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Abstract
In order to investigate the effects of solar radiation management (SRM) technologies for climate engineering, an analytical 
model describing the main latitudinal dynamics of the Earth’s climate with closed-loop control has been developed. The 
model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-
uniform climate engineering strategies. The resulting partial differential equation is solved using a Green’s function approach. 
This model offers an efficient analytical approach to design strategies that counteract climate change on a latitudinal basis to 
overcome regional disparities in cooling. Multi-objective analyses are considered and time-dependent analytical expressions 
of control functions with latitudinal resolution can be obtained in several circumstances. Results broadly comparable with 
the literature are found, demonstrating the utility of the model in rapidly assessing new climate engineering controls laws 
and strategies. For example, the model is also used to quickly assess the trade-off between the number of degrees of freedom 
of SRM and the rms error in latitudinal temperature compensation. Moreover, using the EBM the dynamics of the ice line 
can be investigated and a Lyapunov stability analysis is employed to estimate the maximum reduction of solar insolation 
through climate engineering before the current climate falls into an ice-covered state. This provides an extreme operational 
boundary to future climate engineering ventures.
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1  Introduction

Climate engineering Blackstock et al. (2009) aims to partly 
offset the impacts of human-driven climate change. It 
involves techniques developed both to reduce the concen-
tration of carbon dioxide in the atmosphere [Carbon Dioxide 
Removal (CDR) methods] and to counteract the radiative 
forcing generated [Solar Radiation Management (SRM) 
methods] Vaughan and Lenton (2011). High-speed com-
puters and high-fidelity numerical models for the climate 
system can be used to evaluate climate engineering strate-
gies. For example, General Circulation Models (GCMs) have 
many millions of degrees of freedom and, although they 
can be physically realistic, these models are computationally 

expensive. In contrast, low order one-dimensional climate 
models can be found in Budyko (1969), Sellers (1969) and 
North et al. (1981). In particular, considering elementary 
thermodynamics, Budyko (1969) and Sellers (1969) pro-
posed low order climate models to investigate the climate 
state as a function of the solar constant, whereas North et al. 
(1981) investigated in detail global energy balance models 
using a general transport term. Moreover, a Green’s function 
approach is used in North et al. (1981) to obtain the explicit 
analytical solution of a diffusive climate model in terms of 
hypergeometric functions.

This paper aims to approximate the complexity of the 
climate system with a simple model that takes into account 
its main features as described in North et al. (1981), and to 
develop continuous control laws for climate engineering as 
a function of latitude. Therefore, efforts have been made to 
develop a continuous-time PDE system with latitudinal reso-
lution with which it is possible to explore control strategies 
to begin to investigate issues related to regional disparities 
and the side effects of SRM techniques. This continuous 
PDE model extends a simple 3 box model which has been 
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used to investigate the use of adaptive control for climate 
engineering Bonetti and McInnes (2018).

The use of efficient analytic methods provides a useful 
tool to rapidly asses SRM strategies with latitudinal resolu-
tion and allows efficient application of multi-objective analy-
ses. Moreover, through this procedure the latitudinal impact 
of SRM can be directly addressed. In general, the pattern 
of insolation reduction that can be generated using SRM 
does not match the pattern of climate change impacts due 
to increased forcing due to CO2 . In the literature regional 
disparities due to SRM have been widely discussed (Heyen 
et al. 2015; Moreno-Cruz et al. 2012). In MacMartin et al. 
(2012) and Kravitz et al. (2016) an atmosphere-ocean gen-
eral circulation model (AOGCM) is used to explore the 
potential of SRM with multiple degrees of freedom. Also, 
in [9], Kravitz et al. (2017), MacMartin et al. (2017), injec-
tions of sulphate aerosols at multiple locations are consid-
ered to counteract incoming solar radiation with a coupled 
atmosphere-ocean general circulation model.

Despite that the analytical model developed in this paper 
is a simplification of other more realistic numerical models, 
broadly comparable results are found. This demonstrates the 
utility of the model in rapidly assessing new climate engi-
neering strategies and controls laws. Again, the model can 
assess the trade-off between the number of degrees of free-
dom of SRM and the RMS error in latitudinal temperature 
compensation, for example.

Constraints on SRM are also explored through ice line 
dynamics, providing extreme operational limits on SRM 
obtained through the latitudinal model. This analysis illus-
trates the scale of the required SRM manipulation and inso-
lation reduction that would be required to trigger an instabil-
ity of the climate system, demonstrating that this limit is far 
beyond expected SRM interventions. With respect to other 
similar calculations in the literature (Coakley 1979; North 
et al. 1981; Schneider and Gal-Chen 1973), the insolation 
reduction that would trigger climate instability is given as a 
function of both latitude and time, providing more insight for 
appropriate comparisons with commonly considered SRM 
strategies. Moreover, the time-dependence of the model 
employed, and of the control function for insolation reduc-
tion, produces results which are less sensitive to changes in 
the solar constant Schneider and Gal-Chen (1973). This is a 
fundamental issue with the dynamics of the ice line and for 
SRM investigations in general.

Section 2.1 addresses a mathematical model to describe 
the climate system with a single partial differential equation 
(PDE); here, the analytical solution to compute the tempera-
ture perturbation due to atmospheric carbon dioxide ( CO2 ) 
is developed. Then, considering the deployment of climate 
engineering through a reduction of incoming solar radiation, 
a control law to drive the temperature perturbation to zero 
is developed. In Sect. 3 a multi-objective control analysis 

is undertaken with a PI feedback control. In Sect. 4 the 
PDE model is employed to find an analytical control law to 
achieve a desired temperature profile under a doubling of 
CO2 and in Sect. 5 constraints on SRM are investigated by 
exploring the effect of climate engineering on the dynamics 
of the ice line.

2 � Model and methodology

2.1 � PDE model for the climate system

In this section a dynamical model of the climate system with 
latitudinal resolution is developed. With respect to North 
et al. (1981), where a one-dimensional equilibrium model 
with diffusive heat transfer was developed to investigate 
ice feedback mechanisms, here temperature is also con-
sidered as a function of time. Moreover, both hemispheres 
are considered and differences in land and oceans are taken 
into account for the computation of the heat capacity for 
the northern and southern hemispheres. The model is then 
employed to explore control strategies based on a reduction 
of incoming solar radiation.

An Energy Balance Model (EBM) McGuffie and Hender-
son-Sellers (2005) is used to describe the main dynamics of 
the Earth’s climate and the diffusion of heat between latitu-
dinal bands. This allows for an evaluation of non-uniform 
climate engineering strategies. In particular, the model has 
the advantage of being analytically tractable, allowing new 
strategies to be efficiently assessed prior to more detailed 
analysis. Following North et al. (1981) the PDE system 
investigated in this paper can be summarized as:

where the terms are defined shortly.
In general, Eq. (1) allows for the computation of the zon-

ally-averaged surface temperature T, as function of the time 
t and the sine of latitude x = sin(�) . The model allows for a 
range of forcing terms, therefore the presence of CO2 forcing 
and a control function representing the deployment of SRM 
strategies will be included later. The solution is constrained 
by boundary conditions, since the heat flux must vanish at 
the poles and only solutions with no heat transport across 
the equator are considered.

Increasing the forcing in one hemisphere relative to the 
other causes a shift of the latitude of zero heat-flux induc-
ing large precipitation anomalies. However, this effect is not 
taken into account in order to keep the analysis manageable.

The boundary conditions are Neumann boundary con-
ditions and therefore can be expressed as follows North 
(1975):

(1)
C
�T(x, t)

�t
= Q0S(x)(�(x, xs)) − (A + BT(x, t)) +

�

�x
D(1 − x2)

�T(x, t)

�x
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where x = 0 represents the equator, x = 1 the North Pole and 
x = −1 the South Pole.

Equation (1) represents an EBM where the incoming 
and outgoing energy are balanced and an equilibrium tem-
perature distribution with latitude is reached. Specifically, 
T(x, t) represents the annual zonally-averaged temperature 
field. The incoming energy is the solar radiation, and the 
energy losses are given by the effect of the Earth’s albedo 
and the infra-red radiation leaving the top of a latitudinal 
element. The energy transported by a latitudinal element to 
its neighbours due to the movement of geophysical fluids 
is represented by a diffusion process where the transport is 
proportional to the gradient of the temperature field. As is 
shown later, some of these constants are taken from data in 
the literature (North et al. 1981; McGuffie and Henderson-
Sellers 2005; Budyko 1969) and others are chosen in order 
to match the time-domain step response of high-fidelity 
numerical models. In this way it is possible to regulate the 
equilibrium climate sensitivity of the system which is a key 
parameter for comparison between climate models. There-
fore, the goal of this model is emulating the behaviour of 
complex numerical models with a more convenient analyti-
cal structure to easily (and rapidly) implement climate engi-
neering control strategies based on SRM.

The problem is split in two separate processes for the 
two hemispheres, in particular the solution is found for the 
northern hemisphere when 0 < x < 1 and for the southern 
hemisphere when −1 < x < 0 . This operation allows for a 
more specific description of each hemisphere through the 
use of appropriate constants. As in North et al. (1981), the 
outgoing infra-red radiation is well approximated by the 
expression IIR = A + BT(x, t) Budyko (1969), where A and 
B are empirical constants selected to account for the effect 
of clouds, water vapour and CO2 . In particular, in Budyko 
(1969) an infra-red parametrization for the northern and 
southern hemispheres is found and IIR can be written as:

where A1 = 257 W∕m2  ,  A2 = −91 W∕m2  ,  B1 = 1.63 
W∕m2∕◦C ,  B2 = −0.11 W∕m2∕◦C for the northern 
hemisphere and A1 = 262 W∕m2 ,  A2 = −81 W∕m2 , 
B1 = 1.64 W∕m2∕◦C , B2 = −0.09 W∕m2∕◦C for the south-
ern hemisphere, whereas Ac is the cloud cover set to 0.5. 
Through climatological records of zonal surface temperature 
and satellite observations this fit has been proven to be quite 
accurate Cess (1976).

Moreover, Q0 is the solar constant given by 342 W∕m2 
and S(x) describes the distribution of the incident solar radi-
ation averaged over 1 year for which the expression used 
in North (1975) is considered: S(x) = 1 + S2P2(x) where 

(2)
�T(x, t)

�x
= 0 with x = 0, 1,−1

(3)IIR = A + BT(x, t) = A1 + A2Ac + (B1 + B2Ac)T(x, t)

S2 = −0.477 is a constant and P2(x) =
1

2

(
3x2 − 1

)
 is the sec-

ond Legendre polynomial. Then, �(x, xs) is the planetary co-
albedo at latitude x North et al. (1981) for which a smooth 
albedo formulation, that includes the definition of the ice 
line at x = xs , is considered Widiasih (2013):

where �w is the water co-albedo set to 1 − 0.32 , �i is the ice 
co-albedo set to 1 − 0.55 and the parameter M represents 
the steepness of the albedo function near the ice line and 
is set to 12. The value of xs for the current climate is set 
to xs0 = ± 0.95 for the northern and southern hemisphere, 
respectively. Moreover, in Eq. (1) D is an empirical con-
stant describing the latitudinal transport of energy. Its value 
for the northern hemisphere is given by 0.649 W∕m2 ∕◦C

North et  al. (1981), whereas the value for the south-
ern hemisphere is found in order to satisfy the condition 
TN(0,∞) = TS(0,∞) , where TN∕S(x,∞) are the tempera-
ture fields at latitude x for the northern and southern hemi-
spheres in the equilibrium state ( t → ∞ ). The value of D 
for the southern hemisphere that satisfies this condition is 
0.73 W∕m2 ∕◦C.

Finally, in Eq. (1) C is the effective heat capacity, which 
is largely determined by the oceans. The values of the heat 
capacities are estimated for the northern and southern hemi-
spheres considering the different hemispherical distributions 
of land and water. In particular, a larger fraction of water 
can be found in the southern hemisphere and this leads to a 
larger heat capacity. The heat capacity over land is approxi-
mately 1/30 of the capacity over the ocean mixed layer North 
et al. (1981). Therefore considering the fraction of water and 
land in each hemisphere (oceans cover the 61% of the north-
ern hemisphere and the 82% of the southern hemisphere) the 
heat capacity, in terms of B, is 2.88B years for the northern 
hemisphere and 3.79B years for the southern hemisphere.

It is worth noting that the model neglects the mean circu-
lation in both the atmosphere and oceans but includes heat 
transport due to circulation. This approach allows for trac-
table mathematics and analytical solutions.

The system in Eq. (1) with the boundary conditions in Eq. 
(2) can be identified as the non-homogeneous heat equation 
with Neumann boundary conditions and has an analytical 
solution. An efficient, straightforward approach for solving 
such problems and obtaining an analytical solution is pro-
vided by the Green’s function formalism. Green’s functions 
are constructed by utilizing the eigenfunctions and eigen-
values of the differential operators from which the system 
is constructed Cole et al. (2010). Once the Green’s function 
for a given problem is known, the solution for the latitudi-
nal distribution of the temperature is immediately computed 

(4)�(x, xs) =
�w + �i

2
+

�i − �w

2
tanh

(
M(x − xs)

)
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from the analytical expression for the Green’s function Hahn 
and Ozisik (2012).

The general solution in terms of the Green’s function can 
be written as Cole et al. (2010):

where G(x, �, t, �) is the Green’s function associated with 
the differential operators in Eq. (1) with Neumann boundary 
conditions and can be written as Cole et al. (2010):

where Ln = (n(n + 1)D + B) are the eigenvalues of the lin-
ear operator in the energy balance equation and Lt is the 
time constant given approximately by C�0∕B , where �0 is the 
climate sensitivity of the model as determined later. Also, 
P(n, x) is the nth-degree Legendre Polynomial computed 
in x. The Green’s function G(x, �, t, �) represents the tem-
perature perturbation �T(x, t) , at latitude x, at time t, due to 
an instantaneous heat source of unit strength, located at � , 
releasing its energy instantaneously at time � . Therefore, the 
argument ‘ �, � ’ in Eq. (6) represents the impulse, given by 
the heat source term Hahn and Ozisik (2012), whereas ‘x, t’ 
represent the resulting effect. Moreover, � is the external 
forcing of the system which in this case depends only on x 
and can be written as:

In general, the first term on the right-hand side of Eq. (5) is the 
contribution of the initial condition given by the Green’s func-
tion, evaluated at � = 0 , multiplied by T(x, 0) and integrated 
over the hemisphere. Whereas, the second term represents the 
contribution of the forcing to the temperature profile. Then 
T(x, 0) is the latitudinal distribution of the temperature (at 
t = 0 ) which can be found through a similar procedure con-
sidering the 1D-model. Its analytical expression is given by:

where Gx(x, �) is the part of the Green’s function in 
Eq. (6) that is associated with the differential operator 
−D

d

dx
(1 − x2)

d

dx
+ B , i.e. the time-independent part. The 

annual zonally-averaged surface equilibrium temperature 
for the two hemispheres can be obtained considering T(x, t) 
in Eq. (5) at the final time t = tf  . The result is reported in 

(5)

T(x, t) = ∫
�f

�0

T(�, 0) G(x, �, t, 0)d�

+ ∫
t

0
∫

�f

�0

G(x, �, t, �)�(�, �) d�d�

(6)

G(x, �, t, �) = Gx(x, �)Gt(t, �)

=

∞∑

n=1

(2n + 1)
P(n, x)P(n, �)

Ln

1

C
exp

(
−
t − �

Lt

)

(7)�(x) = Q0S(x)(�(x, xs)) − A

(8)T(x, 0) = ∫
�f

�0

Gx(x, �)�(�) d�

Fig. 1 and is consistent with the literature (North et al. 1981; 
Budyko 1969; Schneider and Gal-Chen 1973). Considering 
the combination of the responses in the two hemispheres, 
the step response of the PDE model for the climate system 
can be found in Fig. 2 together with the response from a first 
order linear model (dashed line) Kravitz et al. (2016) and a 
semi-infinite diffusion model MacMynowski et al. (2011). 
The behaviour of the PDE model is comparable with the 
semi-infinite diffusion model. In particular, the two curves 
(continuous black thick and thin lines) reach the same equi-
librium value, although the relaxation profile is different. In 
the semi-infinite diffusion model, the overall heat capacity is 
given by 4.063 years with an equilibrium climate sensitivity 
of 2.71 ◦C MacMynowski et al. (2011), which is comparable 
with the HadCM3L model. As can be seen in Fig. 2, in this 
case, the perturbation is considered with respect to the equi-
librium temperature. This version of the model, where only 
the temperature anomaly with respect to the equilibrium 

Fig. 1   Latitudinal distribution of the annual zonally-averaged surface 
equilibrium temperature for the northern and southern hemispheres

Fig. 2   Step response for the global mean temperature in the time 
domain due to the step change in radiative forcing of 1 W∕m2 at 
t = 1 year of the climate model reported in Eq. (1) (black thick solid 
line), a first order linear model (dashed line) Kravitz et al. (2016) and 
a semi-infinite diffusion model (black thin solid line) Kravitz et  al. 
(2016), MacMynowski et al. (2011)
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state is considered, is described in detail in the next sec-
tion. According to Robert and North (1979) and North et al. 
(1981), the fundamental sensitivity of the system can be 
estimated for the PDE model as follows:

where dxs∕dQ is the slope surface of the ice line ( xs ), i.e. 
the latitude where the temperature is −10 ◦C (ice line) and 
the surface is assumed to be covered by ice. In the current 
climate the ice line is at xs0 = ±0.95 . The value for the slope 
of the ice line can be found considering Eq. (2.9) in North 
et al. (1981). The term ��(x, xs)∕�xs is the derivative of the 
co-albedo function in Eq. (4) with respect to the ice line 
calculated at xs0 . Computing Eq. (9) for the southern and 
northern hemisphere, it can be demonstrated that the aver-
aged sensitivity of the PDE model in Eq. (1) with the chosen 
parameters is 2.32 ◦C.

3 � Multi‑objective control strategies

It is important to highlight that the expression for the external 
forcing �(x, t) is a generic function; therefore, it can be used 
to implement climate engineering strategies and analyse the 
behaviour of the PDE model. In this section a slightly modified 
version of the model in Eq. (1), where the system is considered 
in the neighbourhood of its equilibrium state, is presented.

This version includes external forcing which represents 
the excess of carbon dioxide in the atmosphere. This forcing 
term ( FCO2

 ) causes an imbalance in the radiative forcing in 
Eq. (1) producing an anomaly in the latitudinal temperature 
profile. In this model, the anomaly indicates exclusively the 
effect of an excess of CO2 in the atmosphere. In particular, 
the 1pctCO2 scenario Collins et al. (2013), where a constant 
increase in carbon dioxide concentration of 1% per year is 
assumed, is considered in this section.

Assuming the deployment of a climate engineering strat-
egy consisting of a reduction of the incoming solar radiation 
(SRM), a control function, defined as U(x, t)Q0 S(x)�(x, xs) , 
which in general is a function of both latitude and time, will 
represent the climate engineering intervention in terms of 
the fractional reduction of the incoming solar radiation. This 
term is included in the model through Eqs. (10–11) and aims 
to reduce the temperature anomaly generated by the excess 
of atmospheric CO2.

Thus, considering a small radiative perturbation �FCO2
 , it 

is possible to solve the equation governing the temperature 
perturbation as follow:

(9)

�0 =
Q0

100

(

∫
1

0 ∫
1

0

Gx(x, �)S(�)

(
�(�, xs0) + Q0

dxs

dQ

��(�, xs)

�xs

)
d� dx

)

(10)�T(x, t) = ∫
�f

�0
∫

t

0

G(x, �, t, �)�(x, t) d� d�

where, in this case, � is given by the forcing due to atmos-
pheric CO2 and the deployment of climate engineering 
intervention:

As can be noted, since only perturbations around the equi-
librium temperature of the system are considered, the term 
depending on T(x, 0) is equal to zero and only the perturba-
tive term of Eq. (5) is considered in Eq. (10).

The analytical expression for the temperature distribu-
tion, obtained through the Green’s function approach, allows 
for a fast and efficient investigation of the effects of SRM 
deployment on the climate system. The advantages of using 
such an approximate mathematical model for closed-loop 
control purposes can be summarised as follow: (1) capturing 
latitudinal disparities in induced cooling; (2) easy applica-
tion of optimization processes and multi-objective analy-
ses; (3) clearer understanding of the key climatic processes 
involved and the effects of closed-loop control on them; (4) 
the possibility of developing an analytical control function 
with latitudinal resolution; (5) the efficient assessment of 
new climate engineering strategies, prior to more detailed 
analysis using GCMs.

The 1pctCO2 scenario assumes that the CO2 concentration 
in the atmosphere rises steadily at 1% per year; therefore, 
the associated radiative forcing can be obtained through the 
following relationship:

where the expression found in Gasser et al. (2015) for the 
radiative forcing due to atmospheric CO2 is considered. 
Here, cc is the current CO2 concentration in the atmosphere 
[400 ppm Dlugokencky and Tans (2016)], cc0 is the pre-
industrial level of carbon dioxide [278 ppm Dlugokencky 
and Tans (2016)] and � = log(1.01) represents the 1% per 
year growth rate.

The model described offers an analytical approach to the 
design of control strategies to counteract radiative forcing 
on a latitudinal basis. Following the same approach used in 
Kravitz et al. (2016), a multi-objective control strategy is 
applied to the system. The objectives regard the minimiza-
tion of changes in the global mean temperature, the tempera-
ture gradient and the equator-to-pole temperature gradient 
due to increasing CO2 . For this purpose the functions to 
minimize are defined by the projection of the temperature 
distribution �T(x, t) onto the first three Legendre polyno-
mial functions Ban-Weiss andCaldeira (2010); Kravitz et al. 
(2016) that are reported below:

(11)�(x, t) = �FCO2
(x, t) − U(x, t)Q0S(x)�(x, xs)

(12)FCO2
(t) = 5.35 log

(
cc

cc0
e�t

)
(W∕m2)

(13)L0 =1

(14)L1(x) =x
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Considering Eqs. (13–15) and the analytical solution of the 
PDE system for the temperature anomaly in Eq. (10), the 
three outputs can be defined as follow:

with x0 = sin(�0) and xf = sin(�f ) , where subscripts 0 and f 
represent the extremes of the hemispheric integration.

As in Kravitz et al. (2016), the first goal will now consider 
the minimization of the global mean temperature �T0(t) only 
(case 1), the second case also considers the minimization of 
the temperature gradient �T1(t) (case 2), and the third case 
investigates the full problem where all the three objectives 
are taken into account (case 3).

A Proportional-Integral (PI) control is employed to 
achieve the required control objectives. This control struc-
ture is a feedback control strategy, where the extent of the 
control at time t depends on the state �Ti at the previous 
time (t − 1) (years). This approach is justified considering 
a reasonable time delay for the deployment of SRM strate-
gies. The observations of the temperature distribution during 
year t would be used to estimate the quantity of material 
required, for example if stratospheric aerosol injection is 
used. The time to collect data, implement decision-making 
processes are assumed to cause a delay between the time of 
observation and the deployment of the climate engineering 
strategy. In this paper a time-delay of 1 year is considered. 
Other important properties of feedback control systems and 
advantages of their use in climate engineering can be found 
in MacMartin et al. (2014) and MacMartin et al. (2014).

The general structure of the PI control used to achieve the 
objectives is defined as:

where U0(t) aims to minimize the global mean temperature 
�T0(t) , U1(t) regards the control of �T1(t) and U2(t) of �T2(t) , 
respectively. The control functions for cases (1), (2) and (3) 
can be written as:

As can be seen from Eqs. (18–20), the control functions are 
given by a combination of the functions Ui(t) , describing the 
time-history of the control (given by the outcomes of the PI 

(15)L2(x) =
1

2
(3x2 − 1)

(16)�Ti(t) = ∫
xf

x0

�T(x, t)Li(x) dx i = 0, 1, 2

(17)

Ui(t) = kPi �Ti(t − 1) + kIi ∫
t

0

�Ti(t − 1) dt i = 0, 1, 2

(18)U1x1(t) =U0(t)L0

(19)U2x2(x, t) =U0(t)L0 + U1(t)L1(x)

(20)U3x3(x, t) =U0(t)L0 + U1(t)L1(x) + U2(t)L2(x)

control strategy) and the functions Li(x) , characterizing the 
latitudinal distribution of the control.

3.1 � Results

Considering the analytical solution of the PDE system in 
Eq. (10), the three outputs, �T0(t) , �T1(t) and �T2(t) , can be 
computed through Eq. (16). As noted earlier, climate engi-
neering through the reduction of incoming solar radiation is 
deployed in case (1) to minimize the global mean tempera-
ture, in case (2) to drive both �T0(t) and the temperature gra-
dient �T1(t) to zero and, finally, in case (3), all three outputs 
are controlled. Again, in this analysis the 1pctCO2 scenario 
is considered. To achieve these strategies, the control func-
tions reported in Eqs. (18–20) are employed.

The three control strategies are summarized in Table 1. 
Specifically, the controlled outputs are indicated with the 
symbol “ ⋆ ” in the first three columns, whereas, in the last 
column the control function employed is reported for each 
case.Values for kPi and kIi (i=1, 2, 3) are chosen in order to 
ensure a fast response whilst avoiding excessively increas-
ing the system’s sensitivity to natural variability MacMartin 
et al. (2014). In particular, a convergence time of 3 years is 
assumed to select the gains for U0, U1 and U2 in Eq. (17).

The PI-control scheme is now fully defined and the 
control functions, in terms of the reduction of insolation, 
obtained. Figure 3a shows the time-history of U1x1(t) , which 
has a uniform distribution at every latitude since the first 
Legendre polynomial L0 does not depend on x. This strat-
egy shows the effect of a latitudinally-uniform reduction 
of insolation that increases with time. However, although 
the increase of atmospheric CO2 is uniformly distributed 
there is an amplified effect at the poles. Therefore, when 
uniform cooling is applied as in case (1), an overcooling of 
the tropics and an undercooling of the poles occurs with the 
northern hemisphere cooler than the southern hemisphere 
[see also Kravitz et al. (2016)]. This result can be seen from 
Fig. 5 where the latitudinal distribution of the zonal mean 
temperature at the final time is reported for the three cases.

Hemispheric differences are related to the different dis-
tribution of ocean and land between the two hemispheres 
and, in particular, to the impact of the ocean on heat trans-
port Kang and Seager (2012). These effects are taken into 
account in the PDE model through the values of the heat 

Table 1   Summary of the control strategies considered

case �T0(t) �T1(t) �T2(t) Control function

1 ⋆ – – U1x1(t)

2 ⋆ ⋆ – U2x2(x, t)

3 ⋆ ⋆ ⋆ U3x3(x, t)
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capacities and the transport coefficients employed for the 
northern and southern hemispheres.

Figure 3b shows the function U2x2(x, t) , employed in the 
case (2), which is given by the combination of the feed-
back control of �T0(t) and �T1(t) . Its latitudinal distribution 
is dictated by the first and the second Legendre polynomial 
expressions in order to minimize the global mean tempera-
ture as well as the temperature gradient.

The additional feedback control of the inter-hemispheric 
temperature gradient in case (2) reduces disparities between 
the temperature residuals in the north pole and the south 
pole and decreases over-cooling of the tropics. Therefore, 
as can be seen in Fig. 3b, a larger cooling effect is required 
in the southern hemisphere.

As noted in Kravitz et al. (2016), the additional feedback 
control of the inter-hemispheric temperature gradient in case 
(3) reduces disparities between the temperature residuals in 
the north pole and the south pole and decreases over-cooling 
of the tropics. Again, these effects are also confirmed in 
Fig. 5.

Finally, Fig. 3c shows the distribution of the control func-
tion employed in the full case (3), where the equator-to-pole 
temperature gradient is also minimized.

In all three cases the control strategy employed is con-
sistently comparable with the numerical results obtained in 
Kravitz et al. (2016), where multi-objective control strategies 
are applied to two fully coupled atmosphere-ocean general 
circulation models (AOGCM) that participated in CMIP5, 
the CESM 1.0.2 (Community Earth System Model) and the 
GISS ModelE2 (the Goddard Institute for Space Studies) in 
order to minimize �T0(t) , �T1(t) and �T2(t) . In particular, the 
control responses obtained with the analytical solution of 
the PDE model are comparable with those obtained through 
the CESM. However the model shows low sensitivity to the 
control of L1 as occurs for the GISS model.

The results regarding the three outputs of the multi-objec-
tive control strategy simulations are reported in Fig. 4a–c. 
In particular, the output time-history of �T0(t) is reported in 
Fig. 4a, whereas Fig. 4b, c show �T1(t) and �T2(t) , respec-
tively. Each figure includes three curves: the black line rep-
resents case (1), the dark-grey line represents case (2) and 
the light-grey line shows the full case (3). Therefore, it is 
possible to analyse the effect of every control strategy on 
each output. Moreover, a Gaussian noise (zero mean and 
standard deviation set to 10−2 ) is added to the outputs of 
the temperature level to simulate measurement noise and 
climate variability.

It can be seen from Fig. 4a–c that, in all the cases consid-
ered, the objective of each specific requirement is achieved. 
In fact the global mean temperature in case (1), the inter-
hemispheric temperature gradient in case (2) and the equa-
tor-to-pole temperature gradient in case (3) are minimized. 
Although, from Fig. 4b, it can be noted that the system is 
not very sensitive to U1 and it is found that �T1 is reduced 
to a mean value of approximately 0.02 ◦C . This result is 
comparable with the outcome from the GISS model found 
in Kravitz et al. (2016). Moreover, negative effects are found 
for the objectives that are not managed in a particular case, 
such as �T1 in cases (1) and (3) and �T2 in cases (1) and (2).

In accordance with results from the literature Kravitz 
et al. (2016); Kravitz et al. (2011), the required latitudinally-
uniform reduction of insolation increases linearly with time 
as the atmospheric CO2 concentration grows (see Fig. 3a) 
and mainly aims to decrease the global mean temperature 
�T0.

With respect to similar simulations from the literature, 
the results for �T0(t) , �T1(t) and �T2(t) are comparable with 
results reported in Kravitz et al. (2016).

Finally, in a rather similar way to the literature the equa-
tor-to-pole temperature gradient ( �T2 ) in Fig. 4c shows 

a b c

Fig. 3   Latitudinal distribution of the control function a U1x1 , b U2x2 and c U3x3 with the time
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convergence to zero steady-state error in case (3), while in 
case (1) shows large sensitivity to the climate variability 
(noise). It is therefore clear that the analytic PDE model 
can provide an efficient and effective means of investigating 
non-uniform climate engineering strategies.

Moreover, the model described in this paper allows also 
for the analysis of the zonal mean temperature. Therefore, 
a trade-off between the number of controlled degrees of 
freedom of SRM and the compensation of the zonal mean 
temperature is performed. Considering Eq. (10), the zonal 
mean temperature anomaly is computed and it is found that 
the rms error in compensating �T  is 0.84 ◦C , 0.81 ◦C and 
0.31 ◦C when U1x1 , U2x2 and U3x3 are applied to the system 
respectively. These results are shown in Fig. 5, where the 
zonal mean temperature at final time is reported with lat-
itude for the three cases considered. As can be seen, the 
temperature anomaly is noticeably lower in case (3). This 

result demonstrates that the zonal mean temperature is not 
completely minimized in any case, but that the overall rms 
error decreases when more degrees of freedom are managed. 
In fact, in the case when SRM is not deployed ( U = 0 ) the 
overall rms error due to the 1pctCO2 scenario is 1.41 ◦C . 
Thus, the computed control functions are able to manage 
the reduction of the global mean temperature anomaly, the 
temperature gradient and equator-to-pole temperature gradi-
ent, and greater benefits are found for the zonal mean tem-
perature in all the three cases. In particular, case 3 is the 
most advantageous and indicates larger residuals of the zonal 
mean temperature anomaly when 3 degrees of freedom are 
considered.

This outcome is also confirmed in Ban-Weiss and Caldeira 
(2010), where several combinations of L0, L1 and L2 distribu-
tions are employed for SRM. In particular, it is found that the 
rms zonal mean land temperature change from a doubling of 

a b c

Fig. 4   Perturbation of the global mean temperature �T0 ( ◦C ) (a), the inter-hemispheric temperature gradient �T1 ( ◦C ) (b) and the equator-to-pole 
temperature gradient �T2 ( ◦C ) (c) in cases 1 (black line), 2 (dark-grey line), 3 (light-grey line)

Fig. 5   Latitudinal distribution 
of the zonal mean temperature 
at final time ( tf = 70 years) for 
the three considered cases
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CO2 is reduced when more degrees of freedom are considered. 
Also, it is found that with a uniform SRM distribution and 
increased control closer to the poles, there is a more nearly 
uniform offsetting of CO2-induced warming that restores 
global mean temperature without over-cooling the equatorial 
regions and under-cooling the polar regions. This can also 
be demonstrated through the PDE model when the 1pctCO2 
scenario is considered. As already noted in Sect. 4, the PDE 
model can be employed to find a control law with latitudinal 
resolution to obtain a desired temperature profile. Therefore, 
the analytical solution reported in Eq. (5) is used to reduce to 
zero the rms zonal mean temperature and so Fig. 6 is obtained. 
In particular, the control law has been found by setting the 
expression of the rms zonal mean temperature provided 
through the PDE model to zero. As expected, the radiative 
forcing required to counteract the 1pctCO2 scenario increases 
with time (see left panel in Fig. 6) and is larger at the poles 
than the equator in order to avoid the under-cooling that would 
be caused by a uniform deployment of SRM. In particular, 
this can be noted from the right panel of Fig. 6, where the 
latitudinal distribution of the control law at the final time of 
the simulation (when the radiative forcing is at its maximum) 
is reported. This method is equivalent to the selection of the 
necessary combination of L0, L1 and L2 . In particular, it is 
found that small levels of control over L1 are required. As can 
be seen, the PDE model quickly produces the control function 
required to achieve the required goals.

Other quantitative analysis of PI, or other control laws, 
can again be efficiently performed using the PDE model.

4 � Design of a control law to counteract 
a doubling of CO

2

The analytical solution of the PDE model reported in Eq. 
(5) can be employed to find a control law with latitudi-
nal resolution to obtain a desired temperature profile. As 

demonstrated in the previous section, the PI-control is used 
in a closed-loop scheme to achieve the minimization of the 
required objectives. The final outcome is the appropriate 
time-dependent control function that takes into account lati-
tudinal disparities.

In this section, a more generic case is investigated. The 
method required to find a control function to achieve a spe-
cific temperature profile is presented. Assuming a doubling 
of CO2 (which amounts to a forcing of F2×CO2

= 3.71 W∕m2 ) 
the necessary reduction of solar insolation to drive the 
temperature to the pre-industrial profile is evaluated and 
expressed through a control law with latitudinal resolution.

The analytical solution of the system in Eq. (10), i.e. 
when small variations of temperature around the equilibrium 
state are assumed, is considered with external forcing that 
takes into account the doubling of CO2 and the intervention 
of climate engineering, as given in Eq. (21):

Although the radiative forcing F2×CO2
 is constant with lati-

tude, the climate engineering intervention consists in the 
fractional reduction of the incoming solar radiation (given 
by the term Q0S(x)�(x, xs) , see Fig. 7) and therefore depends 
on its latitudinal distribution. In this context, the control 
function U(x, t), required to counteract the effect of F2×CO2

 , 
can now be found by setting �(x, t) to zero.

Unlike to the 1% linear increase used in Sect. 3, in this 
section a doubling of CO2 concentration in the atmosphere 
is considered. In particular, two cases are considered for this 
simulation: in the first case a gradual change from the pre-
industrial level up to a doubling of CO2 occurs over 70 years 
(with a time constant equal to 34.4 years and FCO2

= F2×CO2
 

when t = 70 years ), whereas, in the second case, the external 
forcing consists of a constant step change in the radiative 
forcing equal to F2×CO2

 . The output of the first control strat-
egy is given by the control law in Fig. 8a, where the required 
fractional reduction of insolation is reported for the northern 

(21)�(x, t) = F2×CO2
− U(x, t)Q0S(x)�(x, xs)

Fig. 6   Left panel: control law to 
minimize the rms zonal mean 
temperature anomaly due to the 
1pctCO2 scenario over 70 years. 
Right panel: latitudinal distribu-
tion of the control law at the 
final time tf = 70 years

tf
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and southern hemisphere. As expected, the required control 
to counteract FCO2

 increases with time up to approximately 
4 % of the incoming solar radiation at higher latitudes.

In the second case (Fig. 8b), a constant radiative forcing 
equal to a doubling of CO2 is assumed and a slightly larger 
control effort is necessary overall. In fact the maximum 
value of U(x, t) required is 4.5% of the incoming solar radia-
tion. This is due to the larger temperature anomaly caused 
by the steady radiative forcing with respect to the gradual 
change investigated in the first case. Moreover, integrating 
U(x, t) over latitude, it is possible to estimate the global 
mean solar insolation required to counteract a doubling of 
CO2 . This is found to be 1.78 % , which is comparable with 
the value of 1.8% found in literature where the global tem-
perature is investigated for a doubling of the atmospheric 
CO2 content, such as in Bala et al. (2008) and Govindasamy 
and Caldeira (2000).

The increase in atmospheric CO2 concentration causes 
warming everywhere but requires a larger cooling at the 
poles. This can be justified considering the pattern of the 

incoming solar radiation (see Fig. 7). When SRM is consid-
ered, the latitudinal distribution of the control law is always 
related to the pattern of insolation and the response of the 
climate system, which in this paper is given by the PDE 
model described in Sect. 2.1.

Since the insolation is larger at the equator and lower 
at the poles, in order for the term U(x, t)Q0S(x)�(x, xs) to 
be constant over latitude and balance F2×CO2

 , in both cases 
investigated, the pattern of U(x, t) is required to have an 
inverse latitudinal distribution with respect to the incom-
ing solar radiation. Therefore, it is found that the required 
control is larger at the poles than at the equator. This result 
is again widely comparable with the literature, for exam-
ple (Bala et al. 2008; Ban-Weiss andCaldeira 2010; Govin-
dasamy et al. 2003).

5 � Constraints on climate engineering

In this section the dynamics of the ice line is investigated 
using the analytical solution of the PDE model in Eq. (1). 
Climate engineering involves the manipulation of the cli-
mate system, therefore the analysis of the stability of the 
global climate (related to ice line dynamics) is of critical 
relevance for the study of the impact of climate engineering 
interventions.

This analysis is of key importance for climate engineering 
involving SRM since it demonstrates that the extent of the 
insolation reduction commonly considered for SRM is far 
from triggering large-scale instability of the climate system. 
The definition of safe operating boundaries is a requirement 
for engineering ventures. It will be shown that the PDE can 
be readily adapted for such analysis.

The Lyapunov stability criterion is now exploited to find 
the critical climate engineering intervention that would lead 
the current climate towards an ice-covered state. An upper 

Q xs m

Fig. 7   Incoming solar radiation reaching the Earth’s surface as a 
function of the latitude

Fig. 8   Control law to coun-
teract (a) a time-increasing 
radiative forcing that reaches 
F2×CO2

= 3.71 W∕m2 in 70 
years and b a constant radiative 
forcing equal to F2×CO2
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limit on SRM is therefore found by exploring the effect of 
climate engineering on the dynamics of the ice line. While 
this limit is of course highly unlikely to be reached, the ana-
lytical PDE model provides insight into the extreme opera-
tional boundaries of SRM.

For simplicity, this strategy is employed on the northern 
hemisphere only, therefore x1 = 1 always refers to the North 
pole and the value employed in this section for the climate 
sensitivity takes into account only the northern hemisphere 
( �0 = 2.735 ◦C ). The ice line is defined as the latitude where 
the temperature reaches Ts = −10 ◦C and it is assumed that 
when the temperature is equal or less than Ts the surface is 
ice-covered and the albedo is 0.55 North et al. (1981). In 
the current climate the ice line is at x = xs0 = 0.95 . As in 
North et al. (1981), the temperature at the perturbed ice line 
is obtained by expanding the ice line condition to first order 
in small quantities as in Eq. (22):

where T(xs, t) = T(xs,∞) + �T(xs, t) and �xs is the varia-
tion of the ice line latitude. Also, T(x,∞) is the temperature 
field at latitude x at equilibrium, i.e. for t → ∞ . Because 
of the ice line condition, Eq. (22) can also be written as 
T(xs + �xs, t) = Ts = T(xs,∞) , therefore the variation of the 
ice line latitude is given by Robert and North (1979):

The numerator of Eq. (23) is the temperature variation at the 
ice line and can be calculated through the expansion to first 
order in the small quantities of the time-dependent energy 
balance equation in Eq. (1). The complete procedure can be 
found in North et al. (1981), where the analytical expression 
of �T(x, t,U) is found and can be written as:

where U
(
S(�)�(�, xs0)

)
 is the perturbation that causes the 

ice line shift and depends on the control function U. For the 
equator and the pole, respectively, the limits are set as x0 = 0 
and x1 = 1 . Moreover, GZ(x, �) represents the temperature 
response to a ring of heat added/subtracted at a given lati-
tude and includes the effect of the ice line shift to first order, 
as found in North et al. (1981).

Moreover, � is the stability eigenvalue of the equilibrium 
solution T(x, t) under a perturbation �T  . In order to under-
stand the meaning of � it is necessary to report some results 
from the study of the linear stability of the 1-D model in 
North et al. (1981). In this study a transcendental equation, 

(22)T(xs + �xs, t) = T(xs, t) +
(
�T

�x

)

xs

�xs

(23)
�xs(x, t,U) =

�T(x, t,U)
(

�T(x,∞)

�x

)

xs

(24)�T(x, t,U) = e−�t∕C ∫
x1

x0

GZ(x, �) U
(
S(�)�(�, xs0)

)
d�

which is satisfied only for the stability eigenvalues � , is 
developed and can be written as follow:

where Ln,P(n, x), A and B are given in Sect. 2.1 and the 
function F� is given by the right-hand side of Eq. (25). 
According to North et al. (1981), one way to obtain dQ∕dxs 
is a relationship depending on the climate sensitivity of the 
model 

(
�0
)
 given by:

where, �a is the change of albedo at the ice line equal to 
|ai − aw| = 0.23 , and where ai and aw are defined in Sect. 2.1. 
The functions dQ

dxs
(xs0) and F� can be plotted as a function of 

� as shown in Fig. 9. The intersections of the curves provide 
the roots � of Eq. (25). In the case when dQ

dxs
(xs0) < 0 the low-

est root is negative and the solution is unstable. This condi-
tion represents state II and is equivalent to the transition 
between state I given by the present climate and state III 
representing the ice-covered Earth, according to the notation 
in North et al. (1981).

The three equilibrium states are shown in Fig. 10, where 
the potential function �  normalized over Q0 is illustrated as 
a function of T0 . Here, T0 is the global equilibrium tempera-
ture, which is defined as the integral of T(x, 0) (see Eq. 8) 
with respect to latitude.

The expression for � (T0) can be found in North et al. 
(1981) and it is given by:

(25)dQ

dxs
(xs0) = �

Q2
0

A + BTs

∑

n

BS(xs)
(
P(n, xs)

)2

Ln(Ln − �)
= F�

(26)
dQ

dxs
(xs) =

Q2
0
S(xs)�a

100B�0 − (A + BT∞)

(27)� (T0) = AT0 +
1

2
BT2

0
− Q0 ∫

T0

0

H0(T
�
0
) dT �

0

F <
s

Fig. 9   Plot of the functions dQ
dxs

 and F� versus the stability parameter �
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Here, H0(T0) is the planetary co-albedo which is defined by:

where the expression xs(T) represents the ice line given as a 
function of the temperature for which Eq. (23) is employed 
with �T  used as the independent variable.

Solving Eq. (25) for � with dQ
dxs

< 0 , the lowest root is 

found to be � = −0.3086 . As will be shown shortly, the value 
found for � determines the reduction of insolation radiation 
required to drive the climate system from state I to II. Since 
state II is unstable (as can be seen in Fig. 10) any larger 
reduction of insolation would make the system fall into state 
III; therefore, the estimated insolation reduction represents 
the reduction of insolation required before an ice-covered 
state is achieved.

In Fig. 11 the lowest root of Eq. (25) is reported for sev-
eral climate sensitivities and it can be seen that the greater 
the sensitivity of the model, the closer to zero the value of 
� . The PDE model has a sensitivity of 2.74 ◦C for the north-
ern hemisphere, again with � = −0.3086 . In other cases, � 
can be less than −1 if the climate model has a sensitivity of 
2 ◦C . Thus, as expected, in a more sensitive model a smaller 
change in insolation is necessary to reach instability.

Thus, a value of � equal to −0.3086 is now employed to 
find the control function which would trigger the climate 
instability and so the solution T(x, t) approaches the ice-
covered stable solution. Therefore, the result of this investi-
gation provides the limit of SRM in terms of the maximum 
reduction of insolation before the Earth’s climate approaches 
a new ice-covered state. Again, this provides an extreme 
operational boundary for SRM, which can be obtained from 
the analytic PDE model developed in Sect. 2.1. Again, it 

(28)

H0(xs(T)) = ai + (aw − ai)(xs(T) +
1

2
S2(xs(T) − xs(T)

3))

is clearly unlikely that such a control boundary would be 
reached.

The denominator of Eq. (23) depends on the stability 
eigenvalue � and can be computed as follow:

where G� is a generalization of Gx (see Sect. 2.1) and is given 
as a continuous function of � except at the eigenvalues of L 
where it is not defined North et al. (1981):

Thus, substituting Eqs. (24) and (29) in Eq. (23), an expres-
sion for �xs as a function of the control variable U is 
obtained.

In order to estimate the reduction of solar radiation 
required to destabilize the climate system and then achieve 
the condition of an ice-covered state ( xs → 0 ), the quadratic 
expression in Eq. (31) is considered as a candidate Lyapunov 
function:

The Lyapunov stability criterion LaSalle (1976) states that 
the dynamical system ẋs = f (xs(x, t,U)) is unstable at xs0 in 
the sense of Lyapunov if:

(a)	 v(xs0) = 0

(b)	 v(xs(x, t,U)) > 0 for xs ≠ xs0
(c)	 𝜕

𝜕t
v(xs(x, t,U)) > 0

(29)
(
�T(x,∞)

�x

)

xs0

= ∫
x1

x0

G�(xs0, �)Q0S(�)
��

�xs
(�, xs0) d�

(30)G�(x, �) =

∞∑

n=1

(2n + 1)
P(n, x)P(n, �)

Ln − �

(31)v(xs(x, t,U)) =
1

2
xs(x, t,U)2 =

1

2
(xs0 + �xs(x, t,U))2

T C
40

(T )/Q

Fig. 10   Trend of the normalized potential function with respect to the 
global equilibrium temperature T0 . Labels I, II and III represent the 
equilibrium states of the climate system, i.e. the current climate con-
dition, an intermediate unstable equilibrium state and the ice-covered 
state, respectively

Fig. 11   Values of the lowest root of Eq. (25), i.e. the stability eigen-
value � , for several values of the climate sensitivity. The intersection 
of the grey lines represents the value of � associated to the climate 
sensitivity of the PDE model
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In order to satisfy condition (a), function v(xs(x, t,U)) is 
computed at xs0 = 0.95 and the Lyapunov function becomes:

Since the quadratic expression in Eq. (31) is considered, the 
Lyapunov function is locally positive and therefore condition 
(b) is satisfied. For condition (c) the first time-derivative of 
V is developed. Substituting Eq. (23) in Eq. (31), the analyti-
cal expression for V(xs(x, t,U)) can be developed as follow:

As can be seen in the expression above, V(xs(x, t,U)) is 
given by the multiplication of a series of analytical func-
tions which can be found in Appendix A. These expres-
sions are obtained using symbolic computing. In particular, 
F1(x) depends on the system parameters, such as the plan-
etary albedo, the insolation, the outgoing infra-red radia-
tion, the transport coefficient and the slope of the ice line, 
whereas, f5(�) and f6(�) depend on the stability eigenvalue 
� . Computing the first time derivative of Eq. (33), which 
also includes the time-dependence of U, and solving the 
inequality 𝜕

𝜕t
V(xs(x, t,U)) > 0 for the variable U the follow-

ing condition is obtained:

where the analytical expressions for functions fU1(x) and 
fU2(x) can be found in Appendix B.

As can be seen from Eq. (34), condition (c) of the Lya-
punov stability criterion is satisfied by an infinite number 
of control functions. Each of these functions is identified 
by a specific value of the parameter C1 , which enables the 
selection of the initial condition for the control function U. 
In Fig. 12, control functions with values of C1 between 0 and 
3 can be found.

If C1 is set to zero in Eq. (34), the boundary control func-
tion, labelled Ubound , is obtained. Combining Ubound(x, t) 
with the latitudinal distribution of the albedo and the inso-
lation, it is possible to estimate the minimum insolation 
reduction required to achieve an ice-covered state. There-
fore, Ubound(x, t) S(x)�(x, xs) (see Fig. 13) is the minimum 
reduction of insolation which would force a transition to an 
ice-covered equilibrium state. Thus, if the cooling applied 
is below one of the curves reported in Fig. 12, the current 

(32)V(xs(x, t,U)) = v(xs(x, t,U)) − v(xs0)

(33)

V(xs(x, t,U)) =Ue−
�t

C f6

(
F1(x)

(
f5xs0 − f6T0 + F(xs0)

(
f6T0 − f5xs0

)))

f 2
5

+
1

2
U2e

−
2�t

C f 2
6

F1(x)
2 − F1(xs0)

2

f 2
5

(34)Uice(x, t) ≥ −
fU1(x)

fU2(x)
+

√
fU2(x)C1 +

f 2
U1
(x)e

−
2�t
C

fU2(x)

fU2(x)

√
e
−
2�t
C

fU2(x)

climate will converge to the new ice-covered equilibrium 
state. Considering the boundary function Ubound(x, t) , as 
expected, the required insolation reduction is larger at the 
equator ( U∕Q0 ≃ −11.5% for x = 0 ) than at high latitudes 
( U∕Q0 ≃ −4.16% for x = 0.90 ) and in particular U∕Q0 = 0 
for x ≥ 0.95 since that region is already covered by ice. Con-
sidering Ubound(x, t) at t = 0 , it is estimated that a minimum 
overall reduction of insolation of approximately 8.8% is 
required to achieve an unstable state (equilibrium condition 
II in Fig. 10) with xs0 = 0.55 . This result is consistent with 
the literature Coakley (1979), Caldeira and Kasting (1992), 
Griffel and Drazin (1981), for example Fig. 3 in Coakley 
(1979), where it can be seen that a decrease of 8 − 9% of the 
solar constant is required to achieve xs ≃ 0.5.

As seen in Fig. 8, in order to counteract a doubling of 
CO2 , a reduction of insolation of 4 − 4.5% is required at the 
poles and only 1 − 1.5% at the equator. Comparing this result 
with Fig. 13, although the cooling required at the equator 
to achieve the ice-covered state is considerably higher than 
1.5% , the required deployment of SRM at the poles to coun-
teract F2xCO2

 is in principle sufficient to move the ice line to 
lower latitudes. However, if the energy input to the tropics is 
left nearly constant, as in this case, changes in the albedo of 

Fig. 12   Family of control ( 0 < C1 < 3 ) functions satisfying condition 
in Eq. (34)

Fig. 13   Boundary control function obtained setting C1 = 0 in Eq. 
(34), where any SRM profile within the surface which satisfies Eq. 
(34) will lead to an ice-covered state
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the middle and upper latitudes can eventually be mitigated by 
the exporting of energy from the tropics Schneider and Gal-
Chen (1973). Therefore, the instability of the system would 
not be triggered. This analysis is of importance to climate 
engineering involving SRM because it demonstrates that the 
extent of the insolation reduction commonly considered for 
SRM is rather far from such a catastrophic boundary.

In order to compute the new temperature profile, rep-
resenting the third equilibrium state (see Fig. 10), a small 
perturbation �U with 𝜆 < −1 is considered. The perturbed 
temperature obtained by the reduction of insolation given 
by Ubound(x, t) to drive the system from the current climate 
state (I) to the unstable state (II) can therefore be computed 
as follow:

with �T12 given by Eq. (24), where the expression for U 
is substituted from Ubound and Gt is reported in Eq. (6) in 
Sect. 2.1.

To describe the transition from state II to an ice-covered 
state (III), Eq. (35) becomes:

with �T23 given by Eq. (24), where the expression for U is 
substituted from Ubound(x, t) + �U(x, t).

Figure 14 shows the latitudinal distribution of T12ice(x, t) =
T(x, t) + �T12ice (x, t), T23ice(x, t) = T(x, t) + �T23ice(x, t) and 
T(x, t), which is given by the equilibrium solution describ-
ing the current climate (Eq. (5)). T12ice and T23ice represent 
the equilibrium temperatures reached after the perturba-
tions �T12ice and �T23ice are applied to the system. This latter 
achieves the climate state III, i.e. the condition of an ice-
covered Earth with xs = 0 . However, for any U(x, t) smaller 
than Ubound(x, t) the climate system would remain in state I 
(current climate with xs0 = 0.95).

In accordance with the literature Gates (1976), in this 
new climate state the maximum temperature obtained is 
−20.44 ◦C , whereas the global average temperature given 
by the integration over latitude of T(x,∞) , i.e. the equilib-
rium temperature, is −31.77 ◦C , as expected from the inves-
tigation of the potential function for state III (see Fig. 10). 
This result can be also seen in Fig. 15, where the contours 
show equilibrium temperatures between −30 ◦C and −35 ◦C 
for xs ≤ 0.4 and specific values of (Q0 + U)∕Q0 . As seen in 
Fig. 15, another important feature for the investigation of the 
dynamics of the ice line is the trend of xs for a given change 
of insolation ( (Q0 + U)∕Q0 ). This can be obtained through 
Eq. (50) in North et al. (1981) where the parameters of the 
PDE model, averaged between the southern and northern 
hemisphere in order to better imitate the diffusive model in 
North et al. (1981), are considered.

(35)�T12ice(x, t) = ∫
t

0

�T12(x, �)Gt(t, �) d�

(36)�T23ice(x, t) = ∫
t

0

�T23(x, �)Gt(t, �) d�

Despite the differences between the PDE model and the 
model described in North et al. (1981), such as the overall 
climate sensitivity and the parametrization of the albedo [in 
North et al. (1981) a step function is employed for �(x, xs) ], 
the results, reported in Fig. 15 of this paper and in Fig. 8 in 
North et al. (1981), are broadly comparable. In both cases 
the climate system shows two equilibrium states for current 
insolation conditions. As can be seen from Fig. 15, if the 
solar constant is decreased to 0.94, the unstable equilibrium 
state is reached and although the solar constant is increased 
again the ice line decreases further and the ice-covered state 
is reached. As it will be seen later, a much larger warming 

Fig. 14   Trend of the equilibrium temperature of the current climate 
(T(x, t)) and the equilibrium temperatures obtained after the perturba-
tion Ubound(x, t) + �U(t) is applied to the system, respectively

Q U+
Q

x s

25

0.8

1.0

15 5 5 CT

Fig. 15   Dotted curve represents the trend of the position of the ice 
line xs with the variation of the insolation (normalized over the cur-
rent value of the solar constant Q0 ). The values of xs are obtained 
computing Eq. (50) in North et al. (1981) with the parameters of the 
PDE model (see Sect.  2.1). The contours give information on the 
equilibrium temperature for a given insolation ( (Q0 + U)∕Q0 ) and ice 
line position ( xs)
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perturbation is required to lead the system back to the cur-
rent climate state if an ice-covered state is reached. This 
outcome is in agreement with the literature where steady-
state climate models are considered and suggests that only 
a 6% reduction of insolation is required to trigger the insta-
bility. Otherwise following the approach developed in this 
paper (Sect. 5), with the PDE model in Sect. 2.1, it is found 
that the overall reduction needs to be 8.8% to make the sys-
tem unstable (Sect. 4). This discrepancy is due to the time-
dependency of the PDE model employed Schneider and 
Gal-Chen (1973).

The change of sign of the curve for xs > 0.8 in North et al. 
(1981) is an artefact of the mathematical form of the albedo 
step function, as explained by North et al. in North et al. 
(1981), and it is therefore not visible in Fig. 15 because a 
smooth function is considered for the albedo. Another simi-
lar model, where the same function in Eq. (4) is employed 
for the albedo, can be found in Widiasih (2013). In par-
ticular, in Widiasih (2013), the graph of Fig. 15 is obtained 
through numerical simulations [and can be found in Fig. 
(4.2) of Widiasih (2013)]. Although the models employ dif-
ferent system parameters, the values of Q are broadly com-
parable with the normalized values shown in Fig. 15.

Finally, the recovery from an ice-covered state is investi-
gated for completeness. The procedure described in Sect. 5 
is applied again in order to estimate the variation of inso-
lation necessary to drive the Earth’s climate from an ice-
covered state (III) to the previous state (the current climate 
state I). Therefore, in this case, xs0 = 0 , Ts = −20.44 ◦C and 
� = −0.28 [obtained through Eq. (25)] are employed. Again, 
a family of control functions which would trigger a recovery 
is found. In Fig. 16, several control functions are reported for 
values of C1 between 0 and 3. As before, the minimum control 
function can be found setting C1 = 0 and Fig. 17 is obtained.

Thus, considering the minimum control function 
reported in Fig. 17, it is estimated that an overall increase 
of U∕Q0 = 30% is required to move the ice line from xs = 0 
back to xs = 0.95 . In particular, a maximum increase of 
30.1% is required at the equator and a minimum of 10.6% 
at the pole. This result can be also found in Caldeira and 
Kasting (1992).

The family of functions Ur(x, t) (r stands for recovery) 
provides the distribution of insolation increase required to 
move the climate system back to current conditions. In par-
ticular, Ur(x, t) is obtained considering Eq. (23) and applying 
the Lyapunov stability criterion as for the previous case. As 
before, the new equilibrium temperature can be computed 
through Eq. (35) and Fig. 18 is then obtained. In particular, 
the trend of the temperature of the ice-covered climate state 
is given by T23ice whereas the new climate state reached is 
represented by Trec . It can be noted that the value of the 
equilibrium temperature at x = 0.95 is −10 ◦C and the overall 
equilibrium temperature of the new climate state is 24.1 ◦C . 

In accordance with other results from the literature North 
et al. (1981), the new equilibrium state is found to be much 
warmer than the previous state with T ≃ 13 ◦C despite that 
the ice line is at xs0 = 0.95 in both cases. This is due to 
latitudinal diffusion of heat towards the poles and the strong 
ice-albedo feedback. Because of these phenomena, a consid-
erable increase of solar radiation is required near the equator 
to move the ice line back to the pole and this causes a result-
ing warmer equilibrium climate state.

6 � Conclusions

A time-dependent analytical model for the climate system 
with latitudinal resolution has been developed to assess 
closed-loop climate engineering strategies. The system 
investigated is a PDE model which can be analytically solved 
for any external forcing providing the latitudinal distribution 
of the temperature perturbation with time.

The model can be employed to investigate climate engi-
neering strategies taking into account latitudinal disparities. 
High-fidelity numerical models for the climate can also be 
used to evaluate climate engineering strategies, but these 
models are computationally expensive. In contrast, the use of 
the PDE model provides a useful tool to rapidly asses SRM 

Fig. 16   Family of control functions ( 0 < C1 < 3 ) for the recovery 
from an ice-covered state

Fig. 17   Minimum control function required to recover from an ice-
covered state obtained setting C1 = 0 , where any SRM profile within 
the surface, which is also part of the family of functions in Fig. 16, 
will lead to the current climate state
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strategies, providing a clear understanding of the climate 
dynamics involved.

The PDE model developed in this paper is employed in 
three simulations [cases (1), (2), (3)] to explore multi-objec-
tive strategies with a PI feedback control. Several objectives 
were simultaneously minimized and the latitudinal response 
investigated considering a steady increase of CO2 concentra-
tion in the atmosphere (1pctCO2 scenario). The model pro-
vided analytical expressions for suitable control functions 
for three strategies, and proved to be effective when multi-
objective analyses are considered. In fact, despite the sim-
plicity of the model, results, which are broadly comparable 
with the literature, are found. The distributions of the control 
functions with latitude are obtained using the analytical solu-
tion of the PDE model and are again consistently comparable 
with the literature. In particular, the control responses and the 
temperature trends obtained with the analytical solution of 
the PDE model are comparable with those achieved through 
the CESM 1.0.2 (Community Earth System Model). This 
approach is considered as the verification of the general cor-
rectness and usefulness of the model developed.

Moreover, the model is used for the analysis of the zonal 
mean temperature. In agreement with the literature, it is 
found that the rms zonal mean temperature anomaly caused 
by the 1pctCO2 scenario decreases when more degrees of 
freedom are managed. Also, the PDE model can be employed 
to find the exact control law required and reduce the zonal 
mean temperature perturbation to zero. It is found that a non-
uniform SRM distribution with increased control closer to 
the poles provides a more uniform offsetting of CO2-induced 
warming and restores the mean temperature without over-
cooling equatorial regions and under-cooling polar regions.

As a further example of the application of the PDE model, 
the upper limit on SRM is investigated through the analysis 
of the dynamics of the ice line. This analysis is of importance 
for climate engineering involving SRM because it shows that 
the extent of the insolation reduction commonly considered 

for SRM is far from the insolation reduction required to trig-
ger instability of the climate. With respect to other similar 
calculations in the literature, where the insolation reduction 
required to achieve an ice-covered state is estimated, in this 
case, the whole family of control functions which would 
destabilise the system is found and analytical expressions 
are provided as a function of both latitude and time.

In this context, it is found that the minimum overall con-
trol effort required for an ice-covered state is approximately 
8.8% , which decreases towards zero as the climate cools. In 
particular, the maximum insolation reduction is needed at the 
equator ( 11.5% ) and the minimum at high latitudes ( 4.2% ). 
The system then falls into a stable ice-covered state, where 
the global equilibrium temperature is estimated to be −32 ◦C.

The use of the PDE model allows a clear and quick assess-
ment of the boundaries of SRM, proving that the insolation 
reduction required to move the ice line to the equator is much 
higher than that considered for SRM deployment. It is there-
fore highly unlikely to accidentally force an ice-covered state.
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Appendices

Appendix A: Analytical functions of V(x
s
(U, t))

As seen in Sect. 5, the Lyapunov function depends on a num-
ber of analytical functions (Eq. 33) depending on the model 
parameters, the stability eigenvalue and the slope of the ice 
line. Their complete description is given below. In particular, 
function F1(x) is given by the combination of several func-
tions as reported in Eq. (37):

where the functions �� , fd1 , Fw(x), Fw2(x), Fw3(x), Fi(x) 
and Fi2

(x) are given by the following expressions:

(37)

F1(x) = Q0

√
fd1 awFw(x) +

a2
w
��Fw2

(x)+a2
i
��Fi(x)+ai

�
Fi2

(x)+awFw3
(x)��

�

(B2+62BD+840D2)

fd1

(38)�� =
dxs

dQ
(xs0)

Q0

(S�)xs0

(39)fd1 =B(B + 6D)(B + 20D)(B + 42D)

Fig. 18   Trend of the temperature of the ice-covered climate state 
( T23ice(x, t) ) and the temperature obtained after the perturba-
tion Ur(x, t)S(x)�(x, xs0) is applied to the system, which is given by 
Trec(x, t)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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(40)

Fw(x) = B3
(
0.027x6 − 1.0x4 + 0.25x2 + 1.0

)
+ B2D

(
0.71x6 − 49x4 + 2.8x2 + 68

)

+ S2(B
3
(
−1.3x6 + 0.57x4 + 1.5x2 − 0.50

)
+ B2D
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)

+ BD2
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−160x6 − 90x4 + 1000x2 − 410

)
− 420D3) + BD2(3.3x6 − 260x4 − 310x2
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(41)

Fw2
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(
−6.3x6 + 9.1x4 − 1.8x2 + 0.057

)
+ B7D(−1000x6 + 1500x4
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)
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8
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Finally, f5(�) and f6(�) depend on the stability eigenvalue 
and are given by the numerator and denominator of Eq. (29), 
respectively.

Appendix B: Analytical functions of U
ice
(x, t)

The expression found in Eq. (34) for the family of control 
functions which would trigger the instability of the climate 

(43)
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+ B2D7(S2
(
6.6 × 108x6 + 3.8 × 108x4 + 8.9 × 108x2 + 5.2 × 108

)
− 1.4 × 107x6

+ 1.1 × 109x4 + 1.3 × 109x2 + 9.0 × 108) + BD8
(
1.8 × 109S2 + 2.8 × 109

)

(45)

f5(�) =1.6Q0

(
ai − aw

)
(�
(
�
(
�
(
S2 + 1.5

)
− 44S2 − 66

)

+490S2 + 750
)
− 1000S2 − 1700)

(46)f6(�) =(� − 29)(� − 15)(� − 5.5)(� − 1.6)

system depend on functions fU1 and fU2 . These functions 
are given below:
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