
Vol.:(0123456789)1 3

Climate Dynamics (2019) 53:7321–7334 
https://doi.org/10.1007/s00382-018-4203-6

Indian summer monsoon variability forecasts in the North American 
multimodel ensemble

Bohar Singh1 · Ben Cash2 · James L. Kinter III2

Received: 31 December 2016 / Accepted: 19 February 2018 / Published online: 12 April 2018 
© The Author(s) 2018

Abstract
The representation of the seasonal mean and interannual variability of the Indian summer monsoon rainfall (ISMR) in nine 
global ocean-atmosphere coupled models that participated in the North American Multimodal Ensemble (NMME) phase 
1 (NMME:1), and in nine global ocean-atmosphere coupled models participating in the NMME phase 2 (NMME:2) from 
1982–2009, is evaluated over the Indo-Pacific domain with May initial conditions. The multi-model ensemble (MME) 
represents the Indian monsoon rainfall with modest skill and systematic biases. There is no significant improvement in the 
seasonal forecast skill or interannual variability of ISMR in NMME:2 as compared to NMME:1. The NMME skillfully pre-
dicts seasonal mean sea surface temperature (SST) and some of the teleconnections with seasonal mean rainfall. However, 
the SST-rainfall teleconnections are stronger in the NMME than observed. The NMME is not able to capture the extremes 
of seasonal mean rainfall and the simulated Indian Ocean-monsoon teleconnections are opposite to what are observed.

Keywords  Indian Monsoon · Interannual variability · Teleconnections

1  Introduction

The variations of the seasonal rainfall associated with the 
south Asian monsoon are enormously important for mil-
lions of lives on the Indian subcontinent and beyond. The 
spatial and temporal variations of rainfall have a significant 
impact on the agrarian economies of India, Bangladesh 
and Pakistan. While interannual variations in Indian sum-
mer monsoon rainfall (ISMR) are only ≈ 10% of the long 
term mean, the high and low extremes of the seasonal mean 

ISMR result in floods and droughts (Shukla and Moolay 
1987). Food production in the Indian region is strongly cor-
related with ISMR (Gadgil et al. 1999), and these floods and 
droughts can cause devastating human and economic losses. 
The south Asian monsoon is recognized as a prominent fea-
ture of the global circulation (Lau and K.-M. Kim 2006). 
Continental-scale land-sea contrast has been suggested 
as primary cause for the monsoon (Webster et al. 1998), 
while other studies suggest it is driven by the meridional 
movement of the Intra-Tropical Convergence Zone (ITCZ) 
(Gadgil et al. 2003). Besides these two basic components 
the ISMR is also influenced by the topography of Great 
Himalaya, which introduces an elevated heating source 
and helps to set the meridional tropospheric temperature 
gradient. The local reversal of the meridional tropospheric 
temperature gradient during the summer is thought to be 
important for the onset of the ISMR. This gradient is main-
tained in part by the heat fluxes and diabatic heating due 
to precipitation (Yanai et al. 1992; Wu and Zhang 1998). 
The topography of Himalaya isolates the Indian monsoon 
thermal maximum from the dry and cold air in the inte-
rior of Asian continent (Chakraborty et al. 2002; Boos and 
Kuang 2010), and numerical modeling studies have found 
that by removing the topography the northern extent of the 
precipitation is greatly reduced (e.g., Hahn and Manabe 
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1975; Prell and Kutzbach 1992). Another key feature of the 
monsoon circulation is the climatological low over north-
western India and Pakistan, which is the deepest low in the 
global tropics during boreal summer (Joshi and Desai 1985; 
Sikka 1997). It develops in April–May concurrently with the 
south-westerly wind regime (Ramage 1996). The high winds 
associated with the monsoon trough not only bring moisture 
over the land but also natural dust and aerosols. Aerosols 
can influence the monsoon through direct (interaction with 
solar radiation) and indirect (interaction with cloud micro-
physics) effects (Bollasina et al. 2011; Lau and K.-M. Kim 
2006). Slowly varying boundary conditions such as SST, 
snow cover and soil moisture are also key components of the 
Indian monsoon, particularly in terms of its potential pre-
dictability (Charney and Shukla 1981). The teleconnection 
between southern oscillation and ISMR is among the old-
est observed teleconnections (Walker 1925). Observational 
analysis shows that indian summer monsoon rainfall found 
below average during El Niño events, while La Niña events 
lead to above normal rainfall (e.g. Sikka 1980; Pant and 
Parthasarathy 1981; Rasmusson and Carpenter 1983; Gadgil 
et al. 2003, 2004). Niño 3.4 index (standardized area aver-
age SST average over the region 170◦E–120◦ W, 5 ◦S–5◦ N) 
is negatively correlated with ISMR. The observed negative 
correlation between the ISMR and Niño 3.4 index can be 
explained to some extent by the modulation of the Walker 
circulation (Shukla and Paolino 1983; Palmer et al. 1992). 
Thus, the Indian monsoon includes a complex orographi-
cally influenced structure, interaction between convection 
and large-scale atmospheric circulation, wave propagation in 
both the zonal and meridional directions, air-sea interaction, 
and cloud-aerosol interaction. Due to the presence of all the 
above components and their nonlinear interactions, Indian 
monsoon rainfall is an extremely challenging phenomenon 
to simulate (Gadgil et al. 2005).

Uncertainties and model errors in climate prediction can 
be classified into two groups: (1) uncertainties and errors in 
model initialization and (2) uncertainties and errors in model 
parameterizations and model physics (Buizza et al. 2005; 
Schwierz et al. 2006). The multi-model ensemble (MME) is 
recognized as one approach to address the above-mentioned 
uncertainties and errors (Palmer et al. 2004, 2005; Hagedorn 
et al. 2004). MMEs typically have higher skill for predict-
ing weather and climate as compared to single models, and 
also provide estimates of model uncertainty. The simulation 
and prediction of ISMR at both inter-annual and intra-sea-
sonal time scales has been evaluated in several such MMEs 
(Gadgil and Sajani 1998; Kang et al. 2002; Rajeevan and 
Nanjundiah 2009; Sperber et al. 2013; Wang et al. 2004, 
2004). All MMEs examined previously have been shown to 
simulate large-scale feature of Indian rainfall with modest 
skill. Some studies (Wang et al. 2003; Sharmila et al. 2013) 
have highlighted the importance of air-sea interactions and 

suggest that coupled ocean-atmospheric models are crucial 
for monsoon seasonal predictions. Preethi et al. (2010) and 
Rajeevan et al. (2012) evaluated the seasonal forecast skills 
of Development of European multi-model ensemble system 
for seasonal to interannual predictions (DEMETER) (Palmer 
et al. 2004) and ENSEMBLE (Hewitt and Griggs 2004) pro-
jects respectively and found that these multi-model ensem-
bles predict ISMR with positive (modest) skill. The realized 
skill is still below the limit of potential predictability (Saha 
et al. 2016).

In this study we investigate the ability of the North-Amer-
ican Multi Model Ensemble (NMME) models to reproduce 
and predict the seasonal mean and interannual variability 
of the Indian summer monsoon rainfall. The NMME is a 
collaborative effort between several modeling centers for 
seasonal forecasts. The NMME simulations provides us with 
the opportunitiy to compare the simulations from multiple 
seasonal models for the same phenomenon. The analysis of 
the multi-model simulations for identical scenarios will aid 
us in identifying and understanding the similarities and dif-
ferences of the various model simulations. The study of Kirt-
man et al. (2014) have shown that modeling system improve-
ments and data assimilation system improvements led to 
improved NMME-2 forecast quality. The second objective of 
this study is to compare the seasonal forecast skill of NMME 
phase 1 with the currently operational NMME phase 2 to 
understand whether the improvements in modeling systems 
and data assimilation systems have contributed to improved 
seasonal prediction of the Indian summer monsoon.

2 � Data and methodology

The NMME is an MME producing both retrospective and 
real-time intraseasonal to interannual predictions and is 
comprised of global coupled atmosphere-ocean models from 
modeling centers in the United States and Canada (Kirt-
man et al. 2014). The NMME provides retrospective sea-
sonal forecasts for 1982–2010. In this study nine models are 
selected from the first implementation of the NMME (phase 
1; denoted here as NMME:1) and nine models from the cur-
rent implementation (phase 2; denoted here as NMME:2 as 
summarized in Table 1. CFSv2, CanCM3 and CanCM4 are 
the common models in both of the NMME phases (denoted 
by ⊕ in Table 1). The 15 models have a common re-forecast 
period of 28 years from 1982–2009. The number of ensem-
ble members for each model ranges from 6 to 24, with 109 
total ensemble members from nine models for NMME:1, 
and 110 ensemble members from nine participating mod-
els for NMME:2. Model runs are initialized every month 
with forecast lengths ranging from 6 to 11 months. In the 
present study we analyze the June–September (JJAS) sea-
sonal means of precipitation and SST for forecasts starting 
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from May 1 initial conditions. Equal weights are given to 
each model in calculating the average over all models and 
ensemble members, denoted the multimodel ensemble mean 
(MMEM). The choice of reforecasts initialized in May was 
made in order to avoid inclusion of potential skill from the 
atmospheric initial conditions. It is assumed that after one 
month of model integration, the atmospheric initial condi-
tions, which provide much of the skill for numerical weather 
forecasts at 1–15 days lead-time, have a minimal impact on 
the forecast skill of the ensuing seasonal mean. It is possible 
that forecasts initialized in May are subject to the spring 
predictability barrier (Torrence and Webster 1998), which 
may mask some of the difference in skill among models. All 
NMME models are re-gridded to a common 1 ◦ × 1◦ resolu-
tion. The Climate Prediction Center Merged Analysis of Pre-
cipitation (CMAP) (Xie and Arkin 1997) and the optimum 
interpolation version 2 analysis of Reynolds et al. (2002) 
(OISSTv2) dataset at 1 ◦ × 1◦ resolution are used as the 
observed precipitation and sea surface temperature, respec-
tively. It should be noted that previous work (Cash et al. 
2008) has hown that satellite based observational rainfall 
data products, CMAP and Global Precipitation Climatology 
Project (GPCP; Huffman et al. 1997) have some significant 
differences over the ISMR region. Rainfall maxima over Bay 
of Bengal has high magnitude in the CMAP as compared to 
GPCP. Rainfall maxima over Western Ghats is also found 

higher in CMAP as compared to GPCP. Therefore some of 
the conclusions of this study may be sensitive to the choice 
of CMAP as the observed rainfall product.

2.1 � Results and discussions

The JJAS mean precipitation from CMAP and the multi 
model ensemble mean (MMEM) of NMME:1 and NMME:2 
are shown in Fig. (1a–c). Local rainfall maxima over the 
Western Ghats, Bay of Bengal and the south equatorial 
ocean are well simulated in both NMME:1 and NMME:2, 
while rainfall over the foothills of the Himalaya is over-
estimated in both phases. Spatial correlations of seasonal 
mean rainfall over the Indo-Pacific domain are 0.92 and 0.89 
for NMME:1 and NMME:2, respectively. Seasonal mean 
rainfall over the region outlined in Fig. 1a (70◦E–90◦ E, 10◦

N–30◦ N) is 7.25 mm/day for the observations, while it is 
7.93 mm/day and 7.73 mm/day for NMME:1 and NMME:2, 
respectively.

In general, Fig. 1 indicates that the seasonal mean mon-
soon rainfall is well represented in the NMME but that there 
is no significant improvement in NMME:2 as compared to 
NMME:1. This is further illustrated by considering the Tay-
lor diagram (Fig. 2) of area averaged seasonal mean rainfall 
from the ensemble mean of the NMME models and CMAP 
data over Central India (CI: 75◦E-85◦E,16◦N-26◦ N; box 

Table 1   List of NMME models used for this study

Model Hindcast period Ensemble size Lead time 
(months)

Model res. (Atoms) Model res. (ocean) References

Operational NMME models
   NCEP/CFSv2⊕ 1982–2010 24 0–9 T126L64 MOM4L40 0.25◦ Eq Saha et al. (2014)
   GFDL/CM2p1 

aer04
1982–2010 10 0–11 2 × 2.5◦L24 MOM4L50 0.3◦ Eq Delworth et al. (2006)

   GFDL/CM2p5 
FLORB01

1982–2010 12 0–11 C18L32 (50 Km) MOM5L50 0.3◦ Eq 1◦
Polar1.5

Vecchi et al. (2014)

   GFDL/CM2p5 
FLORA06

1982–2010 12 0–11 C18L32 (50 Km) MOM5L50 0.3◦ Eq 1◦
Polar1.5

Vecchi et al. (2014)

   CanCM3⊕ 1982–2010 10 0–11 CanAM3 T63L31 CanOM4L40 0.94◦ Eq Merryfieldet al. (2013)
   CanCM4⊕ 1982–2010 10 0–11 CanAM4 T63L35 CanOM4L40 0.94◦ Eq Merryfieldet al. (2013)
   NCAR/CCSM4 1982–2010 10 0–11 0.9 × 1.25◦L26 POPL60 0.25◦ Eq Infanti and Kirtman 

(2016)
   NASA/GMAO 

062012
1982–2010 11 0–11 1 × 1.25◦L72 MOM4L40 0.25◦ Eq Vernieres et al. (2012)

   NCAR/CESM1 1982–2010 10 0–11 0.9 × 1.25◦L30 POPL60 0.25◦ Eq Tribbia (2015)
Retired or old versions of the NMME models

   NCEP/CFSv1 1982–2009 15 0–8 T62L64 MOM3L40 0.3◦ Eq Saha et al. (2006)
   NCAR/CCSM3 1982–2010 6 0–11 T85L26 POPL42 0.3◦ Eq Kirtman and Min (2009)
   NASA/GMAO 1982–2010 11 0–11 1 × 1.25◦L72 MOM4L40 0.25◦ Eq Vernieres et al. (2012)
   IRI/ECHAM4f 1982–2010 12 0–7 T42L19 MOM3L25 1.5◦ × 0.5◦ DeWitt (2005)
   IRI/ECHAM4a 1982–2010 12 0–7 T42L19 MOM3L25 1.5◦ × 0.5◦ DeWitt (2005)
   GFDL/CM2p1 1982–2010 10 0–11 2 × 2.5◦L24 MOM4L50 0.3◦ Eq Delworth et al. (2006)
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shown over Fig. 1b) and over a larger region (70◦E-90◦ E, 
10◦N-30◦ N; box shown over Fig. 1a) that includes the west-
ern Ghats and part of the Bay of Bengal. Most of the NMME 
models are closely clustered on Taylor diagram around 
0.2–0.5, with the exception of CCSM3 and CCSM4 which 
are negatively correlated with observations. It is again hard 
to distinguish between the NMME:1 and NMME:2 mod-
els in this metric, emphasizing that there is no significant 
improvement seasonal forecast skill in NMME:2 relative 
to NMME:1. The ensemble mean of each NMME model 
consistently has less year-to-year variability as compared 
to observations for the selected regions. The MMEMs for 
each phase do show some differences in skill, predicting 
seasonal mean rainfall over India with moderate correlations 
of 0.4 and 0.5 in NMME:1 and NMME:2, respectively. The 

reduced interannual variability shown by the model ensem-
ble means (Fig. 2a, b) is due to the averaging of individual 
members, which increases the signal-to-noise ratio. We have 
examined the interannual variability of the individual model 
realizations (results not shown) and found that the interan-
nual variability of the individual model realizations is com-
parable to the observations. Interannual variability of the 
MMEM of NMME:2 is larger than that of NMME:1, but the 
difference is statistically insignificant at the 95% confidence 
level.

The differences between simulated and observed cli-
matological seasonal mean rainfall for the NMME:1 and 
NMME:2 models are shown in Figs. 3 and 4, respectively. 
There are several intramodel differences and similarities 
among the NMME seasonal rainfall simulations. Almost 

Fig. 1   Spatial distribution of 
JJAS mean rainfall (mm/day) 
over the period of 1982–2009, 
a from CMAP, b from MMEM 
of NMME:1, c from MMEM of 
NMME:2, rectangle over figure 
a represents extend monsoon 
region (70◦E–90◦ E, 10◦N–30◦

N),rectangle over figure b repre-
sents Central India region (75◦

E–85◦ E, 16◦N–26◦N). All the 
forecasts are initialized in May 
and verified for JJAS mean

(a) (b) (c) CMAP NMME:1 NMME:2 

Fig. 2   Taylor diagram area aver-
aged seasonal mean rainfall, a 
over central India (75◦E–85◦ E, 
16◦N–26◦ N, Ocean data 
points are excluded), b over 
the region selected in figure 
1a: (70◦E–90◦ E, 10◦N–30◦ N) 
for individual NMME models 
and NMME:1 and NMME:2 
as compared to Observations 
(CMAP) over the period of 
1982–2009. All the forecasts are 
initialized in May and verified 
for JJAS mean

(a)

(b)
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all of the models overestimate rainfall over the foothills of 
the Himalayas, the western and equatorial Indian Ocean, 
and underestimate rainfall over the Bay of Bengal. Over 
the Indian land region ECHAM4p5-AC, ECHAM4p5-DC, 
CCSM3, Can-CM3 and CCSM4 overestimate rainfall, 
while both versions of CFS and NASA-GMAO underesti-
mate rainfall. Can-CM4 and GFDL-CM2p5-FLOR simu-
late seasonal mean rainfall reasonably well.

When we consider the MMEMs for NMME:1 and 
NMME:2 (Fig. 5) the large intramodel difference are mostly 
canceled out and the root mean square error (RMSE) over 
the study region (see Fig. 1) is 2.76 and 2.29 mm/day for 
NMME:1 and NMME:2, respectively. Rainfall over the 
foothills of Himalaya is overestimated in both MMEMs by 
more than 5 mm/day. Both MMEMs also overestimate the 
seasonal mean rainfall over the western Indian Ocean and 

Fig. 3   Difference (Model—
Obs.) between ensemble mean 
JJAS climatological rainfall of 
NMME:1 and Observations 
(CMAP) from 1982–2009, all 
the forecasts are initialized in 
May and verified for JJAS mean

Fig. 4   Difference (Model—
Obs.) between ensemble mean 
JJAS climatological rainfall of 
NMME:2 and Observations 
(CMAP) from 1982–2009, all 
the forecasts are initialized in 
May and verified for JJAS mean
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underestimate it over the Bay of Bengal, although the wet 
bias over western Indian ocean and dry bias over Bay of Ben-
gal are reduced in NMME:2. Over the land mass region of 
India rainfall is well simulated in both of phases of NMME. 
The ensemble means of the seasonal mean ISMR was also 
analyzed separately for the two phases, after excluding com-
mon models (CFSv2, CMC1 and CMC2) and the conclu-
sions are remain same (figures not shown). Taken together 
we find there is no significant improvement in seasonal mean 
rainfall over the Indo-Pacific domain from NMME:1 and 
NMME:2, despite the inclusion of improved versions of 
the participating models in NMME:2.We have analyzed the 
ensemble mean of seasonal mean rainfall from older version 
models (NASA-GMAO, NCAR-CCSM3 and GFDLCM2p1) 
and improved version of similar models (NASA-GMAO, 
NCAR-CCSM4 and GFDLCM2p5-FLOR) and found that 
improvement in each modeling system is small as compared 
to their individual mean bias (figures are not shown). There-
fore the improvements in modeling systems are not being 
reflected in the simulations of the seasonal mean ISMR.

In addition to representing climatological mean rainfall, 
simulation of interannual variability is another key and chal-
lenging aspect of ISMR seasonal prediction. ISMR seasonal 
mean rainfall shows considerable year-to-year variability, 
which is known to be strongly influenced by slowly varying 
boundary conditions (Charney and Shukla 1981). The skill 
of the NMME in representing the interannual variability 
of ISMR is shown in Fig. 6. Standardized seasonal rainfall 
anomalies for CMAP (red), MMEM of NMME:1 (green) 
and NMME:2 (Blue) are represented as histograms for each 
year for the CI (Fig. 1b) and extended region (Fig. 1a) for the 
period 1982–2009. Similar to the seasonal means, there is no 
significant improvement in this metric in NMME:2 relative 
to NMME:1. Over the CI region NMME:2 has a correlation 
of 0.42 with observations, while NMME:1 is 0.39. The dif-
ference is similar for the extended region (70◦E–90◦ E, 10◦

N–30◦N), where correlations are 0.46 for NMME:2 and 0.40 
for NMME:1. To evaluate the forecast skill of seasonal mean 
rainfall, we have compared standardized anomalies relative 
to the model climatology. Thus the systematic errors are 
removed and standardized anomalies below or above one 
standard deviation are considered as drought or flood years, 
respectively. The MMEM of NMME:2 is able to simulate 
drought during 1987, 1992, 2002 and floods during 2005, 
while giving false alarms for droughts in 1997 and for flood 
in 1985 1999 and 2007 over the CI region. The NMME:2 
is able to forecast normal monsoon years more skillfully as 
compared to extreme monsoon rainfall. Heidke skill score 
(Heidke 1926) for the forecast verification is calculated 
for the MMEM of NMME:1 and NMME:2 for the period 
of 1982–2009 over the CI region and the extended region 
(70◦E–90◦ E, 10◦N–30◦ N) . Standardize seasonal rainfall 
anomalies of CMAP, MMEM of NMME:1 and NMME:2 
are divided into three categories, (above normal exceed-
ing upper tercile), below normal (lower tercile) and normal 
(between both tercile) on the basis of the observed rainfall 
anomalies. Heidke skill scores (HSS) for both of the regions 
are shown in Table 2. While there is no standard cut off 
value for HSS for a forecast to be considered ?good?, values 
above 0.2 are considered as good scores. As we can see that 
in Table 2, HSS over central Indian region is poor for the 
normal and above normal seasonal mean monsoon rainfall 
in NMME:1 and NMME:2, while below normal monsoon 
seasonal mean rainfall is predicted with high HSS for both 
of NMME phases. Over the extended region (70◦E-90◦ E, 
10◦N-30◦N), HSS is moderately positive except for below 
normal rainfall in NMME:2 and the forecasts are skillful as 
compared to chance forecast in both phases of NMME. For 
the central India region only NMME:2 forecasts are skillful 
as compared to chance

Turning our attention to the spatial distribution of model 
skill, we show the pointwise anomaly correlation coefficient 

Fig. 5   Difference between 
multimodel ensemble mean 
JJAS climatological rainfall 
from observations (NMME - 
Obs.), a for NMME:1 and b for 
NMME:2, over the period of 
1982–2009

NMME: 1 NMME: 2 (a) (b) 
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between the MMEMs of NMME:1 and NMME:2 and obser-
vations for seasonal mean rainfall (Fig. 7a, b, respectively) 
for the period of 1982–2009. Both phases of the NMME 
have higher skill over the ocean relative to land. The NMME 
ensembles have no skill over the northwestern part of India 
but show moderate skill over the central and northeastern 
regions. We find that skill for the NMME ensembles is 
improved over the Bay of Bengal, the Arabian sea, and the 
equatorial Indian ocean in NMME:2.

As noted in the Introduction, the interannual and intra-
seasonal variability of ISMR is strongly influenced by SST 
variability over the Pacific and Indian Oceans. Positive 
anomalies over the eastern Pacific (El Niño events) tend to 
produce below normal rainfall over India, while negative 

anomalies (La Niña events) lead to above normal rainfall 
(e.g. Sikka 1980; Pant and Parthasarathy 1981; Rasmusson 
and Carpenter 1983; Gadgil et al. 2003, 2004). SST over 
the Indian Ocean has also been shown to have a strong link 
with ISMR (Saji et al. 1999; Ashok et al. 2001; Krishna-
murthy and Kirtman 2009). Thus, simulation of SST and the 
teleconnections with ISMR are important for accurate rep-
resentation of the seasonal mean ISMR and its interannual 
variability. Differences between the ensemble mean SST 
bias for JJAS over the period of 1982–2009 for NMME:1 
and NMME:2 are shown in Figs. 8 and 9, respectively. The 
NMME models are cold biased by 1–2◦ K over the equato-
rial Pacific Ocean, with the exception of the GFDL-CM2p5-
FLOR which has a warm bias over the same region. North-
ern Pacific warm biases and northern Atlantic Ocean cold 
biases are a common feature of all NMME models. SST 
over the Indian Ocean is more inconsistent, with cold biases 
in some models and warm biases in others. For example, 
CFSv2 has a large cold bias over Indian Ocean while Can-
CM3, Can-CM4, GFDL-aer04 and NCAR-CESM1 show 
warm biases. Figure 10 shows the grand ensemble mean of 
JJAS mean SST between 60◦S–60◦ N. The equatorial Pacific 
Ocean cold bias is present in both sets of hindcasts, but is 
improved in NMME:2 relative to NMME:1. The west Pacific 
is biased warm in both sets of hindcasts, but the warm bias is 

Fig. 6   Histograms of standard-
ized seasonal mean monsoon 
rainfall anomaly averaged over 
a over CI: (75◦E–85◦ E, 16◦

N–26◦ N, Ocean data points are 
excluded), b over the region 
selected in figure 1a: (70◦E–
90◦ E, 10◦N–30◦N), form Obser-
vations (red bars), multimodel 
ensemble mean NMME:1 
(green bars) and multimodel 
ensemble mean NMME:2 (blue 
bars) for the period 1982–2009, 
dashed black line denotes ±1 
standard deviation of seasonal 
anomalies, abbreviation CC is 
stands for correlation coefficient

(a)

(b)

Table 2   Heidke skill score for forecast verification

Phase Above normal Normal Below normal

CI: (75◦E–85◦ E, 16◦N–26◦N)
   NMME:1 −0.02 −0.03 0.40
   NMME:2 0.18 −0.19 0.50

Extended region: (70◦E–90◦ E, 10◦N–30◦N)
   NMME:1 0.30 0.47 0.19
   NMME:2 0.24 0.25 0.0
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increased in NMME:2. The Indian Ocean MMEMs have less 
bias than the individual model hindcasts, due to error cancel-
lation. The Pacific and Atlantic Ocean are both biased cold 
between 20◦N-40◦ N by 1-2 ◦ K, and we again find the bias 
increases from NMME:1 to NMME:2. Overall, the seasonal 
mean SST biases are slightly larger in NMME:2 compared 
to NMME:1

The biases in the equatorial Pacific Ocean are particularly 
significant for the simulation of the monsoon, as this region 
is known to act as the dominant forcing in the observed inter-
annual variability of ISMR (Kumar et al. 2006). Accurate 
simulation of SST anomalies over this region is thus criti-
cal to skillful dynamical seasonal prediction of the Indian 
monsoon (Shukla and Paolino 1983; Kumar et al. 1999; 

Gadgil et al. 2007). Figure 11 shows a comparison of the 
JJAS Niño 3.4 index (standardized area average SST average 
over the region 170◦ E- 120◦ W, 5 ◦S–5◦ N) from OISSTv2 for 
NMME:1 and NMME:2 for the period of 1982–2009. We 
can see that the MMEMs are able to capture all major El 
Niño events except for 2002 and all La Niña events except 
for 2003 and 2007. Overall the grand means for NMME:1 
and NMME:2 are able predict the seasonal mean SST 
anomalies with high correlation scores of 0.85 and 0.86, 
respectively.

In Fig. 12 we show the pointwise anomaly correlation 
for JJAS mean SST between the grand ensemble mean from 
the NMME hindcasts and observed SST over the period of 
1982–2009 between 60◦S–60◦ N. Correlations with observed 

Fig. 7   Pointwise seasonal mean 
rainfall anomaly correlation, a 
between multimodel ensemble 
mean NMME:1 and CMAP b 
between multimodel ensemble 
mean NMME:2 and CMAP, 
over the period of 1982–2009. 
Forecast are initialized in May 
and verified for JJAS mean. The 
contour indicates regions where 
correlations are statistically 
significant at 95%

NMME: 1 NMME: 2 (a) (b) 

Fig. 8   Difference between 
ensemble mean JJAS climato-
logical SST of NMME:1 mod-
els and Observations (OISSTv2) 
(Model—Obs.), over the period 
of 1982–2009 , forecasts are 
initialized in May and verified 
for JJAS mean
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SST are high for both of the NMME hindcasts in the central 
and eastern tropical Pacific Ocean, with magnitudes increas-
ingly slightly in NMME:2. Overall skill remains greater than 
0.6 everywhere except for the warm pool region in the west-
ern Pacific Ocean. SST forecast skill is improved over the 
Indian, Atlantic and Pacific Ocean basins in NMME:2 as 
compared to NMME:1.

Some earlier studies (e.g., Palmer et al. 1992; Wang et al. 
2008) suggest that long lead predictability of Indian mon-
soon comes from predictability of the El Niño-Southern 
Oscillation (ENSO). Under this theory, skillful prediction 
of seasonal mean rainfall and its interannual variability 
depends upon how skillfully models simulate ENSO vari-
ability and how well ENSO-monsoon teleconnections are 
represented in simulations. This motivates us to examine 
the simultaneous correlation between seasonal mean ISMR 
index over the CI region, JJAS mean SST from observations, 
and the grand mean of NMME:1 and NMME:2 (Fig. 13). 
We can see that ISMR is strongly influenced by SST in 
NMME hindcast as compared to observations. Rainfall over 
CI is negatively correlated with eastern-equatorial Pacific 
Ocean SST in the observations, but in the grand means of 
the NMME hindcasts, the rainfall-SST coupling is much 
stronger. We also find that SST over north Atlantic Ocean 
is positively correlated with the rainfall over India, similar 
to the simultaneous positive correlation between ISMR and 
subtropical Atlantic SST anomalies found by Rajeevan and 
Sridhar (2008). This relationship is well simulated in the 
grand mean of the NMME hindcasts, but it is overestimated 
as compared to observations. SST anomalies over the warm 
pool region are positively correlated with ISMR, and the 
association is well captured by the NMME hindcasts. In con-
trast, the positive simultaneous correlations between north 
Pacific SST anomalies and ISMR are too strong. The over-
estimation of the magnitude of the ENSO-monsoon telecon-
nection is similar to that of the DEMETER and ENSEM-
BLE experiments (Preethi et al. 2010; Rajeevan et al. 2012). 
However, in making the comparison between observations 

Fig. 9   Difference between 
ensemble mean JJAS climato-
logical SST of NMME:2 mod-
els and Observations (OISSTv2) 
(Model—Obs.), over the period 
of 1982–2009 , forecasts are 
initialized in May and verified 
for JJAS mean

(a) 

(b) 

Fig. 10   Difference between multimodel ensemble mean JJAS clima-
tological SST from observations (OISSTv2) (Model—Obs.), a for 
NMME:1 and b for NMME:2, over the period of 1982–2009, fore-
casts are initialized in May and verified for JJAS mean
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and ensemble mean one should recall that ensemble aver-
aging suppresses the influence of climate noise (see Cash 
et al. 2017), which can lead to increased correlation strength 
relative to observations. It is important to note that SST in 
the Indian Ocean is also linked to interannual variability of 
ISMR (Saji et al. 1999; Webster et al. 1999), and that Fig. 13 
indicates teleconnections between ISMR and SST in Indian 
Ocean are not well simulated in the NMME hindcasts. In 
the observations SST anomalies over the Western Equa-
torial Indian Ocean (WEIO: 50◦E–70◦ E, 10◦S–10◦ N) are 

positively correlated with ISMR, while they are negatively 
correlated in the NMME hindcasts. Likewise Eastern Equa-
torial Indian Ocean (EEIO: 90◦E–110◦ W, 0 ◦–10◦ S) SST 
anomalies are positively correlated with ISMR in NMME 

Fig. 11   JJAS mean Nino 3.4 
(area averaged SSTA (170◦

E–120◦ W, 5 ◦S–5◦ N) index over 
the period of 1982–2009 from 
OISSTv2 (black solid), from 
MMEM of NMME:1 (dashed 
blue) and from MMEM of 
NMME:2 (dashed red), fore-
casts are initialized in May and 
verified for JJAS mean

(a)

(b)

Fig. 12   Pointwise JJAS mean SST anomaly correlation, a between 
multimodel ensemble mean NMME:1 and OISSTv2 (b) between 
multimodel ensemble mean NMME:2 and OISSTv2, over the period 
of 1982–2009. Forecasts are initialized in May and verified for JJAS 
mean. The contour indicates regions where correlations are statisti-
cally significant at 95%

(a) 

(c) 

(b) 

Fig. 13   Correlation coefficient between central india (75◦E–85◦ E, 16◦

N–26◦ N) averaged JJAS mean rainfall and JJAS mean SST between 
60◦S–60◦ N over the period 1982–2009 for a CMAP and OISSTv2, 
b for MMEM of NMME:1, c for MMEM of NMME:2, forecasts are 
initialized in May and verified for JJAS mean. The contour indicates 
regions where correlations are statistically significant at 95%
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hindcasts, while in the observations they are negatively cor-
related. The NMME hindcasst thus do not capture the tele-
connection between ISMR and Indian Ocean SST anomalies. 
This problem is by no means unique to the NMME; a study 
by Nanjundiah et al. (2013) analyzed retrospective forecast 
from 7 coupled ocean atmosphere models and found that 
only ECMWRF correctly simulated the Equatorial Indian 
Ocean Oscillation (EQUINO)-ISMR link. This may be one 
reason why the NMME falsely predicted droughts during the 
normal monsoon years of 1997 and a normal monsoon year 
during the flood year of 1983 (note that there is no major 
difference in teleconnection pattern between NMME:1 and 
NMME:2). SST anomalies in the Indian Ocean during 1997 
and 1983 are thought to have played an important role in 
overcoming the negative impact of ENSO during the same 
years (e.g. Gadgil et al. 2007). It is interesting to note that 
SST in the Indian Ocean is less biased in comparison to the 
Pacific and Atlantic Oceans but the Indian Ocean telconnec-
tion with ISMR is represented more poorly in the NMME 
hindcasts. Another interesting point to be noted from Fig. 7b 
of Nanjundiah et al. (2013) is that even though ECMWF can 
capture Indian Ocean teleconnections correctly this model 
still gives false alarm of droughts during the normal mon-
soon years of 1983 and 1997.

Finally, we turn our attention to the remote association 
between the tropical Pacific and Indo–Pacific precipitation. 
As shown in Fig. 12, SST anomalies in the eastern Pacific 
Ocean are predicted skillfully, providing potential predict-
ability for regional rainfall. Pointwise simultaneous correla-
tions between the Niño 3.4 index and seasonal mean rainfall 
over Indo-Pacific domain are shown in Fig. 14 . Rainfall over 
the Indian landmass, the equatorial Indian Ocean and the 
maritime continent are all strongly anti-correlated with Niño 
3.4 in the NMME hindcasts. NMME hindcast is thus able 
to simulate the correct sign of the association, but overesti-
mates the magnitude ENSO-ISMR relationship relative to 

the observations. The strong ENSO-ISMR relationship sug-
gests an overly strong oceanic influence on the atmosphere 
in the NMME, although as noted above the magnitude of 
the correlations may be exaggerated by use of the ensemble 
mean. However a cursory examination(results not shown 
here) indicates that even in time series formed by selecting 
individual ensemble members, the ENSO-ISMR correlation 
is higher than the observed.

3 � Conclusions

In this study we have analyzed the seasonal mean and inter-
annual variability of the Indian summer monsoon rainfall 
(ISMR) in nine global ocean-atmosphere coupled models 
participating in the NMME:1 and nine global ocean-atmos-
phere coupled models participating in the NMME:2 from 
1982–2009. Models are evaluated over the Indo-Pacific 
domain starting from May initial conditions. The two 
phases of the NMME are compared to each other, in part 
to determine what progress, if any, has been made through 
the inclusion of new models and improved versions of 
existing models in the NMME. We find the MMEM of the 
NMME represents seasonal mean rainfall with a modest 
level of skill. Both phases of the NMME simulate excessive 
rainfall over the western Indian Ocean and the foothills of 
the Himalayas, while producing deficient rainfall over the 
Bay of Bengal and the eastern Indian Ocean. The deficient 
rainfall over the Bay of Bengal and excessive rainfall over 
Himalayan foothills are the most common bias among the all 
NMME models, while biases over the Indian land region can 
be of either sign. Biases in the MMEMs in both phases of 
the NMME are strongly reflective of those of the individual 
models. Improvements in modeling systems and data assimi-
lation systems is not reflected in simulations of seasonal 

(a) (b) (c) CMAP NMME:1 NMME:2 

Fig. 14   Simultaneous correlation coefficient between JJAS mean 
Nino 3.4 (area averaged SSTA (170◦E–120◦ W ,5◦S–5◦ N) index and 
JJAS mean rainfall anomaly over Indo–Pacific domain from 1982–
2009 for a OISSTv2 and CMAP, b for MMEM of NMME:1, c for 

MMEM of NMME:2, forecasts are initialized in May and verified for 
JJAS mean. The contour indicates regions where correlations are sta-
tistically significant at 95%
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mean of ISMR because improvements in each modeling 
system are small as compared to their individual mean bias.

These common systematic biases across the models likely 
limit the performance of the MMEM method for the sea-
sonal prediction of ISMR. Previous studies (e.g. Zhou et al. 
2009) have also shown that the performance of MMEMs is 
relatively low for the Indian and Asian monsoon regions. 
This is may be due uncertainties in the representation of 
subgrid scale process and coupling between large scale cir-
culation and convection in MMEMs in general and reflected 
in the NMME.

The majority of rainfall over the Indian sector falls dur-
ing June-September, with year to year variability of ISMR 
at roughly 10% of the seasonal mean. Accurate prediction 
of this relatively low amplitude interannual variability is a 
challenging and important aspect of seasonal prediction. 
To examine the skill of intrannual variations we have used 
the correlation coefficient between predicted and observed 
seasonal mean rainfall as a metric. As noted in the Introduc-
tion, an objective of this study is to compare the seasonal 
mean monsoon rainfall skill of NMME phase 1 and NMME 
phase 2. Earlier work (Kirtman et al. 2014) indicated that 
improvement in data assimilation and modeling systems 
contributed to improved forecast quality in NMME phase 2. 
However, we find the skill of seasonal prediction of Indian 
summer monsoon rainfall is nearly the same in NMME:2 
(0.46) as compared to NMME:1 (0.40); the NMME is still 
not able to accurately predict extremes (drought/floods) of 
rainfall. Therefore seasonal monsoon rainfall forecast is not 
improved by the improvement in data assimilation system 
and modeling system in the NMME phase 2. The inability 
to predict extremes can also be seen in both the DEMETER 
and ENSEMBLE experiments (Preethi et al. 2010; Rajee-
van et al. 2012). Both DEMETER and ENSEMBLE, as well 
as NMME predicted droughts during the normal monsoon 
years of 1997 and normal monsoon year during flood year 
of 1983. This suggests that similar biases found in the DEM-
ETER and ENSEMBLE models exist in the models used in 
the NMME.

The interannual and intraseasonal time scale variability of 
ISMR is strongly influenced by SST variability in the Pacific 
and Indian Oceans. Pointwise correlation of seasonal mean 
SST from NMME and observations revealed that the skill 
of interannual predictions is high (0.6–0.9) for most ocean 
basins, and improved in NMME:2 relative to NMME:1. The 
most common seasonal mean SST biases in NMME models 
are cold equatorial Pacific and subtropical Atlantic Ocean 
and warm biases in northern Pacific Ocean. These biases 
also remain in the MMEMs, and while the cold bias over the 
equatorial Pacific is improved in NMME:2, the re-forecasts 
of the Indian Ocean warm bias worsen. We find that the 
NMME simulates the observed interannual variability of 
the NINO3.4 index with correlations greater than 0.8. We 

also find that predictions of the ENSO anomalies are remain 
same in both NMME:1 NMME:2.

In this work we also examine teleconnection patterns 
that affect the monsoon, and find that teleconnections in the 
MMEMs are stronger than in the observations. The MMEMs 
capture the ENSO-monsoon, Atlantic-monsoon and west 
Pacific-monsoon teleconnections correctly, but fail to cor-
rectly represent the association with the Indian Ocean. The 
EQUINO-ISMR relationship in particular is opposite to 
what is observed. The teleconnection between the ISMR 
and Indian Ocean SST also was not represented well in the 
DEMETER and ENSEMBLES models. This again suggests 
a common systematic error in coupled model forecasts. This 
error in association may be the reason why the NMME pre-
dicted droughts during the normal monsoon years of 1997 
and a normal monsoon year during the flood year of 1983, 
as SST anomalies in the Indian Ocean during 1997 and 1983 
played an important role in overcoming the negative impact 
of El Niño events (Gadgil et al. 2007). The NMME cap-
tures the negative correlation between ENSO and the mon-
soon, but the influence of ENSO on ISMR is stronger in the 
NMME than is observed. The overly strong ENSO-ISMR 
relationship suggests that oceanic influence on atmosphere 
may be too strong in NMME, particularly when comparing 
the MMEM to observations.

Overall the NNME shows modest skill in predicting 
Indian summer monsoon rainfall and its interannual variabil-
ity. However, the NMME models show common biases in 
rainfall over Indian Ocean, are unable to predict the extremes 
in seasonal rainfall, and show only modest increases in skill 
from NMME:1 to NMME:2. The failure to represent the 
monsoon-EQUINO teleconnection in particular may be a 
critical limitation of the models comprising the NMME, 
and the association between this link and the prediction 
of extremes of seasonal rainfall clearly warrants further 
investigation.
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