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Abstract
Spectral analysis of global-mean precipitation, P, evaporation, E, precipitable water, W, and surface temperature,  Ts, 
revealed significant variability from sub-daily to multi-decadal time-scales, superposed on high-amplitude diurnal and 
yearly peaks. Two distinct regimes emerged from a transition in the spectral exponents, β. The weather regime covering 
time-scales < ~ 10 days with β ≥ 1; and the macroweather regime extending from a few months to a few decades with 0 <β <1. 
Additionally, the spectra showed a generally good statistical agreement amongst several different model- and satellite-based 
datasets. Detrended cross-correlation analysis (DCCA) revealed three important results which are robust across all datasets: 
(1) Clausius–Clapeyron (C–C) relationship is the dominant mechanism of W non-periodic variability at multi-year time-
scales; (2) C–C is not the dominant control of W, P or E non-periodic variability at time-scales below about 6 months, where 
the weather regime is approached and other mechanisms become important; (3) C–C is not a dominant control for P or E over 
land throughout the entire time-scale range considered. Furthermore, it is suggested that the atmosphere and oceans start 
to act as a single coupled system at time-scales > ~ 1–2 years, while at time-scales < ~ 6 months they are not the dominant 
drivers of each other. For global-ocean and full-globe averages, ρDCCA  showed large spread of the C–C importance for P and 
E variability amongst different datasets at multi-year time-scales, ranging from negligible (< 0.3) to high (~ 0.6–0.8) values. 
Hence, state-of-the-art climate datasets have significant uncertainties in the representation of macroweather precipitation 
and evaporation variability and its governing mechanisms.

Keywords Global water cycle · Clausius–Clapeyron · Multiscale analysis · Climate sensitivity · Detrended cross-correlation 
analysis · Climate variability

1 Introduction

The sensitivity of the global hydrological cycle to surface 
temperature variations is a critical question to understand and 
assess the impacts of climate change on water and energy 
balances. Despite some significant advances, the problem 
remains largely open reflecting the currently limited under-
standing of the relationships that exist among key components 
of the water cycle on various spatial and temporal scales.

An important mechanism for the global hydrologi-
cal cycle variability is the Clausius–Clapeyron (C–C) 

relationship, which establishes a direct link between atmos-
pheric saturation vapor pressure, es , and temperature, T:

where L is the latent heat of vaporization and R is the 
gas constant. At temperatures typical of the lower tropo-
sphere in the present climate, the saturation vapor pressure 
increases by about 7% for a 1 − K increase in temperature, 
i.e. � ≈ 0.07 K− 1. Assuming constant relative humidity, the 
C–C relation further implies that the fractional change in 
global mean atmospheric precipitable water ( �W∕W ) is pro-
portional to temperature fluctuations, �T , with a scaling ratio 
of about 7%  K− 1 (see e.g. Held and Soden 2006):

(1)
d ln es

dT
=

L

RT2
≡ �(T),

(2)
�W

W
≈ ��T ,
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Numerous studies have provided a robust confirmation 
for the linear relationships between fluctuations of global-
averaged W  and T  at multi-decadal to centennial time-
scales, and have also reported a similar direct proportional-
ity between changes in precipitation ( �P∕P ) and �T  (e.g. 
Boer 1993; Betts 1998; Trenberth 1998, 2011; Wentz and 
Schabel 2000; Allen and Ingram 2002; Trenberth et al. 2005; 
Held and Soden 2006; Gu et al. 2007; Wentz et al. 2007; 
Adler et al. 2008, 2017; Stephens and Ellis 2008; Allan et al. 
2010; Schneider et al. 2010; O’Gorman and Muller 2010; 
Liu and Allan 2012; Singleton and Toumi 2013). However, 
while the C–C (~ 7%/K) scaling seems to apply to changes 
in global-mean atmospheric water vapor at very long time-
scales, large spread has been reported for the global-mean 
precipitation sensitivity to temperature, typically estimated 
to be in the 1–3%/K. One admitted explanation for this 
discrepancy between W  and P sensitivity to T  is the radia-
tive constraint imposed by outgoing long-wave radiation 
that must radiate back to space the latent heat associated 
with precipitation (Allen and Ingram 2002; Stephens and 
Ellis 2008). Similar arguments can be used for the sensitiv-
ity of global-mean evaporation to temperature, which should 
not differ vastly from 1 to 3%/K quoted above, as they are 
also strongly energetically constrained (see e.g. Schneider 
et al. 2010; Trenberth 2011).

If the C–C relationship was the dominant mechanism of 
global-mean W , P or E variation with temperature, then these 
time-series could be expected to display strong correlations to 
the global-mean surface temperature ( TS ) time-series. Gu and 
Adler (2011, 2012) used satellite-based observations (com-
plemented by a reanalysis product for W over land) and found 
very high correlations between the inter-annual variability of 
global-averaged W and Ts , in agreement with the C–C rela-
tionship. The high correlation values held when global-ocean 
or global-land averages where considered. Additionally, they 
reported much weaker (but significant) correlations between 
P and Ts at inter-annual time-scales over the full globe and 
global ocean, and non-significant correlation values (< 0.3) 
when global-land averaged time-series were considered. How-
ever, the information provided by correlations estimated at a 
single time-scale is insufficient, since it is a well-known fact 
that time-series of precipitation and other relevant atmospheric 
variables (including temperature, atmospheric moisture and 
wind) display a complex variability structure over a wide 
range of temporal scales (e.g. Pelletier 2002; Fraedrich and 
Blender 2003; Huybers and Curry 2006; Rybski et al. 2008; 
Vyushin and Kushner 2009; Vyushin et al. 2009; Lovejoy and 
Schertzer 2013; Lovejoy 2015; de Lima and Lovejoy 2015; 
Henriksson et al. 2015; Fredriksen and Rypdal 2016; Nogue-
ira 2017a). Furthermore, this complex multiscale structure 
has been shown to play a role (at least) as important as the 
large amplitude periodic components (diurnal and sea-
sonal) for many atmospheric variables (e.g., Lovejoy 2015; 

Nogueira 2017a). However, a deep understanding of the 
underlying governing mechanisms at different time-scales 
remains largely elusive. In this sense, the statistical relation-
ship between various atmospheric fields as a function of time-
scale is an important but often neglected topic.

The detrended cross-correlation analysis (DCCA), first pro-
posed by Podobnik and Stanley (2008), allows to accurately 
quantify power–law correlations between two different time-
series over wide ranges of time-scales. Recently, Piao and Fu 
(2016) employed DCCA to daily near-surface temperature 
and relative humidity time-series obtained from four stations 
located in China. They found different signs of correlation 
between monthly and annual time-scales, which they associ-
ated to different governing processes. Subsequently, Nogueira 
(2017b) employed DCCA to satellite-based and reanalysis 
datasets and found that precipitation over the wettest regions 
on the planet (the Intertropical Convergence Zone and the 
Atlantic and Pacific storm-tracks) displays tight correlations 
with moisture divergence at monthly to decadal time-scales, 
but barely no correlation to local surface temperature, i.e. the 
regional precipitation over the wettest regions is governed by 
dynamics, not thermodynamics. Lovejoy et al. (2017) used a 
Haar fluctuations to show that the coupling of air temperature 
fluctuations over land and SST abruptly changes from very 
low to very high at time-scales larger than about 1–2 years. 
Building on these recent works, the present investigation uses 
DCCA to explore the statistical relations between the global 
water cycle (namely W  , P and E time-series) and Ts over a 
wide range of time-scales (from a few days to about a decade), 
considering several state-of-the-art observational and model-
based (including reanalysis) datasets. The goal is to provide 
further clues to the understanding of its complex multi-scale 
structure and the associated physical mechanisms, focusing 
particularly on the role of the C–C relationship. Simultane-
ously, a comparison of the global water cycle variability in 
the different climate datasets considered is presented under 
a multi-scale framework. The datasets and the multiscale 
analysis methodologies considered in the present manuscript 
are presented in Sect. 2. The results are presented in Sect. 3, 
including the multiscale spectral analysis of W , P , E and Ts 
variability over the full globe, global ocean and global land, 
and an application of DCCA to study sensitivity of global 
water cycle time-series to temperature fluctuations. Finally, 
the main results are summarized and discussed in Sect. 4.

2  Data and methodology

2.1  Datasets

In the present investigation, gridded datasets of monthly 
average surface temperatures were obtained from the Hadley 
Centre and the Climatic Research Unit (HadCRUT) version 
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4.5 (Morice et al. 2012) and from Goddard Institute for 
Space Studies (GISSTEMP) analysis (Hansen et al. 2010). 
The HadCRUT dataset covers the globe at 5° resolution, 
from 1850 to present, and the values are provided as anoma-
lies relative to the 1961–1990 reference period. This dataset 
is a blend of the CRUTEM4 land surface air temperature 
dataset and the HadSST3 sea surface temperature (SST) 
dataset. The GISSTEMP covers the globe at 2° resolution, 
from 1880 to the present, and the values are provided as 
anomalies relative to the 1951–1980 reference period. The 
GISSTEMP analysis specifies the temperature anomaly at a 
given location as the weighted average of the anomalies for 
all stations located within 1200 km of that point, with the 
weight decreasing linearly from unity for a station located 
at that point to zero for stations located 1200 km or farther 
from the point in question (Hansen et al. 2010).

Precipitable water observations were obtained from 
Remote Sensing Systems (RSS) Special Sensor Microwave 
Imager (SSM/I) version-7, extending from 1988 to present 
(Wentz 1997; Wentz et al. 2007). This is a monthly data-
set covering the ice-free ocean areas at 1° resolution, con-
structed by intercalibrating the measurements from several 
different satellites for each channel at the radiance level, and 
then using a common algorithm to retrieve the precipitable 
water.

Rainfall observations were obtained from the Global Pre-
cipitation Climatology Project (GPCP) version 2.3 monthly 
precipitation dataset (Adler et al. 2003), which covers the 
globe at 2.5° resolution from 1979 to the present. GPCP is 
produced by merging a variety of data sources, including 
passive microwave-based rainfall retrievals from the SSM/I 
and the special sensor microwave imager sounder (SSMIS), 
infrared (IR) rainfall estimates from geostationary and polar-
orbiting satellites, and surface rain gauges.

Rainfall observations were also obtained from the Cli-
mate Prediction Center (CPC) Merged Analysis of Pre-
cipitation (CMAP) monthly precipitation dataset (Xie and 
Arkin 1997), which covers the globe at 2.5° resolution from 
1979 to present. The values are obtained from rain gauge 
data combined with five kinds of satellite estimates—SSM/I 
scattering, SSM/I emission, Outgoing Longwave Radia-
tion Precipitation Index (OPI), Geostationary Operational 
Environmental Satellite (GOES) precipitation Index (GPI), 
and Microwave Sounding Unit (MSU). Additionally, the 
enhanced version of CMAP considered here also includes 
blended NCEP/NCAR reanalysis precipitation values.

Finally, rainfall and evaporation observations were 
obtained from the Hamburg ocean atmosphere param-
eters and fluxes from satellite data (HOAPS) version 3.2 
monthly dataset, provided at 0.5° resolution from 1987 
to 2008. In HOAPS, precipitation and evaporation are 
derived from SSM/I radiometers observation over the ice-
free global ocean. The evaporation is based on the coupled 

ocean–atmosphere response experiment (COARE) bulk 
flux algorithm. The precipitation is based on a neural net 
approach, trained with a data set of assimilated SSM/I 
brightness temperatures and the corresponding precipitation 
values of the ECMWF model (for details, see Andersson 
et al. 2010).

Despite the critical importance of satellite observations 
for atmospheric sciences, these datasets are limited in dura-
tion (particularly for climate studies), they often lack global 
coverage (e.g. W  and E are only available over the oceans), 
and they are affected by significant uncertainties in the algo-
rithms used for converting radiometric measurements, fre-
quently leading to significant differences amongst different 
satellite-based estimates (e.g. Gutowski et al. 2003; Sohn 
et al. 2010; Kidd et al. 2012; Gehne et al. 2016). Reanaly-
sis products, aim to fill the gaps through the assimilation 
of observations to comprehensive global physically based 
models of the climate system. The drawback of model-
based products is that they reflect the systematic errors of 
the global circulation models (GCMs) used to provide the 
forecast background (e.g. Trenberth et al. 2011; Lorenz 
and Kuntsmann 2012; Gehne et al. 2016; Bosilovich et al. 
2017). In the present investigation, three different reanaly-
sis products are considered, all of them spanning for more 
than 100 years with global coverage, hence appropriate for 
climate variability studies. Additionally, a similarly long run 
simulation, but without assimilation of observations, is also 
considered.

The European Centre for Medium Range Weather Fore-
casts (ECMWF) twentieth century reanalysis (ERA-20C, 
Poli et al. 2016) provides a long (1900–2010), gap-free 
gridded record of many climate variables. It uses ECMWF 
Integrated Forecasting System (IFS) atmospheric global cir-
culation model (cycle Cy38r1), assimilating marine surface 
winds from the International Comprehensive Ocean–Atmos-
phere Data Set version 2.5.1 (ICOADSv2.5.1) and surface 
and mean-sea-level pressure from the International Surface 
Pressure Databank version 3.2.6 (ISPDv3.2.6) and from 
ICOADSv2.5.1. The assimilation methodology is applied 
from the beginning of the twentieth-century using a 24-h 
4D-Var analysis. It also includes prescribed sea surface 
temperature ( SST  ) forcing at monthly time scales from the 
Hadley Centre Sea Ice and Sea Surface Temperature data set 
version 2.1. (HadISST2.1). The numerical simulation has 
91 vertical levels between the surface and 0.01 hPa with 
approximately 1° horizontal resolution. Poli et al. (2016) 
showed that the water cycle in ERA-20C features stable 
P–E global averages and no spurious jumps or trends. Also, 
they have reported a fair ability of this reanalysis to repre-
sent the observed interannual fluctuations of precipitation 
over land, although with distinct performances between the 
beginning and end-of-century. Furthermore, when compared 
to previous reanalysis products, ERA-20C represented an 
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improvement in the W anomalies compared to satellite data. 
All ERA-20C fields considered here were obtained at 6-h 
temporal resolution. Precipitation and evaporation were 
obtained directly from forecasts, where observations are 
only included in the initial conditions. The forecasts are 
integrated daily from 06 UTC. Precipitable water and sur-
face temperature were obtained from assimilated products. 
Here the surface temperature was obtained by compositing 
the SST  over the oceans with 2-m temperature 

(
T2m

)
 over 

land, mimicking the procedure used to build the HadCRUT 
dataset.

ERA-20CM (Hersbach et al. 2015) is a companion prod-
uct of ERA-20C, providing an AMIP-like ensemble of simu-
lations using the same model, initial conditions, radiative 
and aerosol forcings and lower boundary conditions. The 
main differences are that no observations are assimilated 
and the simulation is integrated continuously over the full 
1900–2010 period, in contrast to ERA-20C which is inte-
grated over daily analysis cycles. Here only the control 
member of the ERA-20CM ensemble is considered and 
the data was obtained as monthly means of daily means, 
since daily (or sub-daily) resolution was not available at the 
ECWMF website for all the required variables. ERA-20CM 
is meant to provide a statistical estimate of the climate evolu-
tion and a good description of the low-frequency variability 
of the atmosphere during the twentieth century.

Another companion product is the ECMWF coupled cli-
mate reanalysis of the twentieth century (CERA-20C). This 
is a 10-member ensemble reanalysis covering the 1901–2010 
period, based on ECMWF’s CERA data assimilation sys-
tem (Laloyaux et al. 2016). It is produced with IFS version 
Cy41r2, with the same forcings as the ERA-20C and ERA-
20CM products. It assimilates the same surface pressure and 
marine wind observations as ERA-20C, but also profiles 
of ocean temperature and salinity. The air–sea interface is 
relaxed towards the SST from HadISST2.1 to avoid model 
drift while enabling the simulation of coupled processes.

Finally, the National Oceanic and Atmospheric Admin-
istration Cooperative Institute for Research in Environmen-
tal Sciences (NOAA-CIRES) twentieth century reanalysis 
(20CR) version 2c (Compo et al. 2011) was also considered. 
It covers the full globe at 2° resolution, spanning from 1851 
to 2014. The 20CR variables considered here were obtained 
at daily resolution for the 1900–2010 period. 20CR uses 
the National Centers for Environmental Prediction (NCEP) 
Global Forecast System (GFS) along with an Ensemble 
Kalman Filter data assimilation technique (Whitaker and 
Hamill 2002). It assimilates only surface pressure observa-
tions and reports. SST  boundary conditions are obtained 
from 18 members of pentad Simple Ocean Data Assimila-
tion with Sparse Input (SODAsi) version 2, with the high lat-
itudes corrected to the centennial in situ observation-based 
estimates of the variability of SST and marine meteorologi-
cal variables, version 2 (COBE-SST2).

The main characteristics of the datasets considered in the 
present investigation are summarized in Table 1. Rather than 
focusing on the limitations and uncertainties associated with 
each individual product, the present study takes advantage 
of the availability of several climate databases of different 
origins to evaluate the robustness of the multi-scale structure 
revealed by spectral and DCCA analysis.

2.2  Detrended cross‑correlation analysis

In a temporal scaling regime, the fluctuations of a given 
time-series F display a power-law dependence on time-
scale ΔF(Δt) ≈ ΔtH , where H is a scaling exponent, and 
⟨⟩ indicates statistical averaging. It is traditional (and often 
sufficient) to define the fluctuations by absolute differences: 
ΔF(Δt) = |F(t + Δt) − F(t)| . However, this definition is only 
adequate for fluctuations increasing with time-scale (i.e. 
H > 0 ), but it does not estimate the fluctuations correctly 
when fluctuations decrease with time-scale (i.e. H < 0 ) 
(Lovejoy and Schertzer  2013). As will be seen in Sect. 3.1, 
the atmospheric time-series considered here display a H < 0 

Table 1  Summary of the main characteristics of the climate datasets considered in the present investigation

Product Data type Variables Period covered Temporal resolution Spatial resolution

ERA-20C Reanalysis (uncoupled) TS, P, E, W 1900–2010 6 h 1° × 1°
ERA-20CM GCM (uncoupled) TS, P, E, W 1900–2010 Monthly 1° × 1°
CERA-20C Reanalysis (coupled) TS, P, E, W 1901–2010 Monthly 1° × 1°
20CR Reanalysis (coupled) TS, P, E, W 1851–2012 Daily 2° × 2°
HadCRUT Satellite/station hybrid TS 1850–present Monthly 5° × 5°
GISSTEMP Satellite/station hybrid TS 1880–present Monthly 2° × 2°
RSS Satellite based W 1988–present Monthly 1° × 1°
GPCP Satellite/station hybrid P 1979–present Monthly 2.5° × 2.5°
CMAP Satellite/station hybrid P 1979–present Monthly 2.5° × 2.5°
HOAPS Satellite/model hybrid P, E 1987–2008 Monthly 0.5° × 0.5°
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regime at time-scales larger than a few months. Thus, simple 
mean absolute differences are not appropriate for the present 
purpose, and detrended cross correlation analysis (DCCA) 
was used instead. DCCA was first proposed by Podobnik and 
Stanley (2008) to accurately quantify power-law correlations 
between two different time-series over wide ranges of time-
scales. It is based on detrended fluctuation analysis (DFA), 
which has been shown to accurately quantify the fluctua-
tions in the −1 < H < 1 range (Lovejoy and Schertzer 2013). 
Notice that other methods could be used to estimate fluctua-
tions in both positive and negative H cases, such as the often 
used “Haar fluctuations” (Lovejoy and Schertzer 2013; Love-
joy 2015; Lovejoy et al. 2017; De Lima and Lovejoy 2015).

Consider two time-series, y and y′ , with N  data points 
each. Due to the strong yearly cycle present in the time-
series considered here, a preliminary step is required prior to 
employing DFA analysis: following Kantehardt et al. (2002), 
the periodic seasonal trend is eliminated by subtracting the 
long-term average (over all the years in the record) of each 
calendar day (or each month, for monthly time-series):

where yd denotes the climatological average value for the 
given calendar day (or month). This is repeated for both 
y and y′ . Notice that daily time-series are used for DCCA 
analysis from ERA-20C time-series, thus removing the daily 
periodic signal. All other datasets have daily or coarser reso-
lutions. Subsequently, two integrated signals, R and R′ , are 
constructed from the deseasonalized time-series using Eq. 4:

where k = 1,… ,N and yds is the mean of the deseasonalized 
time-series. The integrated signals are divided into N − n 
overlapping segments, each containing n + 1 values. The 
time-lagged correlations can be obtained by computing 
Rk+� =

∑k

i=1

�
yds(i) − yds

�
 with k + � = 1,… ,N (for details, 

see Chenhua 2015). For each segment from each integrated 
signal, the “local trend” is estimated using a first-order poly-
nomial. The detrended integrated signal is then defined as 
the difference between the original integrated signal and the 
local trend 

(
Rv − R̃v

)
 , where R̃v is the fitting first-order poly-

nomial to the v th segment Rv . Next, the covariance of the 
residuals in each segment is calculated as:

The detrended covariance is estimated by summing over 
all overlapping N–n segments:

(3)yds(i) = y(i) − ⟨y⟩d,

(4)Rk =

k�

i=1

�
yds(i) − ⟨y⟩ds

�
,

(5)fR,R�
2(n, i) =

1

n + 1

i+n∑

k=i

[
(Rv − R̃v)(Rv

� − R̃�
v
)
]
,

Finally, the DCCA cross-correlation coefficient at time-
scale n , �DCCA(n) , are defined as the ratio between the 
detrended covariance function and the product of the square-
rooted detrended variance function for each time-series:

The value of �DCCA(n) is in the [− 1,1] range and can be 
computed for different time-scales. DCCA has been previ-
ously demonstrated to accurately quantify power law scale-
dependent cross-correlations between different simulta-
neously recorded time-series (Podbnik and Stanley 2008; 
Horvatic et al. 2011; Piao and Fu 2016). Podobnik et al. 
(2011) have shown that critical points for the 95% signifi-
cance level of �DCCA can vary between values below 0.1 and 
up to about 0.4, dependent on the time series length, the 
considered time-scale, and the power law exponents of both 
time-series. Here it is assumed that �DCCA values below 0.3 
are nonsignificant, and that �DCCA values in the 0.3–0.4 range 
should be interpreted with care.

2.3  Spectral analysis

The Fourier spectral analysis is an alternative way to inves-
tigate the presence of scaling behavior over wide ranges of 
time-scales, manifested as log–log linearity of the power 
spectrum, E(f ):

where f  represents frequency and � is the spectral scaling 
exponent. Spectral analysis has the advantage of represent-
ing a simple framework, often familiar to atmospheric sci-
entists, and is quite sensitive not only to the presence of 
scaling behavior but also to scaling breaks and other types of 
deformation of the power–law behavior. Here the intermit-
tency correction is neglected as a simplification, correspond-
ing to the case where the fluctuations are quasi-Gaussian. 
This approximation generally applies to atmospheric fields 
at time-scales between a few months and a about a dec-
ade (Lovejoy 2015; de Lima and Lovejoy 2015; Lovejoy 
et al. 2017), where the spectral exponents were estimated 
in the present study. Under this approximation, � is trivially 
related to H by the following equation (e.g. Lovejoy and 
Schertzer 2013):

Equation 9 states that for the case where the mean 
fluctuations increase with time-scale, i.e. a statistically 

(6)F2

R,R� (n) =
1

N − n

N−n∑

i=1

f 2
R,R� (n, i),

(7)�DCCA(n) =
F2

R,R� (n)
√

F2

R,R
(n) ×

√
F2

R�,R� (n)

,

(8)E(f ) ∝ f −� ,

(9)� = 1 + 2H,
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nonstationary process with H > 0 , the spectral exponent 
is 𝛽 > 1 . On the other hand, for the case where the mean 
fluctuations decrease with time-scale, i.e. a statistically sta-
tionary process with H < 0 , the spectral exponent is 𝛽 < 1.

Here the global spectrum was computed by ensemble 
averaging over all individual spectra from each grid point, 
hence considering that each grid point time-series cor-
responds to a different realization of the same stochastic 
process, as is the common procedure in scaling analysis of 
atmospheric fields (see e.g. Lovejoy and Schertzer 2013; 
Fredriksen and Rypdal 2016). The spectral exponent is esti-
mated by a linear fit to the log–log power spectrum. To more 
uniformly weight the estimate and reduce noise, spectra are 
binned into uniform log-frequency intervals and averaged 
prior to fitting � , as commonly done in this type of analysis 
(e.g., Huybers and Curry 2006; Lovejoy and Schertzer 2013; 
Fredriksen and Rypdal 2016). Furthermore, the frequencies 
around the annual period and the respective harmonics are 
removed prior to the log-binning by excluding an adequate 
length frequency window around each peak, following Huy-
bers and Curry (2006). This step ensures that the effect of 
these high-amplitude isolated peaks does not affect the � 
estimation. A preliminary analysis showed that the different 
spatial and temporal resolutions of the datasets considered 
here (see Table 1) have no impact on the global-scale DCCA 
and spectral analysis presented in Sect. 3. None of the results 
and conclusions presented in the present manuscript were 
changed by first interpolating the datasets to coarser resolu-
tions, before the multiscale analysis was employed. Thus, the 
original resolution of the datasets was preserved to avoid the 
further complications and spurious artifacts introduced by 
spatial interpolation techniques.

3  Results

3.1  Spectral analysis

The global-mean spectra of Ts , W  , P and E display signifi-
cant variability over a wide range of temporal scales, super-
posed on the high-amplitude peaks of the yearly and daily 
periodic signals (Fig. 1). Notice that the HadCRUT4 and 
GISSTEMP time-series represent anomalies, thus represent-
ing deseasonalized time-series. Consequently, their respec-
tive spectra in Fig. 1a show highly smoothed yearly peaks. 
An important feature that is present for both higher temporal 
resolution datasets (ERA-20C and 20CR) in all the consid-
ered variables is a clear transition between steeper slopes at 
short time-scales (below about 10 days) and a much flatter 
region at longer time-scales. The (curved) transition scale 
range in the global-averaged Ts spectrum (Fig. 1a) extends 
between about 10 days and 3 months, much wider than 
the more abrupt transitions in W  (Fig. 1b) and E (Fig. 1d) 

spectra occurring around 10  days. For the P spectrum 
(Fig. 1b), the change in the slopes is less pronounced (par-
ticularly for ERA-20C), but the transition is still present, 
occurring at time-scales around 10 days. As discussed in 
Lovejoy (2015), this ubiquitous transition separates a high-
frequency weather regime that extends up to about the syn-
optic time-scales (~ 10 days), from a low-frequency weather 
regime (often denoted by macroweather) that extends up to 
a few decades. The dashed-dotted lines in Fig. 1 show that 
the weather regime for Ts , W  and E are characterized by � 
> 1, i.e. statistically non-stationary behavior, and thus the 
fluctuations tend to increase with increasing time-scale. For 
P spectra, � is closer to 1, being slightly below in ERA-
20C and slightly above for 20CR. A time-series with � ≈ 1 
will maintain the amplitude of its fluctuations as time-scale 
increases. For the macroweather regime, � < 1 values are 
found for all time-series, i.e. statistically stationary behavior, 
and thus the amplitude of the fluctuations tends to decrease 
with increasing time-scale, hence implying a convergence 
toward the ‘climate normal’ at time-scales of a few dec-
ades. Notice that � cannot be robustly quantified here for the 
weather regime given the very short range of scales available 
for this regime in both ERA-20C an 20CR datasets, made 
worse by the presence of strong diurnal peaks in ERA-20C.

Another transition has been reported at time-scales larger 
than a few decades, where the climate regime emerges, and 
fluctuations tend to grow with increasing time-scale (i.e. 
� > 1). Figure 1 shows some hints of this transition at multi-
decadal time-scales, although there is considerable disagree-
ment between datasets on the position and magnitude of 
this transition. For example, there is a transition to steeper 
slopes in the global  TS spectra (Fig. 1a) in all datasets except 
HadCRUT4. P and E spectra (Fig. 1c, d respectively) also 
suggest a similar transition in ERA-20C, CERA-20C and 
20CR, but not in ERA-20CM. In contrast, the transition to 
the climate regime in global W spectra (Fig. 1b) is less pro-
nounced or inexistent at time-scales up to about 50 years. 
However, it is important to notice that due to the limited 
length of the considered datasets the spectral resolution at 
these large time-scales is very low and the results should be 
interpreted with care.

The macroweather spectral slopes were quantified for 
ERA-20C and 20CR (see Table 2). Both datasets have a 
large amount of data-points over the macroweather scale 
range, thus allowing a robust (log–log) linear regression. 
Overall, 20CR reanalysis showed slightly larger � values 
than ERA-20C, although the differences are mostly within 
the typical 0.1–0.2 error margin in � estimation (see e.g. 
Barros et al. 2004; Nogueira and Barros 2015). The spec-
tral slopes associated with global-averaged Ts and W  in the 
macroweather are slightly larger than for P and E , but again 
the differences are within the 0.1–0.2 margin. The spectral 
slopes for the other datasets were not estimated directly due 
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to short length of these monthly time-series resulting in 
coarse spectral resolution, particularly at the larger temporal 
scales (specially for the satellite based products restricted to 
the last four decades or so). Nonetheless, visual inspection 
of Fig. 1 shows that � obtained by averaging the spectral 
slopes from ERA-20C and 20CR fits to a good approxima-
tion the respective global-mean spectra of Ts , W  , E and P 
from all other datasets, for a scale range extending from 
about 3 months to about a decade. In fact, the results show 
an overall good agreement of the slopes in the macroweather 
scale range amongst the different datasets. Notice that the 
agreement is somewhat degraded at scales larger than about 
10 years. But a rigorous analysis of such large time-scales 

is not possible due to the limited length of the time-series 
(at most ~ 110 years), and these differences should be inter-
preted with care.

The main features of the global-mean spectra of Ts , W  , P 
and E spectra are also present in the spectra computed sepa-
rately over the global ocean (Fig. 2) and global land (Fig. 3): 
the significant variability across the considered range of 
scales superposed on the periodic peaks (yearly, daily and 
respective harmonics), the weather-to-macroweather regime 
transition with flatter slopes ( 𝛽 < 1 ) in the latter, and the 
generally good agreement of the common (3-monthly to dec-
adal) portion of the spectra between all the considered data-
sets (model based and observational) for all the considered 

Fig. 1  Power spectra in log–log axis computed from the different 
model-based and satellite-based datasets for global-mean time-series 
of a T

s
 , b W , c P and d E . The black dashed line represents the esti-

mated spectral exponent averaged between ERA-20C and 20CR (see 
Table 1). The black dashed–dotted line represents � = 1

Table 2  Spectral exponents 
estimated for  TS, W, P and E 
time-series from ERA-20C and 
20CR data, averaged over the 
full globe, global ocean and 
global land

The � values averaged between both datasets are also presented

Global Ocean Land

ERA-20C 20CR Avg ERA-20C 20CR Avg ERA-20C 20CR Avg

T
s

0.35 0.39 0.37 0.51 0.55 0.53 0.24 0.29 0.27
W 0.40 0.48 0.44 0.43 0.51 0.47 0.27 0.40 0.34
P 0.26 0.34 0.30 0.27 0.36 0.32 0.17 0.27 0.22
E 0.27 0.33 0.30 0.25 0.31 0.28 0.32 0.50 0.41
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variables. An interesting difference between land and ocean 
spectra is the weather-to-macroweather transition time-scale 
for  TS, which is ~ 1 month over land (Fig. 3a), and much 
closer to 1 year over the oceans (Fig. 2a). This difference is 
in agreement with Lovejoy (2015) predictions: the higher 
(lower) magnitude turbulent fluxes associated with the 
atmosphere (ocean) result in a shorter (longer) time-scale 
of transition between weather and macroweather, occurring 
around 10 days (1 year).

The land spectra show a somewhat weaker agreement 
amongst different datasets (Fig. 3). Specifically, ERA-20CM 
displays slightly flatter macroweather spectra compared to 
the other datasets for all considered variables, although these 
differences are more pronounced at scales larger than about 
10 years, for which the analysis of the spectrum is not robust. 
Another notorious feature is a fast drop in HOAPS E vari-
ability at scales below about 1 year, which should be a spuri-
ous artifact of this dataset given its abruptness compared to 
all variables in all other datasets.

Table 2 shows that � values for Ts spectra over the global 
ocean are steeper (~ 0.5–0.6) compared to global land 
(~ 0.2–0.3) or to the full globe (~ 0.4). Previously, Nogueira 
(2017b) showed that SST in reanalysis products displays spu-
rious abrupt drop in variability at time-scales below a few 

months over vast regions of the globe due to the monthly 
resolution of the forcing dataset. This fact could explain 
the steeper oceanic slopes obtained here. Nonetheless, the 
steeper slopes found here for reanalysis products agree 
with the observational dataset spectra (HadCRUT and GIS-
STEMP) and may have a physical basis, associated with the 
presence of stronger forcings (and variability) at larger time-
scales over the oceans, due to the longer time-scales associ-
ated with oceanic processes compared to land. Furthermore, 
several previous studies have reported significant variation 
of the temperature macroweather scaling exponents between 
oceans and land, although with significant spread amongst 
the exact quantitative estimates depending on the particular 
methodology and dataset, but corresponding to 𝛽 < 1 in all 
cases (see Lovejoy 2015 for a review and discussion). The W 
and P spectral exponents are also slightly larger over oceans 
compared to land, but only by about 0.1. Notice that the 
estimates of the P spectral slopes in Table 2 are close to the 
estimates by de Lima and Lovejoy (2015) of � ∼ 0.2 for 
ocean, land and full globe obtained using a different tech-
nique to estimate the scaling exponents from three datasets 
(20CR, a different satellite-based product and a gridded 
station-based product). For evaporation, the spectral expo-
nents are slightly larger over land (~ 0.3–0.5) than over the 

Fig. 2  Same as Fig. 1but the spectra are computed for global ocean only
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ocean (~ 0.2–0.3). Additionally, for E over land the transition 
between flatter large-scales and steeper small-scales seems 
to occur at higher time-scales (close to 1 year). This behavior 
reflects the complex land–atmosphere interactions, includ-
ing the limited moisture availability over land in contrast to 
the infinite oceanic source. However, a detailed analysis of 
this behavior is beyond the scope of the present manuscript.

3.2  DCCA 

In the present section, DCCA is employed to study how the 
complex variability structure found in the previous section 
for large-scale W  , P and E may be related to the complex 
variability of Ts time-series, taking into consideration the 
C–C relationship. Figure 4 shows �DCCA at lag-zero for 
time-scales between 5 days and 9 years. The non-periodic 
component of global-mean W  and Ts time-series are very 
tightly correlated 

(
�DCCA ∼ 0.9

)
 at time-scales larger than 

about 3 years (Fig. 4a, b), in tight agreement with the C–C 
relationship. However, �DCCA decreases rapidly for shorter 
time-scales and negligible correlations are found at time-
scales below about 6 months. Similar transitional behav-
ior is found for W  vs Ts across all model based datasets for 
full globe averages, but also when considering the global 

oceans (Fig. 5a, b) or global land (Fig. 6a, b) separately. 
Additionally, similar transitional behavior is also found for 
RSS against GISTEMP or HadCRUT (Fig. 5a). The results 
also show that the high correlations between W  and Ts at 
large-temporal scales are stronger over the ocean (nearly 
0.9) compared to land, particularly for ERA-20CM and 
CERA-20C where maximum correlations over land decrease 
to about 0.7. Interestingly, Lovejoy et al. (2017) reported a 
similar transitional behavior for the correlation between air 
temperature over land and over the ocean. They suggested 
that high correlations at multi-year time-scales corresponds 
to strong atmosphere/ocean coupling, while the low correla-
tions at shorter time-scales corresponds to an uncoupling of 
atmospheric and ocean variability.

The multi-scale correlation structure of global-mean P 
against Ts shows a larger spread amongst different data-
sets (Fig. 4c, d). The products based on ECMWF model 
(ERA-20C, ERA-20CM and CERA-20C) show an increase 
in �DCCA , from negligible values at time-scales below a 
few months to values between 0.7 and 0.8 at time-scales 
larger than a few years, analogous to the behavior found 
for W  against Ts . 20CR reanalysis shows a slower increase 
of �DCCA , which reaches lower maximum correlation values 
(slightly below 0.6). The increase is even slower for GPCP 

Fig. 3  Same as Fig. 1but the spectra are computed for global land only
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against HadCRU or GISSTEMP, from nearly zero correla-
tions at scales of a few months to only ~ 0.4 at 3–4 years. 
Finally, CMAP shows 𝜌DCCA < 0.2 (negligible) for all the 
considered time-scales. Hence there is significant discrep-
ancy between different climate models and even larger when 
satellite-based products are considered. These differences 
range from a good agreement with the C–C scaling of pre-
cipitation at scales larger than a few years to no significant 
correlations at these same temporal scales. It is important to 

notice that the fact that correlations are low does not mean 
that C–C is not important. It might be the case that various 
forcings may work at different time-scales in controlling the 
precipitation variability.

The multi-scale correlation structure between global-
mean E and Ts in model based products (Fig. 4e, f) is simi-
lar to the behavior found for global-mean P and Ts , with 
ECMWF models showing �DCCA varying between nearly 
zero values at scales below a few months to values > 0.7 at 

Fig. 4  DCCA cross-correlation coefficients against temporal scale 
computed for global-mean time-series of a, b W vs T

s
 ; c, d P vs T

s
 ; 

and e, f E vs T
s
 . In the left column only the 1979–2016 is considered 

(or sub-sets of this period depending on the particular dataset record 
length), while in the right column the full 1900–2010 period is con-
sidered (1901–2010 for CERA-20C)
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scales larger than a few years. 20CR shows a much more 
modest increase to values only slightly above 0.4 (only 
marginally significant). No observational products are 
available for E over land, and thus, nor for global scale.

Over the oceans, the correlation of P against Ts for model 
products is analogous to what was found for the full globe, 

but with larger discrepancy between maximum �DCCA in 
ECMWF models (~ 0.7–0.8) and 20CR (~ 0.5) at long time-
scales. Another relevant difference is the increase in the cor-
relation of GPCP against HadCRUT, reaching values around 
0.6 at 3- to 4-year time-scales, after growing significantly 
from near zero values at time-scales of a few months. The 

Fig. 5  Same as Fig. 4, but for time-series averaged over global ocean only
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maximum correlation is reduced to around 0.4 for GPCP 
against GISSTEMP. Again, negligible correlations are 
obtained when CMAP is considered. Finally, for HOAPS P 
�DCCA grows from nearly zero correlations to values around 
0.8, both against HadCRUT and GISSTEMP. Notice, how-
ever, that due to the short record length of HOAPS dataset, 
the high �DCCA values found for HOAPS P (Fig. 5c) and 
low �DCCA found for HOAPS E product (Fig. 5e) should be 
interpreted with care. Nonetheless, the disparity in the multi-
scale correlation structure for long-temporal over the oceans 

for different datasets is large, ranging from negligible cor-
relations to large �DCCA values.

For E against Ts over the ocean the results are nearly 
identical to the full globe. However, in the former case a 
satellite-based product is available (HOAPS), which shows 
negligible correlations at all the considered time-scales, 
in clear contrast with the ECMWF model based products 
and slightly lower than the 0.4 maximum correlations in 
20CR. However, as pointed out above, the HOAPS E has a 
short record length. Furthermore, the HOAPS E spectrum in 
Fig. 2d showed a seemingly spurious variability structures 

Fig. 6  Same as Fig. 4, but for time-series averaged over global land only
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at scales below about 1-year, which could significantly 
influence the correlations and hence the results should be 
interpreted with care. Finally, for time-series averaged over 
global land, no significant correlations were found between 
P and Ts nor between E and Ts for all the available datasets, 
with all ||�DCCA|| below about 0.2 (Fig. 6c–f).

Notice that the multiscale structure �DCCA from model 
based products, either showing a sharp increase between 
fast and slow time-scales or a constant negligible correlation 
across scales does not change when only the analysis is per-
formed only for the satellite period (left column in Figs. 4, 
5, 6) or when the full 1900–2010 period is considered (right 
column in Figs. 4, 5 and 6). Additionally, the use of different 
reference climatological periods to deseasonalize the time-
series (e.g. 1951–1980, 1961–1990 or 1981–2010) produced 
changes below 0.05 in �DCCA estimates (not shown). Fur-
thermore, the differences in �DCCA remain below 0.03 when 
2-m temperature or land/sea-surface temperatures are used 
over the full globe instead of their composite (see Sect. 2.1), 
or when total atmosphere column water (including liquid) 
is used instead of W  (not shown). This consistency of the 
�DCCA multi-scale structure provides further robustness to the 
present results. Notice also that the similarity between the 
multi-scale correlation structure for all considered variables 
between ERA-20C, ERA-20CM and CERA-20C datasets 
suggest that the data assimilation and the atmosphere–ocean 
coupling methodologies do not significantly impact the sen-
sitivity of the global water cycle on surface temperature.

3.3  Lagged DCCA 

In the previous section, the hypothesis that the correlations 
of global scale W  , P and E against Ts times-series could be 
lagged was not considered. This is a potential explanation 
for the sharp decrease in correlations at time-scales below 
a few years. In fact, Gu and Adler (2011, 2012) did find the 
maximum correlation-coefficients of similar time-series at 
inter-annual scale to occur at a few months. This hypothesis 
is tested in the present section using lagged-DCCA.

For all model based datasets, the multi-scale correlation 
structure global-mean W and Ts time-series shows negligible 
values (<0.3) at time-scales below a few months, regardless 
of the considered lag (Fig. 7). As the time-scale increases, 
�DCCA increases rapidly with maximum values centered 
at lags close to zero, reaching values > 0.8 for time-scale 
larger than a few-years. Consequently, the multi-scale cor-
relation structure at lag zero in Fig. 4a, b represents well 
the correlation structure between global-mean W  and Ts . 
Figures 7, 8 and 9 show that all the main results on the cor-
relations global-mean P or E against Ts time-series at lag 
zero presented in the previous section are also essentially 
unchanged by considering the possibility of lagged correla-
tions. Although the actual maximum correlation might occur 

at lags of a few months in some cases (e.g. global-mean P 
against Ts in CERA-20C, Fig. 7j), the differences to the lag-
zero are essentially within 0.1. It is important to notice that 
when the lag � is lower than the temporal resolution consid-
ered (i.e. n in Eq. 5), the lagged-DCCA method effectively 
overlaps a portion of the statistical information, which can 
obscure the results. Nonetheless, the present results confirm 
that the negligible correlations between P, E or W against 
 TS at time-scales below a few months is robust, even when 
a lag is considered. Furthermore, the presence of a transi-
tion to very high-correlations as the time-scale increases to 
multi-year time-scales is also robust, although the exact lag 
at which the maximum correlation occurs cannot be exactly 
determined by this methodology.

3.4  Sensitivity coefficient estimation

The sensitivity coefficient of precipitable water to surface 
temperature was estimated by linear regression following 
Eq. 2. The results presented in Table 3 were obtained by 
considering fluctuations of coarse-grained 3-yearly averaged 
time-series, after removing the respective linear trends. The 
3-year time-scale is chosen as representative of the longer-
scale high-correlation regime, while maximizing the num-
ber of data-points. The � values for cases where �DCCA is 
considered non-significant or unreliable (i.e. 𝜌DCCA < 0.4 ) 
are neglected (not computed). At the global-mean scale, W 
shows sensitivities in the 7–10%/K range, slightly above the 
typical 7%/K derived from the C–C relationship. The esti-
mated values are somewhat larger over the oceans (7–11%/
K) than over land (4–7%/K). The RSS vs GISTEMP shows 
the lowest sensitivity over the ocean (7%/K). This is also 
the dataset with the lowest regression coefficient, r2 = 0.47 
compared with r2 values in the 0.72–0.91 range for all other 
datasets. It also corresponds to the lowest �DCCA value in 
Fig. 5a. Hence, this value may be neglected, and the � range 
for the ocean becomes 9–11%/K. Although the results over 
ocean, land and full globe can differ slightly from the theo-
retical 7%/K, they agree with previous estimates of precipi-
table water sensitivity at global scales (see e.g. Schneider 
et al. 2010 for a review).

The sensitivity coefficients of global-mean P and E 
against Ts are both in the 3–4%/K range (with r2 in the 
0.45–0.62 range), which is close to the often reported 
1–3%/K. Over the ocean, the sensitivity of P to Ts fluctua-
tions display spreads over a wider range of values, 4–11%/K, 
which can be much larger than the typical 1–3%/K values. 
On the one hand, other previous works have also found 
larger precipitation sensitivities (over 6%/K) (e.g. Wentz 
et al. 2007). On the other hand, the � estimates have been 
shown to be highly sensitive to the length of the record used 
and spatial domain considered (Gu and Adler 2013; Adler 
et al. 2017). In fact, our results over the ocean show large 
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dispersion amongst datasets and low r2 values for the linear 
regressions, in the 0.10–0.65 range, being lowest for HOAPS 
P products which show the highest � values and have the 
shortest record length (1988–2008). In fact, neglecting the 
HOAPS P dataset, the sensitivity of P to Ts is in the range 
of 4–7%/K. This range is close to the 3–6%/K values found 
for the sensitivity of E to Ts over the ocean (with r2 in the 
0.65–0.66), and closer to the more typical 1–3%/K.

Finally, there are no significant correlations between P 
and Ts or E and Ts over land at none of the considered time-
scales, i.e. C–C is not a dominant mechanism of P or E vari-
ability over land, and thus � was not computed.

4  Summary and discussion

The components of the atmospheric branch of the global 
water cycle (precipitable water, precipitation and evapora-
tion) and near surface temperature showed significant vari-
ability over a wide range of time-scales (spanning from a 
few days up to a few decades), superposed on high amplitude 
daily and yearly periodic peaks. As pointed out in Sect. 2, 
all observational, model and reanalysis climate datasets are 
affected by various kinds of uncertainties and shortcomings. 
However, by comparing several state-of-the-art datasets of 
different origins, one can obtain a measure of the robust-
ness of the presented results. A ubiquitous property of  TS, 
P, E and W spectra taken over the full globe, global-land 
and global-oceans for both high temporal resolution datasets 
(ERA-20C and 20CR) was an abrupt change in the spectral 
exponents, corresponding to the weather to macroweather 
transition previously discussed by Lovejoy (2015). The 
weather regime characterizes the small time-scales, where 
β ≥ 1, and hence the amplitude of the fluctuations tends 
to increase or maintain with increasing time-scale. At 
larger time-scales, the spectra displayed significantly flat-
ter slopes across all the considered datasets and variables. 
This is the macroweather regime, where the spectral slopes 
are 0 < 𝛽 < 1 , and hence the fluctuations tend to decrease 
with increasing temporal scale (up to a few decades), thus 
implying a convergence towards the ‘climate normal’. Fur-
thermore, spectral analysis showed that all the considered 
satellite-based products, reanalysis and climate model simu-
lation display a generally good agreement on the representa-
tion of the macroweather regime, specifically in the spectral 
slopes. Notice that this agreement of the statistics over wide 

range of time scales is a necessary condition for agreement 
between two datasets, but it is not sufficient since each data-
set could represent a statistically independent realization of 
the same stochastic process (de Lima and Lovejoy 2015).

The weather to macroweather transition was estimated to 
occur at time-scales between about 10 days and 1 month for 
nearly all cases. The only exceptions were the spectra of  TS 
over the ocean (i.e. SST) and E over land, both displaying 
a transition at larger time-scales (around 1 year) in all the 
available datasets. The SST spectra is in agreement with 
Lovejoy (2015) theoretical prediction for the ocean weather 
to ocean macroweather transition scale, which should occur 
around 1 year due to the lower magnitude turbulent fluxes 
that characterize the oceans. The behavior of the land E spec-
tra should be associated with the complex land–atmosphere 
interactions, including the limited moisture availability over 
land in contrast to the infinite oceanic source, but further 
work is required on this topic. At time-scales larger than a 
few decades, a ‘climate regime’ should emerge where the 
amplitude of the fluctuations increases again with time-scale 
(as shown for temperature by Huybers and Curry (2006) and 
Lovejoy (2015). While there are some hints of this transition 
in the present investigation, the results should be interpreted 
with care given the limited record length of the considered 
datasets used.

All datasets also agree on the multiscale correlation struc-
ture of W against  TS, characterized by negligible correlations 
at time-scales below about 6 months, followed by a sharp 
increase to remarkably high �DCCA values at time-scales 
larger than a few years, reaching values > 0.8 (often ~ 0.9) 
for the full globe and global ocean, and within the 0.6–0.8 
range for global land. Interestingly, Lovejoy et al. (2017) 
found a similar behavior for the correlation between air 
temperature over land and over the ocean. They interpreted 
the high correlation multi-year time-scale range as the basic 
ocean/atmosphere coupling scale, itself corresponding to the 
transition from ocean weather to ocean macroweather. If this 
explanation is correct, then the transition in �DCCA found 
here has important implications. At time-scales shorter 
than about 6 months, the ocean is not a dominant drive of 
atmospheric water variability, i.e. W variability is not tightly 
coupled to SST. This is followed by a transition zone at time-
scales up to a few years, after which the atmosphere and the 
ocean start to act as a single coupled system. Particularly, 
the atmospheric water content becomes tightly coupled to 
the ocean surface temperature, with C–C playing the key 
variability mechanism.

Another robust feature across all datasets is that the 
C–C relationship is not the dominant variability mech-
anisms of P or E over land throughout the entire time-
scale range considered (a few days to about a decade), 
as shown by negligible �DCCA values. It is important to 
notice that that a weak correlation coefficient does not 

Fig. 7  DCCA lagged cross-correlation coefficients (color scale) as a 
function of temporal scale and temporal lag, � computed for global-
mean time-series of W vs T

s
 (leftmost column); P vs T

s
 (center col-

umn); and E vs T
s
 (rightmost column). Non-significant 𝜌

DCCA
< 0.3 

values are not shown. Only datasets where significant correlation val-
ues exist are shown, except for GPCP vs GISSTEMP which is nearly 
identical to GPCP vs HadCRUT in panel n

◂
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Fig. 8  Same as Fig. 7 but for time-series a veraged over global ocean only
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exclude a sensitivity of P to Ts , as pointed out by Gu and 
Adler (2012). Instead, it indicates the complexity of the 
relations between these two variables in that various forc-
ings may work at different time-scales and the dominant 
mechanisms may change. For example, the generation of 
precipitation requires not only moisture but also instabil-
ity and lifting, not all of which depends strongly on tem-
perature. In fact, Gu and Adler (2011) and Adler et al. 
(2017) found different responses of precipitation to sur-
face temperature fluctuations caused by ENSO or by large 
volcanic eruptions, due to differences in the respective 
dynamical responses, particularly in atmospheric stability. 
A further source of complexity comes from the non-mono-
tonic behavior of atmospheric water content and precipi-
tation sensitivity to temperature changes between colder 
and warmer climates (O’Gorman and Schneider 2008; 

Schneider et al. 2010; Caballero and Hanley 2012; Levine 
and Boos 2016).

The multiscale structure of the correlation between P 
and  TS over the ocean and the full globe shows relevant 
differences between the different datasets considered here. 
On the one hand, all datasets agree that C–C is not a domi-
nant control mechanism for the non-periodic variability 
of global P and E time-series at time-scales below about 
6 months, displaying negligible cross-correlation coeffi-
cients between P and Ts , and E and Ts . On the other hand, 
the results over the global ocean and full globe show large 
spread amongst different datasets on the importance of C–C 
for P and E variability at time-scales larger than a few years, 
ranging from negligible correlation values (< 0.3) to high 
correlations (between 0.6 and 0.8). This spread points to 
important uncertainties in the representation of the slow 
(macroweather) precipitation variability in the current 

Fig. 9  Same as Fig. 7 but for time-series averaged over global land only. Notice that over land P and E do not show any significant correlations 
against T

s
 in any of the considered datasets
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state-of-the-art datasets. Additionally, the results suggest 
that caution should be taken with the often-assumed linear 
sensitivity of P (or E) fluctuations to  TS (see e.g. Eq. 2) over 
the full globe and global-ocean averages, while this assump-
tion is not valid for global-land. Nonetheless, the estimates 
of the climate sensitivity coefficients for time-scales larger 
than a few years, and for the cases where significant correla-
tions exist, showed values close to the typical 7%/K derived 
from C–C relationship for W  . For P and E the � values are 
slightly larger than the most often reported range of 1–3%/K. 
But the match improves when the worst fits associated with 
lower cross-correlations and/or shorter record lengths are 
excluded.

Finally, notice that the multi-scale correlation structure 
found here is not changed by considering different analysis 
periods (satellite period of 1900–2010); nor different cli-
matological references periods; nor including atmospheric 

liquid water content; nor using 2-m temperature, surface 
temperature or a combination of both ( SST  over the sea and 
T2m over land); and, more importantly, it is not changed by 
considering the possibility of lagged-correlations, since the 
zero-lag value is always very close to the maximum correla-
tion. This provides further robustness to the results presented 
here.
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