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Abstract
The climate system occasionally experiences an abrupt change. However, it is very difficult to predict this change at pre‑
sent. Fortunately, some generic properties have been revealed before several different types of dynamical system near their 
own critical thresholds. These properties provide a possible way to give an early warning for an impending abrupt climate 
change. Therefore, it is important to evaluate the applicability of an early warning indicator of an abrupt change. On the basis 
of several simple fold models, we have systematically investigated the performance of the kurtosis coefficient as an early 
warning signal for an upcoming abrupt climate change. The testing results indicate that the kurtosis coefficient is a reliable 
warning indicator in most of cases whether a critical control parameter or the strength of an external forcing approaches a 
critical point. However, the strong noise can greatly shorten the effective warning time, and also can result in the reduction 
of the magnitude of a kurtosis coefficient when a dynamical system approaches its critical threshold. The missing data has 
almost no effect on the kurtosis coefficient in all of tests, even it is true when the missing data accounts for 20% of the total 
sample. We also found that the kurtosis coefficient does not work in some cases, which means that the kurtosis coefficient 
is not a universal early warning signal for an upcoming abrupt change.
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1 Introduction

Critical phenomena exists in many types of complex sys‑
tems, which means that the system has critical thresholds, 
i.e. critical points, in which the system is very likely to shift 
abruptly from one relatively stable state to another new state 
(Alley et al. 2003; Ding et al. 2006, 2007; Li and Chou 1996, 
1997; Lin and North 1997; May 1977; Scheffer et al. 2009; 
Sun and Mu 2009). This transition is often large, abrupt, 
and widespread change (Ding et al. 2009, 2010, 2016; Evtu‑
shevsky et al. 2018; Rietkert 2004; Scheffer et al. 2001; 
Warren et al. 2004; Xiao et al. 2007; Sun and Mu 2011). 

In physics, the system’s behavior or structure will change 
drastically around the critical point. For example, the phase 
transition from solid to liquid or from liquid to gaseous is a 
typical critical phenomenon. Another interesting example 
is the phenomenon of phase change in magnetic systems. 
When the temperature of a magnetic system is greater than a 
certain critical threshold, the magnetization of the magnetic 
system is 0. However, when the temperature is less than the 
critical threshold, the magnetization of the system is related 
to its temperature, geometric dimension, and the dimension 
of the order parameter (Ising 1925). In a sandpile model, 
when the slope of the sandpile reaches a certain critical 
threshold, dropping another grain of sand onto the sandpile 
may cause nothing, or it may cause the entire sandpile to col‑
lapse in a massive slide (Bak et al. 1987). In the three typical 
critical phenomena mentioned above, the control parameters 
of the first two phenomena are temperature and the third one 
is the slope of the sandpile. The common feature of these 
critical phenomena is that the state of the system will experi‑
ence a substantial shift if the certain control parameter of the 
system is forced across the critical threshold.

Technically, an abrupt climate change occurs when the 
climate system is forced to cross some threshold, triggering 
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a transition to a new state (National Research Council 
reports 2002). Abrupt climate change can occur on various 
different time scales which have been verified by a number 
of climatic records (Alley et al. 2003; Hansen et al. 2015; 
Gómara et al. 2016; Lenton et al. 2008; Li et al. 1996; 
Moreno‑Chamarro et al. 2017; Wang et al. 2018; Xiao et al. 
2012). A well‑known example for abrupt climate change is 
the Younger Dryas event, which persists about from 12.9 ka 
BP to 11.7 ka BP (Firestone et al. 2007). In this event, a 
gradual climatic warming after the Last Glacial Maximum 
was temporarily reversed to glacial conditions, which lasted 
for nearly a thousand years. In recent years, global atmos‑
phere–ocean system occurred a decadal abrupt change in 
1970s (Hare et al. 2000; Jacques‑Coper 2015; Miller et al. 
1994; Warren et al. 2004; Xiao et al. 2007). The physical 
climate system, natural systems, and human systems could 
also be severely affected by abrupt climate changes which 
have occurred repeatedly throughout the geological record. 
Therefore, it is urgent to carry out research on the mecha‑
nisms, prediction techniques, and theories of abrupt climate 
change. In particular, it is very important to study the early 
warning signal for abrupt climate change, which will help 
people and government take actions to adapt any impending 
abrupt climate change with large and unanticipated impacts 
in future.

Unfortunately, because of the complexity and nonlinear‑
ity of the climate system, it is difficult in the climate system 
to conduct those experiments similar to that in physics and 
chemistry (Feng et al. 2003, 2004; Li et al. 1996, 1997). At 
present, some mechanisms of past abrupt climate changes 
have been revealed. However, many mechanisms are still 
merely inference based on various assumptions. From the 
point of view of the simulation capabilities of the existing 
climate models (He et al. 2018; Kumar et al. 2013; Zhao and 
He 2015), even if the proposed mechanism seems reason‑
able, it is still difficult to simulate the past abrupt climate 
changes with high accuracy. Although the performances of 
various climate models have been improving, they still can‑
not be used to quickly achieve accurate predictions of abrupt 
climate change. Therefore, based on the current capabilities 
of climate prediction, it is undoubtedly an extremely difficult 
task to predict such critical transitions in the climate system.

Encouragingly, some generic properties have been 
revealed before several different types of dynamical sys‑
tem near their own critical thresholds (Carpenter and Brock 
2006; Dakos et al. 2012; Guttal and Jayaprakash 2008; van 
Nes and Scheffer 2007; Wissel 1984). These generic prop‑
erties have no relation to the detailed description of each 
system, that is, regardless of the specific mathematic form of 
each dynamical system (Scheffer et al. 2009). For example, 
three distinctly different phenomena, including extinction of 
population caused by excessive hunting, catastrophic regime 
shifts in ecosystems (Rietkert et al. 2004), and paleoclimatic 

transitions can be expressed using the same information, i.e., 
a significant increase in autocorrelation was found before 
reaching the critical point which can be regarded as precur‑
sors of transitions.

Several early warning indicators for abrupt change have 
been presented, including increased variance, increased 
autocorrelation, slower recovery from perturbations, chang‑
ing skewness, increased long‑range correlation and flicker‑
ing when a dynamical system approaches a critical point 
(Carpenter and Brock 2006; Dakos et al. 2012; Guttal and 
Jayaprakash 2008; van Nes and Scheffer 2007). Some com‑
parative studies of the performance of early warning signals 
have been conducted, and the results indicated that there 
was no single universal method for warning an impending 
abrupt change (Dakos et al. 2012). Therefore, it is crucial to 
evaluate the performance of an early warning indicator of 
an abrupt change.

The climate system exhibits a complex and nonlinear 
characteristic, which cannot be accurately simulated by 
climate models at present (Feng et al. 2009; Fraedrich and 
Blender 2003). Simple fold models could provide use‑
ful information into the ways to approach a critical point 
beyond which an abrupt change will occur (Guttal et al. 
2008). A system will exhibit asymmetry when the system 
approaches some critical thresholds (Guttal et al. 2008). 
Based on this, the kurtosis coefficient is used as an early 
warning signal for an abrupt change (Biggs et al. 2009). 
However, they don’t systematically investigate the perfor‑
mance of the kurtosis coefficient as an early warning indi‑
cator, as well as the influence of noise and missing data. 
In present paper, we systematically investigate the perfor‑
mance of the kurtosis coefficient as an early warning signal 
for upcoming abrupt climate change. Similar to the refer‑
ence (Guttal et al. 2008), two routes to abrupt change have 
been investigated in this paper: an abrupt change occurs 
as a control parameter approaches a critical point or as 
increasing the magnitude of stochastic external forcing.

In the present paper, we first introduce briefly the defini‑
tion of the kurtosis coefficient, and some simple fold models 
which are used to generate the model time series for abrupt 
change. In Sect. 3, the performance of the kurtosis coeffi‑
cient is systematically investigated, as well as the influence 
of the missing data and observational noise. Section 4 pre‑
sents the conclusion and a briefly discussion.

2  Method and models

2.1  Definition of kurtosis coefficient

In practice, it can often be found that the data with the same 
variance have different sharpness of the probability distri‑
bution. In probability theory and statistics, the kurtosis is 
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usually used to quantitatively describe the sharpness of a 
probability distribution, namely, measure the “tailedness” 
of the probability distribution. The fourth‑order central 
moment divided by the standard deviation of the fourth 
power is defined as the kurtosis coefficient which has been 
presented as follows:

The parameters � and � are the mean and standard devia‑
tion of a time series {xi , i = 1, …, N}, respectively. The kur‑
tosis coefficient is 3 for a univariate normal distribution. The 
kurtosis coefficient less than 3 means a platykurtic distribu‑
tion compared with the normal distribution. If the kurtosis 
coefficient is greater than 3, the distribution is leptokurtic. 
Generally speaking, an adjusted version of kurtosis coeffi‑
cient is often used in practice, i.e., the excess kurtosis, which 
is defined by the kurtosis coefficient − 3. In this paper, we 
use the excess kurtosis as the kurtosis coefficient if there is 
no special instruction.

2.2  Fold models

In this paper, three simple fold models have been used to 
generate model time series for investigating the performance 
of the kurtosis coefficient as an early warning when these 
models approach a critical threshold. In this section, we 
briefly introduced the three models used in present paper.

2.2.1  Univariate population growth model

The logistic equation has been widely applied in various 
fields, such as abrupt climate change, chaos, ecological con‑
texts (May 1976, 1977; He et al. 2013). In present paper, a 
generalized logistic model is used to simulate vegetation 
density in semi‑arid regions. The model is mainly devel‑
oped on the basis of the continuous logistic equation, which 
describes the nonlinear relationship between the vegetation 
biomass and the growth rate of grazing rate as well as the 
carrying capacity of ecosystem. And the generalized popu‑
lation growth model has been shown as follows (Noy‑Meir 
1975; May 1977; Guttal and Jayaprakash 2008).

According to the reference (Guttal and Jayaprakash 
2008), the constant r represents the intrinsic growth rate of 
vegetation biomass and the parameter K characterizes the 
carrying capacity of ecosystem. In this study, the values of 
the constant r and the parameter K are 1 and 10, respectively. 

(1)k =

1

N

∑N

i=1
(xi − �)

4

�4
.

(T1)
dV

dt
= rV

(

1 −
V

K

)

− c
V2

V2 + V2

0

+ �V�V (t).

The variable V is the vegetation biomass. The control param‑
eter c is the maximum grazing rate which ranges from 1 to 
3. V0 is the characteristic vegetation biomass at which the 
growth rate is half the maximum, which is taken as V0 = 1. 
�V represents the standard deviation of external noise which 
ranges from 0 to 1. The stochastic variable �V is uncorrelated 
Gaussian noise, which satisfies the following relationship:

2.2.2  Time‑delayed population growth model

On the basis of Eq. (T1), a time‑delayed model has been 
presented (T1.1). There is a lag term and a multiplicative 
noise �r�r(t) that simulates the fluctuation in the grazing rate 
in the model (Guttal et al. 2013).

2.2.3  Bivariate coupled model of soil–water and vegetation

This model can be used to simulate the abrupt change of 
the vegetation in semi‑arid regions caused by overgraz‑
ing. Different from the univariate population growth model 
(Eq. T1), the nonlinear interaction between soil–water and 
vegetation has been taken account into this model (Guttal 
and Jayaprakash 2007, 2008).

Here, rainfall (evaporation) will increase (decrease) the 
soil water w. In this model, the rainfall rate is represented 
by the parameter R which ranges from 0 to 3, and the −�w
term represents the evaporation (In this study, � = 1.0 ). The 
negative feedback term −�wB is the uptaking rate of water 
by vegetation with � = 0.12 in our test. The values of the 
parameters � and Bc are 1 and 10, respectively. The other 
two parameters are B

0
= 1 and � = 2 , �w and �B represent the 

standard deviation of the fluctuations in the rainfall rate and 
the external noise, which both range from 0 to 1. The sto‑
chastic variable �

w
 and �

B
 are uncorrelated Gaussian noise.

2.2.4  Trivariate model

The third model is a relatively complex parameterized eco‑
logical model of lake eutrophication (slightly modified ver‑
sion of Carpenter and Brock 2006; Guttal and Jayaprakash 
2008).

⟨

�V (t)�V (t
�)
⟩

= �(t − t�).

(T1.1)

dV(t)

dt
= rV(t)

(

1 −
V(t − �)

K

)

−
[

c + �c�c(t)
] V(t)2

V(t)2 + V2

0

.

(T2)

dw

dt
= R − �w − �wB + �w�w(t)

dB

dt
= �B

(

w −
B

Bc

)

− �
B

B + B
0

+ �B�B(t).
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The variables P and M are the phosphorus concentration 
in water and sediment, respectively. The parameter l ranges 
from 0.5 to 1.0, which reflects the loading rate of the nutrient 
to a lake. The outflow rate h and the recycling coefficient r 
are 0.15 and 0.019, respectively. The parameter b is 0.001 
and P

0
= 2.4 is the Hill coefficient. The stochastic variable 

�l(t) is an additive noise term and �r(t) is a multiplicative 
noise, and they reflect the fluctuation influence of stochastic 
events on the variables P and M, respectively. The detailed 
physical meaning of the model can be found in the reference 
(Guttal and Jayaprakash 2008).

All of the stochastic differential equations used in this 
study are solved numerically by a simple Euler algorithm 
(Guttal and Jayaprakash 2008). Unless otherwise stated, the 
length of each model time series used to calculate the kur‑
tosis coefficient is 2000 time unites with a time step dt = 0.1, 
namely, the sample size is 20,000, and the results for early 
warning test are the average of the kurtosis coefficient over 
100 such experiments in each model.

3  Results

With the increase of the maximum grazing rate c in the 
model (T1), univariate population growth model exhibits 
an abrupt change of vegetation biomass when the parameter 
c is greater than the critical threshold, which is presented in 
Fig. 1. In this study, the two bifurcation points in the model 
(T1) are c* = 1.8 and c* = 2.6, respectively. The univari‑
ate model shows a single stable state with relatively higher 
vegetate density for c < 1.8 than that for c > 2.6. However, 
a bistable with two stable equilibrium states will occur for 
1.8 < c < 2.6, namely, coexisting high‑density and low‑
density vegetated states. In mathematics, stability theory 
addresses the stability of solutions of differential equations 
and of trajectories of dynamical systems under small per‑
turbations of initial conditions. Stability means that the tra‑
jectories do not change too much under small perturbations. 
A stable equilibrium state can be identified by the method 
provided by the website (https ://en.wikip edia.org/wiki/Stabi 
lity_theor y).

In order to intuitively display the change of kurtosis of 
time series generated by a dynamical system when the sys‑
tem closes to a critical threshold, the two time series and 
corresponding histograms are presented in Fig. 2 when the 

(T3)

dP

dt
= l − (s + h)P +

[

r + �r�r(t)
]

MR(P) + �l�l(t)

dM

dt
= sP − bM −

[

r + �r�r(t)
]

MR(P)

R(P) =
Pq

P
q

0
+ Pq

.

parameter c in the Eq. (T1) takes the values of 1.5 and 2.1, 
respectively. Obviously, the parameter c = 2.1 is closer to 
the critical threshold (c* = 2.6) than c = 1.5, and the distri‑
bution for c = 2.1 is more flat than that for c = 1.5. In other 
words, there is an obvious change in kurtosis of the time 
series of the state variable V of Eq. (T1) with the increase 
of the parameter c (Fig. 2), i.e., the values of the kurtosis 
coefficient are 0.028325 for c = 1.5 and 0.8792 for c = 2.1, 
respectively. Therefore, the change of parameters will lead 
to a significant change in the probability density distribution 
of the system’s state variable. The origin of the asymmetry 
and the rise in kurtosis as the transition is approached can 
be found in the reference (Guttal et al. 2008).

In the first route, the parameter c in Eq. T1 is gradually 
increased forward to the critical threshold c* = 2.6, and we 
fix the magnitude of the external noise �V (i.e., the standard 
deviation of the noise). The results indicate that the kur‑
tosis coefficient exhibits a small fluctuation which is very 
close to zero about for c < 1.7. As the parameter c continues 
to increase, an obvious increase of the kurtosis coefficient 
can be found (Fig. 3a). This increased trend is even more 
pronounced for about c > 2.15. Therefore, the kurtosis will 
be substantially changed as the parameter c approaches the 
critical threshold (c* = 2.6) in Eq. T1. Moreover, we also test 
the performance of the kurtosis coefficient when the param‑
eter c approaches another critical threshold of the Model T1 
in this study, i.e., c* = 1.8. The results similar to Fig. 3a can 
be obtained (Fig. 3b).

The existing results indicate that even if the param‑
eter in a system is far from its critical point, the increase 

Fig. 1  The bifurcation diagram for the univariate population growth 
model (Eq. T1) in which the continuous increase in grazing rate c can 
result in an abrupt change of the biomass density V. The thick solid 
lines correspond to stable ecological states, and the dotted line indi‑
cates the unstable equilibrium states

https://en.wikipedia.org/wiki/Stability_theory
https://en.wikipedia.org/wiki/Stability_theory
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of stochastic external forcing can also result in an abrupt 
change (Guttal and Jayaprakash 2008). According to the sec‑
ond way to abrupt change, we fix the parameter c in Eq. T1 
with the value of 2.0, and gradually increase the strength of 
the external noise �V . Obviously, the parameter c = 2.0 is far 
from the critical threshold of the system (c*=2.6) (Fig. 1). 
The results indicate that there is negligible influence on the 
change of kurtosis for a relatively weak external forcing, i.e., 
for about �V < 0.23 (Fig. 3c). With the further increase of the 
strength of the stochastic external forcing �V , the kurtosis 
coefficient gradually becomes larger and larger (Fig. 3c). A 
similar result can be obtained when the parameter c is taken 
other values and kept a constant, and the strength of the sto‑
chastic external forcing �V is gradually increased (Figures 
omitted).

In practice, there are different degrees of observation 
error in all types of observational data, such as the error 
caused by observation instruments. Thus, it is very crucial 
to investigate the influence of the observation error on the 
performance of the kurtosis coefficient as an early warning 
signal for an upcoming abrupt change. Based on this, three 
kinds of strong noises (represents observation error) have 
been studied in the present paper. All of model time series 
generated by Eq. T1 can be regarded as the observational 

data, and then uncorrelated Gaussian noise is superimposed 
to these model time series. The strengths of the noise with 
different signal to noise ratios (SNR) are 5 dB, 10 dB, and 
20 dB, respectively. The corresponding analyzed results are 
shown in Fig. 4. In the tests for the first route to abrupt 
change, the relatively weak observation error (i.e., SNR = 20 
dB) has a negligible influence on the change of kurtosis. 
However, with the increase of the magnitude of the observa‑
tion error, an obvious effect can be found, such as SNR = 10 
dB and 5 dB (Fig. 4a). In other words, strong noise greatly 
shortens the effective warning time for early warning signal 
of kurtosis. Moreover, strong noise also causes the ampli‑
tude of kurtosis to be largely diminished during the system 
approaches the critical threshold. It is worth to be pointed 
that although the noise (i.e., observation error) has a great 
influence on the changing magnitude and warning time of 
kurtosis coefficient, especially for relatively strong noise, the 
kurtosis coefficient still provides an effective early warning. 
For example, the SNR = 5 dB means a strong noise in a sig‑
nal, and the standard deviation of the signal with SNR = 5 dB 
is much greater than that of the original model time series. 
Thus, the kurtosis coefficient as an early warning signal has 
an anti‑noise ability to some extent when the parameter c is 
slowly increased along the upper branch of the bifurcation 

(a) (b)

(c) (d)

Fig. 2  The time series for two representative numerical results which 
were generated by the univariate population growth model, and cor‑
responding probability density: a the model time series for the param‑
eter c = 1.5 in which the system is far from the critical threshold (c* 
= 2.6); b the model time series for the parameter c = 2.1 in which 
the system is closer to the critical threshold (c* = 2.6) than that for 
c = 1.5; c the probability density of the time series shown in a; d the 

probability density of the time series shown in b. The kurtosis of the 
biomass density is also calculated for each realization. The initial 
conditions are the high biomass density as shown in the bifurcation 
diagram. Here, we choose �

V
= 0.75 , a time step of dt = 0.01 and 

400 time units for time series. Rest of the parameters is same as in 
Sect. 2.2
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diagram of Mode1 T1. However, strong noise results in that 
the kurtosis coefficient does not work when decreasing the 
parameter c to approach another critical threshold c* = 1.8 
(Fig. 4c). Therefore, it is important to consider the effect of 
strong noise on the effective of the kurtosis coefficient as an 
early warning signal in practice.

In the second route to abrupt change, the influence of 
noise with relatively weak intensity on the warning results of 
kurtosis coefficient can almost be ignored, i.e., for SNR = 20 
dB. After increasing the intensity of the observational error, 

namely, the standard deviation of the error, the influence of 
noise gradually comes out, namely, the greater the intensity of 
noise is, the greater the influence is. The strong noise results 
in the shortened warning time to a certain degree, and the 
amplitude of the kurtosis coefficient is also reduced. However, 
there is still enough time to warn an upcoming abrupt change 
using changing kurtosis under strong observational error 
(Fig. 4e). Even for the situation of the strong noise (SNR = 5 
dB), the kurtosis coefficient gradually increases from about 
�V = 0.4 , in which the system is far from its critical threshold 
of the external forcing (greater than 0.8).

Missing data is an inevitable phenomenon which often 
occurs in practice. Thus, it is important to investigate the 
influence of missing data on the performance of an early 
warning indicator. On the basis of this, we present the results 
of the kurtosis coefficient for various time series with dif‑
ferent extents of missing data in this study. In our numerical 
simulation, missing data is simulated by randomly removing 
some data from the model time series used in Fig. 3, and 
then we calculate the kurtosis coefficients of the new time 
series which are removed some data with a certain length 
for each experiment. Finally, the average kurtosis coefficient 
for such 100 experiments can be obtained. We exhibit the 
results for four kinds of losing rate of data, including 5% 
loss, 10% loss, 15% loss, and 20% loss, respectively. Surpris‑
ingly, the missing data has almost no significant effect on 
the early warning ability of the kurtosis coefficient whether 
for increasing the parameter c or increasing the strength of 
external noise (Fig. 4b, d, f).

In order to further test the effectiveness of the kurtosis 
coefficient as a warning signal, the kurtosis coefficient is 
applied in a more complex nonlinear interaction model 
(Eqs. T2) than Eq. T1. The bivariate coupled model of 
soil–water and vegetation exhibits a fold bifurcation between 
the vegetable biomass B and the rainfall rate R, and the bifur‑
cation diagram is shown in Fig. 5a. The two bifurcation 
points are R* ≈ 1.06 , and R* ≈ 2.0 , respectively. A bistable 
will occur for 1.06 < c < 2.0, in which the vegetated state 
to the bare state will coexist. In the first route to an abrupt 
change, the strength of external forcing �B = 0.25 is fixed. 
With the decrease of the parameter R, the ecosystem will 
occur an abrupt change from the vegetated state to the bare 
state. It can be found that the kurtosis coefficient is very 
close to the zero when the parameter R is far from the criti‑
cal threshold R* ≈ 1.06 (Fig. 5b). After the parameter R is 
reduced to the value of 1.4, the kurtosis coefficient exhibits 
a slow increase. With the parameter R is further reduced to 
about 1.25, the kurtosis coefficient shows a trend of rapid 
increase. Obviously, the changing kurtosis can be regarded 
as an effective early warning signal when the parameter of 
the system (T2) approaches the critical threshold R* ≈ 1.06.

We also tested the performance of the kurtosis coeffi‑
cient in the second route to an abrupt change by using the 

(a)

(b)

(c)

Fig. 3  The kurtosis coefficient increases as a function of the parame‑
ter c and the standard deviation of external noise �

V
 when the ecosys‑

tem approaches the threshold via different routes for the Model T1. 
The open circles represent the average kurtosis coefficient calculated 
by the numerical simulations, and the error‑bar shows the standard 
deviation of mean for such 100 experiments. The dashed line aims at 
guiding the eye. a Increasing the parameter c to approach the critical 
threshold c* = 2.6, and keeping the external fluctuations unchanged, 
i.e., �

V
= 0.25 ; b same as a but for decreasing the parameter c to 

approach another critical threshold c* = 1.8; c Increasing �
V
 with the 

fixed parameter c = 2.0
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bivariate coupled model of soil–water and vegetation (T2). 
In this test, the parameter of rainfall rate is fixed by R = 1.5 , 
which is far from the critical threshold R* ≈ 1.06 , and the 
standard deviation of the fluctuations in the rainfall rate is 
kept a constant, i.e., �w = 0.01 . Then, we gradually increase 
the strength of the external noise �B , and find that there is no 
significant trend in kurtosis coefficient for �B < 0.3 (Fig. 5c). 
With the increase of the strength of the external noise, the 
kurtosis coefficient exhibits a significant increasing trend for 
�B > 0.3 (Fig. 5c). We select two representative cases which 
are far from and close to the corresponding critical threshold 
(Fig. 6). It is very easy to be found by the naked eye that 
the system exhibits a distinctly different distribution pattern 
when it is far from the threshold and close to the threshold. 
Thus, the kurtosis coefficient works well whether for the first 
route to an abrupt change or for the second one. The results 
verify that it is effective to present an early warning signal 

based on the changing kurtosis coefficient in the bivariate 
coupled model.

Based on the model time series used in the Fig. 5, the 
effects of the observational errors and the missing data 
on the performance of the kurtosis coefficient as an early 
warning signal are investigated. The results indicate that the 
kurtosis coefficient has an anti‑noise ability to some extent 
(Fig. 7a, c). In spite of this, the strong noise can greatly 
shorten the effective warning time of the kurtosis coefficient. 
Moreover, the strong noise can also result in the greatly 
reduction of the magnitude of the kurtosis coefficient. That 
is, the stronger the noise, the shorter the warning time, and 
the smaller the changing magnitude in the warning signal. 
The influence of the missing data on the kurtosis coefficient 
is shown in the Fig. 7b, d, it could be concluded that the 
missing data has almost negligible effect on the kurtosis 
coefficient. No significant effect can be found even when the 

(a) (b)

(c) (d)

(e) (f)

Fig. 4  Influence of the observational error on the effective of the kurtosis coefficient a and c for the first route, and e for the second route. Influ‑
ence of the missing data on the effective of the kurtosis coefficient b and d for the first route, and f for the second route
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missing data accounted for 20% of the total sample whether 
for the first route or for the second route (Fig. 7b, d).

Similar to the parameter settings in the bivariate veg‑
etation model used in Fig. 5, we only change the standard 
deviation of the fluctuations in the rainfall rate �w from 
0.01 to 0.25 in the model T2. In other words, �w = 0.25 and 
�B = 0.25 (the strength of external forcing) are kept con‑
stant in the first route to abrupt change for the bivariate veg‑
etation model. The results indicate that with the decrease 
of the parameter R, a significant trend of increase can be 
found when the system is far from the critical threshold 
R ≈ 1.06 (Fig. 8a). In the second route to abrupt change for 
the bivariate vegetation model, we keep the rainfall rate R 
and the standard deviation of the fluctuations in the rainfall 
rate �w unchanged, i.e., R = 1.5 (far from the threshold) and 

�w = 0.25 (obviously greater than 0.01 used in Fig. 5c), and 
then gradually increase the strength of the external fluctua‑
tion �B . A rapidly increasing trend can be found by naked 
eyes when the strength of external fluctuation �B is greater 
than about 0.22 (Fig. 8b).

When we only increase the standard deviation of the 
fluctuations in the rainfall rate �w , and fix the rainfall rate 
(R = 1.5) and the strength of external forcing ( �B = 0.25 ), 
the kurtosis coefficient has no significant changes (Fig. 8c), 
which is completely different from the first two cases in 
Fig. 8 for only increase R or �B . The result indicates that the 
kurtosis coefficient does not work for an upcoming abrupt 
change in the third case (Fig. 8c).

The third model (T3) is also used to test the performance 
of the kurtosis coefficient as an early warning signal when 
a dynamical system approaches its critical threshold. The 
model is a more complex ecological model than the first two 
models, which describes the dynamics of a lake eutrophica‑
tion. The bifurcation diagrams of the model T3 are presented 
in Fig. 9a, b. In our numerical simulations, the length of 
time series is taken as T = 70 , dt = 0.01 The initial values 
are taken as P(t = 0) = 1 , and M(t = 0) = 800 , respectively. 
The last 60 time unites are used to calculate the kurtosis 
coefficient in order to ensure the system in equilibrium from 
the initial state. The results indicate that there is relatively 
small fluctuation of the kurtosis coefficient as a function of 
the parameter l for l < 0.9. A significant increasing trend can 
be found for l > 0.9 (Fig. 9c).

Figure  10 provides two model time series, in which 
the parameter l is far from or close to the critical thresh‑
old ( l∗ ≈ 0.975 ). It can be easy to find that the probability 
distribution of the phosphorus concentration P in water is 
wider for l = 0.83 than that for l = 0.5, namely, the tails of 
the distribution for l = 0.83 asymptotically approach zero 
more slowly than that for l = 0.5. The results indicate that the 
changing kurtosis coefficient can capture an early warning 
signal when the parameter l of the model (T3) approaches 
its critical threshold.

Different from the first two models, the observational 
error has relatively larger influence on the results of the kur‑
tosis coefficient, i.e., the kurtosis coefficient does not work 
under three noise cases (Fig. 11a). Similar to the results of 
the first two models, the missing data has almost negligible 
effect on the kurtosis coefficient, even when the missing data 
accounted for 20% of the total sample size (Fig. 11b).

From a view of nonlinear interaction and long‑range cor‑
relation of a dynamical system, nonlinear feedbacks which 
are not always instantaneous can be captured by time‑
delayed models to some extent. For example, the impact 
of volcanic eruptions on global climate will continue for 
many years, namely, the forcing effects are not instantane‑
ous instead of a time lag. Thus, it is more practical to study 
the applicability of an early warning indicator for an abrupt 

(a)

(b)

(c)

Fig. 5  The results for the two variable vegetation model (T2). a 
The bifurcation diagram with two bifurcation points correspond 
to R∗ ≈ 1.06 and R∗ ≈ 2.0 ; b approaching the bifurcation point 
( R∗ ≈ 1.06 ) by reduction in rainfall rate, R, fixing the external fluc‑
tuations �

B
= 0.25 and the fluctuations of soil water �

w
= 0.01 ; c the 

kurtosis coefficient as a function of the external fluctuation �
B
 with 

the fixed rainfall rate R = 1.5 (far from the threshold) and �
w
= 0.01 . 

The error‑bar shows the standard deviation of mean
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(a) (b)

(c) (d)

Fig. 6  Same as Fig. 2 but for the two variable vegetation model (T2)

(a) (b)

(c) (d)

Fig. 7  Same as Fig. 4, but for the two variable vegetation model (T2)
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change occurs in a time‑delay model than that in instantane‑
ous one.

In the time‑delayed population growth model, the bifurca‑
tion points are the same as Fig. 1. The initial value is not a 
single value but an array of values because of the time delay 
term. We choose a relatively high biomass density V = 5 as 
the value of each element in the array, and the length of the 
array depends on the time delay term. The length of time 
series T = 1050 , dt = 0.1 . The first 50 time unites during the 
integration process are discarded as a transient in which the 
system will enter into equilibrium vial the initial state. So, 
the last 1000 time unites will be used to calculate the kurto‑
sis coefficient. We then average the kurtosis coefficient over 
200 such experiments. Figure 12 shows the results for the 
time delay� = 1.7, which indicate that the kurtosis coefficient 

significantly decreases as the increase of the grazing rate 
c. The decreasing trend can be found even when the sys‑
tem is far away from the critical threshold, for example, the 
parameter c varies from 1.0 to 1.3 which is obviously far 
away from the threshold c* = 2.6. Moreover, the changing 
kurtosis coefficient can be institutively found from its prob‑
ability density map when the system is close to the criti‑
cal threshold, such as the probability density for c = 1.0 and 
c = 2.1 (Fig. 13).

The existence of the observational noise can result in dif‑
ferent influences which depend on the strength of the obser‑
vational noise (Fig. 14a). In spite of this, the kurtosis coef‑
ficient still can give an effective early warning for an abrupt 
change. Even it is still true for strong noise. The results 
further prove that the kurtosis coefficient has an anti‑noise 

(a)

(b)

(c)

Fig. 8  The results for the bivariate vegetation model (T2). a, b: 
kurtosis increases when system is approaching threshold via two 
paths, the parameters in model T2 are same as those used in Fig. 5 
but for �

w
= 0.25 ; c increasing �

w
 , and keeping R = 1.5 , �

B
= 0.25 

unchanged. The error‑bar shows the standard deviation of mean

(b)

(c)

(a)

Fig. 9  The results for the parameterized lake eutrophication model 
(T3). a, b The bifurcation diagram as a function of nutrient loading l. 
The black thick lines show the stable oligotrophic states and the green 
thick lines express the stable eutrophic state, whereas the red dotted 
lines represent the unstable equilibria. The two thresholds of the col‑
lapse are l∗ ≈ 0.5 and l∗ ≈ 0.975 , respectively; c the average kurtosis 
coefficient of lake eutrophic model as a function of the nutrient load‑
ing l . The error‑bar shows the standard deviation of mean
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ability to some extent (Fig. 14a). The influence of the miss‑
ing data on the performance of the kurtosis coefficient is 
presented in the Fig. 14(b), and we find that the missing 
data has almost no significant effect on the kurtosis coef‑
ficient as an early warning signal, even when the missing 
data accounted for 20% of the total sample size (Fig. 15).

Although the kurtosis coefficient is useful when the sys‑
tem approaches its threshold for the time delay of � = 1.7, 
the kurtosis coefficient cannot exhibit an obvious change 

(a) (b)

(c) (d)

Fig. 10  Same as Fig. 2 but for the model (T3)

(a)

(b)

Fig. 11  The effects of the observational error and missing data on the 
kurtosis coefficient tested by Lake model (T3)

Fig. 12  The kurtosis coefficient as a function of grazing rate, c, for 
the model (T1) with a time delay � = 1.7 time unites. The error‑bar 
shows the standard deviation of mean
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when the grazing rate c closes to the critical threshold (c* 
= 2.6) for the model (T1) with a time delay of � = 1.0. The 
result indicates that the kurtosis coefficient does not work for 
the time‑delayed feedback processes � = 1.0. So, two com‑
pletely different results are obtained when the delay times 
are � = 1.7 and � = 1.0 in the model (T1), respectively, which 
means that the kurtosis coefficient is not universal warning 
indicator for an upcoming abrupt change.

4  Discussion and conclusions

Many dynamical systems have the critical thresholds, 
including the climate system, ecosystem, economic sys‑
tem, etc. When a system goes beyond its critical threshold, 
an abrupt change of the system’s state will occur. Obvi‑
ously, it is very difficult to predict such critical transitions 
in the climate system as well as other dynamical systems. 
In recent years, a lot of studies indicate that an early warn‑
ing signal of abrupt climate change or regime shift in eco‑
systems is traceable. In this paper, we test the performance 
of the kurtosis coefficient as an early warning signal for an 

impending abrupt change by using different simple nonlin‑
ear models, including univariate population growth model, 
bivariate coupled model of soil–water and vegetation, a 
relatively complex parameterized ecological model of lake 
eutrophication, as well as time‑delayed population growth 
model. Our results show that the kurtosis coefficient is a 
good indicator for an upcoming abrupt change in most of 
cases in our tests.

The strong noise can greatly shorten the effective warn‑
ing time of the kurtosis coefficient, and also can result in 
the reduction of the changing magnitude of the kurtosis 
coefficient when a dynamical system is close to the criti‑
cal threshold, even the kurtosis coefficient does not work 
in some cases. The missing data has almost no significant 
effect on the kurtosis coefficient as an early warning signal 
in all of tests. The conclusion is still true even when the 
missing data accounted for 20% of the total sample size in 
this study.

Moreover, we also found that the kurtosis coefficient did 
not show significant changes when a dynamical system is 
close to its critical threshold including delay model and 
non‑delay model. In other words, the kurtosis coefficient 
does not work in these two cases. The results mean that the 

(a) (b)

(c) (d)

Fig. 13  Same as Fig. 2 but for the model (T1) with a time delay � = 1.7 time unites
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kurtosis coefficient has a certain scope of application, and 
no single early warning indicator can solve all of cases of 
abrupt change. So, it is very crucial to develop multiple early 
warning signals for a relatively reliable warning.
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