2.3 since a few regional predictability characteris-
tics are specific— and distinct—for this model.

4.1 � Ocean persistence in the Barents/Kara/GIN 
Seas/Baffin Bay

In spite of the initial decay, the PPP still has significant val-
ues in the Barents, Kara, and GIN seas and in Baffin Bay for 
the SIE and SIV (Figs. 4, 5a–c, e). The memory of the sea 
ice cover in these regions can be related to the long-term 

persistence of the July SST anomalies at the same location 
(Fig. 6a–c, e, green lines), which also varies with the ocean 
heat content (integrated over the first 300 m depth; OHC 
hereafter). Thus, the memory of sea ice cover in the periph-
eral seas has a partially oceanic origin (Fig. 6a–c, e, yellow 
lines).

The SIE lagged correlations (Fig. 6a–c, e, blue lines) 
show a melt-to-freeze reemergence and significant predict-
ability over the first year. The PPP highly depends on the 
start dates and the mean climate state, as we have already 
shown in Sect. 2.2, so in this case the ControlRun provides a 
more robust idea of the regional predictability, but the mech-
anisms are comparable. The SST during the previous spring 
provides predictability of the December SIE (Fig. 7a–c, e). 
The maps of the correlation between the grid point SST in 
December and the averaged December to February SIE in 
the Barents and Kara seas (Fig. 8a, b) agree with the time 
series in Fig. 7.

4.2 � Ocean reemergence in the Labrador Sea

We investigated the peak of PPP in January–April in the 
Labrador Sea, which is not present in other peripheral 
seas and does not seem to project onto the changes in the 
pan-Arctic PPP in Fig. 2a. This peak cannot be attributed 
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Fig. 6   The persistence of the SIE (blue), the SST (green) and the 
OHC (0–300 m depth, yellow) in the a Barents, b Kara, c GIN, d 
Irminger, e Baffin Bay and f Bering seas for EC-Earth2.3. In red, the 
lagged correlation between the July SST and the SIE for the same 

seas. Correlations were calculated using the ControlRun during the 
three subsequent years. Dots represent significant values at the 95% 
level as estimated from a one-sided student-T distribution
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to a reemergence mechanism due to sea ice, since sea ice 
is not present at the start of the prediction in this area for 
EC-Earth2.3.

We tested the hypothesis that this memory reemer-
gence had a remote origin. We calculated several backward 

water mass trajectories using the off-line mass preserving 
Lagrangian Ariane scheme (Blanke et al. 1999; Blanke and 
Raynaud 1997). Here, 25 tracers were seeded uniformly, all 
at a 5-m depth (depth of the uppermost ocean level) in the 
Labrador Sea in February, and their origin was traced using 
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Fig. 7   Correlation between December SIE and SST in the previous 
year in the a Barents, b Kara, c GIN, d Irminger, e Baffin Bay and f 
Bering seas for EC-Earth2.3. Correlations were calculated using the 

ControlRun. Dots represent the significant values at the 95% level as 
estimated from a one-sided student-T distribution
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Fig. 8   Maps of correlation between the gridpoint December SST and a Barents and b Kara SIE for December, January and February (mean cor-
relation) for EC-Earth2.3. Black dots indicate significant correlations at the 95% level as calculated from a one-sided student-T distribution
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the 40-year average monthly velocity fields from the Con-
trolRun. Our target was to find the locations of those water 
parcels in the first July month, 8 (i.e. target February Year 
1), 20 (i.e. target February Year 2) or 32 (i.e. target Febru-
ary Year 3) months before. The trajectories are shown in 
Fig. 9a–c.

The trajectories reveal that the water parcels present in 
the Labrador Sea at the time of the first two SIE PPP peaks 
originate from the subpolar gyre area. During the first year, 
the local correlations, ie. Labrador SST and OHC correlated 
with Labrador SIE (Fig. 9d, red and green lines), show that 
the reemergence is related to the subpolar gyre persistence 
(Fig. 10a). The second year, the correlations between the 
Irminger Sea SST and OHC at the time of the initializa-
tion and the Labrador Sea SIE are higher than the local cor-
relations, and they match exactly the time when the PPP 
reemergence in the Labrador Sea occurs (Fig. 9d, blue and 
black lines). For longer timescales, these parcels have their 
origins in the North Atlantic. Thus, the first winter peak of 
the PPP of the SIE in the Labrador Sea seems related to the 

subpolar gyre persistence, while the second is caused by 
anomalies in the SST advected from a remote location in 
the Irminger Sea.

As a result of advective ocean processes, sea ice predict-
ability in the Labrador Sea may be related to predictability 
in the subpolar gyre circulation. Indeed, previous studies 
have highlighted the high SST predictability in the subpolar 
gyre area (Boer 2004; Collins 2002), including studies using 
the same climate model (Wouters et al. 2013). Koenigk 
and Mikolajewicz (2009) confirmed that advection of SST 
anomalies may lead to an increase in the predictability of 
the Barents sea ice in winter. This result, consistent with 
previous studies, suggests that the initialization of the ocean 
is important when running real initialized sea ice forecasts.

4.3 � Sea ice thickness persistence in the internal 
Arctic basins

We mentioned above that the summer peaks of the 
PPP for the pan-Arctic SIE could be attributed to the 
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Fig. 9   Map of the backward trajectories followed by water masses 
travelling from different locations in the Labrador Sea from a the 
first, b the second and c the third February until the first July for 
EC-Earth2.3. Each lead time is marked with a dot, while the initial 
positions (corresponding February) are marked with bigger dots. d 
Correlation between the Irminger Sea SST, the Irminger Sea OHC, 

the Labrador Sea SST and the Labrador Sea OHC the first July and 
the Labrador Sea SIE the three following years for the ControlRun. 
Dots represent the significant values at the 95% level estimated from 
a one-sided student-T distribution. The vertical grey lines represent 
the months of February. The SST and OHC were integrated for the 
corresponding area in Fig. 1
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persistence of the SIT in the central Arctic, as suggested 
by Blanchard-Wrigglesworth et al. (2011). In September, 
anomalies of the pan-Arctic SIE are well correlated with 
anomalies of the SIT in the central Arctic, thus anomalies 
of the SIE re-emerge from one summer to the next due to 
the memory of the corresponding SIT anomaly.

In a similar way, peaks of the SIE PPP in the inter-
nal Arctic basins during the summers, can be linked to 
the persistence of the SIT, coherent with the long-lasting 
persistence of the SIV (Fig. 1 of the supplementary mate-
rial). In these areas, little connection with the upper ocean 
should be expected, due to the insulating role played by 
the sea ice cover during most of the year.

5 � Conclusions

In this paper, we analyzed six different control experi-
ments and their correspondent set of 3-year ensemble pre-
dictions initialized on 1st July from the control experiment 
for various start dates. Using this perfect-model proto-
col, the main objectives of our study were to assess the 
regional sea ice predictability of the APPOSITE project 
models, highlight in EC-Earth2.3 some sources and mech-
anisms for the predictability of the sea ice extent and vol-
ume in sub-basins of the Arctic Ocean and the surrounding 
North Atlantic and Pacific Oceans and investigate how 

(a) (b)

(c)

Fig. 10   Maps of correlation between the local SST the first July and 
the Labrador SIE a the first, b the second and c the third February 
for EC-Earth2.3. Correlations were calculated using the ControlRun. 

Dots represent the significant values at the 95% level as estimated 
from a one-sided student-T distribution



438	 R. Cruz‑García et al.

1 3

understanding of the regional-scale mechanisms helps to 
clarify the predictability at the pan-Arctic scale.

The potential predictability was estimated by measuring 
the growth of the ensemble spread in the idealized predic-
tions, and comparing it to the natural variability derived 
from the control experiment. We also calculated lagged cor-
relations in the control simulation, as a diagnostic approach 
to assess the persistence or lagged relationships in the con-
trol experiment and thus infer some mechanisms explaining 
the potential predictability in the idealized predictions. The 
comparison of the prognostic and diagnostic approaches 
indicated that lagged correlation is an informative measure 
of SIE and SIV predictability.

We quantified to what extent the regional Arctic sea ice 
would be potentially predictable, if we had a perfect knowl-
edge of the initial conditions of the predictions and the simu-
lated processes matched perfectly the observed ones. More 
focus was put on the mechanisms behind EC-Earth2.3 pre-
dictability. For this model the regions could be clustered into 
three groups according to their predictability: the peripheral 
seas, the Labrador Sea and the interior Arctic basins.

The main conclusions from this study are:

•	 Consistent SIE predictability reemergence is found in 
winter for HadGEM1.2, GFDL-CM3 and E6F, which 
could be related to the winter negative ice thickness-
growth rate feedback (Tietsche et al. 2014). The SIV 
shows greater predictability, attributable to the long-
lasting persistence of the SIT in the central Arctic for all 
models.

•	 The summer-to-summer reemergence of the PPP of pan-
Arctic SIE is consistently related in all models to the 
persistence of SIT anomalies in the central Arctic.

•	 The Baffin Bay and the GIN seas SIE exhibit a robust 
PPP signal among all models, characterized by a winter 
memory reemergence. For the rest of the regions, we 
found significant inconsistencies, which we attribute to 
the differences in the average states of the sea ice.

•	 For EC-Earth2.3 and in the peripheral seas of the Atlantic 
Sector, significantly high PPP values over 1 year, includ-
ing the 1-year reemergence, are driven by the persistence 
of local oceanic thermal anomalies (SST and OHC).

•	 In the Labrador Sea (for EC-Earth2.3), which is ice-free 
in July, the PPP peaks between January and April during 
the first year are a result of the subpolar gyre persistence. 
However, the January to April peaks of the second year 
seem to be related to the advection of ocean temperature 
anomalies from the Irminger Sea and the Eastern North 
Atlantic Ocean.

•	 In the interior Arctic seas in EC-Earth2.3, winter SIE 
potential predictability is trivial due to complete ice cov-
erage. In contrast, the SIV has a longer predictability in 
these seas as a result of the long SIT persistence.

Considering mechanisms which act at regional scales illus-
trates that sea ice predictability arises from a variety of dif-
ferent sources in the Arctic sectors considered. For instance, 
we have seen that in EC-Earth2.3 the ocean is a potential 
source of predictability in the peripheral seas, while the 
SIT plays a dominant role in the interior seas. These results 
provide guidance for the design of operational forecasting 
systems: for lead times beyond a single season, the ocean 
initial state would play a role in providing skilful forecasts 
in the marginal ice zone.

Moreover, there are some processes that were not inves-
tigated in this paper, but that have been reported in previous 
studies as sources of sea ice predictability. For instance, the 
melt-to-freeze reemergence in the Barents and GIN seas has 
been related to the local SST memory (Bushuk et al. 2015; 
Schlichtholz 2011). Other studies have shown that the winter 
Barents Sea SIA is highly correlated with the heat transport 
from the Atlantic waters through the Barents Sea Opening 
(Årthun et al. 2012; Nakanowatari et al. 2014; Onarheim 
et al. 2015). This inflow of warm water is also driven by 
the atmospheric variability with 1–2 years lag between the 
cyclonic anomalies and the ice response (Sorteberg and 
Kvingedal 2006).

Previous studies have shown that state-of-the-art coupled 
models exhibit similar sea ice predictability properties, like 
the melt-to-freeze or summer-to-summer correlation reemer-
gence (Day et al. 2014). However, Tietsche et al. (2014) sug-
gested some model dependency: for instance, they suggested 
that the representation of advective processes could be more 
model-dependent than the thermodynamic ones. The extent 
to which some of the mechanisms are documented in the 
present paper for EC-Earth2.3 should be discussed, espe-
cially by applying similar diagnostics to other models. One 
important aspect is the possible role of model biases in shap-
ing some mechanisms, especially on the Pacific side where 
there is virtually no potential predictability in EC-Earth2.3 
(Guemas et al. 2014).

Prior works addressed the dependence of predictabil-
ity on the initialization month (Blanchard-Wrigglesworth 
et al. 2011; Day et al. 2014) and on the mean climate. For 
instance, Goosse et al. (2009) suggested an initial decrease 
of the predictability of summer Arctic SIE due to increased 
variability during the twenty-first century. Our present study 
may provide some insight into possible future regimes of the 
pan-Arctic sea ice cover in the future. Summer-to-summer 
reemergence in the pan-Arctic SIE PPP is due to the pres-
ence of perennial sea ice surviving the melt season. In a 
warmer climate, predictability of the Arctic sea ice cover 
may be closer to that of the peripheral seas, with predict-
ability dominated by more ocean-related mechanisms.
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