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Abstract
Sea surface temperature (SST) patterns both local to and remote from tropical cyclone (TC) development regions are 
important drivers of the variability of TC activity. Therefore, reliable simulations and predictions of TC activity depend on 
a realistic representation of tropical SST. Nevertheless, severe SST biases are common to the current generation of global 
climate models, especially in the tropical Pacific and Atlantic. These biases are strongly positive in the southeastern tropical 
basins, and negative, but weaker, in the northwestern tropical basins. To investigate the impact of the tropical SST biases 
on simulated TC activity, an atmospheric-only tropical channel model was used to conduct several sets of ensemble simula-
tions. The simulations suggest an underrepresentation in Atlantic TC activity caused by the Atlantic cold bias alone, and an 
overrepresentation in Eastern North Pacific (ENP) TC activity due to the Atlantic cold bias and Pacific warm bias jointly. 
While the local impact of SST biases on TC activity is generally induced by the local anomalous SST and the associated 
changes in atmospheric conditions, the remote impact of the Atlantic bias on the ENP TCs is strongly driven by the change in 
topographically forced regional circulation. Moreover, an eastward shift in Western North Pacific TCs was generated by the 
Pacific SST biases, even though basin-wide TC activity indicators change insignificantly. The results indicate the importance 
of considering SST bias effects on simulated TC activity in climate model studies and highlight key regions where reducing 
SST biases could potentially improve TC representation in climate models.
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1  Introduction and background

Tropical cyclones (TCs) are one of the most destructive nat-
ural hazards, with hurricanes Katrina (2005), Sandy (2012), 
and Harvey, Irma, and Maria (2017) among the most damag-
ing and deadliest natural disasters in the U.S. (Blake et al. 
2007, 2013; Emanuel 2017; Shuckburgh et al. 2017; Klotz-
bach et al. 2018). Therefore, in order to reduce loss of life 

and mitigate economic losses, improving TC prediction on 
weather to climate timescales is a high priority research area.

Sea-surface temperature (SST) variability in both local 
and remote basins provides one major source of seasonal 
to multidecadal TC predictability. For example, Atlantic 
and Pacific SST variability exerts a significant influence on 
Atlantic TCs. The El Niño-Southern Oscillation (ENSO) in 
the tropical Pacific and the Atlantic Multidecadal Variability 
(AMV) and Atlantic Meridional Mode (AMM) influence 
Atlantic TC activity through changes in maximum poten-
tial intensity (e.g. Emanuel 2007), vertical wind shear (e.g. 
Gray 1984a, b; Emanuel 2007; Vimont and Kossin 2007), 
low-level vorticity (e.g. Emanuel 2007; Vimont and Kossin 
2007), and tropospheric moisture (e.g. Vimont and Kos-
sin 2007). Pacific TC activity also depends on SST, with 
increasing tropical SST locally driving enhanced TC inten-
sity in the eastern and western North Pacific (Webster et al. 
2005). In addition, ENSO influences eastern and western 
North Pacific TC activity, and the AMM provides sea-
sonal TC predictability for the eastern Pacific (Gray 1984a; 
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Whitney and Hobgood 1997; Wang and Chan 2002; Cama-
rgo and Sobel 2005; Wang et al. 2013; Jin et al. 2014; Jien 
et al. 2015; Patricola et al. 2017). Therefore, reliable cli-
mate model simulations of TC activity depend on a realistic 
representation of modes of climate variability on seasonal 
to multi-decadal timescales, as well as climatological mean 
SSTs.

However, severe SST biases exist in the tropical Pacific 
and Atlantic in most of the Intergovernmental Panel on 
Climate Change (IPCC) coupled global climate models 
(CGCMs) (e.g., Richter 2015). Figure 1 shows the multi-
model ensemble-averaged seasonal mean (April to Novem-
ber) of the tropical SST biases in Atlantic and Pacific from 
the Coupled Model Intercomparison Project Phase 5 (CMIP-
5) models (details in Methodology). The SST bias in the 
Indian Ocean is not shown, since its magnitude is relatively 
small. Very large warm biases cover the southeastern tropi-
cal Atlantic and Pacific (Wang et al. 2014), with the Atlantic 
bias reaching 6 °C in some models (Xu et al. 2014a, b). In 
addition, cold SST biases occur in the northwestern Atlan-
tic and Pacific, albeit with weaker amplitudes. Wang et al. 
(2014) and Zhang et al. (2014) suggest interhemispheric 
links of the biases in Atlantic and Pacific.

Several mechanisms have been identified to cause the 
SST biases, which can vary from region to region (Richter 
and Xie 2008; Li and Xie 2012; Patricola et al. 2012; Xu 
et al. 2014b). The tropical cold biases mainly originate from 
atmospheric errors in cloud cover (Li and Xie 2012) and 
trade winds (Liu et al. 2012), and can be largely reduced 
by increasing model resolution (Zuidema et al. 2016). The 
mechanisms for the warm biases in eastern Pacific and 
Atlantic are more complex. While the processes driving the 
warm bias in the Atlantic are mostly rooted in the narrow 
near-shore winds along the Benguela coast (Xu et al. 2014a, 
b; Small et al. 2015; Patricola et al. 2016), errors in marine 
stratocumulus and associated short wave radiation can con-
tribute significantly to the southeastern Pacific warm bias 
(Masunaga et al. 2002; Painemal and Minnis 2012; Zuidema 
et al. 2016), even though the patterns of the biases are simi-
lar in the two ocean basins. Moreover, nonlinear processes 
associated with ocean mesoscale eddies may contribute to 
the warm biases in the eastern ocean basins (Toniazzo et al. 
2010; Colas et al. 2012). Atlantic equatorial westerly wind 

biases can also remotely influence the eastern warm SST 
biases through oceanic Kelvin waves (Richter 2015).

Even though the mechanisms that cause the SST biases 
have been widely studied, the impact of the biases on TC 
simulations and seasonal predictions has not been fully 
understood. Dynamical climate models are now utilized to 
make experimental seasonal TC predictions, owing to model 
developments and improvements in computational capabili-
ties (e.g., Wang and Lee 2009; LaRow et al. 2010; Murakami 
et al. 2016; Zhang et al. 2017). One forecasting approach is 
based on atmosphere-only models with predicted SSTs as 
a boundary condition. For this approach, important aspects 
of TC-ocean interactions (e.g., Lin et al. 2013) are not rep-
resented. Another seasonal TC forecast approach uses cou-
pled atmosphere–ocean models. However, the severity of 
the tropical SST biases can potentially have considerable 
impacts on TC simulations and predictions. Vecchi et al. 
(2014) show improvements in simulated TC genesis and 
track by reducing SST biases in a high-resolution CGCM 
simulation through adjusting momentum, enthalpy, and 
freshwater fluxes. They suggest that the improved TC rep-
resentations are likely achieved by improvements in simu-
lated large-scale climatological conditions and interannual 
variability. Zhao et al. (2010) emphasized the importance of 
SSTs on seasonal TC forecasts by comparing forecasts using 
persisted and observed SST anomalies in a high-resolution 
(50 km) atmospheric-only model. The results potentially 
indicate that TC forecast skill depends strongly on the abil-
ity of the models to predict the relative change of SST in the 
TC main development region (MDR) to tropical mean SST.

The SST biases can also introduce large uncertainties into 
future projections of TC activity based on climate models. 
There is no consensus on projected changes in future TC 
frequency, although the most recent simulations suggest a 
slight reduction in overall TC numbers but an increase in 
the percentage of intense TCs (e.g., Emanuel 2005; Hol-
land and Webster 2007; Bender et al. 2010; Knutson et al. 
2010; Camargo and Hsiang 2016). Nevertheless, projections 
of future TC location changes, such as TC tracks and land-
fall frequency, are not robust, and sub-regional projections 
remain highly uncertain (Camargo and Hsiang 2016). A 
clear understanding of future changes in TCs requires reli-
able simulations of the mean and variability of SST.

Fig. 1  The April-November 
averaged CMIP5 multi-model 
mean tropical SST biases (°C)
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Although future increases in computing power and model 
resolution may partially alleviate SST bias problem, it is 
likely to persist in models to some degree for at least a dec-
ade or longer, as model representation of atmospheric and 
oceanic processes also contributes to the SST biases (Richter 
2015). Therefore, it is crucial for us to take into account the 
impact of these biases on simulations of TCs activity. Here 
we addressed the question: How do Atlantic and Pacific SST 
biases impact the simulated TC climatology? By conducting 
suites of model simulations, we improved our understanding 
of how the warm and cold SST biases individually influ-
ence simulated TC activity, and through what mechanisms. 
Moreover, we also considered how the Atlantic and Pacific 
SST biases jointly influence TC simulations and assessed 
their relative importance in affecting TC simulations in dif-
ferent regions, as modes of tropical Pacific and Atlantic vari-
ability are known to exert joint influences on Atlantic TC 
activity (Patricola et al. 2014). By splitting the biases up 
by region and by sign, we identified which biases are most 
detrimental to TC simulations and what impact to consider 
for basin-wide TC activity. Moreover, while keeping in mind 
that remote relationships occur between the biases in differ-
ent ocean basins, we also addressed the question: how do 
remote impacts of SST biases from basins outside of the 
region of interest impact TC activity? Although previous 
studies have shown that SST biases can impact TC simu-
lations, the impact has not been systematically quantified 
and the pathways by which the biases influence TCs have 
not been understood. The objective of this study is to gain 
insight into the impact of the SST biases on TC simulations 
at seasonal-to-interannual timescales. More importantly, 
we will shed light on the underlying dynamics of the SST 
biases’ impact on TC simulations.

The sections in this chapter are organized as follows. 
Section  2 describes the modeling tool and experiment 
design. Section 3 presents the results of the model experi-
ments where SST biases are specified either individually 
or jointly in different tropical ocean basins. Section 4 dis-
cusses the implications of the results and summarizes the 
main conclusions.

2  Research methods—model description 
and experimental designs

2.1  Model description

We utilized a Tropical Channel Model (TCM) configuration 
(Patricola et al. 2016, 2017) of the Weather Research and 
Forecasting (WRF) Model (Skamarock et al. 2008) devel-
oped by the National Center for Atmospheric Research 
(NCAR). This model is more suitable for this study com-
pared to many global climate models (GCMs) due to its 

non-hydrostatic dynamical core and finer resolution. The 
TCM extends around the global tropics from 30°S to 50°N, 
and has 27 km TC-permitting horizontal resolution and 32 
levels in the vertical. While the horizontal resolution of the 
TCM is too coarse to resolve the details of the individual 
TCs, it is sufficient to investigate the statistics of TC activ-
ity (Patricola et al. 2016). By setting the model domain to 
the global tropics, we allow atmospheric responses to SST 
forcings to propagate around the globe in the tropics and 
subtropics. Moreover, by setting the northern boundary at 
50°N, atmospheric teleconnections that affect the MDR 
from outside the tropics can be considered, as teleconnec-
tions between different tropical ocean basins can be linked 
through regions outside of the tropics (Nobre and Shukla 
1996).

The sensitivity of physical parameterizations of the WRF 
model was well tested over the Atlantic MDR (Patricola 
et al. 2014), and the TCM was tested over both the Atlantic 
and Pacific basins (Patricola et al. 2016, 2017). However, 
we note some problems with the model. For example, the 
TCM tends to generate too much rainfall over Africa and 
the Amazon, underestimate the maximum near-surface wind 
speed of TCs, and overestimate the number of Atlantic and 
ENP TCs (Patricola et al. 2016). Despite these issues, the 
TCM reproduces the atmospheric responses to ENSO and 
AMM reasonably well (Patricola et al. 2016, 2017). There-
fore, with these known problems, the TCM is still a suitable 
tool for this study.

2.2  Experimental designs

We conducted extensive WRF TCM experiments forced by 
surface boundary conditions with and without climatological 
6-hourly SST biases. By prescribing the SST forcings to the 
TCM, we can isolate the atmospheric response to specific 
regions of SST bias, which is important as different mech-
anisms generate the SST biases in different regions. The 
SST biases were calculated from the CMIP-5 (Taylor et al. 
2012) multi-model (37 models) ensemble mean subtracted 
from the National Oceanic and Atmospheric Administra-
tion (NOAA) Optimum Interpolation (–OI) observed SST 
(Reynolds et al. 2007) covering the period of 1984 to 2004, 
and were then interpolated to 6-hourly from monthly, and to 
the 27 km grid of the TCM. A suite of simulations (Table 1) 
were conducted to quantify individual and joint effects of 
SST biases on TC activity by separating the Atlantic and 
Pacific SST biases into warm, cold, and total (combining 
warm and cold) biases. The biases near the lateral bounda-
ries were smoothed over 5 degrees in the latitudinal direc-
tion. Even though the amplitudes of seasonal variation of the 
biases are smaller than the biases themselves (Wang et al. 
2014), we included the annual cycle of the SST biases in 
our simulations.
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The biases were added to the control SST to produce the 
warm, cold, and total bias simulations. Figure 1 shows the 
seasonal mean (from April to November, to focus on the TC 
season) of the climatological 6-hourly SST biases that we 
used in the experiments. While the SST biases were calcu-
lated based on the 1984–2004 NOAA-OI SST and CMIP5 
simulations, the control SST was based on the monthly 
1950–2014 climatology from the Hadley Center Global Sea 
Ice and Sea Surface Temperature dataset (HadISST) (Rayner 
et  al. 2003). HadISST was utilized for the control SST 
because the product covers a longer time period, whereas the 
NOAA-OI SST was used to calculate SST biases because the 
resolution is finer. We do not expect details between Had-
ISST and NOAA-OI SST to significantly impact the results 
of this study, as the SST biases have much larger amplitude 
than the difference between the two SST products.

To quantify the impact of SST biases, the ensemble of 
control simulations (CTRL) serves as a reference for experi-
ments including the Atlantic warm bias (AtlWB), Atlantic 
cold bias (AtlCB), Atlantic total bias (AtlTB), Pacific warm 
bias (PacWB), Pacific cold bias (PacCB), Pacific total bias 
(PacTB), and the combined Atlantic and Pacific total bias 
(AtlPacTB) simulations (Table 1). The warm and cold biases 
are defined at every grid point with SST bias values greater 
and less than zero, respectively. Initial conditions (ICs) and 
lateral boundary conditions (LBCs) were provided by the 
6-hourly NCEP-U.S. Department of Energy (DOE) Atmos-
pheric Model Intercomparison Project II (AMIP-II) Rea-
nalysis (NCEP-2) from the years 1989 and 1996 (Kanamitsu 
et al. 2002). The 2 years were chosen for LBCs since cli-
mate modes such as ENSO during the simulation period of 
April to November were in neutral phases, in order to avoid 
a strong influence of the climate modes through the northern 
mid-latitude LBCs (Patricola et al. 2016). To focus on the 
TC season in the northern hemisphere, the simulations were 
started in April and ended in November. The first 2 months 
were discarded as spin up, with analysis covering June to the 
end of November. An ensemble of 16 runs was generated 
by altering the start date to generate different ICs for each 

ensemble member of each experiment in order to quantify 
the statistical significance of the results.

2.3  Quantifying TC activity

The tracking algorithm from Walsh (1997) was used to iden-
tify simulated TCs, including tropical storms and hurricanes 
or typhoons (depending on the ocean region). To be identi-
fied as a tropical cyclone, the system must generate south of 
30°N, last at least 2 days, and have a warm core. Moreover, 
an identified TC must have a closed surface pressure mini-
mum, a minimum 10-m wind speed of 17.5 ms−1, and satisfy 
a 850-hPa vorticity threshold over its center. The resolu-
tion used to calculate the track density is 2° longitude by 2° 
latitude. A comparison between the track density from the 
Revised Atlantic Hurricane Database (HURDAT2) (Landsea 
et al. 2015) and from TCM ensemble of the climatology 
simulation in the ENP and Atlantic is shown in Supplemen-
tary Fig. 6 in Patricola et al. (2016).

To investigate the impact of SST biases on TC activity, 
we calculated the simulated accumulated cyclone energy 
(ACE), which accounts for TC strength, number, and dura-
tion (Bell et al. 2000). ACE is the summation of the square 
of the 6-hourly maximum sustained wind speed of TCs over 
a TC season. Furthermore, to understand the underlying 
dynamics linking SST biases to TC simulations, we exam-
ine the Genesis Potential Index (GPI) (Emanuel and Nolan 
2004). By calculating GPI, we can quantitatively estimate 
how various environmental variables influence changes in 
TC activity:

The GPI is calculated from the monthly mean of absolute 
vorticity at 850 hPa (η), relative humidity at 600 hPa (H), 
potential intensity  (Vpot), and vertical wind shear between 
850 and 200 hPa  (Vshear). The potential intensity (PI) is 
computed based on atmospheric (temperature and specific 
humidity) vertical profiles, sea level pressure, and SST. 
While GPI does not explain all variability associated with 
TCs, it is a suitable index for investigating the conditions 
that influence the TC activity (Camargo et al. 2007; Patricola 
et al. 2014).

3  Results

3.1  Atlantic SST biases

To quantify the impact of Atlantic SST biases on TC spa-
tial variability in Atlantic and Pacific basins, we computed 
the spatial differences in the TC track densities between 
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Table 1  Experiment names for control and bias runs, and the associ-
ated SST biases that included in the SST forcings for each experiment

SST bias Experiment name

Control (without bias) CTRL
Atlantic warm bias AtlWB
Atlantic cold bias AtlCB
Atlantic total bias AtlTB
Pacific warm bias PacWB
Pacific cold bias PacCB
Pacific total bias PacTB
Atlantic and Pacific total bias AtlPacTB
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the Atlantic bias and the control simulations (Fig. 2). The 
Atlantic warm bias produced no significant impact on TC 
track density (Fig. 2a) and genesis locations (not shown). 
However, the Atlantic cold bias caused a marked decrease 
in Atlantic TC track density, and a remote increase in ENP 
TC track density (Fig. 2b), with an insignificant change 
in Atlantic genesis density and a positive genesis density 
anomaly near the coast of the ENP (not shown). Note that 
the region of positive anomaly in track density in the ENP is 
slightly offshore, and the magnitude of the anomaly is even 
larger than that in the Atlantic. Combing both cold and warm 
biases in the Atlantic, the bias (AtlTB) impacts the track den-
sity in a similar way as AtlCB, but with smaller magnitudes 
(Fig. 2c). Moreover, the Atlantic SST biases produced no 
statistically coherent response in WNP track density.

Other than the impact on spatial patterns of TCs, we also 
investigated the basin-wide TC variability by calculating 
ACE and the number of TCs, and the values in different 
ocean basins computed from the control simulation and the 
Atlantic bias experiments are shown (Fig. 3; Table 2). Both 
AtlCB and AtlTB generate lower ensemble median (Fig. 3) 
and mean (Table 2) values of ACE and TC numbers in the 
Atlantic and higher values in ENP compared to CTRL. These 
changes generated by AtlCB and AtlTB are all significant 
at the 5% level (two-sample student t-test). Besides, both 
AtlCB and AtlTB generate a decrease in Atlantic TC intensi-
ties (not shown), corresponding to the smaller ACE values, 
and an increase in ENP TC intensities that co-occurs with 
larger ACE values. Moreover, similar to the impact on track 
density, the impact of Atlantic cold and total biases on ACE 

(a)

(b)

(c)

Fig. 2  The differences between track density ensemble means of 
a Atlantic warm bias (AtlWB) and control (CTRL) runs, b Atlantic 
cold bias (AtlCB) and control (CTRL) runs, and c Atlantic total bias 

(AtlTB) and control (CTRL) runs. Hatched regions passed the two-
sample student t-test at 5% significance level
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and TC number is stronger in the ENP basin (remotely) than 
in the Atlantic basin (locally) (Table 2). On the other hand, 
based on values in ACE and TC numbers, the Atlantic warm 
bias does not significantly (5% level) impact TCs in any of 
the tropical ocean basins, and all the Atlantic SST biases 

insignificantly influence WNP TCs. Note that even if we 
consider the internal variability (or the range of the values 
of the ensemble members), the values of ACE and number 
of TCs generated by AtlCB and AtlTB in the Atlantic and 
ENP are considerably different from those of CTRL (Fig. 3).

In addition, to understand the underlying dynamics link-
ing SST biases to TC simulations, we examined the GPI 
(Fig.  4) and the associated atmospheric variables (not 
shown). The patterns of significant GPI changes are con-
sistent with the changes in ACE and the number of TCs. 
The cold (Fig. 4b) and total (Fig. 4c) SST bias forcings 
induce a decrease in ensemble-mean GPI in the Atlantic 
MDR and Gulf of Mexico (GoM), and an increase in the 
ENP. The Atlantic warm bias alone insignificantly impacts 
GPI (Fig. 4a). Therefore, we focus on AtlCB and AtlTB to 
investigate the dominant GPI terms (atmospheric variables) 
that contribute to the GPI change driven by Atlantic SST 
biases. The impact of AtlTB is not significantly different 
from that of AtlCB, suggesting that the cold bias, rather than 

(a) (b) (c)

(d) (e) (f)

Fig. 3  Boxplot of simulated Accumulated Cyclone Energy (ACE) 
(a to c) and number of TCs (d to f) from control (CTRL), Atlantic 
warm (AtlWB), cold (AtlCB), and total (AtlTB) bias runs (16 ensem-
ble members each) in Atlantic (a and d), eastern North Pacific (b and 
e), and western North Pacific (c and f) basins. The horizontal line 

between light and dark shading represents the median of the ensem-
ble values, while the upper boundary of the light color box represents 
the 75 percentile and the lower boundary of the dark color box repre-
sents the 25 percentile. The whiskers show the maximum and mini-
mum ensemble values

Table 2  Ensemble means (from 16 ensemble members each) of 
ACE and the number of TCs from control (CTRL) and Atlantic bias 
(AtlWB, AtlCB, and AtlTB) runs in both real number and percentage 
difference from CTRL (only shown if the difference from CTRL is 
significant at the 5% level)

CTRL AtlWB AtlCB AtlTB

Atlantic ACE 116 128 42 [− 64%] 57 [− 51%]
ENP ACE 87 81 220 [153%] 185 [113%]
WNP ACE 302 295 285 278
Atlantic number of TCs 18 20 9 [− 50%] 12 [− 33%]
ENP number of TCs 16 16 26 [63%] 23 [44%]
WNP number of TCs 28 27 28 25
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the gradient generated by both the cold and warm biases, 
mainly contributes to the anomalous GPI patterns.

GPI changes forced by Atlantic SST biases can be further 
diagnosed by computing contributions from environmental 
variables including vertical wind shear, mid-tropospheric 
relative humidity, potential intensity, and vorticity. To esti-
mate the contribution from each factor, we calculated the 
GPI by setting one term in GPI to the value from one of 
the perturbed simulations, and other terms to values from 
the control simulation, and then compared to the CTRL GPI 
(Camargo et al. 2007; Patricola et al. 2014, 2016). Only the 
results for AtlCB (Fig. 5) are shown due to the similarity 
between the GPI responses in the AtlCB and AtlTB experi-
ments. In both the Atlantic cold and total bias runs, the mid-
tropospheric humidity, vertical wind shear, and potential 
intensity all contribute to the decrease in Atlantic GPI, while 
only the shear term contributes to the increase in ENP GPI. 

(The negative contribution from the humidity and vorticity 
terms compensates the large positive contribution from the 
shear term by a small magnitude along the coast of the ENP.) 
Moreover, the weak positive GPI anomalies in the central 
Pacific in AtlCB and AtlTB arise from the humidity term.

The response in atmospheric conditions (e.g., mid-
tropospheric relative humidity and vertical wind shear) 
is consistent with the associated GPI term (not shown). 
For example, the vertical shear is enhanced by the AtlCB, 
consistent with the relationship found in previous studies: 
with cold anomaly in northern Atlantic SST, the strength-
ened subtropical high can induce easterly low-level wind 
anomalies in the MDR, and further enhance the local verti-
cal wind shear (Vimont and Kossin 2007). Moreover, the 
change in tropospheric humidity can be locally linked to 
the change in surface latent heat flux generated by SST 
anomalies in the Atlantic (Vimont and Kossin 2007). Note 

(a)

(b)

(c)

Fig. 4  The differences between GPI ensemble means of a Atlantic 
warm bias (AtlWB) and control (CTRL) runs, b Atlantic cold bias 
(AtlCB) and control (CTRL) runs, and c Atlantic total bias (AtlTB) 

and control (CTRL) runs. Hatched regions passed the two-sample stu-
dent t-test at 5% significance level
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that in order to test the robustness of the results, all of 
the above analyses (and those for Pacific and combined 
Atlantic and Pacific SST bias experiments) were repeated 
by randomly choosing 8 out of the 16 ensemble members. 
There is little difference in the results, suggesting that 
the ensemble size is sufficiently large to generate robust 
findings. In particular, the ensemble means of the results 
from 1989 to 1996 forced members (8 members each) were 

compared, and no statistically significant differences in TC 
activity were shown.

It has been shown that SST anomalies in the tropical 
Atlantic can remotely influence atmospheric circulations 
and SSTs in the tropical Pacific on interannual to centen-
nial timescales (Kucharski et  al. 2016). On interannual 
timescales, previous studies have shown that the telecon-
nection generated by Atlantic SST variability can impact 

(a)

(b)

(c)

(d)

Fig. 5  The differences of ensemble mean GPI values between Atlantic cold (AtlCB) bias runs and control (CTRL) runs contributed from a 
humidity, b shear, c vorticity, and d potential intensity terms. Hatched regions passed the two-sample student t-test at 5% significance level



181The impact of climate model sea surface temperature biases on tropical cyclone simulations  

1 3

the Pacific basin through a Walker-type circulation response 
(Patricola et al. 2017; Zhang et al. 2017), consisting of near-
surface wind anomalies triggered by equatorial Kelvin waves 
(Rodriguez-Fonseca et al. 2009; Ding et al. 2012; Polo et al. 
2015), and/or Rossby wave responses (Ham et al. 2013a, b). 
In our AtlCB simulations, while a Walker-type circulation 
response similar to the negative AMM experiment in Patri-
cola et al. (2017) can be seen (Fig. 6a), the remote impact of 
Atlantic cold bias on ENP TC activity, especially the shear 
contribution, is also strongly influenced by the change in 
regional circulation inducing by the topography.

To examine the remote impact dominated by the shear 
term, we investigated both the CTRL and AtlCB simulated 
wind profiles near the regions with the largest shear contri-
bution from AtlCB (Fig. 5b). In CTRL simulations (Fig. 6b), 
low-level easterlies, generated by trade wind and the asso-
ciated Caribbean low level jet (CLLJ), appear in the Car-
ibbean/Atlantic region with the corresponding westerlies 
on top around 200 hPa induced by the occurrence of the 
Central America mountain. On the lee-side of the Central 
American topography, low-level westerly flow occurs with 
easterly flow in upper levels. Circulations on the lee-side and 
in the Caribbean region (windward side) both contribute to 
an ascending wind on top of the Central American mountain 
region, generating a maximum rainfall region in the TCM 
(not shown). Moreover, in the western part of the ENP, a 
circulation cell (or double cell, as it is generated by both 
the Hadley Cell and Walker circulation) exists, with low-
level easterly winds occurring with upper-level westerlies. 
A descent motion band around 130°W is then generated by 

the double cell and the lee-side circulation. Note that since 
the orography of the region is highly complex, and the peaks 
of the mountains are at different altitudes depending on the 
location (both longitude and latitude), the winds can flow 
though the mountain gaps in some locations, but in most 
places are forced to ascend on the windward side of the 
mountain due to rising orography (Fig. 6).

In the AtlCB simulations (Fig. 6c), stronger low-level 
easterly flow occurs in the Caribbean/Atlantic region with 
enhanced upper-level westerlies. This strengthening of the 
circulation on the windward side of the mountain is con-
tributed by strengthening of the CLLJ. The strength of the 
CLLJ is correlated to the SST difference between the tropi-
cal Atlantic and ENP, and is also strongly controlled by the 
land-sea temperature difference between the Caribbean and 
the northern part of the southern America land (e.g., Whyte 
et al. 2008). With the Atlantic cold bias, the pressure gra-
dient is enhanced between the ocean basins and between 
the land and sea, and therefore the CLLJ is strengthened. 
However, since the air coming from the Atlantic/Caribbean 
region is colder and dryer (due to the Atlantic cold SST 
bias) compared to CTRL, the latent heat release associated 
with the orographic lifting is weaker than that in CTRL. 
This leads to a weakened ascending motion in AtlCB than 
in CTRL, resulting in an anomalous descending wind over 
the mountain and the windward region.

Figure 7 shows rainfall and vertical-integrated mois-
ture convergence differences between AtlCB and CTRL. A 
decrease in regional rainfall over Central America is indica-
tive of a weakening in the diabatic heating, while a decrease 

(a) (b) (c)

Fig. 6  The wind cross-section (degree longitude vs. hPa) along 15°N 
(averaged from 12.5°N to 17.5°N), where the AtlCB shear contribu-
tion (to GPI anomaly) and cold bias induced zonal wind anomalies 
at 200 hPa and 850 hPa show the largest values. a shows the ensem-
ble-averaged anomalous wind profile (in arrows [m/s]) calculated 
from zonal (u) and vertical (w) wind (times 3000 for scaling) differ-

ences between AtlCB and CTRL runs, and the zonal wind anomalies 
(in shaded color) (in m/s) from AtlCB comparing to CTRL, while b 
shows the CTRL ensemble-averaged wind profile, and c shows the 
AtlCB wind profile. Hatching region in a indicates the differences 
passing the 95% student t-test
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in the moisture convergence from windward side to coastal 
leeward side of the mountain suggests a reduced moisture 
supply in the region. Note that due to the complexity of 
the terrain, the spatial pattern of moisture convergence over 
the mountain is messy. As a result, the cold SST bias pro-
duces a clockwise anomalous vertical circulation above the 
mountainous region in the Central America (Fig. 6a), which 
acts to strengthen the circulation over the Caribbean and 
Atlantic and weaken the circulation over the far eastern ENP 
(Fig. 6b). As such, the vertical wind shear is strengthened 
over the Caribbean and Atlantic and reduced over the Carib-
bean and Atlantic sector. This offers an explanation for the 
sharp change in sign of vertical shear induced GPI anomaly 
over the Central America (Fig. 5b), which dominates the 
GPI difference between AtlCB and CTRL (Fig. 4b).

3.2  Pacific SST biases

Unlike the Atlantic cold bias, which significantly impacts 
both the Atlantic and eastern Pacific basins (Fig. 2), the 
Pacific cold bias has no significant impact on TC track den-
sity in these ocean basins (Fig. 8). The Pacific warm bias and 
total bias significantly increase the track density and gen-
esis density (not shown) locally in the ENP, but the positive 
anomaly pattern has a different shape and location from that 
of the AtlCB experiment. While the maximum magnitudes 
of the track density anomaly from PacWB and PacTB are 
about half of that from the Atlantic cold bias, the positive TC 
track density anomaly in the central Pacific (around 180°W) 
is much larger in PacCB and PacTB compared to AtlCB. A 
positive track density anomaly in the central North Pacific 

occurs with a negative anomaly in the central to eastern 
Atlantic basin in both PacCB and PacTB (Fig. 8b, c). Since 
the positive anomaly in the central Pacific is accompanied 
by a negative anomaly in the western (coastal) Pacific, an 
eastward shift of TCs in the WNP is generated by the Pacific 
total SST bias (Fig. 8c).

This eastward shift also appears in genesis density (not 
shown), and a similar shift in WNP TCs is observed dur-
ing El Niño events (e.g. Chan 1985, 2005; Wang and Chan 
2002). Wang and Chan (2002) suggest that the equatorial 
westerlies and upper-level divergence induced by the intensi-
fied WNP subtropical high during El Niño events can both 
contribute to a southeastward shift of TCs, by enhancing 
TC generation in southeastern WNP and suppressing gen-
eration over the northwestern quadrant of the WNP. In our 
case, similar anomalous westerlies can be generated by the 
zonal SST gradient induced by the zonal pattern of cold and 
warm biases north of the equator, and the intensification of 
the subtropical high can be generated by the local decrease 
in SST induced by the northwestern part of the Pacific cold 
bias. Therefore, with both the warm and cold biases com-
bined, PacTB generates the most significant eastward shift 
in TCs. However, the SST bias pattern in the Pacific is more 
complex than El Niño related SST anomalies, and further 
work is required to fully understand their impact on the shift 
of TC locations, and how the mechanism is different from 
that during El Niño events.

Consistent with the impact on the track density, the 
Pacific cold bias alone insignificantly influences ACE and 
the number of TCs in both the Atlantic and Pacific basins 
(Fig. 9; Table 3). The warm bias, on the other hand, locally 

(a)

(b)

Fig. 7  Seasonal-mean precipitation (a) (in mm/day) and seasonal-
mean vertical-integrated (1000 hPa to 500 hPa) moisture convergence 
(b) (in g/kg*s−1) differences between AtlCB and CTRL. Red colors in 
a indicate more precipitation in AtlCB than CTRL. While red colors 

in b indicate anomalous moisture convergence, blue colors indicate 
anomalous moisture divergence. Hatched regions passed the two-
sample student t-test at 5% significance level
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increases ENP TC activity (Fig. 9b, e). Similarly, the ensem-
ble-mean values of ACE and the number of TCs increase 
(Table 3). Furthermore, the PacWB runs generate stronger 
TCs in the ENP (not shown), consistent with the larger ACE 
values. The remote impact of the Pacific warm bias on TC 
activity in Atlantic is evident, with a slight decrease in ACE 
(significant) and number of TCs (insignificant) (Fig. 9a, d; 
Table 3). Moreover, there is no significant change in the 
ensemble means of both ACE and number of TCs in the 
Atlantic basin in PacTB. The ensemble means show that 
while the Atlantic SST biases have a larger impact on 
TCs remotely in the ENP compared to locally in Atlantic 
(Table 2), the Pacific biases have a larger impact locally in 
the ENP (Table 3).

Even though the Pacific SST bias has no significant 
impact on WNP ACE and number of TCs, the probability 

density function of TC intensity (not shown) indicates that 
PacCB shifts the TCs to lower intensity compared to CTRL. 
A similar result is obtained by separating out strong TCs 
when calculating the ensemble-mean ACE and the number 
of TCs. While the ensemble-averaged values of ACE and 
the number of TCs in PacCB are insignificantly different 
from those in CTRL (Table 3), the PacCB ensemble mean of 
ACE for TCs stronger than category 3 shows a 61% decrease 
from CTRL in WNP. Besides the change in ACE, the number 
of TCs stronger than category 3 also decreases in PacCB 
(by 75%), indicating that a significant decrease in WNP TC 
intensity can be caused by the Pacific cold bias.

GPI and associated atmospheric variables are also ana-
lyzed for Pacific bias experiments to investigate the impact 
of Pacific SST biases on TC-related environments. Locally, 
PacWB and PacTB strongly increase GPI in the ENP, 

(a)

(b)

(c)

Fig. 8  The differences between track density ensemble means of 
a Pacific warm bias (PacWB) and control (CTRL) runs, b Pacific 
cold bias (PacCB) and control (CTRL) runs, and c Pacific total bias 

(PacTB) and control (CTRL) runs. Hatched regions passed the two-
sample student t-test at 5% significance level
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corresponding to an increase in ACE and number of TCs 
in that region (Fig. 10). PacCB remotely increases GPI in 
the western Atlantic near the Caribbean Sea (Fig. 10b), cor-
responding to an insignificant increase in ACE in Atlantic 
basin (Table 3). PacTB has the combined effect of PacWB 
and PacCB in the ENP and Atlantic basins, where GPI 

increases strongly in the ENP, but changes insignificantly 
in the Atlantic. Both PacWB and PacCB (and thus PacTB) 
generate a positive GPI anomaly in the central Pacific near 
10°–15°N and 160°E–150°W, and a negative anomaly north 
of the positive anomaly in central Pacific as well as in the 
WNP. Note that a similar pattern is shown in the track den-
sity anomalies for PacTB (Fig. 8), except for a westward 
shifted pattern compared to the GPI anomalies.

The contributions from different terms in GPI indicate 
that the warm bias generates an increase in GPI in the 
ENP mainly through PI (Fig. 11). PacWB and PacCB have 
similar GPI anomalies in the central Pacific derived from 
similar physical causes: both humidity and shear terms 
make a positive GPI anomaly. This similarity between the 
GPI term contributions in PacWB and PacCB suggests that 
it is the gradient of the SST, rather than the SST anomaly, 
that influences the atmospheric circulation and condition 
(Graham and Barnett 1987; Wang and Li 1993), which 
further induce changes in TC activity. Nevertheless, the 
negative GPI anomaly in the central Pacific and WNP is 

(a) (b) (c)

(d) (e) (f)

Fig. 9  Boxplot of simulated Accumulated Cyclone Energy (ACE) 
(a–c) and number of TCs (d–f) from control (CTRL), Pacific warm 
(PacWB), cold (PacCB), and total (PacTB) bias runs (16 ensemble 
members each) in Atlantic (a, d), eastern North Pacific (b, e), and 
western North Pacific (c, f) basins. The horizontal line between light 

and dark shading represents the median of the ensemble values, while 
the upper boundary of the light color box represents the 75 percen-
tile and the lower boundary of the dark color box represents the 25 
percentile. The whiskers show the maximum and minimum ensemble 
values

Table 3  Ensemble means (from 16 ensemble members each) of 
ACE and the number of TCs from control (CTRL) and Pacific bias 
(PacWB, PacCB, and PacTB) runs in both real number and percent-
age difference from CTRL (only shown if the difference from CTRL 
is significant at the 5% level)

CTRL PacWB PacCB PacTB

Atlantic ACE 116 92 [− 21%] 125 100
ENP ACE 87 181 [108%] 75 166 [91%]
WNP ACE 302 292 314 317
Atlantic number of TCs 18 15 18 17
ENP number of TCs 16 25 [56%] 16 25 [56%]
WNP number of TCs 28 27 31 31
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much weaker in PacWB than PacCB, with the anomaly 
attributed to all GPI terms. Although the PacCB gener-
ates a stronger eastward shift in the WNP TC tracks and 
GPI anomaly, with the cold bias in western WNP, TCs do 
not seem to intensify further even with a longer distance 
to travel over the ocean, which can potentially intensify 
TCs (eg. Wang and Chan 2002; Camargo and Sobel 2005; 
Wang et al. 2013). This could be related to the coarse reso-
lution of the model used in this study that does not fully 
resolve TC dynamics. As a result, the TC activity (ACE 
and TC number) of strong TCs decreases in PacCB simula-
tions. As for the Atlantic bias experiments, all the analyses 
for the Pacific SST bias experiments have been repeated 
by randomly chosen 8 ensemble members, and the results 
remain similar to those with all (16) ensemble members.

3.3  Atlantic and Pacific SST biases

Given the importance of joint SST variability (Patricola 
et al. 2014), we expect the Atlantic and Pacific biases to 
jointly influence the TC simulations. Both Atlantic total bias 
(AtlTB) and Pacific total bias (PacTB) generate an increase 
in track density in ENP (Fig. 12), with AtlTB from about 
10°N to 20°N (Fig. 2c), and PacTB from about 20°N to 30°N 
(Fig. 8c). Note that while the strongest increase of the track 
density in PacTB is along the west coast of Central America 
(corresponding to the bias location), the anomaly in AtlTB 
is slightly offshore in the ENP (due to the local topographic 
impact). The impact of the combined Atlantic and Pacific 
SST biases (AtlPacTB) is shown to have combined effects of 
AtlTB and PacTB (Fig. 12). Compared to AtlTB and PacTB, 

(a)

(d)

(c)

Fig. 10  The differences between GPI ensemble means of a Pacific 
warm bias (PacWB) and control (CTRL) runs, b Pacific cold bias 
(PacCB) and control (CTRL) runs, and c Pacific total bias (PacTB) 

and control (CTRL) runs. Hatched regions passed the two-sample stu-
dent t-test at 5% significance level
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it is clear that the positive track density anomaly in the ENP 
is more widespread in AtlPacTB. In the Atlantic region, SST 
biases in both AtlTB and PacTB contribute to the negative 
anomalies in TC track density in AtlPacTB. However, the 
positive track density anomalies in the central Pacific and 
negative anomalies in the WNP appear to mainly come from 
the Pacific SST biases (PacTB), with minor contributions 
from the Atlantic biases (AtlTB).

The combined Atlantic and Pacific SST biases signifi-
cantly reduce the values of ACE and TC numbers in the 
Atlantic basin, and this suppression of TC activity is mainly 
dominated by the Atlantic bias (Fig. 13; Table 4). In the 
ENP, both AtlTB and PacTB significantly increase the values 
of ACE and TC number, resulting in a significantly large 
increase in TC activity (199% and 88% compared to CTRL 
for ensemble-mean ACE and TC numbers, respectively) 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 11  The contribution on the differences of GPI ensemble means 
between Pacific warm (PacWB) bias runs and control (CTRL) runs 
from a humidity, b shear, c vorticity, and d potential intensity terms; 
and the contribution on the differences between Pacific cold (PacCB) 

bias runs and control (CTRL) runs from e humidity, f shear, g vorti-
city, and h potential intensity terms. Hatched regions passed the two-
sample student t-test at 5% significance level

 120oE  180oW  120oW   60oW    0o   0o
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Fig. 12  The differences between track density ensemble means of Atlantic and Pacific total bias (AtlPacTB) runs, and that of control (CTRL) 
runs. Hatched regions passed the two-sample student t-test at 5% significance level
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in AtlPacTB runs. However, the ensemble-mean ACE and 
TC numbers show relatively minor changes in the WNP 
in AtlPacTB compared to AtlTB and PacTB (Table  4). 

Interestingly, there is an indication that the ensemble spread, 
which is a measure of atmospheric internal variability, is 
reduced in WNP when the Atlantic and Pacific SST biases 
are combined in AtlPacTB compared to that in AtlTB and 
PacTB respectively. Whether this change in internal vari-
ability is robust requires further research.

To investigate the environmental condition changes 
associated with the impact of combined bias on TC simula-
tions, we also computed GPI for the AtlPacTB experiment 
(Fig. 14). According to the GPI anomalies induced by indi-
vidual Atlantic and Pacific SST biases (Figs. 4, 10, respec-
tively), the negative GPI anomalies in Atlantic basin in Atl-
PacTB are mainly driven by the Atlantic cold bias, whereas 
the positive GPI anomalies in the ENP are caused by joint 
impacts from the Atlantic cold bias and Pacific warm bias. In 
the central Pacific and WNP region, the GPI anomaly in Atl-
PacTB shows a similar pattern and magnitude to the Pacific 
bias experiments, indicating the dominant influence is from 
the Pacific biases, rather than the Atlantic biases, on the 

(a) (b) (c)

(d) (e) (f)

Fig. 13  Boxplot of simulated Accumulated Cyclone Energy (ACE) 
(a–c) and number of TCs (d–f) from control (CTRL), Atlantic total 
(AtlTB), Pacific total (PacTB), and combined Atlantic and Pacific 
total (AtlPacTB) bias runs (16 ensemble members each) in Atlantic 
(a, d), eastern North Pacific (b, e), and western North Pacific (c, f) 

basins. The horizontal line between light and dark shading represents 
the median of the ensemble values, while the upper boundary of the 
light color box represents the 75 percentile and the lower boundary 
of the dark color box represents the 25 percentile. The whiskers show 
the maximum and minimum ensemble values

Table 4  Ensemble means (from 16 ensemble members each) of 
ACE and the number of TCs from control (CTRL), Atlantic total bias 
(AtlTB), Pacific total bias (PacTB), and combined Atlantic and Pacific 
total bias (AtlPacTB) runs in both real number and percentage differ-
ence from CTRL (only shown if the difference from CTRL is signifi-
cant at the 5% level)

CTRL AtlTB PacTB AtlPacTB

Atlantic ACE 116 57 [− 51%] 100 47 [− 59%]
ENP ACE 87 185 [113%] 166 [91%] 260 [199%]
WNP ACE 302 278 317 297
Atlantic number of 

TCs
18 12 [− 33%] 17 11 [− 39%]

ENP number of TCs 16 23 [44%] 25 [56%] 30 [88%]
WNP number of TCs 28 25 31 28
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GPI in these regions. This GPI anomaly pattern is generally 
consistent with TC changes measured by other TC activity 
indexes, including track density, ACE, and number of TCs. It 
shows that TC activity is (1) strongly enhanced in the ENP, 
(2) suppressed in the Atlantic, and (3) generally increased in 
the central Pacific and decreased in the WNP because of an 
eastward shift in TC locations, under the combined influence 
of SST biases in both basins.

4  Discussion and summary

Large ensembles of TC-permitting tropical-channel WRF 
simulations show that tropical SST biases common to cur-
rent generation climate models can have a significant impact 
on TC simulations, predictions, and projections both locally 
in and remotely from tropical Atlantic and Pacific basins. 
Even though previous studies have suggested impacts of SST 
biases on simulated TCs (Vecchi et al. 2014), the influence 
of individual biases (and biases in each basin) has not been 
systematically investigated. In this study, we investigate 
the local and remote TC responses to individual biases by 
separating warm and cold biases in each ocean basins, and 
the results allow us to identify which biases have the most 
significant impact on TC simulations. Our study shows that 
tropical SST biases can cause an overestimation of ACE 
(by ~ 200%) in the ENP and underestimation of ACE (by 
~ 60%) in Atlantic, while the impact on WNP ACE is insub-
stantial. Considering the basin-wide TC activity, TCs in the 
ENP appear to be most affected by SST biases because of 
the joint influence from the tropical Atlantic and Pacific. In 
contrast, Atlantic TC activity is mostly affected by the cold 
bias in the Northern Tropical Atlantic, whereas TC activity 
in the WNP seems to be dominated by the local influence of 
Pacific SST biases.

Some previous TC studies based on CMIP5 multi-model 
simulations also indicate the possible impact of the SST 
biases on the simulated TC activity. For example, with 
comparable model resolutions, Tory et  al. (2013) show 

significant differences among simulated TC activity by dif-
ferent models, and suggest factors other than the resolution 
may play a key role in generating the simulated TC activ-
ity biases. Camargo (2013) suggests the potential contribu-
tion of SST biases to the TC biases in models, especially 
in the North Atlantic region. For instance, some models 
show relatively low TC number in the North Atlantic and 
unrealistically high TC activity in the ENP with negative 
SST biases in the Atlantic, which is consistent with our find-
ing from the bias-included simulations. They point out the 
marginal nature of the North Atlantic environments for TC 
formations, and suggest even small negative SST biases can 
lead to a suppression of simulated TC activity in the region. 
Reed et al. (2015) also indicate SST with problematic drift 
can significantly influence the TC activity downscaled from 
global model simulations. Therefore, with the support from 
previous studies, the results of our study suggest that reduc-
ing the Atlantic cold SST bias and Pacific SST warm biases 
could potentially have the impact of improving TC repre-
sentation in climate simulations, especially in the ENP and 
Atlantic. Moreover, even though the spatial patterns and 
magnitudes are similar between the Atlantic and Pacific SST 
biases, the mechanisms of how these biases exert their influ-
ence on simulated TC activity are different.

The Atlantic cold SST bias causes decreases in mid-
tropospheric humidity and potential intensity, and increases 
in vertical wind shear, all of which contribute to decreases 
in the North Tropical Atlantic GPI, leading to decreases in 
track density, ACE, and number of TCs in the region. In 
addition, increases in ENP GPI (together with increases in 
track density, ACE, and TC numbers) primarily come from 
decreases in vertical wind shear due to the remote influ-
ence of the Atlantic cold SST bias that produces a Walker-
type response (Patricola et al. 2017) forced by a diabatic 
heating anomaly associated with orographic lifting along 
Central American mountain ranges. The terrain-induced 
circulation anomaly enhances vertical wind shear over the 
Atlantic sector and reduces vertical wind shear in the near 
coast region of ENP. Figure 15 shows a schematic diagram 
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Fig. 14  The differences between GPI ensemble means of combined Atlantic and Pacific bias (AtlPacTB) runs and that of control (CTRL) runs
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illustrating the mechanism behind the anomalous circula-
tion. In response to the cold bias in Atlantic (AtlCB), the 
CLLJ intensifies because of the increase in both inter-basin 
SST gradient and land-sea temperature contrast. At the same 
time, atmospheric moisture content also decreases due to 
the surface cooling, which is the strongest in the Southern 
Caribbean (Fig. 1). The drier and colder winds carried by the 
CJJL reduces the orographic lifting induced diabatic heat-
ing, which in turn produces a clockwise anomalous vertical 
circulation over Central America (Fig. 15b). The anomalous 
circulation acting on the mean circulation (Fig. 15a) pro-
duces intensified vertical wind shear on the Atlantic side 
and reduced shear on the Pacific side of Central America, 
which is primarily responsible for the enhanced TC activity 
over the ENP and reduced TC activity over the Caribbean 
and Atlantic in AtlBC. This remote influence of Atlantic 
SST is supported by observational analysis that shows an 
increase in ENP TCs during cold AMM phase (Patricola 
et al. 2017). Both observations and simulations from the 
TCM show a decrease in vertical wind shear in ENP dur-
ing negative AMM events. Furthermore, even though the 
impact of Atlantic SST biases on WNP TCs is insubstan-
tial, Yu et al. (2015) noted a possibility of the influence of 
Atlantic SST variability on the circulation in Pacific Ocean. 
Therefore, accurate simulations of Pacific TCs will require 
a realistic representation of Atlantic SST.

The spatial distribution of the SST biases and the known 
influence of tropical SST on TCs (e.g., Vimont and Kossin 
2007; Patricola et al. 2014, 2017) together suggest that the 

Atlantic SST biases, which have a similar spatial structure 
to the negative phase of AMM, is a leading cause for failure 
of climate models to accurately simulate Atlantic and ENP 
TC activities. On the other hand, the impact of the equatorial 
Pacific biases is more complex than ENSO’s impact on TCs 
because the SST biases have a more complex spatial struc-
ture along the equator than ENSO SST anomalies. The SST 
bias in the northwestern Pacific has a similar pattern to its 
counterpart in the north tropical Atlantic, but its impact on 
TCs is different from the Atlantic because, unlike the Atlan-
tic, SST anomalies in the WNP have a limited influence on 
western Pacific TCs [Chan 2005], suggesting that dynamic 
processes controlling SSTs’ influence on TCs are differ-
ent between these two regions. We further note that the net 
effect of the Atlantic and Pacific biases on TCs simulated by 
AtlPacTB cannot be simply deduced by linear superposition 
of the effects from AtlTB and from PacTB, although some 
compensation between the effects of different SST biases on 
TC activity is observed. This suggests that the impact of the 
SST biases on TCs are inherent nonlinear.

In contrast to Atlantic SST biases, the Pacific SST biases 
do not exhibit as strong a remote influence on Atlantic TCs 
as the Atlantic biases do on Pacific TCs. The warm SST bias 
off the west coast of Mexico has a significant impact on ENP 
TCs, which is mainly driven by local change in potential 
intensity (which is further a function of SST). Moreover, 
anomalies in the WNP suggest an eastward shift of the TCs 
due to the Pacific SST biases, possibly through a mechanism 
similar to the southeastward shift of WNP TCs that attrib-
utes to El Niño events (Wang and Chan 2002). While our 
results show no significant impact of Pacific SST on Atlan-
tic TCs, previous studies have shown a remote influence of 
ENSO variability on the TC activity in the Atlantic basin. 
Given that the regions with larger SST biases in the Pacific 
basin are not in the El Niño regions, it suggests that the loca-
tion of the maximum SST anomalies (or biases) may play 
an important role controlling the impact on TCs, as suggest-
ing by Wang and Chan (2002). However, further research is 
required to reach a conclusion.

Our results suggest that SST biases can change TC tracks, 
and thus TC landfall locations. In other words, tropical SST 
biases can introduce biases to our forecast of regional TC 
landfall. For example, the Pacific biases introduce an east-
ward shift in the WNP TC tracks, suggesting a reduced 
possibility of TC landfall in the Asian region. Therefore, 
projections of future TC changes over the Asian region, 
particularly TC landfall over East Asia, may be subject to 
considerable uncertainties because of SST biases in cou-
pled models. A similar shift in WNP TC tracks is shown in 
Fig. 1 in Vecchi et al. (2014). By removing the SST biases 
through flux adjustment, the WNP TCs are generated more 
toward the Asian region and less in the Central Pacific 
region. Moreover, both our result and that from Vecchi 

(a)

(b)

Fig. 15  The mechanism of remote influence of the Atlantic cold bias 
(AtlCB) on ENP TCs. a Shows the CTRL circulation pattern, and b 
shows the anomalous circulation between AtlCB and CTRL runs
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et al. (2014) suggest an increase in track and genesis of TCs 
in near-coastal region of the ENP in the presence of SST 
biases, indicating a possible overestimation of Northern and 
Central American TC landfall from the Pacific Ocean. Nev-
ertheless, while our simulations with Atlantic biases show 
a basin-wide decrease in TC tracks, indicating no signifi-
cant change in the TC locations, Vecchi et al. (2014) show a 
southeastward shifted in tracks and genesis locations, sug-
gesting a reduced probability of TCs making landfall over 
US and Mexico from the GoM and western Atlantic Ocean. 
We should note that Vecchi et al. (2014) consider the SST 
biases not only in the tropic, but also in extratropics, and the 
sample size in their simulations is about twice of our TCM 
simulations.

Even though our ensemble size is shown to be sufficient 
for computing basin-wide TC activities, it is possible that 
our sample size is not large enough to thoroughly investigate 
systematic shifts in the Atlantic TC tracks and genesis loca-
tions caused by SST biases. Moreover, we utilized a TC-per-
mitting atmospheric-only model, while Vecchi et al. (2014) 
utilized a high-resolution atmospheric model coupled to a 
low-resolution ocean model. Due to the differences in exper-
imental designs between this study and Vecchi et al. (2014), 
it is difficult to directly compare the results. Furthermore, 
while our results suggest the importance of the response 
in the Caribbean and western north Atlantic, the model we 
utilized (TCM) is known to have convection biases in these 
regions. Therefore, an oversensitivity of TC responses may 
be present in our TCM. However, this problem of regional 
convection biases is also a general problem among many 
AGCMs (Biasutti et al. 2006). One should keep these con-
vection biases in mind when interpreting our results.

In conclusion, our results suggest the SST biases can 
influence simulations, seasonal forecasts, and future pro-
jections of TCs not only in local basins, but also in remote 
ocean basins. Therefore, we should take the SST biases and 
their impact into account when analyzing TC projections 
from coupled AOGCMs. We note that the magnitude of the 
SST biases in individual models may be more or less severe 
than that from the multi-model ensemble bias used in this 
study, suggesting that the impacts of the SST biases on TC 
simulations can vary from model to model. Many previous 
studies focus on the origins of these SST biases (Richter and 
Xie 2008; Li and Xie 2012; Patricola et al. 2012; Xu et al. 
2014b; Small et al. 2015), and some progress has been made 
to improve the SST biases, even though the improvement 
has shown to be difficult and challenging in some specific 
regions such as the eastern ocean basins (Xu et al. 2014a, 
b; Richter 2015; Small et al. 2015; Zuidema et al. 2016). 
Nevertheless, the bias problem is unlikely to be resolved in 
the near future and the climate modeling community will 
continue to confront this problem (Richter 2015). Moreo-
ver, since tropical SST biases can have remote effects on 

biases in other regions, it could potentially hinder the effort 
to improve regional processes to address local SST biases, 
making the reduction of SST biases more challenging (Wang 
et al. 2014). This means that we need to develop strategies of 
coping with the impact of these model biases at least in the 
near future. With only few studies focusing on the impact of 
SST biases on TC simulations and predictions, more inves-
tigations are needed to have a comprehensive understand-
ing of local and remote influence of the SST biases on TC 
simulations on seasonal to decadal timescales.
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