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Abstract
Slowing variability in climate system is an important source of climate predictability. However, it is still challenging for 
current dynamical models to fully capture the variability as well as its impacts on future climate. In this study, instead of 
simulating the internal multi-scale oscillations in dynamical models, we discussed the effects of internal variability in terms 
of climate memory. By decomposing climate state x(t) at a certain time point t into memory part M(t) and non-memory part 
�(t) , climate memory effects from the past 30 years on climate prediction are quantified. For variables with strong climate 
memory, high variance (over 20% ) in x(t) is explained by the memory part M(t), and the effects of climate memory are non-
negligible for most climate variables, but the precipitation. Regarding of multi-steps climate prediction, a power law decay 
of the explained variance was found, indicating long-lasting climate memory effects. The explained variances by climate 
memory can remain to be higher than 10% for more than 10 time steps. Accordingly, past climate conditions can affect both 
short (monthly) and long-term (interannual, decadal, or even multidecadal) climate predictions. With the memory part M(t) 
precisely calculated from Fractional Integral Statistical Model, one only needs to focus on the non-memory part �(t) , which 
is an important quantity that determines climate predictive skills.
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1  Introduction

Reliable climate prediction of multi-scales has been a great 
challenge for many decades. It is not only important for 
scientific researches, but also relevant for societal sectors 
including agriculture, water management, energy and health 
(Brunet et al. 2010; Robertson and Wang 2012; Clements 
et al. 2013; Raff et al. 2013; White et al. 2017). During the 
past years, many studies have been presented that target 
at seasonal climate predictions (van den Dool 2007; Fan 
2010; Bengtsson et al. 1993; Stockdale et al. 1998), while 
studies focusing on subseasonal to seasonal (S2S), annual, 
and decadal scales are also growing in number promoted by 
international projects (Vitart et al. 2012; Robertson et al. 
2014; García-Serrano and Doblas-Reyes 2012). Thanks 
to these effects, considerable progresses have been made 
in identifying the sources of predictability on multi-scales 
(Mani et al. 2014; van Oldenborgh et al. 2005; Mochizuki 
et al. 2010), designing statistical-empirical approaches (van 
den Dool 2007; Fan 2010), as well as developing process-
based dynamical models (Bengtsson et al. 1993; Stockdale 
et al. 1998).
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However, due to the complexity of the climate system, 
our current climate prediction skills are still limited. For 
statistical-empirical approaches, relations between target 
processes and their predictors may not hold in the context 
of climate change (Holland and Stroeve 2011; Doblas-Reyes 
et al. 2013). As a result, a good hindcast does not necessarily 
mean a high predictive skill in real-time forecast. While for 
process-based dynamical models, due to the lack of perfect 
initial conditions and the inability to perfectly model the 
climate system, there are unavoidable uncertainty and inad-
equacy in the model simulations. Consequently, climate pre-
dictions based on dynamical models may be biased (Palmer 
2000; Slingo and Palmer 2011). To meet the increasing 
demand of many societal applications, continuous efforts 
are thus required to improve the current prediction models 
and develop new theories.

Climate predictability arises from both externally forced 
and internally generated variability (Doblas-Reyes et al. 
2013; Fyfe et al. 2011; Meehl et al. 2014). Thus, the variance 
of climate variables related to external forcings and inter-
nal oscillations determines the theoretical limit of predic-
tive skill. Regardless of the external forcings, even internal 
variability is not fully captured by current models (Doblas-
Reyes et al. 2013; Meehl et al. 2014). As a results, there are 
systematic errors in the model simulations and the predictive 
skill is lower than expected. In this study, we investigate this 
issue from a new perspective. We ask, besides simulating the 
internal oscillations in dynamical models, can we deal with 
this issue alternatively by extracting the effects of internal 
variability out of climate variables, and then implementing 
predictions for the residuals. As shown in Eq. (1),

where x(t) denotes the observed climate variable, M(t) rep-
resents the effects of internal variability, and �(t) stands for 
the residuals.

According to recent studies (Koscielny-Bunde et al. 1998; 
Fraedrich and Blender 2003; Eichner et al. 2003; Kantel-
hardt et al. 2006; Lin et al. 2007; Chen et al. 2007; Vyushin 
and Kushner 2009; Yuan et al. 2010; Dangendorf et al. 2014; 
Jiang et al. 2017), this research idea is possible, as for many 
climate variables it has been found that the variability on 
different time scales is not arbitrary, but follows a scaling 
manner as shown below,

where s represents the time scale and H is the Hurst expo-
nent (Hurst 1951). This scaling behavior indicates that the 
knowledge of high-frequency variability allows one to pre-
dict the low-frequency variability of a given process. As a 
result, the process is not temporally independent, but auto-
correlated with no cut-off correlation time. We name this 
property fractal or long-term climate memory, as in this case 

(1)x(t) = M(t) + �(t),

(2)x(st) = sHx(t),

climate states from long time ago may still have influences 
on the current climate state (Rybski et al. 2008; Zhu et al. 
2010; Yuan et al. 2013). In physics, this phenomenon is a 
kind of “inertia”, while in climate sciences, the closest con-
cept is “natural internal variability” (Yuan and Fu 2014). 
For example, by taking the effects of climate memory into 
account, the pause of the warming trend (hiatus) since the 
late of twentieth century was simulated successfully (Love-
joy et al. 2015; Lovejoy 2015a), which further supported the 
argument that natural variability is one main reason for the 
warming “hiatus” (Risbey and Lewandowsky 2017; Med-
haug et al. 2017). Although climate memory itself cannot 
cover the whole climate variability, it determines the initial 
states induced by past climate conditions, from which one 
can further study how the processes will evolve. Therefore, 
climate memory corresponds to “M(t)” in Eq. (1), which 
represent the effects of natural internal variability on the 
current climate state.

Recently, in analogy to the stochastic climate model pro-
posed by Hasselmann (Hasselmann 1976), a new stochastic 
model, Fractional Integral Statistical Model (FISM) was devel-
oped (Yuan et al. 2013). Based on fractional integral tech-
niques, FISM was proved to be able to extract the memory 
signals quantitatively (Yuan et al. 2014). Accordingly, climate 
state at a given time point can be decomposed into two parts: 
the memory part and the weather-scale dynamical excitation, 
which correspond to M(t) and �(t) in Eq. (1), respectively. This 
decomposition opens a new gate for climate prediction. M(t), 
which can be calculated quantitatively, determines the bottom 
bound of predictive skill.

In this study, we will investigate this “bottom bound” in 
detail. To what extent can the memory part M(t) explain the 
total climate variability? Does the explained variance vary over 
different climate processes? How do climate memory effects 
decay over time? By applying FISM to different observational 
records and artificial data with different scaling behaviors, we 
address these questions and provide fundamental information 
for further climate predictions.

This paper is organized as follows. The data and methods 
used in this work is briefly described in Sect. 2. In Sect. 3, we 
present the results of different observational records, and com-
pare the estimated explained variances with those calculated 
from artificial datasets. An extensive Monte-Carlo simulation 
is applied in Sect. 4, and the roles of climate memory in both 
one-step prediction and more-steps prediction are evaluated 
in the same section. In Sect. 5, we discuss and conclude this 
paper.
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2 � Data and methods

2.1 � Data

In order to study the climate memory effects, we selected 
six records of different variables as shown in Table 1. They 
are: (1) surface air temperature observed in Stockholm 
( SATland ) (Klein Tank et al. 2002) (monthly mean records 
calculated from daily measurements, available at European 
Climate Assessment & Dataset, ECAD, http://www.ecad.
eu); (2) surface air temperature observed in Cocos island 
(SATisland ) (Menne et al. 2012) (monthly data available 
at Royal Netherlands Meteorological Institute (KNMI) 
Climate Explorer, http://clime​xp.knmi.nl/); (3) precipi-
tation sum observed in Copenhagen (Klein Tank et al. 
2002) (monthly sum data calculated from daily meas-
urements, available at European Climate Assessment & 
Dataset, ECAD, http://www.ecad.eu); (4) river runoff 
(RR) records in Weser river (monthly mean records cal-
culated from daily measurements in Vlotho, provided by 
the Global Runoff Data Centre, 56068 Koblenz, Germany, 
http://www.bafg.de/GRDC/EN/Home/homep​age_node.
html); (5) Northern Hemisphere temperature anomaly 
(NHTA) data (monthly, available at National Aeronaut-
ics and Space Administration (NASA) Goddard Institute 
for Space Studies (GISS), https​://data.giss.nasa.gov/giste​
mp/); and (6) the Pacific Decadal Oscillation (PDO) index 
(monthly, available at National Oceanic Atmospheric 
Administration, NOAA, https​://www.esrl.noaa.gov/psd/
data/clima​teind​ices/list/). These records are either well-
known climatic indices (e.g. PDO, NHTA), or long-term 
in situ observations that have been widely used in pre-
vious studies (Kantelhardt et al. 2006; Beniston 2009; 
Kärner and de Freitas 2014). Accordingly, results based 
on these records can provide an initial impression of cli-
mate memory effects on different variables. Before analy-
sis, the seasonaltrend in each record has been removed by 
subtracting the annual cycle, as x(t) = �(t) − ⟨�(t)⟩ , where 

�(t) is the original record and x(t) is the anomalies we used 
for analysis.

We also used Fourier filtering technique to generate arti-
ficial data with different memory strengths (Turcotte 1997). 
For each memory strength, there are 3000 samples to ensure 
adequate statistical accuracy. By analyzing these artificial 
data, an extensive Monte-Carlo simulation was performed, 
with which we confirm, and better illustrate the climate 
memory effects.

2.2 � Methods

2.2.1 � Detecting long‑term climate memory

In this study, we employed a widely used method, detrended 
fluctuation analysis of the second-order (DFA-2) (Peng 
et al. 1994; Kantelhardt et al. 2001), to detect the long-
term climate memory. Suppose we have a time series 
{xi}, i = 1,… ,N . In DFA-2, one mainly considers the cumu-
lated sum Yk =

∑k

i=1
{xi − ⟨x⟩} and studies in non-overlap-

ping time windows of size s. In each window, we calculate 
the local trend through second-order polynomial fitting and 
get the square fluctuation F2

s
(j) as the variance of Yk around 

this best quadratic fit, where j points to the j-th window. 
By averaging over all windows, we obtain the fluctuation 
function F(s). If F(s) increases with s as F(s) ∼ s� , and the 
scaling exponent � [see also the Hurst exponent in Hurst 
(1951)] is larger than 0.5, we say this time series {xi} is char-
acterized by long-term memory. The bigger � is, the stronger 
the memory will be. It is worth to note that the long-term cli-
mate memory detected by DFA-2 is actually linear memory 
that originated from mono-fractal behaviors. For variables 
with multifractality (Kantelhardt et al. 2006; Bogachev and 
Bunde 2011), it is still a challenge to properly quantify the 
corresponding nonlinear memory effects. Accordingly, only 
the linear climate memory is considered in this study.

In addition, as reported in previous studies, the output 
of DFA normally exhibits initial crossover. For DFA-2, 
reliable scaling range usually starts from s = 8 (Bogachev 
et al. 2017). As a result, it is not possible to determine 

Table 1   Information of the six 
records

Three columns including the names of the records, the sources of the records, as well as their temporal cov-
erages are presented. In addition, the DFA exponent � and the corresponding integration order q are also 
shown in this table

Variable Source Coverage DFA-� FISM-q

Surface air temp. ( SATland) Stockholm 1756–2015 0.65 0.15
Surface air temp. ( SATisland) Cocos island 1953–2015 0.85 0.35
Precipitation Copenhagen 1874–2015 0.50 0.00
River runoff (RR) Weser river 1823–2013 0.79 0.29
North Hemi. temp. Anomaly (NHTA) North Hemisphere 1880–2015 0.85 0.35
Pacific decadal oscillation (PDO) North Pacific 1948–2015 1.08 0.58

http://www.ecad.eu
http://www.ecad.eu
http://climexp.knmi.nl/
http://www.ecad.eu
http://www.bafg.de/GRDC/EN/Home/homepage_node.html)
http://www.bafg.de/GRDC/EN/Home/homepage_node.html)
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://www.esrl.noaa.gov/psd/data/climateindices/list/
https://www.esrl.noaa.gov/psd/data/climateindices/list/
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whether the scaling behavior F(s) ∼ s� still holds for s < 8 . 
To study the relations between F(s) and s at the small 
time scales ( s < 8 ), we also employed the Haar Wave-
let Technique of order 2 (WT2) (Koscielny-Bunde et al. 
1998; Bogachev et al. 2017), which does not suffer from 
the initial crossover. For more details of WT2 and the 
corresponding outputs, please refer to the supplementary 
material.

2.2.2 � Estimating climate memory effects

To estimate the roles of climate memory in explaining cli-
mate variability, we applied the fractional integral statistical 
model (FISM) to extract memory signals quantitatively. It 
has been shown that the weather-scale excitation part �(t) 
and the memory part M(t) are connected via fractional inte-
gral (Yuan et al. 2013). Accordingly, the FISM was designed 
using Riemann-Lioville fractional integral formula as shown 
in Eq. (3), and the discrete version can be found in (Yuan 
et al. 2014),

In Eq. (3), �  denotes the gamma function, q is the integral 
order, t − u represents the distance between historical time 
point u and present time t, and � is the sampling time interval 
(e.g., monthly). Theoretically, it is possible to calculate M(t) 
quantitatively from historical weather-scale excitations �(u) , 
as shown below (Yuan et al. 2014),

where �(u) = �(0), �(�),… , �(t − �) . �(u) can be derived 
reversely from Eq. (3), suppose the historical observations 
x(t) and the integral order q are known. Since q can be cal-
culated from the DFA exponent � as q = � − 0.5 , the pro-
cedures to extract M(t) out of the observations can be sum-
marized as following:

(1)	 Apply DFA-2 to the observed records x(t), determine 
the DFA exponent � and the integral order q.

(2)	 Substitute x(t) and q into Eq. (3), calculate the historical 
weather-scale excitations �(u) by reversely deriving Eq. 
(3).

(3)	 Substitute �(u) into Eq. (4), calculate M(t) by integrat-
ing Eq. (4).

It is worth to note that there is a “spin-up” time of about 100 
steps in (2). Only after this period, the estimated �(u) can be 
considered reliable (Yuan et al. 2014).

(3)x(t) =
1

� (q) ∫
t−�

u=0

�(u)

(t − u)1−q
du + �(t).

(4)M(t) =
1

� (q) ∫
t−�

u=0

�(u)

(t − u)1−q
du,

With the extracted M(t), we are further allowed to cal-
culate the explained variance by climate memory, or in 
other words, the climate memory effects. As shown below,

the higher variance we get, the more we may expect from 
climate memory, which means stronger predictability. It is 
worth to note that the M(t) in Eq. (5) contains the histori-
cal memory from the past till t − � . By comparing with the 
residuals ( x(t) −M(t) ) at the current time point t, climate 
memory effects in one-step prediction are estimated. To 
study the climate memory effects in multi-step prediction, 
Eq. (5) needs to be generalized as,

where n is the number of steps. When n = 1 , Eq. (6) degener-
ates to Eq. (5). When n = 2 , however, we will compare the 
memory part M(t) with the residuals (x(t+1)-M(t)) at the 
next time point t + 1 . In this way, by varying n, the explained 
variances of M(t) for future time points ( n = 2, 3,… ) can 
be calculated. In this work, we will first study the climate 
memory effects in different climatic variables using Eq. (5), 
then discuss the climate memory effects in multi-step predic-
tion using artificial data.

(5)EV =
var(M(t))

var(M(t)) + var(x(t) −M(t))
,

(6)EVn =
var(M(t))

var(M(t)) + var(x(t + n − 1) −M(t))
,

Fig. 1   DFA-2 results for the six observational records. The relations 
between fluctuation function F(s) and time scale s are shown in the 
log-log plots, and the slope of each line represents the DFA-2 expo-
nent � . From bottom to top, DFA-2 results of precipitation (black), 
surface air temperature over land (red), river runoff (blue), surface 
air temperature over island (green), North Hemisphere temperature 
anomaly (pink), as well as PDO index (yellow) are shown. DFA 
exponents � are marked beside the lines. A reference dashed line with 
slope of 0.5 are shown at the bottom of the figure
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3 � Climate memory effects in different 
climatic variables

We first estimate the memory strength using DFA-2 for 
the six records presented in Table 1. Figure 1 shows the 
DFA results in a double logarithmic plot. Perfect straight 
lines are obtained for all six records, indicating power 
law relations between F(s) and s over scaling range from 
several months to decades. By further employing WT2 to 
the six records, the scaling range is further extended to 
s = 1 month (see Figure S1). Accordingly, there are scaling 
behaviors from 1 months to decades for the six records. 
The DFA exponents � (slopes) are different, indicating 
that the records have different memory strengths. For pre-
cipitation observed in Copenhagen, the DFA exponent � is 
around 0.5 (black points), indicating the absence of mem-
ory. This result is consistent with previous studies, which 
reported that precipitation is usually characterized by very 
weak long-term memory, or even behaves as white noise 
on time scales from months to decades (Kantelhardt et al. 
2006; Jiang et al. 2017). For the river runoff measured 
in Weser river, the memory strength is relatively higher, 
with DFA exponent � = 0.79 (blue points). For surface air 
temperature records measured at Stockholm ( SATland ), the 
DFA exponent � = 0.65 (red points), in agreement with 
previous works, is around the average level in SATland 
over the world (Eichner et al. 2003; Yuan et al. 2010). 
Surface air temperature over island ( SATisland ), however, 
has stronger climate memory (Eichner et al. 2003). We 
find � = 0.85 in the SAT records observed at Cocos island 
(green points). Compared with station records, data aver-
aged/derived from large spatial scales may have stronger 
climate memory. As shown by the pink points in Fig. 1, 
the DFA exponent � from North Hemisphere temperature 
anomalies (NHTA) is 0.85. While the PDO index, which 
represents the leading pattern of monthly sea surface 
temperature anomalies over the North Pacific (poleward 
of 20N) (Zhang et al. 1997; Mantua et al. 1997), has the 
strongest long-term memory with � = 1.08 (yellow points).

Using the � values, we then determined the corre-
sponding q values in FISM, see Table 1. Accordingly, we 
are able to derive the historical weather-scale dynami-
cal excitations �(u) reversely from Eq. (3). Before doing 
that, however, we need to emphasize that the long-term 
memory revealed from Fig. 1 are on scales from 1 month 
to decades. For example, the scaling ranges revealed for 
precipitation and NHTA are from 1 month to around 30 
years; for SATland and river runoff, the scaling ranges are 
larger, from 1 month to around 50 years; while for SATisland 
and the PDO index, the scaling ranges are smaller, from 1 
month to around 20 years. Limited by the data length, we 
are unable to check whether the scaling behavior can be 

extended to longer time scales. But from previous studies, 
it has been argued that the detected long-term memory 
may be scale-dependent (Fraedrich and Larnder 1993; 
Markonis and Koutsoyiannis 2016). In fact, as reported by 
(Lovejoy 2015b), the scaling ranges revealed by this work 
belong to the regime of “macroweaher”, which has typi-
cal scaling range from 10 days to about 50 years. In view 
of the potential risk that the detected long-term memory 
may change on time scales longer than 50 years, in the 
following analysis we only focus on the recent 50 years 
(1961–2010), which is the period when most meteorologi-
cal stations of the world are in operation regularly.

In Fig.  2, the derived �(u) for the six records from 
1961–2010 are presented. From the time series, they seem to 
change fast like uncorrelated noises. But dynamically, there 
are reasons for them to take the current values. For instance, 
one can see clearly that the �(u) s in NHTA were around 
zero until 1980, then got positive (see the gray area). This 
is reasonable as a significant warming trend was observed 
in NHTA after 1980 (Fig. 3), which is attributed to external 
forcings such as the increased concentration of atmospheric 
Greenhouse gases (GHGs). Although we do not study the 
warming effects of GHGs directly, their effects are mani-
fested in �(u) in the form of more positive values. Similar 
pattern can also be found in the case of SATland , where more 
positive �(u) s are visible during the past 30 years. There-
fore, �(u) carries information from external forcings, and 
determines the changing directions of climate states. It is 
not simple white noise, but behaves as the “climate gene” 
of the considered variable.

Fig. 2   Weather-scale dynamical excitations �(t) of the six records 
presented in Table  1. �(t) of the six records are shown from top to 
bottom following the order of: precipitation, surface air temperature 
over land, river runoff, surface air temperature over island, North 
Hemisphere temperature anomaly, and PDO index. Positive �(t) s are 
marked by red bars, while negative �(t) s are marked by blue. The gray 
area covers the recent 30 years �(t) (1980–2010) in NHTA, where 
more positive �(t) s are found, corresponding to the significantly 
increasing trend of NHTA during this time period (see Fig. 3)
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With the extracted �(u),M(t) can be easily calculated 
from Eq. (4). As introduced in Sect. 2.2.2, since the first 10 
years �(u) s derived from Eq. (3) have big errors (“spin-up” 
time), we thus only use the middle 30 years (1971–2000) 
�(u) s to calculate the memory part M(t) for the last 10 
years (2001–2010). In Fig. 3, M(t) (red curves) as well as 
the original time series (black curves) are shown for all the 
six records. Apparently, with the increase of climate mem-
ory (from top to bottom), the explained variance by M(t) 
becomes higher. For the precipitation, since no memory was 
found ( � = 0.5 ; q = 0 ), M(t) vanishes as a horizontal line. 
While for other variables with strong memory (e.g. PDO 
index), the M(t) captures a large portion of the variability. 
To quantify the explained variance by M(t), we follow Eq. 
(5) and the results are shown in Fig. 4. Based on the last 
10 years, the explained variance of climate memory for the 
SATland records observed in Stockholm is only 4.2% , while 
for SATisland , the explained variance is higher ( 19.8% ). For 
regional averaged temperatures, the memory parts explain 
approximately 25.8% variance in NHTA. For PDO index, 
the explained variance is higher and accounts to 68.4% . 
Concerning the river runoff data, the explained variance is 
16.9% , which is higher than the case of SATland.

To validate the results from these six records, we per-
formed the same calculation to a large number of arti-
ficial datasets. These datasets are characterized into 13 
groups with different memory strengths (DFA exponent 
� = 0.50, 0.55,… , 1.05, 1.10 ). For each group, numerically 
simulated mean explained variance along with uncertain-
ties were obtained. As shown in Fig. 4, the black dots 

represent the mean explained variances while the red and 
blue dashed lines are the upper and lower bounds of 95% 
distribution range. The results from the six records are 
in good agreement with the numerical simulations, indi-
cating the extracted memory part M(t) in each record is 
reasonable and can be used for the estimation of climate 
memory effects.

However, it is worth to note that due to the limitation 
of data length, the explained variances of the six records 
were calculated using only 10 years data (the test zone, 
2001–2010, 120 months). This short length may induce 
biased estimations of climate memory effects. In fact, by 
studying how explained variance varies with data length, 
we found 1680 is the minimum length to produce stable 
variance (figure not shown). Accordingly, to obtain unbiased 
climate memory effects from the past 30 years, the minimum 
data length is 10 years “spin up” time plus 30 years histori-
cal “observation” plus 140 years (1680 months) test zone, 
which is 180 years. Obviously, this data length is too long 
for most stations in the world. Even for the considered six 
long records, only two of them are longer than 180 years (the 
SAT observed in Stockholm and the river runoff data from 
Weser River). Therefore, to obtain unbiased estimations of 
climate memory effects, we have to turn to artificial data 
with longer data length.

Fig. 3   Original data (black, 1961–2010) of the six records as well as 
the extracted memory part M(t) (red, 2001–2010). From top to bot-
tom the figure shows the time series of precipitation, surface air tem-
perature over land, river runoff, surface air temperature over island, 
North Hemisphere temperature anomaly, as well as PDO index, 
respectively. As one can see, the higher climate memory is, the bigger 
variance is explained by the memory part M(t)

Fig. 4   Explained variances of M(t) for the six observation records. 
50  years data (1961–2010) were used for the calculation with the 
first 10 years (1961–1970) as “spin up” time, and the last 10 years 
(2001–2010) as test zone. Accordingly, climate memory effects 
accumulated over 30 years are calculated as the explained variance. 
According to the � values, the corresponding explained variances are 
marked as green points. To verify the results calculated from observa-
tion records, the same procedures are also applied to a big number 
of artificial data, and the estimated explained variances along with 
uncertainties (95% distribution range) are shown as black points and 
error bars. By comparison one can see good agreements between the 
results obtained from the six records and those from the numerical 
simulations. With the increase of � , bigger variances can be explained 
by climate memory
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4 � Climate memory effects in one‑step 
and multi‑steps climate predictions

In this section, we estimate the climate memory effects using 
long artificial datasets. By setting a long enough test zone 
( > 1680 ), M(t) calculated over this long period can be used 
to produce reliable and stable variance, which is essential for 
the estimation of unbiased memory effects. Figure 5 shows the 
explained variances for different memory strengths ( � values). 
Compared to Fig. 4, the unbiased memory effects obtained 
from longer data (Fig.  5) are slightly higher, indicating 

underestimations of memory effects calculated from short 
data (Fig. 4). Although in practice, an unbiased estimation of 
climate memory effects is normally hindered by the length of 
observational data, using the DFA exponent � , it is possible 
to indirectly estimate the climate memory effects from Fig. 5. 
For instance, it has been reported that monthly precipitation 
records are usually characterized by very weak long-term 
memory, with � ranges from 0.5 to 0.65 (Kantelhardt et al. 
2006; Jiang et al. 2017). According to Fig. 5 (the yellow area), 
climate memory may only explain up to 5% variance in pre-
cipitation. For SATland, � normally ranges from 0.55 to 0.80 
(Eichner et al. 2003; Yuan et al. 2010), as a result, approxi-
mately 0.5–23.8% of the SAT variability can be explained 
(green area in Fig. 5). For SATisland , stronger climate memo-
ries are reported with � ranges from 0.65 to 0.9 (Eichner et al. 
2003). Accordingly, higher variances ranging up to 43.6% 
may be explained (the blue area in Fig. 5). Table 2 provides 
additional information on different variables, including relative 
humidity (RH) (Lin et al. 2007; Chen et al. 2007), river runoff 
(RR) (Kantelhardt et al. 2006), and sea level change (SLC) 
(Dangendorf et al. 2014).

By definition, the explained variance calculated from Eq. 
(5) can be considered as the predictability of the variable being 
studied. However, it is worth to note that the results shown in 
both Figs. 4 and 5 only represent the climate memory effects 
in one-step prediction, as we used sliding windows of 30 years 
to calculate the memory part at different time points. To show 
how the climate memory effects decay over time, we refer to 
Eq. (6). By varying n, climate memory effects in multi-steps 
prediction are calculated. Figure 6 shows the climate memory 
effects in steps n = 2, 3,… , 10 (Fig. 6). With the increase of n, 
the explained variance of M(t) shows a power-law decay. This 
is reasonable as the long-term climate memory discussed in 
this work is essentially a scaling behavior. Using this power-
law relationship between explained variances and n, we further 
fitted a formula,

(7)EVn = 10a1e
−�∕b1

⋅ na2e
−1.5�+b2 , n ≥ 2,

Fig. 5   Explained variances of M(t) estimated from an extensive 
Monte-Carlo simulation. To avoid the potential biases due to limited 
data length in practice, artificial data with longer data length (3000 
“months”, 250 “years”) are used. Similar to Fig. 4, climate memory 
effects accumulated over past 30 years are considered. The yellow, 
green, and blue areas indicate the reported ranges of climate memory 
strength ( � values) in precipitation records, surface air temperature 
records over land ( SATland ), and surface air temperatures over island 
( SATisland ). For precipitation, only very low variances ( 0 ∼ 5% ) can 
be explained by M(t). For SATland , the explained variance by cli-
mate memory can be up to 23.8%. While for SATisland , the maximum 
explained variance is even higher, around 43.6%

Table 2   Explained variance for 
different variables

The range of DFA exponent � for each variable was obtained from previous literatures, while the explained 
variances were estimated from Fig.  5. Six variables are considered, including precipitation, surface air 
temperature over land ( SATland ), surface air temperature over island ( SATisland ), river runoff (RR), relative 
humidity (RH), as well as sea level change (SLC)

Variable DFA-� Explained vari-
ance (%)

References

Precipitation 0.50–0.65 0–5 Kantelhardt et al. (2006); Jiang et al. (2017)
SATland 0.55–0.80 0.5–23.8 Eichner et al. (2003); Yuan et al. (2010)
SATisland 0.65–0.90 5–43.6 Eichner et al. (2003)
River runoff 0.55–0.90 0.5–43.6 Kantelhardt et al. (2006)
Relative humidity 0.60–0.90 2–43.6 Lin et al. (2007); Chen et al. (2007)
Sea level change 0.60–0.95 2–53.9 Dangendorf et al. (2014)
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where � is the DFA exponent, and n denotes the steps. The 
parameters a1, b1, a2, b2 are −45.542 , 0.186, −3.656 , and 
0.532, respectively. With this formula, the explained vari-
ances can be estimated easily once the memory strength � 
and the steps n are given. As shown in Fig. 6, we found good 
agreements between the results calculated from the formula 
(lines) and those obtained from Monte-Carlo simulations 
(solid circles). It is worth to note that for variables with dif-
ferent memory strengths, their memory effects can be very 
different. For example, if a given variable is characterized by 
weak climate memory (e.g., � = 0.65 , the case of SATland ), 
the climate memory effects may become negligible (e.g., 
smaller than 1% ) rapidly after several steps (months). How-
ever, if the considered variable has stronger climate memory 
(e.g., � = 0.85 , the case of NHTA), the climate memory 
effects are non-negligible for a very long time. Therefore, 
the climate memory effects should be properly considered 
not only in short-term climate predictions (e.g., one-step 
forward prediction), but also in long-term predictions, espe-
cially when the considered variables/systems are character-
ized by strong climate memory.

5 � Discussion and conclusion

In this work, we studied the climate memory effects on cli-
mate prediction. Using Fractional Integral Statistical Model 
(FISM), influences of climate states of past 30 years on cur-
rent climate are quantified [the memory part M(t)], which 
allows one to calculate the explained variance of climate 
memory. It was shown that the stronger climate memory is, 
the higher the explained variance is. Except precipitation, 
the effects of climate memory are non-negligible for most 
climatic variables. For some cases with strong climate mem-
ory (e.g. river runoff, PDO, etc.), the explained variance 
by climate memory can be higher than 20%. Besides the 
climate memory effects on predictions of next step (e.g., next 
month), even for multi-steps prediction, high explained vari-
ances may still maintain, e.g. for NHTA, the climate mem-
ory effects can be higher than 10% even after 10 months.

Different from short-term persistence that exists in 
weather systems, such as cyclones, blocks, etc., which can 
only last for a few days, the climate memory studied in this 
work is long-term (linear) climate memory. As the name 
implies, long-term climate memory refers to persistence on 
longer time scales (monthly, annual, inter-annual...), which 
is actually a manifestation of scaling behavior in climate 
system. Therefore, to avoid mixing the short- and the long-
term climate memory, we used monthly data from which 
the persistence on scales smaller than 1 month has been 
eliminated. By employing WT2 (see supplementary mate-
rial for more details), we have confirmed that the scaling 
behavior of the variables studied in this work starts from 
1 month. Therefore, it is reasonable to use monthly data to 
study the climate memory effects. However, limited by the 
data length, we can only detect the scaling behaviors till a 
few decades (maximum 50 years) by DFA-2. Considering 
that the long-term climate memory may be scale-dependent 
and change on time scales larger than 50 years (Lovejoy 
2015b; Markonis and Koutsoyiannis 2016), we only focused 
on the recent 50 years (1961–2010), and studied the cli-
mate memory effect of past 30 years. In other words, our 
analysis are valid within the time scales of a few decades 
(below 50 years). For longer time scales, one has to check 
first the scaling behavior whether there are any crossovers. 
Furthermore, it is worth to note that besides long-term linear 
climate memory, there may be long-term nonlinear memory 
in some variables (e.g. river runoff) (Bogachev and Bunde 
2011; Kantelhardt et al. 2006), which represents the multi-
fractal behaviors in the variable being studied. But up to 
now, it is still challenging to properly quantify the nonlinear 
climate memory. Accordingly, our work only considered the 
effects of linear climate memory.

In view of the non-negligible contributions of climate 
memory to climate variability, our work emphasized the 

Fig. 6   Climate memory effects in multi-steps forward predictions. 
Different from Fig. 4 and 5 where explained variances of M(t) were 
calculated by comparing M(t) and �(t) at the current time point 
t (steps = 1 ), in this figure climate memory effects on more distant 
future (steps > 2 ) are shown. Results for data with different � values 
are shown in different colors, and the climate memory effects are 
found to decay with steps (n) as a power-law. The colored lines are 
calculated using the fitted formula (Eq. 7), which shows good agree-
ments with the results obtained from numerical simulations (colored 
points). For some cases with strong climate memory (e.g. 𝛼 > 0.85 ), 
the climate memory effects can maintain strong (e.g., larger than 
10%) for a long time (more than ten steps)
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importance of past climate states in future climate predic-
tions. Similar to the concept “inertia” in physics, long-
term climate memory is a measure in climate science that 
quantifies how past climate states are memorized. Tradi-
tionally, for processes with memory (or auto-correlation), 
the simplest prediction method is linear extrapolation, 
while the widely used methods are autoregressive type 
models such as the ARFIMA (autoregressive fractionally 
integrated moving average) model (Baillie and Chung 
2002; Taqqu et al. 1995). Although these traditional meth-
ods may be powerful in processes with strong memory, 
they lack physical basis. For instance, ARFIMA is also 
based on the fractional integral techniques and is capable 
of simulating long-term correlated processes, as shown 
in Eq. (8),

where a(q;�) is statistical weights defined as (Caballero et al. 
2002)

�(t) denotes an independent and identically distributed (i.i.d) 
Gaussian noise, and � (�) is the Gamma function. Similar 
to FISM, ARFIMA uses the same fractional integral order 
q. But in ARFIMA, the fractional integration a(q;�) acts 
directly on the historical observations x(t), which is differ-
ent from FISM, where the fractional integration is applied 
to the historical weather-scale excitations �(u) (Eq. 3). As 
discussed in (Yuan et al. 2014), this design makes ARFIMA 
difficult to give the noise term �(t) physical meanings. While 
in FISM, �(t) is not simple white noise, but carries informa-
tion from external forcings (see Fig. 2). Therefore, differ-
ent from the traditional methods such as the simplest linear 
extrapolation, or the more advanced ARFIMA model, our 
method pays more attention to the physics behind, such as 
trying to understand why and how long-term memory arises 
in climate (Yuan et al. 2014). Accordingly, besides calculat-
ing M(t) precisely using FISM, it is also possible to focus on 
the non-memory part, �(t) . In this way, a new perspective for 
climate prediction is suggested. Instead of predicting future 
climate directly as current models do, we might focus on the 
non-memory part �(t) , and predict future climate indirectly 
by coupling �(t) into FISM. The explained variance by M(t) 
determines a bottom bound of the predictive skill, and it 
is expected to be improved if the future �(t) can be prop-
erly estimated. Since it is still challenging to fully capture 
the internal variability in current models, this new research 
strategy may open a new gate for climate prediction, which 
deserves more attention in future.

(8)x(t) =

∞∑

�=1

a(q;�)x(t − �) + �(t),

(9)a(q;�) = (−1)�+1
� (1 + q)

� (1 + q − �)� (1 + �)
,
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