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Abstract
Precipitation data in the Global Precipitation Climatology Project (GPCP) and in four reanalysis datasets, ERA-Interim, 
MERRA, NCEP/NCAR, and JRA, are compared against the CPC Merged Precipitation (CMAP) in the cyclostationary 
empirical orthogonal function (CSEOF) space to evaluate these datasets in representing the summer precipitation char-
acteristics over East Asia. CSEOF analysis is applied to each dataset, and regression analysis is performed in the CSEOF 
space with the CMAP data as the target. The regression analysis establishes one-to-one correspondence between the CSEOF 
loading vectors of the target variable and those of the predictors, i.e., GPCP and the four reanalysis datasets. The loading 
vectors of the GPCP data coincide almost exactly with those of the CMAP data, i.e., the two observation-based precipita-
tion datasets represent practically identical summer precipitation characteristics over East Asia. The reanalysis datasets also 
reproduce the first five CSEOF modes reasonably; however, performance of NCEP/NCAR is notably lower than others. The 
re-constructed precipitation using the first five regressed CSEOF modes of the reanalysis datasets are well correlated with 
that of the CMAP data with reasonably large correlation coefficients, suggesting that these reanalysis precipitation products 
reliably simulate the major summer precipitation characteristics in East Asia. All of the four reanalysis products commonly 
show noticeable errors in representing the summer rainfall over the mid-latitude ocean to the south of Japan, the tropical 
western Pacific, tropical/subtropical regions including the Indochina Peninsula, India, the Maritime Continent, and regions 
of complex terrain especially those characterized by strong orographic slopes around the Tibetan Plateau. The errors over 
the regions of complex orography and coastal lines may be partially due to the inability of reanalysis models in simulating 
the effects of complex terrain and the lack of observations in these sparsely populated regions.

1  Introduction

Observation-based and reanalysis precipitation datasets play 
critical roles in climate research. For their importance, vari-
ous research groups and operational centers around the world 
have recently introduced a number of precipitation analysis 
datasets based on observations from various platforms such 
as weather stations and satellite-borne sensors as well as 
reanalysis precipitation products based on model-assisted 
gridded assimilations. These datasets are great assets for 
advancing climate research via improved understanding of 
the dynamical and physical processes that shape the climate 
system (e.g., Kim et al. 2018; Neena et al. 2016) as well 
as by evaluating climate models for model improvement 
and bias corrections, just to name a few (Kim et al. 2013; 
Whitehall et al. 2012). Having multiple observational and 
reanalysis datasets available for climate research, accuracy 
of individual datasets or the spread among multiple data-
sets of the same field have become an important concern. 
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Previous studies (Prakash et al. 2014; Kim et al. 2015a; Kim 
and Park 2016) found that precipitation characteristics in 
observation-based gridded datasets often vary widely among 
them. This is an important concern because model evalua-
tion against observational and/or reanalysis data is critical 
for model developments/improvements and in the applica-
tion of climate model data to impact assessments via bias 
correction (Kim et al. 2015a), for example.

Because of the concern, earlier studies attempted to 
assess, quantify and understand the characteristics of 
uncertainties in observation-based gridded precipitation 
analysis datasets. Prakash et al. (2014), for example, found 
that observation-based precipitation analysis datasets yield 
varying summer monsoon rainfall climatology over India 
and that the inter-dataset differences vary notably according 
to geography. Kim et al. (2015a) revealed that the spread 
among observation-based gridded precipitation analyses var-
ies seasonally as well as regionally. Kim and Park (2016) 
also showed that the spread among gridded precipitation 
datasets over East Asia varies according to statistical prop-
erties, i.e., smallest in seasonal means and largest in long-
term trends, in addition to geography and season. Such 
differences arise from various sources involved in analysis 
processes such as input data quality control, observation 
density, analysis schemes, and, for reanalysis datasets, the 
differences in model formulations (Legates and Willmott 
1990; Kim et al. 2015a; Kim and Park 2016). In most cases, 
it is difficult to trace and/or quantify the differences, not to 
mention to identify the most accurate dataset. In such cases, 
intercomparison of multiple datasets is one of useful ways 
of understanding the uncertainties in currently available 
observation-based datasets.

Most of previous data intercomparison studies dealt with 
the first two statistical moments, means and variances (e.g., 
Guirguis and Avissar 2008; Prakash et al. 2014; Kim et al. 
2015a). In this approach, the regional and/or temporal vari-
ations of the differences between datasets can be assessed. 
On the other hand, it is difficult to assess differences in the 
spatial and temporal characteristics using only the first two 
moment statistics. The most critical limitation of this so-
called “pedestrian” approach is that statistical differences 
between two datasets shed only limited insight into how 
these datasets differ from each other in terms of physics and 
dynamics. A dataset represents variations produced as a con-
sequence of interactions of multiple physical and/or dynami-
cal processes in both space and time. It would be highly 
beneficial if individual physical and/or dynamical processes 
in a dataset can be separated and evaluated separately. The 
cyclostationary empirical orthogonal function (CSEOF) 
technique is an ideal tool for decomposing a dataset into 
physically and dynamically distinct modes of spatiotemporal 
evolutions. Each CSEOF loading vector describes a temporal 
evolution of spatial patterns tied to a distinct physical and/

or dynamical mechanism. The loading vectors are mutually 
orthogonal, and the principal component (amplitude) time 
series are also uncorrelated (often nearly independent) in 
time. For details of the CSEOF analysis, readers are referred 
to Kim et al. (1996, 2015b) and Kim and North (1997). The 
essence of the approach used in this study is to evaluate 
individual CSEOF modes in order to assess how well rea-
nalysis models perform in reproducing them. This approach 
allows us to evaluate a dataset in terms of the accuracy of 
physical and dynamical processes that produced the field in 
the dataset.

This study employs a recently introduced methodology 
based on the CSEOF analysis (Kim et al. 1996, 2015a; Kim 
and North 1997) to assess the accuracy of five precipitation 
products including the observation-based Global Precipita-
tion Climatology Project (GPCP) and four reanalysis data-
sets against the observation-based CPC Merged Analysis 
of Precipitation (CMAP) dataset. Section 2 presents the 
methodology of analysis and the datasets used in this study. 
Results of analysis are presented in Sect. 3, followed by dis-
cussion and concluding remarks in Sect. 4.

2 � Datasets and method of analysis

2.1 � Datasets

This study analyzes six precipitation datasets for the 37-year 
period 1979–2015. Two of these datasets, CMAP (Xie and 
Arkin 1997) and GPCP (Huffman et al. 1997, 2009; Adler 
et al. 2003) are based on observations from surface stations 
and satellite retrievals. The spatial and temporal resolutions 
of these datasets are presented in Table 1. We arbitrarily 
select the CMAP data as the reference data against which 
the remaining five datasets are evaluated. Four reanalysis 
precipitation datasets including the ERA-Interim reanalysis 
(Dee et al. 2011), the NCEP/NCAR reanalysis (Kalnay et al. 
1996), the Modern-Era Retrospective analysis for Research 
and Application (MERRA; Rienecker et al. 2011), and the 
Japanese 55-year Reanalysis (JRA; Kobayashi et al. 2015; 

Table 1   The horizontal and temporal resolutions of the datasets 
employed in this study

Horizontal resolution Temporal 
resolution

CMAP 2.5° × 2.5° 5 days
GPCP 1.0° × 1.0° 5 days
ERA-Interim 0.75° × 0.75° 6 h
NCEP/NCAR​ 2.5° × 2.5° 6 h
MERRA​ 0.5° × 0.66° 6 h
JAR55 1.25° × 1.25° 6 h
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Harada et al. 2016) are also evaluated against the CMAP 
data. Since the CMAP data are available at 5-day resolu-
tions, the four reanalysis datasets are converted into pentad 
resolutions before the analysis. The native spatial resolu-
tions of these six datasets also differ from each other. For 
consistency, all of these datasets are also interpolated to a 
common grid of 2.5° × 2.5° resolutions for analyses. The re-
scaled datasets preserve the fundamental precipitation char-
acteristics of the original data (e.g., Guirguis and Avissar 
2008). Other gauge-based daily observational datasets such 
as APHRODITE (Yatagai et al. 2012) that has been widely 
used in Asian monsoon and hydrology studies (e.g., Preethi 
et al. 2017) are also available, but not included in this study 
because they cover only land areas.

2.2 � CSEOF analysis

In order to compare precipitation characteristics represented 
in each dataset, CSEOF analysis (Kim et al. 1996, 2015b; 
Kim and North 1997) is performed on all six datasets. This 
study is focused on the summer precipitation over the East 
Asian region of 90°E–180°E and Equator–60°N for the 120-
day period (May 13–September 9). The 24-pentad summer 
period is selected in each year to describe evolutions of pre-
cipitation field during summer. CSEOF analysis decomposes 
space–time data as

where r is location in space, t is time, n is the mode number, 
d = 24 pentads (i.e., 120 days) is the nested period, Bn(r,t) 
are the cyclostationary loading vectors (CSLVs), and are 
the principal component (PC) time series for mode n. Each 
CSLV represents the temporal evolution of spatial patterns 
for the summer, and is orthogonal to others in space and 
time. Each PC time series describes long-term variations of 
the amplitude of the corresponding CSLV, and is uncorre-
lated with (often independent of) others. Conventional EOF 
analysis is a special case of CSEOF analysis with the nested 
period d = 1. Thus, each EOF loading vector consists of one 
spatial pattern and as a consequence is unable to depict an 
evolution of spatial patterns.

CSEOF analysis is conducted on another dataset P(r,t) 
as in (2):

One-to-one correspondence between CSEOFs of the two 
sets in (1) and (2) is not necessarily established. That is, 
Tn(r, t) ≠ Pn(r, t) in general, and Cn(r, t) may represent dif-
ferent physical and/or dynamical mechanisms that cannot 
be compared directly against Bn(r, t) . In order to evaluate if 
and how well the two different datasets describe an identical 

(1)T(r, t) =
∑

n

Bn(r, t)Tn(t), Bn(r, t) = Bn(r, t + d),

(2)P(r, t) =
∑

n

Cn(r, t)Pn(t), Cn(r, t) = Cn(r, t + d).

physical process, a regression analysis in CSEOF space 
should be performed.

2.3 � Regression analysis in CSEOF space

Let us call T(r, t) a target variable and P(r, t) a predictor vari-
able. Then, regression analysis in CSEOF space proceeds in 
the following manner:

Here, (3) is multiple regression of a target PC time series in 
terms of the predictor PC time series. A new CSLV, called 
the regressed CSLV, can be found by a linear superposi-
tion of the predictor CSLVs using the regression coefficients 
{�(n)

m
} . The parameter M is the number of predictor CSEOF 

modes used in the regression analysis in CSEOF space; 
M = 20 in this study. The predictor variable, then, can be 
rewritten as

Thus, the target and predictor variables together can be writ-
ten as

The terms in the curly brackets represent an identical 
physical process manifested in the two different datasets. 
Thus, a comparison of Bn(r, t) with C(reg)

n (r, t) reveals how 
similar (or dissimilar) is the rendition of a physical process 
in the two datasets. We can carry out regression analysis in 
CSEOF space for multiple predictor variables to write

to compare multiple datasets against the target dataset.

3 � Results

3.1 � Raw statistics

The first two statistical moments, means and standard devia-
tions, of the summer precipitation in the six datasets are 
compared in Fig. 1a, b. All the six datasets show similar 
spatial patterns and magnitudes of the first two moments. 

(3)Step 1: Tn(t) =

M
∑

m=1

�
(n)
m
Pm(t) + �

(n)(t),

(4)Step 2: C(reg)
n

(r, t) =

M
∑

m=1

�
(n)
m
Cm(r, t).

(5)P(r, t) =
∑

n

C(reg)
n

(r, t)Tn(t).

(6){T(r, t),P(r, t)} =
∑

n

{Bn(r, t),C
(reg)
n

(r, t)}Tn(t).

(7)

Data(r, t) =
∑

n

{Bn(r, t),C
(reg)
n

(r, t),… , Z(reg)
n

(r, t)}Tn(t)
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Differences in the detailed structures between these datasets 
are also clear. Between the two observation-based datasets, 
CMAP shows slightly larger means and standard deviations 
than GPCP, most noticeably over the tropical western Pacific 
Ocean and off the west coast of the Indochina Peninsula 
(Table 2). Over the continental areas, on the other hand, 
GPCP data shows larger means and standard deviations 
(Table 2). The discrepancy between these two observation-
based precipitation datasets could have originated from the 
differences in analysis procedures such as input datasets, 
pre-analysis data quality control, and analysis methodol-
ogy (Xie and Arkin 1995; Vogel 2013; Kim et al. 2015a). 

Previous studies (e.g., Kim et al. 2015a; Kim and Park 2016) 
showed that the differences between observation-based grid-
ded precipitation datasets vary widely according to regions, 
seasons, precipitation characteristics and/or statistical 
properties. Overall, the long-term means and the temporal 
standard deviation over the 37 summers, a surrogate for the 
seasonal cycle and its interannual variability respectively, of 
the GPCP data agree closely with the CMAP data (Table 2).

The reanalysis precipitation datasets except JRA show 
systematically larger (smaller) means over the continen-
tal (ocean) region compared to the two observation-based 
products (Fig. 1a). Compared to CMAP, all reanalysis 

(a)

Fig. 1   a Summer-mean (May 13–September 9) precipitation climatology of the six datasets for 1979–2015. b Standard deviation of summer 
(May 13–September 9) precipitation of the six datasets for 1979–2015
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products except NCEP/NCAR overestimate the standard 
deviation over the continental region compared to CMAP; 
all of these reanalysis datasets except JRA underestimate 
the standard deviation over the ocean compared to CMAP. 
Over the tropical western Pacific, all reanalysis datasets 
except JRA show smaller means and standard deviations. 
The JRA reanalysis yields larger means but smaller stand-
ard deviations compared to CMAP. All the four reanalysis 
datasets also substantially underestimate the magnitude 
of the rain band over the ocean to the south of Japan, the 
most notable common problem in these reanalysis pre-
cipitation products. This problem is directly related to the 

representation of the northward progression of the East 
Asian summer monsoon rainfall and is most (least) serious 
in the NCEP/NCAR (JRA) reanalysis. Overall, the spatial 
patterns of the long-term mean and the standard deviation 
of the reanalysis data agree well with CMAP when their 
performance is measured in terms of the spatial pattern 
correlation and the relative magnitude (Table 2). Table 2 
shows that the reanalysis datasets yield larger pattern cor-
relations with the CMAP data over ocean surfaces than 
over land surfaces; they also overestimate the magnitude 
of the spatial variability, especially for the mean climatol-
ogy, compared to CMAP.

(b)

Fig. 1   (continued)
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3.2 � Comparison of individual CSEOF modes

In addition to the first two statistical moments, represen-
tations of various physical and/or dynamical processes 
involved in the spatiotemporal variations of summer precipi-
tation over East Asia in each dataset are compared using the 
CSEOF components. For this evaluation, we first conduct 
CSEOF decomposition of each dataset. Then, regression 
analysis in CSEOF space is performed between the CMAP 
data (target) and the remaining five datasets (predictors). The 
R2 values of regression for the first five CSEOF modes in 
Table 3 show that the GPCP data shows near-perfect regres-
sion fit for all of the first five modes. The four reanalysis 

datasets also show close regression fits with the CMAP data 
for the first five CSEOF modes, although not as high as the 
GPCP dataset. This implies that the temporal evolution of 
the regressed CSLVs of GPCP and the four reanalysis data-
sets closely agree with those of CMAP.

The PC time series of the two observation-based datasets, 
CMAP and GPCP, agree closely with each other through-
out the analysis period for the first three modes (Fig. 2). 
The first CSEOF mode represents the seasonal cycle, which 
dominates the evolution of summer monsoon rainfall over 
East Asia. The corresponding PC time series has a non-zero 
mean with strong fluctuations in the amplitude as shown in 
Fig. 2a for CMAP and GPCP. This implies that the phase of 
the evolution of the first mode as depicted in the correspond-
ing loading vector (Supplemental Movie 1), remains positive 
throughout the analysis period. The PC time series (Fig. 2a) 
clearly shows the years of the monsoon precipitation well 
below (e.g., 1988, 1999, and 2000) or well above (e.g., 1990, 
1992, and 2002) normal.

The temporal variations of the CSLVs of the first CSEOF 
mode show that not only GPCP, but also the four reanalysis 
datasets closely agree with CMAP throughout the 24 pen-
tads (Supplemental Movie 1). That is, all the six datasets 
show similar evolutionary pattern of the summer monsoon. 
Similar evolution features can be obtained from a composite 
analysis over the 24 pentads (not shown) indicating that this 
is a repeating signal. Figure 3 measures the proximity, meas-
ured in terms of spatial pattern correlation (Fig. 3a) and rela-
tive RMSE (Fig. 3b) obtained by normalizing RMSE by the 
standard deviation of the CMAP data, of the first five CSLVs 
of the GPCP and the reanalysis datasets to those of CMAP 
for the 24 spatial patterns corresponding to the 24 pentads. 
The correlation coefficients and the relative RMSEs show 
that the CSLVs of GPCP are very close to those of CMAP. 
The pattern correlation between the CSLVs of GPCP and 
CMAP remain above 0.9 (black lines in Fig. 3a) with rela-
tive RMSEs generally below 0.4 (black lines in Fig. 3b) for 
the entire 24 pentads for the first five CSEOF modes. The R2 
values of regression for the GPCP data also exceed 0.98 for 
the first five modes (Table 3). The reanalysis datasets, except 

Table 2   A measure of difference in the means and standard devia-
tions of the summer precipitation over the 37-year period in differ-
ent precipitation datasets against the CMAP dataset in terms of the 
spatial pattern correlation (CORR) and the relative magnitude (MAG)

The magnitude is the ratio of the spatial standard deviation of each 
dataset relative to the CMAP dataset

GPCP ECMWF NCEP MERRA​ JRA

Mean
 CORR
  All 0.854 0.834 0.758 0.842 0.861
  Ocean 0.908 0.904 0.837 0.899 0.884
  Land 0.867 0.733 0.832 0.810 0.764

 MAG
  All 0.927 1.033 0.965 0.983 1.203
  Ocean 0.848 0.957 0.830 0.900 1.156
  Land 1.201 1.299 1.442 1.277 1.366

Std
 CORR
  All 0.861 0.690 0.738 0.870 0.827
  Ocean 0.877 0.781 0.777 0.918 0.801
  Land 0.881 0.639 0.612 0.761 0.764

 MAG
  All 0.905 0.787 0.716 0.750 0.982
  Ocean 0.841 0.700 0.636 0.687 0.934
  Land 1.145 1.116 1.020 0.991 1.163

Table 3   The R2 values of 
regression for the five predictor 
variables (GPCP, ECMWF, 
NCEP, MERRA, JRA) against 
the CMAP pentad precipitation 
(target variable)

The second and third rows represent eigenvalues and percent variance explained by the first five CSEOF 
modes

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Total

CMAP 3.137 1.478 1.366 1.260 1.040 8.282
12.06% 5.68% 5.25% 4.85% 4.00% 31.85%

GPCP 0.998 0.993 0.994 0.985 0.995
ECMWF 0.993 0.991 0.993 0.976 0.977
NCEP 0.991 0.978 0.975 0.975 0.964
MERRA​ 0.993 0.990 0.978 0.976 0.960
JRA 0.994 0.988 0.990 0.981 0.970
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NCEP/NCAR, exhibit fairly high correlation with CMAP 
for the first five CSEOF modes; correlations averaged over 
the 24 pentads (colored thin lines in Fig. 3a) exceed 0.7. 
The NCEP/NCAR dataset yields slightly, but systematically, 
smaller correlation coefficients of around 0.6 compared to 
other three reanalysis datasets (0.7 or larger). The average 
relative RMSEs are below 0.7 for the reanalysis data except 
NCEP/NCAR for which relative RMSEs are around 0.8 for 
the first five CSEOF modes.

The second and the third CSEOF modes, which represent 
intraseasonal oscillations, of the five datasets also agree well 
with those of CMAP. Similar to the first CSEOF mode, the 
PC time series of CMAP and GPCP are close for the second 
and the third modes (Fig. 2b, c) with temporal correlations 
over 0.99 (Table 3). The temporal evolution of the loading 
vectors associated with the second and the third modes of 
the five datasets are close to those of the CMAP data over 
the entire 24 pentads (Fig. 3). Temporal evolutions of the 
second and third modes are shown in Supplemental Mov-
ies 2 and 3. Because of the irregularity in the phase of the 
intraseasonal oscillations, these two CSEOF modes are 
required to fully describe the intraseasonal oscillations of 

precipitation. The four reanalysis datasets well reproduce the 
intraseasonal oscillations even though they slightly under-
estimate the magnitude of precipitation associated with 
these modes. This comparison of the PC time series and 
corresponding CSLVs shows that the two observation-based 
analysis datasets, CMAP and GPCP, agree closely with each 
other and that all the four reanalysis datasets perform rea-
sonably in depicting the variability in the former datasets.

Figure  4 shows the Hovmöller diagram of the first 
CSEOF mode that correspond to the summer monsoon, 
averaged over the longitude range of 127.5°E–130°E. This 
longitude band is chosen in the context of the location of 
the East Asian monsoon. The monsoon rain band arrives 
33°N, around the latitude of the southern-most territory of 
Korea, on around July 20. The monsoon rainfall arrives in 
its northern-most reach of 38°N in early August in a climato-
logical sense. The GPCP data agree closely with the CMAP 
data in the northward march of the summer rainfall even 
though the magnitude of the anomalous rainfall is slightly 
underestimated compared to CMAP, especially to the south 

(a)

(b)

(c)

Fig. 2   The PC time series of the CMAP (red) and GPCP pentad pre-
cipitation (blue) for CSEOF modes a 1, b 2, and c 3

(a)

(b)

Fig. 3   a Pattern correlations and b relative RMSE of the first five 
CSEOF modes derived from the GPCP (black) and the four different 
reanalysis datasets (MERRA: red, ECMWF: blue, NCEP: yellow, and 
JRA: cyan). Each loading vector consists of 24 spatial patterns and 
there are 24 values of correlation and relative RMSE for each mode. 
The thin solid lines represent the correlation and relative RMSE aver-
aged for each mode; there are five different colors for the five differ-
ent datasets
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of 30°N. The JRA and ERA-Interim reanalysis datasets rea-
sonably depict the northward movement of the monsoon 
rainfall in the region. The NCEP and MERRA reanalysis 
datasets, on the other hand, seriously underestimate the mag-
nitude of the anomalous precipitation within the longitude 
range, especially in the southern half of the Korean Penin-
sula (33°N–38°N, marked by the dashed lines in Fig. 4).

Figures 5 and 6 show the Hovmöller diagram of the sec-
ond and the third CSEOF modes averaged over the longitude 

range of 100°E–140°E which encompasses the East Asian 
monsoon region. Similar to the first CSEOF mode shown 
in Fig. 4, CMAP and GPCP agree closely with each other; 
however, magnitudes of the anomalous precipitation in the 
GPCP data are generally weaker than in the CMAP data. All 
the six datasets capture the overall patterns of the intrasea-
sonal oscillation during summer. The timing and the sign 
of the intraseasonal oscillations in the reanalysis datasets 
agree reasonably with the two observation-based datasets, 

Fig. 4   The Hovmöller diagram of the longitude (127.5°–130°E) aver-
aged seasonal cycle (summer monsoon) derived from the six datasets 
for the CSEOF mode 1. The two dashed lines show the latitude range 

of the Republic of Korea. The two numbers in parenthesis denote 
the correlation coefficient and the relative RMSE with respect to the 
CMAP data
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specifically in the middle and late summer, July and August. 
The precipitation anomalies of MERRA and JRA agree 
closely with those of the two observation-based datasets for 
July and August over the entire latitude range from the Equa-
tor to 35°N. The NCEP/NCAR reanalysis shows problems 
in depicting the precipitation anomalies corresponding to 
intraseasonal oscillations in the tropical regions between the 
Equator and 10°N. Despite the general agreement between 
the reanalysis datasets and the observation-based CMAP and 
GPCP datasets, all the four reanalysis datasets underesti-
mate, compared to the CMAP/GPCP data, the precipitation 

variability associated with intraseasonal oscillations, espe-
cially in the tropics for June.

Figure 7 shows the correlation coefficients over the 24 
pentads of the CSLVs between the reanalysis datasets and 
CMAP for the first three CSEOF modes. Unlike conven-
tional EOF analysis where the loading vector is uniform for 
all time steps, each time step (pentad in this study) of the 
nested period has its own spatial pattern in CSEOF analy-
sis. The correlation coefficient for the first mode generally 
exceeds 0.5 over most of the East Asia domain for all of 
the reanalysis datasets except NCEP (Fig. 7a). All the four 

Fig. 5   Same as Fig. 4, but for the CSEOF mode 2
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reanalysis datasets, to some degree, show common weak-
nesses in representing the summer monsoon rainband over 
the northwestern Pacific to the south of Japan, especially to 
the east of 150°E. This indicates discrepancy in the timing 
and/or the position of the rainband in the reanalysis datasets 
relative to the CMAP data. In general, correlations between 
CMAP and the four reanalysis datasets are fairly high in 
the mid-latitude continental regions and over the subtropi-
cal western Pacific. All of the reanalysis datasets also devi-
ate notably from CMAP for some isolated regions, mostly 
in mountainous and/or coastal regions. This may be due to 

the reanalysis models’ inability to represent the effects of 
complex orography and/or sparse observational inputs for 
assimilations. It must be noted that the observed CMAP and 
GPCP data also suffer from the lack of gauge data in these 
regions (e.g., Kim et al. 2015a; Kim and Park 2016). For 
higher modes (Fig. 7b, c), correlations decrease to below 
0.5 over much of the inland regions of the Asian continent. 
Along the continental margin, correlation coefficients are 
still reasonable except for the Indochina Peninsula, Myan-
mar and Malaysia. For oceanic regions, all of the reanaly-
sis products exhibit small correlation coefficients over the 

Fig. 6   Same as Fig. 4, but for the CSEOF mode 3
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Fig. 7   The temporal correla-
tion for the first three CSEOF 
loading vectors derived from 
the pentad precipitation of four 
different reanalysis datasets 
against those of the CMAP pen-
tad precipitation. The numbers 
in parenthesis represent domain 
average, land average, and 
ocean average values

(a)

(b)

(c)
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region of the rainband to the south of Japan and over the 
subtropical central Pacific Ocean. Performance of the rea-
nalysis models for reproducing loading vectors over the con-
tinental interior regions, specifically the Tibetan Plateau and 
the Inner Mongolia, generally deteriorates for higher modes. 
The pattern correlation between the CSLVs of CMAP and 
GPCP is fairly high over much of the analysis domain for 
all three modes (figure not shown) with the average pattern 
correlation being over 0.9 (see Fig. 3a).

Figure 8 shows the relative RMSE of CSLVs calculated 
over the 24 pentads between the reanalysis datasets and the 
CMAP data for the first three modes. The relative RMSE for 
the first mode is generally well below unity except over the 
interior regions of East Asia, Myanmar and eastern India 
(Fig. 8a). Regions of large relative RMSE over the western 
Pacific Ocean generally agree with the regions of small cor-
relation (Fig. 7a). Thus, most notable errors in these rea-
nalysis datasets are associated with the representation of 
the main (monsoon) rainband over the mid-latitude west-
ern Pacific during summer. Similar to the first mode, the 
second and third modes (Fig. 8b, c) exhibit larger relative 
RMSEs over the inland area and the high-latitude regions 
of the Pacific Ocean compared to other East Asia regions 
within the domain. Like the first mode, the regions of large 
relative RMSE generally coincide with the regions of small 
correlations, and the relative RMSE tends to be larger for 
higher modes. That is, weakness in representing the pro-
cesses associated with the first three modes appears in the 
same geographical regions. This suggests common problems 
such as the lack of input observations and/or difficulties in 
simulating the effects of complex orography in these rea-
nalysis models.

3.3 � Reconstructed CSEOF modes

Summer precipitation over East Asia represented in the first 
five CSEOF modes are reconstructed as:

where N denotes the number of modes retained to recon-
struct the precipitation field; N = 5 since the first five 
CSEOF modes are used. Note that the regressed loading 
vectors are used in conjunction with the target PC time series 
to compare the precipitation variability between the CMAP 
(target) and the four reanalysis datasets (predictors) associ-
ated with the same dynamical processes. Note that the recon-
structed GPCP data (not shown) are nearly identical to the 
reconstructed CMAP data and are not included in this evalu-
ation. The reconstruction based on the first three CSEOF 
modes yields nearly the same results as the five-mode 
reconstruction presented below except that the three-mode 

(8){T (N)(r, t),P(N)(r, t)} =

N
∑

n=1

{Bn(r, t),C
(reg)
n

(r, t)}Tn(t),

reconstruction yields slightly smaller error standard devia-
tions for both land and ocean surfaces (not shown).

Figure 9 shows the correlation (Fig. 9a), the relative 
RMSE (Fig. 9b) and the error standard deviation (Fig. 9c) 
between the 5-mode reconstructed CMAP data (i.e., target) 
and the four reanalysis datasets (i.e., predictors). Correla-
tions between the reconstructed CMAP and the recon-
structed reanalysis datasets are reasonably high in the entire 
domain except for the inland region of East Asia and Myan-
mar (Fig. 9a). The relative RMSE is also reasonably small 
except for the interior region of the continental East Asia. 
Error standard deviations are ~ 2–3 times the magnitude 
of the standard deviation of the five-mode reconstructed 
CMAP data in the region to the south of 40°N, both over 
the land and ocean. While correlations are fairly large and 
relative RMSEs are fairly small over the subtropical west-
ern Pacific, error standard deviation is large, especially over 
the subtropical Pacific Ocean. This indicates that the rea-
nalysis errors in representing the precipitation variability 
associated with the processes represented in the first five 
modes tend to increase as the variability (and the mean) of 
the CMAP data increases. The region of high error standard 
deviations includes the major precipitation regions. In the 
high latitudes to the north of 40°N, error standard deviation 
decreases notably, indicating that errors also decrease as the 
precipitation intensity decreases.

3.4 � Variability not included in the first five modes

The remaining precipitation variability not included in the 
first five CSEOF modes is defined by

The superscript r in (9) denotes the remaining variability. 
Figure 10 shows the correlation, the relative RMSE and 
the error standard deviation over the 24 pentads between 
the reanalysis datasets and the CMAP data after removing 
the first five CSEOF modes. All the four reanalysis datasets 
show correlations with CMAP below 0.5 over the Tibetan 
Plateau and the Indochina Peninsula, the Philippines, and the 
Maritime Continent (Fig. 10a). All of the reanalysis data-
sets except MERRA also show smaller correlations over the 
tropical western Pacific. Other than these regions, the four 
reanalysis datasets show good correlations with the CMAP 
data, especially over the mid-latitude region (Fig. 10a). 
The relative RMSE with respect to the CMAP data also 
show similar regional variations as the correlation coeffi-
cients. The geographical variations of the relative RMSE 
(Fig. 10b) corresponds inversely to the correlation coeffi-
cient (Fig. 10a); i.e., larger (smaller) relative RMSEs over 
the regions of smaller (larger) correlation coefficients. Vis-
ual inspections show that the MERRA (NCEP/NCAR) data 

(9)
{T (r)(r, t),P(r)(r, t)} = {T(r, t) − T (5)(r, t),P(r, t) − P(5)(r, t)}.
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Fig. 8   The relative RMSE for 
the first three CSEOF loading 
vectors derived from the pentad 
precipitation of four different 
reanalysis datasets against those 
of the CMAP pentad precipita-
tion. The numbers in parenthe-
sis represent domain average, 
land average, and ocean average 
values

(a)

(b)

(c)
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Fig. 9   The correlation coef-
ficients (upper), relative RMSEs 
(middle), and error standard 
deviations (lower) of the recon-
structed precipitation based 
on the first five CSEOF modes 
derived from the four reanalysis 
products against that of the 
CMAP pentad precipitation. 
The first five CSEOF modes 
explain ~ 32% of the total vari-
ability of the CMAP precipita-
tion. The numbers in parenthe-
sis represent domain average, 
land average, and ocean average 
values

(a)

(b)

(c)
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Fig. 10   The correlation coef-
ficients (upper), relative RMSEs 
(middle), and error standard 
deviations (lower) of the 
remaining precipitation variabil-
ity between the four reanalysis 
products and the CMAP pentad 
precipitation. The remain-
ing precipitation variability 
is obtained by removing the 
five-mode reconstruction from 
the raw data. The remaining 
precipitation variability explains 
~ 68% of the total variability of 
the CMAP precipitation. The 
numbers in parenthesis repre-
sent domain average, land aver-
age, and ocean average values

(a)

(b)

(c)
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yields the largest (smallest) area of the correlation > 0.5 and 
the relative RMSE < 1.0 in the East Asian domain analyzed 
in this study. Error standard deviation (Fig. 10c) exceeds 
5 mm day−1 in the lower-latitude regions below 30°N; it is 
generally larger than that for the reconstructions using the 
first five CSEOF modes in Fig. 9c (note the scale differ-
ences between Figs. 9c, 10c). Considering that the remaining 
modes represent about 68% of the total summer precipitation 
variability in the domain, the four reanalysis datasets pos-
sess acceptable accuracy in representing summer precipita-
tion characteristics over much of East Asia and the western 
Pacific Ocean, especially in the mid-latitude land and ocean 
areas. The regions of common weakness include the tropical 
western Pacific Ocean and the southern part of the East Asia 
land surfaces, especially the region including the southern 
and eastern slope of the Tibetan Plateau.

4 � Discussions and conclusions

This study has evaluated the observation-based GPCP and 
four reanalysis precipitation datasets against the observation-
based CMAP data for the variability associated with each 
CSEOF mode as well as for the first two statistical moments. 
Based on CSEOF analysis, precipitation in these six datasets 
has been decomposed into uncorrelated (nearly independent) 
and orthogonal evolution patterns. Then, one-to-one cor-
respondence between the CSEOF modes derived from the 
target dataset (CMAP) and the predictor datasets (GPCP, 
ERA-Interim, NCEP, MERRA, and JRA) is established 
using the regression analysis in CSEOF space. The resulting 
regressed CSEOF modes as well as the reconstructed data 
based on them are compared against the corresponding fields 
of the CMAP data in order to assess the closeness between 
the predictor datasets and the CMAP data, i.e., to evaluate 
the predictor datasets against the target (CMAP) data. The 
analysis period includes 120 days (24 pentads) for each of 
the 37 summers from 1979 to 2015. It should be noted that 
using GPCP as the target variable yields essentially the same 
results obtained in this study.

Evaluations of the first two moment statistics, individual 
CSEOF modes, and the reconstructions for various combi-
nations of the CSEOF modes, indicate that the GPCP data 
agrees closely with the CMAP data, i.e., the two observa-
tion-based precipitation analysis datasets represent essen-
tially identical summer precipitation characteristics over 
East Asia and the western Pacific Ocean. The closeness 
of the GPCP and CMAP datasets are also supported from 
other metrics such as the spatial and temporal correlations, 
relative RMSEs, and error standard deviations calculated 
between these two datasets. The close agreement between 
CMAP and GPCP, especially over the land surface, is not 
surprising because these two datasets are based on similar 

input data and are calibrated using surface gauge data. The 
four reanalysis datasets also agree well with the CMAP data. 
The most notable problems in the reanalysis datasets are the 
underestimation of the summer rainband over the subtropi-
cal western Pacific to the south of Japan and in the tropical 
western Pacific Ocean. These errors are smallest in the JRA 
and the ERA-Interim datasets.

Assessment of the accuracy of the four reanalysis precipi-
tation data in terms of the CSEOF loading vectors and PC 
time series reveals much more than what conventional meth-
ods can do. The reanalysis models are reasonably accurate 
in reproducing the first three modes of variability including 
the seasonal cycle (summer monsoon) and the intraseasonal 
oscillations (the second and third modes). Evaluations of the 
first three CSEOF modes from the four analysis datasets also 
show that they are fairly reasonable in terms of reproduc-
ing the evolution patterns of summer precipitation over East 
Asia and the western Pacific associated with these modes 
in CMAP. The most notable shortcomings of the reanalysis 
datasets are the underestimation of precipitation over the 
mid-latitude western Pacific to the south of Japan, which 
shows up clearly in the mean summer precipitation (Fig. 1). 
Figure 7a shows that this problem is mostly due to the lack 
of representation of the summer monsoon rainfall associated 
with the first EOF mode.

The first five CSEOF modes of the four reanalysis data-
sets are fairly similar to those derived from the CMAP 
data with pattern correlations above 0.7 and average rela-
tive RMSEs below 0.7 except for NCEP/NCAR. The rela-
tively poor skill of the NCEP/NCAR datasets compared to 
the other three datasets may be related with the fact that it 
is the earliest products among the four; the NCEP/NCAR 
reanalysis was generated by the earliest generation model 
and datasets without the benefit of the recently developed 
model formulations and observational datasets.

The reconstructed precipitation using the first five CSEOF 
modes for the four reanalysis datasets compares faithfully 
with that for the CMAP data. Correlations (RMSEs) between 
the reconstructed CMAP and reanalysis data are reasonably 
large (small) in the entire East Asian domain except for the 
inland region of East Asia and Myanmar. Error standard 
deviation is large in the region to the south of 40°N where 
precipitation magnitude is also large. The remaining pre-
cipitation outside the first five CSEOF modes agrees reason-
ably with the corresponding precipitation in the CMAP data 
as well. Both correlation coefficients and relative RMSEs 
deteriorate somewhat compared to those from the first five 
modes. Error standard deviation of the remaining precipi-
tation is larger than that for the first five CSEOF modes. 
Despite the shortcomings discussed above, the reconstructed 
reanalysis data reasonably agree with the corresponding 
CMAP data in most of the East Asian region and the west-
ern Pacific Ocean. All the reconstructed reanalysis data for 
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the first five CSEOF modes as well as the remaining pre-
cipitation outside the first five modes, show relatively poor 
performance over the subtropical western Pacific, the eastern 
Indian Ocean off the west coast of the Indochina Peninsula, 
and the land areas including the Indochina Peninsula, the 
Maritime Continent, and the southern/eastern slope of the 
Tibetan Plateau compared to other regions.

All of the reanalysis products examined in this study 
need improvement in simulating precipitation and associ-
ated processes over the western Pacific. Evaluation in this 
study shows that reanalysis models generally do not repro-
duce well the evolution of summer rainband over the ocean, 
especially over the mid-latitude eastern Pacific to the south 
of Japan and its subsequent movement over eastern China, 
Korea, and Japan. This is a critical concern because these 
regions contain massive populations and industrial activities 
that are heavily affected by summer rainfall. Problems over 
the land surfaces of highly complex terrain and/or coastal 
geometries, at least partially, may be related with the diffi-
culties in representing orography in numerical models used 
for reanalysis. These regions are also poorly instrumented, 
i.e., inputs for reanalysis is much scarcer than other regions 
of higher observation density; this is a problem not only in 
assimilating precipitation for reanalysis but also in produc-
ing observed precipitation analysis (e.g., Kim et al. 2015a).

Acknowledgements  The CMAP, NCEP/NCAR, GPCP, MERRA, 
ERA-Interim, and JRA reanalysis datasets are obtained from ESRL/
NOAA, ESRL/NOAA, GSFC/NASA, GSFC/NASA, ECMWF, and 
JMA, respectively. This study is supported by the National Insti-
tute of Meteorological Sciences (NIMS)–Korean Meteorologi-
cal Administration (NIMS-2016-3100). KYK is supported by the 
National Science Foundation of Korea under the Grant number 
NRF-2017R1A2B4003930.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf 
B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin 
P, Nelkin E (2003) The version 2 global precipitation climatology 
project (GPCP) monthly precipitation analysis (1979–present). J 
Hydrometeorol 4:1147–1167

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi 
S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold 
P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol 
C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, 
Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Mat-
ricardi M, McNally AP, Monge-Sanz BM, Morcrette J, Park B, 
Peubey C, de Rosnay P, Tovolato C, Thepaut J, Vitart F (2011) 

The ERA-Interim reanalysis: configuration and performance of 
the data assimilation system. Q J R Meteorol Soc 137:553–597

Guirguis KJ, Avissar R (2008) An analysis of precipitation variability, 
persistence, and observational data uncertainties in the western 
United States. J Hydrometeorol 9:843–865

Harada Y, Kamahori H, Kobayashi C, Endo H, Kobayashi S, Ota 
Y, Onoda H, Onogi K, Miyaoka K, Takahashi K (2016) The 
JRA-55 reanalysis: representation of atmospheric circulation 
and climate variability. J Meteorol Soc Jpn 94:262–302. https​
://doi.org/10.2151/jmsj.2016-015

Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, 
Janowiak J, McNab A, Rudolf B, Schneider U (1997) The global 
precipitation climatology project (GPCP) combined data set. 
Bull Am Meteorol Soc 78:5–20

Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the 
global precipitation record: GPCP version 2.1. Geophys Res 
Lett 36:L17808. https​://doi.org/10.1029/2009G​L0400​00

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin 
L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, 
Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, 
Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The 
NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 
77:437–470

Kim K-Y, North GR (1997) EOFs of harmonizable cyclostationary 
processes. J Atmos Sci 54:2416–2427

Kim J, Park SK (2016) Uncertainties in calculating precipitation 
climatology in East Asia. Hydrol Earth Syst Sci 20:651–658. 
https​://doi.org/10.5194/hess-20-651-2016

Kim K-Y, North GR, Huang J (1996) EOFs of one-dimensional 
cyclostationary time series: computations, examples and sto-
chastic modeling. J Atmos Sci 53:1007–1017

Kim J, Waliser D, Mattmann C, Goodale C, Hart A, Zimdars P, 
Crichton D, Jones C, Nikulin G, Hewitson B, Jack C, Lennard 
C, Favre A (2013) Evaluation of the CORDEX-Africa miulti-
RCM hindcast: systematic model errors. Clim Dyn. https​://doi.
org/10.1007/s0038​2-013-1751-7

Kim J, Sanjay J, Mattmann C, Boustani M, Ramarao MVS, Krishnan 
R, Waliser D (2015a) Uncertainties in estimating spatial and 
interannual variations in precipitation climatology in the India–
Tibet region from multiple gridded precipitation datasets. Int J 
Climatol. https​://doi.org/10.1002/joc.4306

Kim K-Y, Hamlington BD, Na H (2015b) Theoretical foundation 
of cyclostationary EOF analysis for geophysical and climatic 
variables: concepts and examples. Earth Sci Rev 150:201–218. 
https​://doi.org/10.1016/j.earsc​irev.2015.06.003

Kim J, Waliser DE, Cesana G, Jiang X, L’Ecuyer T, Neena JM (2018) 
Cloud and radiative heating profiles associated with the boreal 
summer intraseasonal oscillations. Clim Dyn 50:1485–1494. 
https​://doi.org/10.1007/s0038​2-017-3700-3

Kobayashi S, Coauthors (2015) The JRA-55 Reanalysis: General 
specifications and basic characteristics. J Meteorol Soc Jpn 
93:5–48. https​://doi.org/10.2151/jmsj.2015-001

Legates D, Willmott C (1990) Mean seasonal and spatial vari-
ability in gauge-corrected, global precipitation. Int J Climatol 
10:111–127

Neena JM, Waliser DE, Jiang X (2016) Model performance metrics 
and process diagnostics for boreal summer Intraseasonal vari-
ability. Clim Dyn 48:1661–1683

Prakash S, Mitra AK, Momin IM, Rajagopal EN, Basu S, Collins M, 
Turner AG, Rao KA, Ashok K (2014) Seasonal intercomparison 
of observational rainfall datasets over India during the southwest 
monsoon season. Int J Climatol. https​://doi.org/10.1002/joc.4129

Preethi B, Mujumdar M, Kripalani R, Prabhu A, Krishnan R (2017) 
Recent trends and teleconnections among South and East Asian 
monsoons in a warming environment. Clim Dyn 48:2489–2505

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2151/jmsj.2016-015
https://doi.org/10.2151/jmsj.2016-015
https://doi.org/10.1029/2009GL040000
https://doi.org/10.5194/hess-20-651-2016
https://doi.org/10.1007/s00382-013-1751-7
https://doi.org/10.1007/s00382-013-1751-7
https://doi.org/10.1002/joc.4306
https://doi.org/10.1016/j.earscirev.2015.06.003
https://doi.org/10.1007/s00382-017-3700-3
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1002/joc.4129


3022	 K.-Y. Kim et al.

1 3

Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospec-
tive analysis for research and applications. J Clim 24:3624–3648

Vogel R (2013) Quantifying the uncertainty of spatial precipitation 
analyses with radar-gauge observation ensemble. Scientific Report 
MeteoSwiss No. 95, Federal Office of Meteorology and Climatol-
ogy, MeteoSwiss, Zürich, Switzerland. http://www.meteo​schwe​
iz.ch

Whitehall K, Mattmann C, Waliser DE, Kim J, Goodale C, Hart A, 
Ramirez P, Zimdars P, Crichton D, Jenkins G, Jones C, Asrar G, 
Hewitson B (2012) Building model evaluation and decision sup-
port capacity for CORDEX. WMO Bull 61:29–34

Xie P, Arkin PA (1995) An intercomparison of gauge observations 
and satellite estimates of monthly precipitation. J Appl Meteorol 
34:1143–1160

Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analy-
sis based on gauge observations, satellite estimates, and numerical 
model outputs. Bull Am Meteorol Soc 78:2539–2558

Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh 
A (2012) APHRODITE: constructing a long-term daily gridded 
precipitation dataset for Asia based on a dense network of rain 
gauges. B Am Meteorol Soc 93:1401–1415

http://www.meteoschweiz.ch
http://www.meteoschweiz.ch

	Intercomparison of precipitation datasets for summer precipitation characteristics over East Asia
	Abstract
	1 Introduction
	2 Datasets and method of analysis
	2.1 Datasets
	2.2 CSEOF analysis
	2.3 Regression analysis in CSEOF space

	3 Results
	3.1 Raw statistics
	3.2 Comparison of individual CSEOF modes
	3.3 Reconstructed CSEOF modes
	3.4 Variability not included in the first five modes

	4 Discussions and conclusions
	Acknowledgements 
	References


