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Abstract
The existence of two regimes for El Niño (EN) events, moderate and strong, has been previously shown in the GFDL CM2.1 
climate model and also suggested in observations. The two regimes have been proposed to originate from the nonlinearity 
in the Bjerknes feedback, associated with a threshold in sea surface temperature ( T

c
 ) that needs to be exceeded for deep 

atmospheric convection to occur in the eastern Pacific. However, although the recent 2015–16 EN event provides a new data 
point consistent with the sparse strong EN regime, it is not enough to statistically reject the null hypothesis of a unimodal 
distribution based on observations alone. Nevertheless, we consider the possibility suggestive enough to explore it with a 
simple theoretical model based on the nonlinear Bjerknes feedback. In this study, we implemented this nonlinear mechanism 
in the recharge-discharge (RD) ENSO model and show that it is sufficient to produce the two EN regimes, i.e. a bimodal 
distribution in peak surface temperature (T) during EN events. The only modification introduced to the original RD model 
is that the net damping is suppressed when T exceeds T

c
 , resulting in a weak nonlinearity in the system. Due to the damp-

ing, the model is globally stable and it requires stochastic forcing to maintain the variability. The sustained low-frequency 
component of the stochastic forcing plays a key role for the onset of strong EN events (i.e. for T > T

c
 ), at least as important 

as the precursor positive heat content anomaly (h). High-frequency forcing helps some EN events to exceed T
c
 , increasing 

the number of strong events, but the rectification effect is small and the overall number of EN events is little affected by this 
forcing. Using the Fokker–Planck equation, we show how the bimodal probability distribution of EN events arises from the 
nonlinear Bjerknes feedback and also propose that the increase in the net feedback with increasing T is a necessary condition 
for bimodality in the RD model. We also show that the damping strength determines both the adjustment time-scale and 
equilibrium value of the ensemble spread associated with the stochastic forcing.

Keywords El Niño · ENSO · Nonlinearity · Bjerknes feedback · Recharge-discharge model · Fokker–Planck equation · 
Eastern Pacific

1 Introduction

Theoretical models can be powerful tools to demonstrate the 
essential characteristics of a phenomenon, and can provide 
conceptual frameworks that guide further research, even 
if they are not capable of simulating every aspect of the 
dynamics of said phenomenon. In the case of El Niño-South-
ern Oscillation (ENSO), the main two conceptual models are 
the delayed oscillator (Suarez and Schopf 1988; Battisti and 
Hirst 1989) and the recharge-discharge oscillator (Jin 1997). 
These modelsprovide simple mathematical representations 
of how slow ocean dynamics interact with the fast tropical 
atmosphere to produce ENSO variability, at least as meas-
ured in the simplest way with a single equatorial Pacific sea 
surface temperature (SST) anomaly index.

This paper is a contribution to the special collection on ENSO 
Diversity. The special collection aims at improving understanding 
of the origin, evolution, and impacts of ENSO events that differ in 
amplitude and spatial patterns, in both observational and modeling 
contexts, and in the current as well as future climate scenarios. 
This special collection is coordinated by Antonietta Capotondi, 
Eric Guilyardi, Ben Kirtman and Sang-Wook Yeh.
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More recently, there has been a focus on the diversity 
among ENSO events (e.g. Capotondi et al. 2015), with most 
efforts focused on classifying EN events according to their 
spatial SST anomaly pattern, particularly whether they peak 
in the eastern or central Pacific (e.g. Larkin and Harrison 
2005; Ashok et al. 2007; Kug et al. 2009; Takahashi et al. 
2011). Alternatively or complementarily, ENSO events can 
be classified in terms of their intensity, e.g. strong vs moder-
ate (Takahashi et al. 2011; Capotondi et al. 2015; Takahashi 
and Dewitte 2016, hereafter TD16). Here we focus on the 
latter, particularly on our proposal that strong EN events (e.g. 
1982–83 and 1997–98) correspond to a separate dynamical 
regime associated with nonlinearity in the Bjerknes feedback 
(TD16). We found in observations and the GFDL CM2.1 
climate model that the convection and the zonal wind stress 
response to the surface warming in the eastern equatorial 
Pacific is a factor of three larger when the SST anomaly 
exceeds a positive (non-zero) threshold that corresponds to 
an absolute SST of around 27.5 ◦ C, consistent with previous 
studies on the activation of convection (Graham and Barnett 
1987). In the eastern Pacific, this threshold marks the tran-
sition from the typically stable regime over the equatorial 
cold tongue to the deep convective regime mainly associated 
with the extreme El Niño events. In the CM2.1, EN events 
were shown to have a bimodal distribution, with the local 
antimode that separates the two modes corresponding to a 
eastern Pacific SST anomaly consistent with the threshold 
SST found for the nonlinear Bjerknes feedback enhance-
ment. It should be noted, however, that the recent 2015–16 
EN event showed that extreme warming in the far-eastern 
Pacific is not a necessary condition for EN to become strong 
(L’Heureux et al. 2016; Dewitte and Takahashi 2017). Thus, 
in order to build a theoretical model of the two EN regimes, 
to first approximation it may not be necessary to explicitly 
consider the spatial distribution of the anomalies.

Although empirical high-dimensional linear ENSO mod-
els can reproduce the diversity in the SST patterns by ran-
dom processes alone (Newman et al. 2011), they can only 
simulate the asymmetry between of strong EN and La Niña 
(LN) events if nonlinearities are introduced (Chen et al. 
2016). The nonlinearity in the Bjerknes feedback has already 
been invoked in previous studies to explain the asymmetry 
in magnitude and duration between El Niño and La Niña 
(Frauen and Dommenget 2010; Dommenget et al. 2012; 
Choi et al. 2013, 2015). A theoretical model with nonlin-
ear ocean advection (Timmermann et al. 2003; An and Jin 
2004) produces strong EN in the form of “bursts” as part of 
complex self-sustained nonlinear oscillations, but these only 
have a weak resemblance to observations. Furthermore, the 
nonlinear advection appears more relevant for the mainte-
nance rather than for the growth of EN in nature (Su et al. 
2010; TD16). It has also been been suggested that tropical 
instability waves provide a weaker damping El Niño (An 

2008) and that ocean waves could respond stronger to the 
winds also during El Niño (An and Kim 2017). Another non-
linearity that can amplify warm EN events is “multiplicative 
forcing”, by which the amplitude of the stochastic forcing is 
enhanced as T increases, either only the positive (westerly 
wind burst) forcing (Roulston and Neelin 2000; Eisenman 
et al. 2005; Gebbie et al. 2007; Gebbie and Tziperman 2009) 
or both positive and negative phases of the forcing (Levine 
and Jin 2010, 2015; Levine et al. 2016). Although all these 
nonlinear mechanisms could contribute to ENSO, no study 
to our knowledge has addressed the origin of strong and 
moderate dynamical regimes of El Niño (warm) events. For 
this, we introduce Tc greater than zero, which from a dynam-
ical perspective is an important qualitative difference from 
previous studies because it introduces an asymmetry within 
El Niño itself rather than between El Niño and La Niña.

In this paper, we build upon the simplest version of the 
recharge-discharge (RD) ENSO model (Jin 1997; Burgers 
et al. 2005) in order to create a minimal ENSO model that 
can simulate strong and moderate EN regimes. We do so by 
suppressing the net damping that results from the Bjerknes 
and other feedbacks acting on T whenever the latter exceeds 
a positive threshold Tc , which can be qualitatively inter-
preted as the value required for the eastern Pacific absolute 
SST to exceed 27.5 ◦ C (TD16). This model focuses only on 
the strength of El Niño events as a first approximation to 
ENSO diversity, neglecting the spatial distribution or sea-
sonal effects, or nonlinear processes specific to La Niña. We 
consider state-independent (additive) forcing, although we 
briefly address the effect of multiplicative forcing. Despite 
the strong simplifications, we show that this model repro-
duces two EN regimes and provides insights into the role of 
the stochastic forcing in El Niño diversity and predictability.

2  Recharge‑discharge model

Our stochastically-forced nonlinear RD oscillator is given 
by:

where T is interpreted as the SST anomaly (K) in the Niño 3 
region (150◦W–90◦ W, 5 ◦S–5◦ N) and h is the mean equato-
rial 20 ◦ C isotherm depth anomaly (in decameters or dam; 
140◦E–80◦ W, 5 ◦S–5◦N), approximately equivalent to the 
mean thermocline depth or heat content anomaly. This is 
almost identical to the “simplest” recharge-discharge model 
of Burgers et al. (2005) except that the coefficient of T in the 
T-budget is nonlinear:

(1)
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i.e. the damping is deactivated when T exceeds Tc.
Since the mean climatological Niño 3 SST is 26 ◦ C, if 

we take Tc as the value needed to reach 27.5 ◦ C in order 
to activate the enhanced Bjerknes feedback (TD16) then 
Tc = 1.5 K. In addition to the results discussed in the previ-
ous section, the analysis of recent (1995–2016) observed 
Niño 3 SST anomalies and eastern-central Pacific zonal 
wind pseudo-stress confirms the nonlinear relation with a 
threshold of around 1.3 K, consistent with our selection for 
Tc (Fig. 1). We also note that the 2015–2016 El Niño also 
shows the nonlinear enhancement even though the warming 
in the far-eastern Pacific was not as strong as in 1997–1998 
(L’Heureux et al. 2016).

We note that aNL is the net feedback, which not only 
includes the atmospheric component of the Bjerknes 
feedback but also the adjustement of the thermocline and 
ocean currents, the damping by surface heat fluxes and 
cloud response (cf. the BJ index of Jin et al. 2006). This 
also includes the nonlinear radiative cloud feedback that 
enhances damping in the convective regime (Lloyd et al. 
2012a; Bellenger et  al. 2014). The empirical or physi-
cally-based estimation of the aNL is a substantial problem 
in itself, which we have not attempted to address in this 
study. Instead we conservatively assume a neutral value 

for T > Tc , although we do not rule out the possibility for 
positive growth rate in this regime. The stochastic forcing 
variability terms ( � and � ) are given by monthly gaussian 
white-noise series, and are state-independent.

For simplicity, we set � = � with unit variance so that the 
same forcing acts on T and h, based on the idea that the zonal 
wind forcing that drives the thermocline tilt that is tightly 
linked with T also produces h anomalies with the same sign. 
These anomalies are associated with the short-term Kelvin 
wave response, at least at intraseasonal time-scales, although 
the h response is sensitive to the time-scale and geographical 
pattern of the forcing (McGregor et al. 2015). The imple-
mentation of such details in the RD model is not straightfor-
ward and will be explored in future work.

All other parameters equal the empirical fits proposed 
by Burgers et al. (2005): a = −0.076 month−1 , b = 0.236 
K dam−1 month−1 , c = −0.125 dam K −1 month−1 . Thus, for 
T < Tc , the model is the same damped oscillator of Burgers 
et al. (2005), while for T > Tc it is a neutral recharge-dis-
charge oscillator. Fitting the linear RD model to the nonlin-
ear RD model run produces a weaker effective linear damp-
ing parameter to the original from Burgers et al. (2005), as 
expected. This reduced by 45% weaker damping that the 
Burgers et al. (2005). We use a value of F0 = 0.17 K/month 
(or dam/month), which produces a standard deviation of T 
of 0.85 K, close to the observed for Niño 3 (0.90 K).

With these parameters, the decay time is 26.3 months 
for T < Tc and neutral for T > Tc . The intrinsic oscillation 
periods are 35.7 for T < Tc and 36.6 months for T > Tc . 
For T < Tc , this implies that in the deterministic case, the 
amplitude of oscillation would be reduced by 74% after each 
cycle, so stochastic forcing is essential to keep an oscilla-
tory-like behavior in this regime. For states with T > Tc , the 
system is undamped, but the RD dynamics will eventually 
bring any state back to the damped regime, so the system is 
absolutely stable and requires stochastic forcing to maintain 
the variability. We also note that this model does not allow 
for multiple equilibria, as T = h = 0 is the only fixed point.

The model is solved numerically for 2 × 106 years using 
a fourth-order Runge-Kutta scheme and a full timestep of 1 
month. The forcing series �(t) is a single realization of noise 
that is applied identically for all experiments, so that specific 
moments in time (particularly EN events) can be compared 
among experiments. The peak T for EN events were deter-
mined as the maximum value of the 1–2–1 filtered monthly 
T within running 2-year windows. Hereafter, the term strong 
EN refers to events with peak T ≥ 1.5 K, while events with 
peak 0.5 < T < 1.5 K are termed moderate.

The following experiments were performed: The control 
run (CTL) is as specified above. The linear (LIN) model 
run is the same as CTL except that the enhanced Bjerk-
nes feedback is not active, so that aNL = a for all T. A 
low-passed forcing (LFF) experiment was done exactly as 
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Fig. 1  Equatorial Pacific (180◦–140◦ W, 5 ◦S–5◦ N) pseudostress 
(estimated from monthly TAO wind speed and zonal wind data; 
McPhaden et  al. 1998) and Niño 3 SST anomalies (ERSST v3b; 
Smith et  al. 2008). The piecewise linear regression fit using ARE-
SLab (Jekabsons 2013; following TD16) yields a threshold SST of T

c

=1.33 K and a nonlinear enhancement of 56%. Blue and red dots cor-
respond to July–June of 1997–1998 and 2015–2016, respectively
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CTL except that the time-series of � was previously low-
passed filtered with a cutoff period of 12 months using an 
8th order Butterworth filter. A complementary experiment 
(indepF) has independent stochastic forcing series for T and 
h ( �(t) ≠ �(t) ), while another one (FonlyT) has the forcing 
applied only to T (i.e. �(t) = 0 ) scaled by a factor of 2. Addi-
tionally, to test whether multiplicative forcing (i.e. increasing 
forcing strength with T) can generate a bimodal EN distribu-
tion, we made experiments MULTLIN and MULT, which 
are equivalent to the LIN and CTL runs, respectively, except 
that we multiplied the forcing by [1 + BH(T − Tc)(T − Tc)] 
where B = 0.5 , and H is the Heaviside function ( H(x) = 0 for 
x < 0 and H(x) = 1 for x ≥ 0 ). This is based on Levine and 
Jin (2017) but, since this nonlinearity also originates from 
the threshold for deep convection, we set the state-depend-
ence for T > Tc instead of T > 0 . Since the system becomes 
unstable, we limited |T| to be < 7 K in the numerical solu-
tions (equivalent to extremely strong nonlinear damping).

3  Fokker–Planck equation

The Fokker–Planck (FP) equation describes the evolution of 
the probability distribution function (PDF) of states in a sto-
chastically-forced (“Brownian”) dynamical system (Risken 
1996), which allows us to address issues of predictability in 
simple climate models by describing how the PDF evolves 
from an initial condition under all possible realizations of 
the stochastic forcing (e.g. Hasselmann 1976). The system 
does not require the presence of deterministic divergence in 
phase-space, as measured with Lyapunov exponents (e.g. 
Karamperidou et al. 2013), in order for the ensemble to 
spread, as is the case with chaotic systems like the Lorenz 
system (e.g. Palmer 1993). Using the terminology of the 
FP equation, the PDF evolution is governed by the “drift”, 
which is the displacement, rotation, and deformation of the 
PDF by the deterministic dynamics, and the “diffusion”, 
which is the spreading of the PDF due to the random walk 
associated with the stochastic forcing.

Let � be the joint T − h PDF for an ensemble of states that 
obey Eq. (1). The FP equation that describes its evolution in 
our non-linear RD model with the same forcing in T and h 
(i.e. forced along � ≡ (T + h)∕

√
2 with amplitude 

√
2F0 ) is:

This is a conservation equation for � in an eulerian frame, 
with the first two terms on the right-hand side (rhs) in the 
first line describing the convergence of the transport of � 
by the deterministic dynamics, i.e. the drift. The third term 

(3)
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�t
= −
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0
�2�∕��2 ) is the stochastic diffusion term. In the second 

line, the drift term has been expanded to isolate different 
processes. The first term is the “damping term” that leads 
to the growth of � due to the convergence of the drift due to 
dissipation, by focusing the PDF into smaller areas in phase-
space. We call the second term the “regime-shift term”, 
which in our non-linear model is formulated with daNL∕dt 
idealized as a delta function at T = Tc as aNL goes from a to 
0. The third and fourth terms correspond to advection and 
produce the displacement and rotation of the PDF.

We solved the FP equation numerically with a grid size 
of 0.05 in T and h and a time-step of 5 × 10−3 months for the 
domain T ∈ [−6, 9] and h ∈ [−6, 6] with no-flux boundary 
conditions. We used centered differences and fourth-order 
Runge-Kutta time-stepping, with 1–6–1 filtering in both T 
and h every 0.5 months to prevent the growth of the com-
putational mode.

4  Results

4.1  El Niño bimodality

The peak T values for most of the EN are clustered below 1.5 
K, but the peaks of the three strongest events (1982–1983, 
1997–1998, 2015–2016) are clustered between 2.7 and 3.2 K 
(Fig. 2a). Only the 1972–1973 event is found in the large gap 
between them. As a result, the probability density function 
(PDF) estimated using kernels [locfit package in R (Loader 
1997)] is bimodal (Fig. 2a), with the modes centered at T =

1.0 and 2.8 K. Also, we show the quantile-quantile plot 
(basically the plot between the cummulative PDFs from the 
data and an assumed fitted distribution; Wilk and Gnana-
desikan 1968) based on gamma distributions with the cor-
responding skewness and mean fitted to the observational 
data has a S-shape that is suggestive of bimodality (Wilk 
and Gnanadesikan 1968; Lee et al. 1998), with two approx-
imately parallel straight segments corresponding to these 
modes (Fig. 2b). However, the “dip test” for multimodality 
(Hartigan 1985) produces a p value of 0.4, while the Sil-
verman test for bimodality (Silverman 1981; Hall and York 
2001) produces a p value of 0.17, indicating that we cannot 
conclusively demonstrate the bimodality in the observations. 
The main limitation for passing the test is that the strong EN 
are still too few compared to the moderate EN, but if in the 
coming years the strong 1982–83, 1997–98 and 2015–16 El 
Niño events were to repeat themselves, as well as other four 
moderate EN events, then we would get p < 0.09 from the 
dip test (i.e. passing at the 90% level).

The probability density function (PDF) for CTL is 
bimodal (Fig.  2), with the modes corresponding to the 
moderate and strong EN events peaking at 0.8 and 1.8 K, 



7481A theoretical model of strong and moderate El Niño regimes  

1 3

respectively, while the in-between minimum is located 
slightly above Tc = 1.5 K. As expected, the PDF for LIN 
has no sign of bimodality.

The difference between the location and strength of the 
second mode in the PDF of CTL and the observational 

estimate could indicate limitations in the model, e.g. perhaps 
it should be unstable for T > Tc . But it seems more likely 
that this is associated with the shortness of the observational 
sample. If we sample the 2 Myr CTL run in non-overlapping 
time segments of the same length as the observational record 
(67 years) and search for those segments with the statistics 
of EN peaks similar to the observed (Fig. 2), specifically that 
they contain a larger number of EN peaks for T > 2.5 K than 
the number of peaks in the dip with 1.5 < T < 2.5 K (such as 
the one in Figs. 3, 4), we find that 13% of the time segments 
satisfy this criterion. This is much less likely in LIN (1%).

The skewness of the distribution of EN T peaks in the 
nonlinear model (1.47) is larger than the observational value 
(1.11), whereas the linear model is lower (0.89). However, 
if we sample the model runs in time segments as long as 
in the observations, the 95% confidence intervals from the 
linear and nonlinear models ([− 0.19, 1.68] and [0.11, 2.33], 
respectively, for 10,000 subsamples) have substantial over-
lap, so the skewness from observations is not a useful statis-
tic for discriminating between the two models.

4.2  Evolution of El Niño events and rectification 
of high‑frequency forcing

The trajectories in T-h phase-space of the observed monthly 
T and h for the 1950–2016 period (Fig. 3a) are irregular 
orbits. However, as noted by Kessler (2002), occasionally 
strong EN appear as clockwise excursions that appear more 
deterministic: from positive h moving towards large positive 
T, with h starting to strongly decrease soon before the peak 
T, leading to the neutral to negative values of T. The extreme 
nature of the strong EN peaks has been previously charac-
terized by large eastern Pacific warming (Takahashi et al. 
2011; TD16), although the 2015–2016 event only presented 
about half of the warming near the South American coast 
than the warming during the 1982-1983 and 1997–1998 
events (L’Heureux et al. 2016; Dewitte and Takahashi 2017). 
An important aspect of the onset of these observed strong 
EN events is that, in contrast to the “pure” (unforced) RD 
dynamics, in general h does not decrease as sharply when T 
increases towards its peak as afterwards, during EN decline; 
in 1982, h even increased right up to two months prior to the 
peak T. This indicates that, if the RD model is indeed repre-
sentative of the underlying dynamics, the onset of the 1982 
(and probably also the other) strong EN was strongly facili-
tated by external forcing (TD16). On the other hand, after 
the observed EN peaks, the pronounced discharge process 
leads to large negative h, but the associated La Niña peak T 
anomalies are not as large as the ones for the EN events in 
the Niño 3 region.

A representative 67-year segment from the nonlinear 
(CTL) model run is presented in Fig. 3c, showing that 
this model (but not the linear model in Fig. 3b) reproduces 
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both the excursions associated with the strong EN, as well 
as the muted discharge during their onset and the large 
discharge during and after the peak. However, our model 
overestimates the magnitude of the subsequent La Niña 
T anomalies through conventional RD dynamics, leading 
to the underestimation of the skewness of T (0.12, calcu-
lated over the full run) relative to the observed (0.71). This 
is probably a consequence of not considering the spatial 
asymmetry of El Niño and La Niña in our model, as the 
largest SST anomalies tend to be further to the west in the 
latter (e.g. Monahan and Dai 2004; Takahashi et al. 2011; 
Dommenget et al. 2012), lack of nonlinear damping of La 
Niña (e.g. DiNezio and Deser 2014; TD16) or lack of sea-
sonality in the feedbacks (e.g. Stein et al. 2014). The ther-
mocline feedback accounted for in the model through the 
parameter b also appears to have an asymmetry in nature 
(Dewitte and Perigaud 1996; An and Kim 2017) that is not 
taken into account in our model.

The time series of observed T and h (Fig. 4a) also illus-
trates how positive (but not necessarily large) h precedes the 
peak T associated with strong EN after which h becomes 
strongly negative and T drops, although not as much. The 
LIN and CTL models (Fig. 4b, c) also reproduce this behav-
ior to a large extent, albeit overestimating the La Niña and 
the likelihood of a second strong EN afterwards. The robust 
characteristics of the temporal evolutions of the strong and 
moderate EN events are highlighted by the the spread among 
the individual EN events in T and h at different times (t) 
relative to the peak T ( t = 0 ), which indicates that during the 
early part of the onset of strong EN events (between t = −10 
and t = −6 ), both T and h are positive and increase together 
in observations and the model (Fig. 5a, c). After t = −6 , 
T continues increasing but h decreases steeply, particularly 
around t = 0 , reaching a minimum around t = 7 . Meanwhile, 
T decreases from the peak at t = 0 through t = 12 . This con-
tinues to t = 15 in the model, but not in observations, reach-
ing lower values of T (stronger La Niña). Positive precursor 
h is a necessary condition for strong but not for moderate 
events, consistent with TD16, but there are many strong and 
moderate events that have the same initial h.

The series for LIN and CTL are remarkably similar 
(Fig. 4b, c), indicating that CTL is only weakly nonlinear 
and that stochastic forcing dominates the variability. As 
might be expected, the only differences between the two 
experiments appear after T exceeds Tc = 1.5 K, leading to 
larger EN peaks when T > Tc in CTL (Fig. 6a; the slope of 
the scatterplot for T > 1.5 is 1.8), as well as stronger dis-
charge and subsequent La Niña. We note that most of the 
strong events in CTL were also the strongest events in LIN 
(Fig. 6a). This also influences the results for a few years after 
a strong EN, associated with larger RD oscillations (Fig. 4b, 
c). Furthermore, the power spectra of T in the LIN and CTL 
(Fig. SM1) both have a single peak at almost the same 

(a)

(b)

(c)

Fig. 3  Monthly evolution of ENSO in T-h phase-space for a observa-
tions (1950–2016) and for a representative 67-year segment from the 
b linear (LIN) and c nonlinear (CTL) model runs (years 100–166). 
The data was smoothed with a 1–2–1 filter. The crosses indicate the 
origin, the dotted lines correspond to T = 1.5 , and the arrow indicates 
the direction of the evolution of the strong El Niño events. In a, T is 
Niño 3 SST anomalies from ERSST v3b (Smith et al. 2008) and h is 
the combination of SODA 2.2.4 (1950–1979; Giese and Ray 2011) 
and GODAS (1980–2016; Behringer and Xue 2004) 120◦E–80◦ W, 5 ◦
S–5◦ N 20 ◦ C depth anomaly (removing the mean difference between 
the two products), with the December values for the largest El Niño 
events indicated with a red dot
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intrinsic frequency but, since the nonlinear system is less 
damped (i.e. more oscillatory), the spectral peak is stronger.

It has been emphasized before that the low-frequency 
component of the forcing is the most important factor driv-
ing ENSO (Roulston and Neelin 2000; Zavala-Garay et al. 
2008; Levine and Jin 2010) and we find that this is also true 
of our CTL model, as the experiment with low-frequency 
forcing (LFF; Fig. 4d) produces a very similar (although 
smoother) ENSO evolution to the CTL run. Several stud-
ies indicate that high-frequency forcing (on intraseasonal 
scales) has a rectified effect on the longer ENSO time-scales 
(Blanke et al. 1997; Zhang et al. 2003; Zavala-Garay et al. 
2008). Indeed, the nonlinearity introduces some rectification 
from high to low frequencies in our model, leading to a 4% 
increase from LFF to CTL in the power at the spectral peak 
corresponding to the ENSO period (Fig. SM1). The high-
frequency forcing also increases the number of strong EN 

events (peaking with T > 1.5 ; Fig. 6b) by 30.7%, although 
the total number of EN events was little affected (94% in 
LFF relative to CTL). This can be seen by comparing those 
cases in which the low-passed T from the CTL run is larger 
than in LFF (Fig. 7). In CTL, as T approaches Tc from below 
a positive pulse associated with the high-frequency forcing 
component at t = −6 (red line in Fig. 7) allows T to over-
come Tc . This does not happen in LFF and as a result T stays 
below Tc . The weaker subsequent negative pulse cancels out 
with the low-frequency forcing and T continues growing 
through undamped RD dynamics.

Removing the high-frequency component (LFF) reduces 
the variance of the forcing to 16% of the original (CTL), 
but the variance of T is only reduced to 95%. This weak 
sensitivity is to be expected when forcing a damped (weakly 
nonlinear) oscillator far from its natural frequency. If we 
instead run the model with only the high-frequency (period 

Fig. 4  Timeseries of T (red) 
and h (blue) from a observa-
tions (1950–2016), and from the 
b linear (LIN) and c nonlin-
ear (CTL) model run (years 
100–166)
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Fig. 5  a, b Observed and c, d modeled evolution of T (red) and h 
(blue) with respect to the peak T values of the a, c strong and b, d 
moderate El Niño events. The shaded range is between the 10 and 

90-percentiles of the events, with the median shown with a thick line 
(except for the observed strong El Niño, for which the overall range 
and the mean are shown). A 1–2–1 filter was applied to all data

Fig. 6  Subsample of T at El 
Niño peaks in the nonlinear 
(CTL) run against the nearest 
peak T of the same events (no 
more than 3 months apart) in 
the a linear (LIN) run and b 
the nonlinear model with low-
passed forcing (LFF)



7485A theoretical model of strong and moderate El Niño regimes  

1 3

< 1 year) forcing component (not shown), it produces a much 
weaker T variance (1% of CTL) and only in the high-fre-
quency range. For very high-frequencies, the dynamics are 
those of a random walk ( dT∕dt ≈ F0� ) rather than ENSORD 
dynamics.

4.3  Dynamics of El Niño events

For a 2D model such as ours, a phase portrait (Fig. 8) is 
a powerful tool for analyzing the dynamics, as the non-
linearities and stochastic processes acquire a geometrical 
interpretation. The deterministic RD dynamics, i.e. the ten-
dency terms that depend on T and h on the right hand side 
of Eq. (1), are represented by vectors in the T-h space (black 
arrows) tracing clockwise inward spirals, as expected from a 
damped oscillator. The nonlinear net feedback in CTL, i.e. a 
reduced damping of T for T > Tc , is manifested as a smaller 
component towards the left in these vectors for a given h 
relative to the LIN model (not shown). This might appear 
subtle in the tendencies (black vectors), but sample deter-
ministic trajectories (green lines) starting from an ENSO 
neutral state ( T = 0 ) with charged heat content ( h > 0 ) show 
a substantial divergence around T = Tc , with those exceed-
ing Tc having a weak decay of T, whereas those that stay 
below Tc follow a fast spiral towards the origin. Since all 
deterministic trajectories eventually decay towards the ori-
gin, the model is globally stable.

The actual evolution of the strong and moderate EN 
events is shown in Fig. 4 as time-series centered at the time 

of the peak T. In phase-space, the average trajectories show 
a good correspondence between the observations and the 
model (Fig. 8) but, in both cases, they appear more “horizon-
tal” during the onset of the EN events than the deterministic 
RD trajectories, i.e. have a larger growth in T and weaker 
decay in h. The departure from RD dynamics during the 
onset indicates an important role of the sustained favorable 
stochastic forcing over the course of around 9 months, from 
the charged and ENSO neutral state to slightly after when 
T exceeds Tc . In the CTL model, we set equal external forc-
ing for T and h, so it acts along the diagonal in the phase-
diagram (Fig. 8) and, when added to the deterministic ten-
dency (black vectors), the net tendency vector (blue arrows) 
is deflected along that diagonal, depending on the sign and 
magnitude of the forcing. For a mean net tendency consistent 
with the onset of strong EN events, the forcing would need 
to have a mean positive value along 9 months or so. For a 
9-month mean value of F of 0.1 or more, the probability of 
occurrence is 4% in CTL.

After the peak T is achieved, the EN events on average 
follow the deterministic trajectories towards a neutral T and 
negative h state. This should be expected a priori in the 
model, since our compositing procedure does not constrain 
the behavior of the forcing after the peak and the forcing 

-48 -36 -24 -12 0 12 24 36 48

-1

0

1

2

Months relative to when T(CTL) - T(LFF) > 0.4 K

T (Low-passed CTL)

T (LFF)

h (Low-passed CTL minus LFF)

F (LFF)

F (CTL minus LFF)

Fig. 7  Composite-mean temporal evolution in months relative to 
when the difference between the low-passed T from CTL and T from 
LFF is larger than 0.4 K (not necessarilly EN events). T is shown in 
black (low-passed CTL solid with dots, LFF solid), the low-frequency 
(green dashed) and high-frequency (red solid, only for CTL) compo-
nents of the forcing, as well as the difference in h between the low-
passed CTL and the LFF runs (blue dotted)

Fig. 8  Phase portrait of the nonlinear (CTL) model in T − h space, 
showing the deterministic tendencies (black arrows), plus and minus 
twice the standard deviation of the external forcing (light blue 
arrows). Sample determininistic trajectories are shown in green. The 
composite mean trajectories of strong (red) and moderate (blue) El 
Niño events are also shown for the model (solid) and observations 
(dotted). Each dot corresponds to one month and all trajectories are 
clockwise
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effect should average to zero. However, since this is also 
seen in the few cases in observations, it suggests that it is the 
large magnitude of the deterministic discharge of h associ-
ated with the high values of T (cT term in Eq. (1); see below) 
that dominates the decay of the strong EN.

The role of the forcing during the onset of the strong 
EN is also made evident by a more conventional “surface 
heat budget”, i.e. analysis of the T tendency terms on the 
right hand side of Eq. (1), which shows that the warming 
contribution of the bh term and the direct effect of the forc-
ing are comparable (the former somewhat larger) between 
approximately t = −15 and t = 0 (Fig. 9a). However, the 
positive value of h between t = −10 and t = −1 is itself also 
maintained primarily by the forcing against the opposing 
discharge mechanism (cT term), which grows as EN grows 
(Fig. 9b). Thus, it is the forcing that is ultimately respon-
sible of the growth of EN during the year previous to its 
peak. A similar situation is observed for the moderate EN 

events, but with a shorter time in which the forcing domi-
nates the warming (after approximately t = −10 ; Fig. 9c, 
d). We should note that the fact that the stochastic forcing 
tends to be positive during the onset of EN does not indicate 
state-dependence, just that EN tends to occur after periods 
of randomly positive forcing. The nonlinearity in the aNLT  
term helps the growth of the strong EN by suppressing the 
damping after approximately t = −4 (Fig. 9a), which does 
not happen for the moderate EN (Fig. 9c).

In the experiment in which the forcing of T and h are 
uncorrelated (indepF), which has the same standard devia-
tion of T as in CTL, the growth of T during strong and 
moderate EN is dominated by the bh term (Fig. SM2a, 
c), but h itself is sustained by the corresponding forcing 
against the discharge after t = −10 (Fig. SM2b, d), so 
effectively the growth of the EN event is sustantially aided 
by the forcing. In the experiment in which the forcing is 
only applied to T (FonlyT), which results in a standard 

Fig. 9  Similar to Fig. 4 but for the tendency terms on the right hand side of Eq. 1 for a, c T ( aNLT  in red, bh in blue, and F in green) and for b, d 
h (cT in red, dh in blue, F in green) during a, b strong and c, d moderate El Niño events
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deviation of T 24% larger than that of CTL, the warm-
ing contribution of bh again dominates the growth of T in 
both strong and moderate EN up to approximately t = −4 , 
after which the forcing is dominant (Fig. SM3a, c). Since 
dh∕dt = cT  in this last experiment (Fig. SM3b, d), T and 
h are in quadrature and do not exhibit joint growth during 
the onset of strong EN events that is seen in the previous 
experiment, in CTL and in observations.

The growth of EN events in our model stops when the 
positive forcing ends (with brief appearance of negative 
forcing in t = 1 to t = 3 ) and the bh term vanishes (Fig. 9a, 
c), after which the negative bh induced mainly by the 
deterministic discharge process (cT term; Fig. 9b, d) takes 
over and T decreases (Fig. 9a, c). The discharge after a 
strong EN is perhaps the most predictable aspect of ENSO 
in our model, as also suggested in more comprehensive 
models and observations (e.g. TD16). It should be noted 
that in nature, the seasonality of the ENSO feedbacks (e.g. 
Stein et al. 2014) sets the timing of the peak T, particularly 
the discharge term in boreal winter (Vecchi and Harrison 
2006, 2006; McGregor et al. 2012).

4.4  Probability dynamics and the Fokker–Planck 
equation

To represent a possible situation of interest for real-time pre-
diction, in Fig. 10 we used the Fokker–Planck Eq. (3) to sim-
ulate the evolution of a PDF corresponding to an ensemble 
initialized around a weak EN state that is strongly-charged (a 
gaussian PDF centered at T = 0.6 and h = 1.0 with a width 
scale of 0.1) for both the linear (LIN) and nonlinear (CTL) 
versions of our RD model. The results are very similar to 
those obtained by identifying the states in the 2 Myr CTL 
model run around T = 0.6 and h = 1.0 and looking at the 
evolution of the ensemble (not shown).

Within the first 3 months of the simulations, even though 
the mode of the PDF follows the deterministic dynamics 
and stays below Tc , both models show a large spread of the 
PDFs along the diagonal direction due to the stochastic forc-
ing, producing around 10% probability of exceeding Tc (i.e. 
strong EN; Fig. 10). This probability continues to grow until 
month 7 in both cases but, in the nonlinear model, a second 
mode with T > Tc appears shortly after month 6, leading to 
the bimodal distribution of EN peaks (Sect. 4.2). Due to the 
reduced damping, the probability of T > Tc in the nonlinear 

(a) (b)

Fig. 10  Evolution of the joint T-h PDFs of an ensemble initially cen-
tered at T = 0.6 , h = 1.0 (black), after 3 (blue), 6 (green), 9 (red), and 
12 (black) months from the solution of the Fokker–Planck equation 
for the a linear and b nonlinear RD model. For visualization pur-

poses, the PDFs were normalized by their peak value and contoured 
at 0.1–0.9 with an interval of 0.1. The deterministic tendencies are 
shown as grey arrows. The probability of T > 1.5 for the each time is 
indicated as %
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model reaches higher values and decays slower than in the 
linear model.

The role of the regime-shift term in the formation of the 
bimodal PDF was assessed by setting its value to zero in Eq. 
(3) and solving numerically for the case above. As shown 
in Fig. 11, as in CTL, the marginal PDF for T (i.e. inte-
grated in h) spreads to higher T than in the linear case due 
to larger positive drift (advection) for T > Tc , it does not 
develop a second mode. On the other hand, if we maintain 
the regime-shift term but we remove the differential advec-
tion by setting aNL = a for all T in the advection term, the 
positive tail of the PDF remains short, similar to the linear 
case, and develops a change in slope near T = Tc , but also 
not a second mode. This means that both the regime-shift 

term and the differential advection are necessary to gener-
ate and to separate the two modes of the PDF. For the two 
modes to develop it is not essential that aNL is discontinu-
ous: an experiment with a hyperbolic tangent formulation for 
aNL with an exponential scale for T of 0.2 produces similar 
results (not shown).

If we consider the equilibrium probability density � cal-
culated from the Fokker–Planck Eq. (3) for positive T for 
h = 0 , which approximately corresponds to the peak T dur-
ing EN (e.g. Fig. 5), we can also see the bimodality asso-
ciated with T (grey contours in Fig. 12), which becomes 
more pronounced for h < 0 . The analysis of the terms of 
the steady-state F-P equation (shading in Fig. 12) provides 
an approximate condition for this bimodality. The antinode 
or dip is found around T = Tc for h ≤ 0 , where we find the 
main balance between the diffusion term (Fig. 12d) and the 
“regime shift” term (Fig. 12f), so the approximate steady-
state F–P Eq. (3) near the antinode is:

The diffusion term is negative because it is dominated by 
having an antinode in � along T (i.e. 𝜕2𝜌∕𝜕T2 > 0 ). Since 
𝜌 > 0 , while T > 0 for El Niño, this balance can only be 
possible for:

which is the source of the bimodality in our nonlinear RD 
model.

Although it seems plausible that multiplicative forcing 
could also produce bimodality, when we introduced it by 
enhancing the amplitude of the forcing for T > Tc in the 
linear model (MULTLIN), it did not produce a bimodal dis-
tribution (Fig. SM4). Furthermore, in the nonlinear model 
(MULT) it produced a less pronounced second mode in 
the PDF (Fig. SM4). We can understand this in the con-
text of the Fokker–Planck equation, as the enhancement 
of the stochastic forcing with T implies an enhancement 
of the diffusion, which flattens the PDFs and increases the 
positive tail. Additionally, it introduces a term of the form 
−(�G∕�T)��∕�T  ( G ≡ [1 + BH(T − Tc)(T − Tc)] ), which 
near T = Tc behaves similarly to the −(aNLT)��∕�T  term, 
producing a divergence in the drift that advects � . However, 
this multiplicative forcing does not produce a “regime-shift” 
term equivalent to −(daNL∕dT)T� , which we found above to 
also be necessary to generate the bimodality.

The relatively short adjustment time of the spread is 
important for predictability. In the simpler stochastic 
climate model consisting of a slab ocean layer forced by 
weather noise (Frankignoul and Hasselmann 1977), the 
equation has the form dT∕dt = aT + F0�(t) (a Langevin 

0 ≈ −
daNL

dT
T� + F2

0

�2�

��2
.

daNL

dT
> 0,

Fig. 11  Evolution of the marginal PDFs for T for the case in Fig. 10 
for months between t = 0 and t = 7 (offset by the corresponding num-
ber of months) obtained from the Fokker–Planck equation for the 
linear (red dotted) and nonlinear (solid black) model. Also shown 
for experiments in which (1) the d(aNL)∕dT  was set to zero in the 
Fokker–Planck equation (blue short-long lines) and in which (2) the 
d(aNL)∕dT  term was retained but aNL was set to a for T > T

c
 (green 

long lines). In these two non-conservative experiments, the PDFs 
were renormalized so that the total probability is 1
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equation), and the ensemble variance �2

T
 adjusts exponen-

tially to its equilibrium value F2

0
∕|2a| with a timescale 

|2a|−1 (Hasselmann 1976). In our model, we analyzed the 
adjustment of the variance of T from the delta-like initial 
PDF used above but centered at different points in the 
T > 0.2 , h > 0.2 quadrant, most relevant for EN develop-
ment. In the linear case the adjustment of the variance to 
its equilibrium value is the same for all initial points (we 
also tested other quadrants) and oscillates due to the rota-
tion of the elliptically-elongated PDF induced by the drift. 
The rotation leads to increased variance when the PDF 
is more oriented in the T direction, approximately every 
half period. The adjustment is within the range of expo-
nential adjustment functions with timescales |2a|−1 and 
|a|−1 , and shows the sharpest increase within the first year 
(Fig. SM5a). For the nonlinear model, the oscillations are 
similar but with phase-shifts and with larger amplitudes 
for larger initial h and T, with the former having a larger 

impact Fig. SM5b). Again, the largest increase is seen in 
the first year. During the first 6 months the adjustment is 
bounded by the exponential timescales |2a|−1 and |a|−1 . 
We observe that the influence of the initial conditions on 
the variance persists for almost 10 years, with larger vari-
ance associated with the second mode of the PDF (strong 
EN). Interestingly, if the stochastic forcing of T and h are 
uncorrelated (i.e. the diffusion term in Eq. (3) is given by 
0.5F2

0
(�2

T
+ �2

h
)� ), then not only the oscillations are greatly 

reduced but the adjustment follows closely the |a|−1 expo-
nential decay (not shown).

To assess how the equilibrium variance of T scales with 
a, we performed 2 Myr runs of the linear and nonlinear RD 
models with different values of a and fixed forcing ampli-
tude ( F0 = 0.17 ). We found that, for the linear model, the 
variance scales with |a|−1 (not shown), just as for the slab 
ocean model. However, for the nonlinear model, the variance 
scales as |a|−1.25 . The goodness of fit is somewhat surprising 
considering that in the nonlinear model the damping aNL is 

(a) (b) (c)

(d) (e) (f)

Fig. 12  Equilibrium probability density (grey contours; shown as 
log(100�) ) from the steady-state Fokker–Planck Eq. (3) for the 
CTL model and the different equation terms (K−1 dam−1 month−1 ): 
the advection terms along the T direction a −(aNLT)��∕�T  and b 

−(bh)��∕�T  , c the advection term along the h direction −(cT)��∕�h , 
d the diffusion term due to the stochastic forcing F2

0
�2�∕��2 , e the 

damping term −aNL� and f the regime shift” term (daNL)∕dT)T� . The 
dashed line indicates T = T

c
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not constant, so it should not be considered a strict scaling. 
Still, the dependence of both the timescale and equilibrium 
variance with the damping could provide a useful framework 
for interpreting the ensemble spread in ENSO predictions.

5  Discussion

The formulation of our model has been guided by the 
objective of providing the simplest explanation for the EN 
regimes. Thus, we ensured that the nonlinearity does not 
produce unstable growth, only suppresses the damping. 
Therefore, this model does not produce self-sustaining non-
linear oscillations that would require nonlinear damping or 
that could produce multiple equilibria that includes a per-
manent EN state, which is questionable in theoretical model 
settings (Neelin and Dijkstra 1995). Despite the simplicity 
of our model, we have found that it adequately reproduces 
the evolution of T and h of the strongest observed EN events 
and the bimodal distribution, so it provides a parsimonious 
theory for EN regimes.

The level of agreement between the bimodal probability 
distributions of El Niño peaks in the model and in the obser-
vational record (Sect. 4.2) is affected by two factors: (1) the 
adequacy of the model to reproduce the essential dynamics 
of the true system, and (2) the adequacy of the observational 
record to provide a representative sample of the behaviour of 
the true system. Validation of model behaviour is inevitably 
done by comparison to the available observations, which 
implicitly assumes that the observations are more reliable 
than the model and tends to lead to fitting the model to such 
observations. A different and complementary approach is the 
validation of model processes, which can be expected to be 
better constrained by short records if we assume uniformi-
tarianism, i.e. that the essential physical processes that are 
observed now are also valid in unobserved periods. In our 
model, adding the nonlinear Bjerknes feedback with a criti-
cal temperature of around 27.5 ◦ C did not involve fitting the 
statistics of El Niño peaks, so the result that only 13% of the 
periods are similar to the observational one is an emergent 
result. In the hypothetical case that our model captured the 
essential dynamics associated with of the long term variabil-
ity of ENSO, our results would imply that our observational 
record could be inadequate for characterizing the statistics 
of the true system (cf. Wittenberg 2009), so we argue that 
the assessment of the physical processes is probably more 
important than fine-tuning models to the statistics from the 
observational record.

Karamperidou et al. (2016) showed that the nonlinear-
ity in the PC1–PC2 phase space can be related to the bal-
ance of linear ENSO feedbacks in CMIP5 simulations, in 
particular to the strength of thermodynamical damping 
in the eastern Pacific. However, we have not attempted to 

observationally constrain the values of aNL for T above or 
below Tc . The calculation of the parameters for the nonlin-
ear net feedback on T from first principles would require 
adapting a methodology such as the BJ index (Jin et al. 
2006) to the nonlinear case. Although TD16 found that the 
zonal wind response to the surface eastern Pacific warm-
ing is enhanced by a factor of 3 and cloud nonlinearity 
results in a change in the sign of the feedback (Lloyd et al. 
2012a), the effective Bjerknes feedback also includes how 
the ocean currents, thermocline, and upwelling respond to 
the warming. Perhaps other empirical methods (e.g. Burg-
ers et al. 2005) could be adapted to consider this nonlin-
earity, or the proposed model could be used to derive an 
estimate of the non-linear feedback through assimilation 
of observations.

This model highlights the key role of the stochastic forc-
ing, particularly the component of the forcing on ENSO 
time-scales, in the growth of the strong EN events (e.g. 
Levine and Jin 2010; TD16). It is often assumed that the 
low-frequency positive forcing is the result of clustering of 
short-term westerly wind events, either randomly or modu-
lated by SST (e.g. Gebbie et al. 2007; Zavala-Garay et al. 
2008; Gebbie and Tziperman 2009). However, intrinsically 
low-frequency forcing processes associated with equatorial 
westerly wind anomalies also exist, such as the seasonal 
footprinting mechanism (Vimont et al. 2001, 2003) and the 
Pacific Meridional Mode (Chang et al. 2007; Larson and 
Kirtman 2013) based on the North Pacific, the South Pacific 
meridional mode (Zhang et al. 2014), propagating signals 
from the Indian Ocean (Clarke and Gorder 2003; Izumo 
et al. 2010), the southerly wind to the east of Australia (Har-
rison 1984; Hong et al. 2014) and the precursor warming in 
the far-east Pacific (Takahashi and Martínez 2016; Dewitte 
and Takahashi 2017).

The strong La Niña following strong EN events in our 
nonlinear model is consistent with the strong heat content 
discharge that is seen in observations, except that in observa-
tions the discharge does not necessarily produce strong La 
Niña events. However, this model behavior is consistent with 
several GCMs (Cai et al. 2015; TD16) and could be indica-
tive of missing physics, such as the nonlinearity in oceanic 
vertical thermal advection in the central Pacific (Dewitte and 
Perigaud 1996), particularly the saturation of vertical advec-
tion during La Niña (DiNezio and Deser 2014). Other poten-
tial processes could be the larger efficiency of the momen-
tum flux in forcing equatorial waves in the western central 
Pacific during the onset of El Niño owing to the shallower 
thermocline (and enhanced stratification) associated to the 
tilt mode (Dewitte et al. 2013; An and Kim 2017). There is 
also an asymmetry of the thermocline feedback in the east-
ern Pacific since during La Niña events the shallowing ther-
mocline can intersect the mixed layer, which is not the case 
during El Niño (note that this also explains the difference in 
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spatial pattern between strong EN and LN events (LN events 
having their peak anomaly more to the west).

6  Conclusions

The 2015–16 El Niño (EN) event provides a new data point 
consistent with the sparse strong EN regime and provides 
further observational evidence for the existence of strong 
and moderate EN regimes. However, it is not enough to 
statistically reject the null hypothesis of a unimodal distri-
bution based on observations alone according to the tests 
considered.

On the other hand, as shown in a previous study (Taka-
hashi and Dewitte 2016), the convective SST threshold in the 
eastern Pacific and the associated nonlinearity in the Bjerk-
nes feedback provides a parsimonious explanation for this, 
motivating further exploration of this possibility suggestive 
with a simple theoretical model based on this mechanism.

Specifically, we modified the linear damped recharge-
discharge ENSO model so that, above a threshold SST 
value, the net negative feedback is set to zero. Despite this 
nonlinearity, the model is stable and requires stochastic forc-
ing in order to maintain the variability against the damping. 
Nevertheless, we show that this nonlinearity is sufficient to 
produce the bimodal distribution associated with strong and 
moderate EN regimes.

In this model, the growth of strong EN events is substan-
tially contributed to by the low-frequency (periods greater 
than 1 year) component of the forcing, both by directly 
increasing T but also by maintaining the heat content h 
against the discharge process. The high-frequency compo-
nent of the forcing helps some EN events to become strong 
(exceed Tc ), leading to an overall increase of 31% in the 
number of strong events.

Due to the weak nonlinearity, the error growth associated 
with initial conditions is generally much smaller than the 
action of the stochastic forcing, so the evolution of the prob-
ability of ensembles of states is well described by the Fok-
ker–Planck equation. The ensemble spread adjusts towards 
an equilibrium value that depends on the damping in the 
model, with the adjustment occurring in the damping time-
scale as well, leading to a fast growth of the spread within 
the first year. This helps part of the probability distribution 
to exceed Tc and this part then becomes separated from the 
rest by a larger positive T tendency, leading to the bimodal 
EN distribution.

Our model is simple not only in that it adds only one free 
parameter to the original recharge-discharge model, namely 
the threshold temperature Tc , but also in that its behavior in 
many aspects does not depart much from the linear model. 
Thus, it is a parsimonious theory for the EN regimes, based 
on a well-known nonlinear SST-convection relation. It is a 

simpler model than, for instance, high-dimensional linear 
models and does not produce exotic behavior as other non-
linear models or require special assumptions about the forc-
ing, thus providing a better null hypothesis for models that 
exhibit two EN regimes. This model could be fit to GCMs, 
either empirically or through physics-based approaches such 
as the BJ index (Jin et al. 2006) but adapted to the nonlinear 
situation proposed here, and serve as a diagnostic tool for 
interpreting, for example, long term variability in ENSO or 
the effects of climate change.
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