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Abstract
This study conducted an updated time of emergence (ToE) analysis of regional precipitation changes over land regions across 
the globe using multiple climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5). ToEs were 
estimated for 14 selected hotspots over two seasons of April to September (AS) and October to March (OM) from three RCP 
scenarios representing low (RCP2.6), medium (RCP4.5), and high (RCP8.5) emissions. Results from the RCP8.5 scenario 
indicate that ToEs would occur before 2040 over seven hotspots including three northern high-latitude regions (OM wetten-
ing), East Africa (OM wettening), South Asia (AS wettening), East Asia (AS wettening) and South Africa (AS drying). 
The Mediterranean (both OM and AS drying) is expected to experience ToEs in the mid-twenty-first century (2040-2080). 
In order to measure possible benefits from taking low-emission scenarios, ToE differences were examined between the 
RCP2.6 scenario and the RCP4.5 and RCP8.5 scenarios. Significant ToE delays from 26 years to longer than 67 years were 
identified over East Africa (OM wettening), the Mediterranean (both AS and OM drying), South Asia (AS wettening), and 
South Africa (AS drying). Further, we investigated ToE differences between CMIP3-based and CMIP5-based models using 
the same number of models for the comparable scenario pairs (SRESA2 vs. RCP8.5, and SRESB1 vs. RCP4.5). Results 
were largely consistent between two model groups, indicating the robustness of ToE results. Considerable differences in 
ToEs (larger than 20 years) between two model groups appeared over East Asia and South Asia (AS wettening) and South 
Africa (AS drying), which were found due to stronger signals in CMIP5 models. Our results provide useful information on 
the timing of emerging signals in regional and seasonal hydrological changes, having important implications for associated 
adaptation and mitigation plans.
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1 Introduction

“Time of emergence” (ToE) indicates when a climate 
change signal emerges clearly from the background noise 
of natural variability (Christensen et al. 2007; Giorgi and Bi 
2009; Hawkins and Sutton 2011, 2012; Bindoff et al. 2013; 
Maraun 2013; Sui et al. 2014; King et al. 2015; Lee et al. 
2016). ToE provides useful information for end users on 
adaptation planning and mitigation strategies. Analysis of 

the signal-to-noise ratio is one of the main approaches to 
detect the ToE of a climate signal based on climate models. 
The signal of future precipitation change can be calculated 
based on individual models (e.g., Hawkins and Sutton 2012; 
Maraun 2013; Sui et al. 2014) or multi-model ensembles 
(e.g., Christensen et al. 2007; Giorgi and Bi 2009; Hawk-
ins and Sutton 2011). The advantages of using multi-model 
ensembles is that the errors related to model biases can be 
reduced by taking multi-model means (Lambert and Boer 
2001; Min et al. 2004; Phillips and Gleckler 2006); if pro-
jection biases have Gaussian/Normal distribution, then 
negative and positive values can be averaged out to better 
represent future precipitation projections. In fact, models 
are diverse, and a model can provide a good projection for 
a specific area, period and variable, but not always for all 
cases (Lambert and Boer 2001). Different assumptions on 
emission scenarios, initial inputs, and physical feedback 
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processes cause different model projections. In this regard, 
using multi-model ensembles also provide an advantage of 
quantifying the uncertainty in future projections into dif-
ferent sources of uncertainty, such as internal variability, 
inter-model uncertainty, and scenario uncertainty (Giorgi 
and Bi 2009; Giorgi 2010; Hawkins and Sutton 2011, 2012).

Although temperature shows smooth changes with a 
positive sign over the most regions from external forcing, 
precipitation change is different from region to region. 
Although anthropogenic influence on the observed precipi-
tation change has been detected in some regions, such as the 
northern high-latitudes (Min et al. 2008; Noake et al. 2012; 
Wan et al. 2015), detecting precipitation change signals is 
more difficult than temperature changes due to relatively 
small signal-to-noise ratio (Räisänen 2001; Hawkins and 
Sutton 2011; Mora et al. 2013; Sarojini et al. 2016). Despite 
the large uncertainty, a reliable estimate of ToE for precipita-
tion is fundamentally required for making necessary adap-
tation plans on regional scales. Previous studies assessed 
ToE for precipitation changes on different spatial scales 
(global, continental, and regional) using Global Climate 
Models (GCMs) (Giorgi and Bi 2009; Hawkins and Sutton 
2011; Mora et al. 2013; Sui et al. 2014; King et al. 2015) or 
Regional Climate Models (RCMs) (Maraun 2013). Giorgi 
and Bi (2009, hereinafter GB09) identified 14 hotspots of 
precipitation changes and examined ToEs for three Special 
Report on Emissions Scenarios (SRES) using the Coupled 
Model Inter comparison Project phase 3 (CMIP3) multi-
model ensemble. They found that six out of 14 hotspots 
would have ToEs in the early twenty-first century, including 
northern high-latitude regions, the Mediterranean, and East 
Africa; East and South Asia and the Caribbean had ToEs in 
the mid-twenty-first century; and five other regions in the 
late decades or beyond (based on the SRESB1 scenario).

Future projections of climate change including precipi-
tation will be highly dependent on the emission scenarios. 
Quantifying benefits of reduced emissions by earlier ToEs 
is important to inform the timing of the significant climate 
change. In general, ToE for precipitation change is expected 
to occur later under more aggressive mitigation scenario 
than weaker mitigation scenarios (cf. Ciavarella et al. 2017). 
In this respect, the Representative Concentration Pathways 
(RCPs) scenarios were newly introduced, which incorporate 
new socio-economic information, emerging technologies 
and other factors, such as land use and land-cover change 
(Moss et al. 2010; van Vuuren et al. 2011; Rogelj et al. 
2012). Accordingly, the Coupled Model Intercomparison 
Project phase 5 (CMIP5) ensemble experiments were car-
ried out under the different RCP scenarios that represent 
different degree of mitigation efforts.

To the best of our knowledge, there have been no stud-
ies that have comprehensively updated the GB09 results 
to consider ToE delays in regional precipitation changes 

under the new RCP scenarios. The ToE estimates from 
the updated scenarios will identify regions that will ben-
efit from emission reduction through ToE delay. Moreover, 
new scenarios provide a larger number of CMIP5 models 
and include more completely treated forcing agents with 
respect to aerosols and land use than the previous model 
group of CMIP3 (Stocker et al. 2013). Thus, comparing ToE 
estimates between CMIP3 and CMIP5 ensembles will help 
to assess robustness of the ToE results. Therefore, in this 
study, we use multiple climate models from CMIP5 under 
three RCP scenarios to conduct an updated ToE analysis of 
regional precipitatiob changes over the 14 hotspot regions. 
Particular focus is given to the investigation of ToE differ-
ences between the RCP scenarios, which will quantify ben-
efits of mitigation through ToE delay.

2  Data and methods

2.1  Scenarios and model simulations

Each scenario introduces a unique projection of radiative 
forcing and temperature target. The RCP2.6 has a radia-
tive forcing of about 2.6 W m− 2 in the year 2100 relative 
to pre-industrial values and  CO2 concentration will be 
about 490 ppm before 2100; it has a global mean surface 
air temperature (GMST) increase of about 1.0 °C (5–95% 
range 0.3–1.7 °C) up to the late twenty-first century with 
respect to 1986–2005 (Collins et al. 2013). The RCP2.6 
is the lowest emission scenario, requiring climate policy 
to limit emissions. The RCP4.5 has a radiative forcing of 
about 4.5 W m− 2 and  CO2 concentration reaches 650 ppm 
in the twenty-first century but does not increase after that; 
it has a GMST increase of about 1.8 °C (1.1–2.6 °C) by the 
late twenty-first century. The RCP4.5 and the SRESB1, the 
low-emission scenario in CMIP3, are comparable scenarios 
(van Vuuren et al. 2011). The RCP8.5 has a radiative forc-
ing of 8.5 W m− 2 in 2100 and a peak of  CO2-equivalent at 
> 1370 ppm before the year 2100; it has a GMST increase of 
about 3.7 °C (2.6–4.8 °C). The RCP8.5 and the SRESA2, the 
high population growth scenario in CMIP3, are considered 
as business-as-usual scenarios (van Vuuren et al. 2011).

To update ToE results and examine potential ToE delay 
under the low-emission scenario of RCP2.6, we selected 28 
CMIP5 models that are available in historical experiment 
(HIST), RCP2.6, RCP4.5 and RCP8.5 scenarios. Refer to 
Table 1 for details. Updated ToE results were also compared 
with those from CMIP3 model simulations integrated under 
SRESA2 and SRESB1 scenarios as given in GB09 (Table 2). 
20C3M runs were also used, which provide current climate 
conditions for CMIP3, equivalent to HIST runs of CMIP5.

Here we used two 6-month periods, from April to Sep-
tember (AS)—Northern hemisphere summer, and from 
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October to March (OM)—Southern hemisphere summer, 
to classify climate zone types following GB09. These two 
6-month periods include the rainy seasons in most mon-
soon areas and cover the whole year. Therefore, they are 
often used for analysis of seasonal precipitation change on 
continental scales (Peel et al. 2007; Kirtman et al. 2013). 
For example, seasonal precipitation variation is generally 
strong at low latitudes, but small at middle or high latitude 
regions (Flato et al. 2013). Because our study updates ToE 
results from GB09, we adopted the same 14 precipitation 
change hotspots (PSPOTs), which include northern high-
latitude regions, arid and monsoon regions (Fig. 1; Table 3). 
Multi-model means of CMIP5 (Fig. 1) produce large-scale 
patterns of precipitation changes very similar to those from 
GB09 based on CMIP3 multi-models in most regions. Fol-
lowing GB09, we also used relative change with respect to 

the present-day climatology for our ToE assessment (see 
below for details). For better comparison, also following 
GB09, model simulations and observation datasets were 
interpolated onto a common 1° × 1° grid prior to analysis, 
with applying a 1-degree land mask from ERA-Interim (Dee 
et al. 2011). Results were largely insensitive to the use of 
different resolution (e.g. 2° × 2° grids) for interpolation (not 
shown), which seems to be due to the consideration of broad 
area means in our study, as discussed by GB09.

2.2  ToE analysis

We used the signal-to-noise ratio (S/N) method following 
GB09 to estimate ToEs. To calculate signals, we first com-
puted the 20-year running mean precipitation for each reali-
zation of each model. Then we defined each year’s signal as 

Table 1  List of CMIP5 
simulations used in this study

TCR value sources: IPCC (2013)
a Muthers et al. (2014)
b Kjellström et al. (2016)
c Mullan et al. (2016)

No MODEL HIST RCP2.6 RCP4.5 RCP8.5 TCR 

1 bcc-csm1-1 3 1 1 1 1.7
2 bcc-csm1-1-m 3 1 1 1 2.1
3 BNU-ESM 1 1 1 1 2.6
4 CanESM2 5 5 5 5 2.4
5 CCSM4 6 1 6 6 1.8
6 CESM1-CAM5 3 3 3 3 2.3
7 CESM1-WACCM 4 1 1 1 1.8a

8 CNRM-CM5 10 1 1 5 2.1
9 CSIRO-Mk3-6-0 10 10 10 10 1.8
10 EC-EARTH 6 2 9 9 2.0b

11 FGOALS-g2 1 1 1 1 1.4
12 FIO-ESM 3 3 3 3 –
13 GFDL-CM3 5 1 1 1 2.0
14 GFDL-ESM2G 3 1 1 1 1.1
15 GFDL-ESM2M 1 1 1 1 1.3
16 GISS-E2-H 15 3 15 3 1.7
17 GISS-E2-R 22 3 17 3 1.5
18 HadGEM2-AO 1 1 1 1 2.0c

19 HadGEM2-ES 4 4 4 4 2.5
20 IPSL-CM5A-LR 6 4 4 4 1.5
21 MIROC5 5 3 3 3 1.5
22 MIROC-ESM 3 1 1 1 2.2
23 MIROC-ESM-CHEM 1 1 1 1 –
24 MPI-ESM-LR 3 3 3 3 2.0
25 MPI-ESM-MR 3 1 3 1 2.0
26 MRI-CGCM3 5 1 1 1 1.6
27 NorESM1-M 3 1 1 1 1.4
28 NorESM1-ME 1 1 1 1 1.6
Total 136 60 100 76
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the ensemble mean percentage change of the 20-year running 
means relative to each model’s ensemble average over the ref-
erence period (1980–1999); e.g., the signal of the year 2040 
is the relative change between the 20-year ensemble aver-
age for 2021–2040 and the model’s ensemble average over 
1980–1999. Finally, the signal is defined as the arithmetic 
average across all models including single and multi-realiza-
tion models. After obtaining the time series of signals, we 
repeated the same processes to derive noise. GB09 includes 
two main sources of noise variance: internal-model variance 
and inter-model variance. We did not evaluate inter-annual 
variability because the 20-year running mean cancels it out. 
We calculated internal-model variance to consider the dif-
ferences within a model for all multi-realization models, and 
inter-model variance to investigate the difference in model 
means. Overall noise was calculated by taking the square root 
of the sum of internal-model variance and inter-model vari-
ance. The details are as follows. Signal (S) in % for a given 
year is calculated using the following formula:

where m is the total number of models, and and xi is precipi-
tation change (%) in model i, which is defined as

(1)S =
1

m

m
∑

i=1

xi,

(2)xi =
1

ni

ni
∑

j=1

xji.

Here xji is precipitation change (%) in realization j of model 
i and ni is the number of realization of model i. Noise (N) 
for a given year is defined as follows:

where N is total standard deviation, �2

im
 is inter-model vari-

ance (%2) and �2

in
 is internal-model variance (%2), each of 

which is defined as:

Using S and N calculated for each region and season, the 
ToE year is defined as the year at which S becomes larger 
than N (S/N > 1) with the assumption that this condition 
remains permanent until the end of twenty-first century. 
This is the same threshold as that used in GB09 to define 
confidence level of emergence. This means that, starting 
from ToE, we have a likelihood of emergence of about 84%, 
which is equivalent to a cumulative probability of less than 
one standard deviation. Although we calculate ToEs until 
2099, ToEs after 2090 are not reliable due to too short period 
for the permanent emergence. The choice of 2090 as a cut 
off is later than in most previous studies. However, we use 
a multi-model ensemble, which smoothes out decadal vari-
ability that might be important in individual model runs.

To improve the ToE comparison with the GB09 results 
obtained from 14 CMIP3 models, we first randomly selected 
14 models out of the 28 CMIP5 models without replace-
ment and calculated ToEs. This was repeated 1000 times 
and 5th–95th percentile ranges and median of ToEs were 
estimated for comparison with GB09 results. This ToE esti-
mation from random sampling indicates some uncertainty 
ranges of ToE due to different model samples, as other stud-
ies have shown differences in ToE in individual models (e.g., 
Hawkins et al. 2014; King et al. 2015). In this regard, we 
further conducted a comparison between ToEs estimated 
from individual models with those from multi-models (see 
Sect. 4).

2.3  Sensitivity test

Model climatology bias may or may not affect projections 
of precipitation change (Giorgi and Coppola 2010). We 
used observation data from the Climatic Research Unit 
(CRU.3.21, New et al. 2000) to explore the possible influ-
ence of model bias on the precipitation signal and ToE. 
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Table 2  List of CMIP3 simulations used in this study

TCR value source: IPCC (2007)
a Kuhlbrodt and Gregory (2012)

No Model 20c3m SRESA2 SRESB1 TCR 

1 cccma-cgcm3-1 5 5 4 1.9
2 cnrm-cm3 1 1 1 1.6
3 csiro-mk3-0 3 1 1 1.4
4 gfdl-cm2-0 3 1 1 1.6
5 giss-model-e-r 9 1 1 1.5
6 inmcm3-0 1 1 1 1.6
7 ipsl-cm4 2 1 1 2.1
8 miroc3-2-medres 3 3 3 2.1
9 miub-echo-g 5 3 3 1.7a

10 mpi-echam5 3 3 3 2.2
11 mri-cgcm2-3-2a 5 5 5 2.2
12 ncar-ccsm3-0 8 4 6 1.5
13 ncar-pcm1 4 4 2 1.3
14 ukmo-hadcm3 2 1 1 2.0
Total 54 34 33



3183Time of emergence in regional precipitation changes: an updated assessment using the CMIP5…

1 3

For each region, we examined the inter-model relation-
ship between model bias in precipitation climatology for 
20 years (1980–1999) and projected changes in precipi-
tation during the late twenty-first century (2070–2099). 
It is notable that observations may have uncertainty in 
precipitation intensity over the land (Herold et al. 2016). 
However, observational uncertainties would not affect our 
results much since we focus on the inter-model relation-
ship (between model bias and future projection) rather 
than absolute values. Because the models’ spread in pre-
cipitation change may be attributed to the uncertainty in 
climate sensitivity, we also investigated the relationship 
between climate sensitivity presented by the Transient 
Climate Response (TCR; Tables 1, 2) and precipitation 
change projected by each model.

3  Results

3.1  Precipitation change hotspots

Multi-model mean precipitation changes from CMIP5 28 
models show increasing and decreasing patterns in the future 
(2080–2099) relative to the past (1980–1999) for the two 
seasons of AS and OM (Fig. 1). PSPOTs have been selected 
following GB09, which show larger magnitudes of change 
and greater model agreement on the sign of the change, as 
in CMIP3 results. During AS, two positive-change hotspots 
over Asian monsoon regions (EAS and SAS) and six neg-
ative-change hotspots (MED, SAF, SAU, WUS, CAR, and 
AMZ) are identified, whereas four positive-change hotspots 
over the northern high-latitudes (NAS, NAM, and NEU) 

Fig. 1  Patterns of future precipitation change from 28 CMIP5 mod-
els. Data are presented as the difference between the two season 
means for the periods 2080–2099 and 1980–1999 in three RCP sce-

narios, RCP2.6, RCP4.5, and RCP8.5. Open boxes indicate PSPOTs 
(land only). Units are % relative to 1980–1999 value. Stippling 
regions: 80% of models agree on the sign of change
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and East Africa (EAF) and two negative-change hotspots 
(MED and CAM) are identified during OM (Fig. 1). Multi-
model mean precipitation changes and inter-model agree-
ment become greatest under the strongest emission scenario 
of RCP8.5, indicating higher probability of the signal emer-
gence out of the inter-model noise.

The precipitation increase over tropical regions can be 
explained by a “warmer-get-wetter” theory in which increas-
ing sea surface temperature causes a precipitation increase 
by the Clausius–Clapeyron relation, and the increased 
land–ocean temperature contrast increases the amount of 
moisture transport to the land (Kirtman et al. 2013; Sarojini 
et al. 2016). The precipitation increase over the northern 
high-latitude regions is consistent with the observed Arc-
tic moistening (Min et al. 2008; Wan et al. 2015) that is 
attributable to the pole-ward shift of storm tracks under the 
greenhouse warming. The drying trend of sub-tropic regions 
during both seasons can be attributed to the poleward shift of 
the subtropical dry zones in both hemispheres (Christensen 
et al. 2007; Kirtman et al. 2013).

Overall precipitation changes over the PSPOTs are 
consistent with results obtained from CMIP3 in GB09. In 
both seasons, model agreement on the sign of precipitation 
change and inter-model variance noise mostly increase as 
radiative forcing of scenarios is increased (Figs. 1, 2). Model 
agreement on the sign of the change is largest in northern 
high-latitudes and smallest in tropics except for two Asian 
monsoon regions (Fig. 1). Figure 2 shows the inter-model 
and internal-model variance in the future precipitation 
changes for 14 PSPOTs averaged for 2080–2099 compared 
to 1980–1999. The inter-model differences in precipitation 
changes are higher in tropical regions such as AMZ, CAR, 
SAU, and EAF. Overall, internal-model variances are much 
smaller than inter-model variances, indicating the noise 

dominated by the differences in precipitation projections 
across models, as found in previous studies (Hawkins and 
Sutton 2011; King et al. 2015). The precipitation change 
uncertainty in selected regions, which contains coastline, 
could be partly due to the different resolution of the models 
(GB09). Therefore, to estimate ToEs of these regions, we 
average the precipitation over the areas before calculating 
signal.

3.2  ToE from CMIP5 models

The inter-model spread of precipitation changes var-
ies over different periods of the twenty-first century and 
for different scenarios (Fig. 2). Figure 3 illustrates some 
examples of the time evolution of the signal and noise in 
the precipitation changes over the six PSPOTs. The signal 
generally strengthens (increase or decrease in precipita-
tion) over time and in some regions a significant differ-
ence in signal exists between scenarios near the end of the 
twenty-first century. The noise also increases with time, 
but with different rate of changes across regions. The ToE 
year is defined as the year at which the signal exceeds the 
noise permanently as described in Sect. 2. For example, 
during AS, the signal for drying regions such as the Ama-
zon basin (AMZ) never exceeds noise during the twenty-
first century, which means no ToE occurrence (Fig. 3a). 
In contrast, during OM, the signal over the northern 
high-latitude regions like northern Asia (NAS) is always 
greater than noise, and ToEs occur before 2020 (Fig. 3f). 
This means that the anthropogenic signal in the region is 
easier to detect than the other regions, consistent with pre-
vious studies that found human influence on precipitation 
increases in the northern high-latitudes during the past 
several decades (Min et al. 2008; Wan et al. 2015). ToEs 

Table 3  Information on 14 
PSPOTs

Season Type Region Abbreviation Latitude Longitude

Oct–Mar Drying Central America CAM-OM 15N–35N 121.5W–112.5W
Mediterranean MED-OM 25N–43N 10.5W–40.5W

Wettening Northern Europe NEU-OM 50N–70N 10.5W–40.5E
Northern Asia NAS-OM 35N–70N 85.5W–140.5W
Northern North
America

NAM-OM 40N–70N 170.5W–49.5W

East Africa EAF-OM 5S–12N 27.5E–52.5E
Apr–Sept Wettening East Asia EAS-AS 10N–50N 100.5E–140.5E

South Asia SAS-AS 5N–33N 64.5E–100.5E
Drying Western United State WUS-AS 30N–50N 125.5W–112.5W

South Australia SAU-AS 40S–27S 113.5E–154.5E
South Africa SAF-AS 35S–12S 9.5E–40.5E
Mediterranean MED-AS 20N–48N 10.5W–38.5W
Caribbean CAR-AS 10N–25N 97.5W–64.5W
Amazon basin AMZ-AS 23S–2S 58.5W–35.5W
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of other regions appear in different periods depending on 
scenario, such as the Mediterranean (MED) experienc-
ing ToEs in the mid-twenty-first century under RCP8.5 
(Fig. 3c), while ToE for East Africa (EAF) appears in the 
early twenty-first century (Fig. 3d).

Using the same ToE classification as GB09 for early ToE 
(up to 2040), mid ToE (2040–2080) and late ToE (beyond 
2080), we find that, based on the RCP4.5 scenario, early 
ToEs occur in wettening regions, such as East Asia in AS 
and northern high-latitude regions in OM; mid ToEs happen 
in South Asia and South Africa in AS and East Africa in 
OM; and late ToEs happen in other drying regions (Fig. 4, 
middle panel). The result is similar to GB09, such as early 
ToEs in northern-high latitude wettening regions and late 
ToEs in drying regions, although some regions have dif-
ferences, such as earlier ToE in East Asia than GB09 (see 
below for details). ToEs tend to be earlier in greater radiative 
forcing scenarios and tend to be earlier in OM than in AS 
(Fig. 4). The signals in RCP2.6 are stable and weaker than 
in other RCPs (Figs. 2, 3), making ToEs delayed relative to 
other RCPs through mitigation. However, some regions, such 
as the northern high-latitude regions, East Asia, and drying 
regions except for the Mediterranean, have ToEs insensitive 
to the different scenarios. In contrast, other regions, such as 

SAS-AS, SAF-AS, and EAF-OM, have ToEs sensitive to the 
scenarios (Fig. 4).

Exact ToE years for each PSPOTs are displayed in Fig. 5, 
comparing results under three RCP scenarios. There are 
some regions showing considerable changes in ToEs accord-
ing to different RCP scenarios, indicating that those regions 
could get benefit of reduced global warming through the ToE 
extension by taking lower emission scenarios. It is found 
that five out of 14 PSPOTs could experience ToE delay by 
at least 26 years if greenhouse-gas emission is reduced to 
RCP2.6 scenario levels, representing substantial benefits of 
emission reduction as Ciavarella et al. (2017) showed for 
extremely hot seasons.

3.3  ToE delay under mitigation

For more convenient comparisons, ToE delays are illustrated 
separately in Fig. 6. Red bars in Fig. 6 show ToE differences 
between RCP2.6 and RCP4.5 and blue bars indicate those 
between RCP2.6 and RCP8.5. Note that we neglect ToE 
differences with both ToEs occurring after 2080 (like the 
CAR-AS drying). The comparison of RCP2.6 with RCP4.5 
scenario shows that ToEs are delayed in three PSPOTs—
South Africa (drying, 59 years) and South Asia (wettening, 

Fig. 2  Inter-model and internal-
model variance in future 
(2080–2099) precipitation 
changes with respect to the past 
period (1980–1999) over 14 
PSPOTs from RCP2.6 (green), 
RCP4.5 (blue), and RCP8.5 
(red) scenarios
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> 57 years) during AS, and over East Africa (wettening, 
> 26 years) during OM. When comparing RCP2.6 with 
RCP8.5, longer delays of ToEs occur in the three regions 
with South Asia (wettening, > 67 years), South Africa (dry-
ing, 62 years), and East Africa (wettening, > 66 years). 
Additionally, Mediterranean region is found to have ToE 
delays (drying, > 45 years) in both AS and OM seasons 
in the RCP2.6–RCP8.5 comparisons, suggesting that this 
region can be one of the regions with largest benefits.

Even when comparing RCP4.5 with RCP8.5, some 
regions might have benefits by the reduced emission of 
greenhouse gases, such as East Africa (OM) with a 40-year 

ToE delay, and the Mediterranean with more than a 45-year 
delay for both seasons (Fig. 7). It is notable that the differ-
ences in ToEs for different RCPs will be minor until the mid 
of the century due to similar radiative forcings. Indeed, SAS-
AS and SAF-AS exhibit small differences in ToE between 
the RCP4.5 and RCP8.5 scenarios where both appear in the 
early twenty-first century (Fig. 7). This means that the ToEs 
will be similar between scenarios if both are early and that 
ToE differences can be only found for regions where the 
ToE occurs late.

As a whole, these results of ToE delays can be use-
ful information for developing mitigation strategies for 

Fig. 3  Time evolution of 
precipitation change signal 
(20-year running mean, solid 
lines) and noise (dashed lines) 
over 6 PSPOTs and their cor-
responding ToEs in: AS season 
(AMZ, MED, and SAS) and 
OM season (CAM, EAF, and 
NAS) for RCP2.6, RCP4.5, and 
RCP8.5. For drying PSPOTs, 
negative signs are given to noise 
for better comparison

(a) (b)

(c) (d)

(e) (f)
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a given region, although the global nature of the RCPs 
should be considered with care. For example, in the Medi-
terranean in both seasons, by taking only RCP4.5 scenario 
rather than RCP8.5, the regions can get benefit from a 
ToE delay of 45 years. In contrast, for South Asia and 
South Africa, RCP2.6 should be considered more than 
RCP4.5 to postpone emergence (Figs. 6, 7).

3.4  ToE comparisons between CMIP3 and CMIP5

Overall, ToEs obtained from 28 CMIP5 models under RCP 
scenarios are similar to those in GB09, but some noticeable 
differences were observed in some PSPOTs such as East 
Asia, South Asia, and South Africa. This difference may be 
in part due to difference in models analyzed. In this respect, 

Fig. 4  Summary of ToEs (S/N > 1) over 14 PSPOTs in RCP2.6, 
RCP4.5, and RCP8.5 scenarios. Dashed and solid boxes represent 
drying and wettening trends, respectively. Red, yellow, and blue 

colors indicate ToE in the early (< 2040), mid (2040–2080), and late 
twenty-first century (> 2080), respectively
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we explore the difference between CMIP3-based ToEs and 
CMIP5-based ToEs, by considering comparable scenario 
pairs: SRESA2 vs. RCP8.5, and SRESB1 vs. RCP4.5. It 
should be noted that the number of models is also differ-
ent between GB09 and our study. The GB09 study used 14 
CMIP3 models whereas we used 28 CMIP5 models. This 
difference in the number of sampled models may influence 
the difference in ToE years between our results and GB09. 
Therefore, for a fair comparison, we applied the same num-
ber of models by randomly selecting 14 out of 28 models 
and obtained ToEs. We repeated this procedure 1000 times 
and estimate 5–95% ranges of possible ToE ranges.

Figure 8 compares ToEs between CMIP3 and CMIP5 
models for the SRESB1-RCP4.5 pairs. Box-whisker plots 
represent 5–95% ranges of ToEs estimated from 14 CMIP5 
models. The random sampling provides larger ranges of 
CMIP5 ToEs in some regions like the Mediterranean (both 
seasons), East Africa, South Asia, and South Africa. How-
ever, these CMIP5 ranges include CMIP3-based ToEs, rep-
resenting that CMIP5 ToEs are not inconsistent with CMIP3 
ToEs in these regions. For example, the Mediterranean in 
AS exhibits different ToE between 28 CMIP5 models and 
14 CMIP3 models, by about 40 years. However, ToE from 
SRESB1 is located within the 5–95% uncertainty range of 
ToEs from RCP4.5. Other regions with early ToEs before 
2020 and late ToEs beyond 2080 show no difference in 
ToEs between CMIP3 and CMIP5 models, including the 
northern high-latitude regions (NEU-OM, NAS-OM, and 
NAM-OM) and some drying regions (WUS-AS and SAU-
AS). East Asia and South Asia in AS are the only regions 
showing significant differences in ToE between the CMIP5 
and CMIP3 models with about 10–20 years earlier ToEs in 
CMIP5 models compared to CMIP3 models.

When comparing ToE ranges in the RCP8.5 with those 
in the RCP4.5, ToEs of random groups under RCP8.5 have 
smaller uncertainty than ToEs of random groups under 
RCP4.5 over some regions (Fig. 9). This implies that the 
timing of signal emergence becomes more consistent among 
models under a stronger radiative forcing, which might be 
primarily due to the greater rate of change under RCP8.5 
than RCP4.5. Thus, a larger difference is expected in ToE 
between CMIP3 and CMIP5 models in the RCP8.5 and 
SRESA2 scenario pairs (Fig. 9), but only two Asia mon-
soon PSPOTs and South Africa during AS exhibit a clear 

Fig. 5  ToE years (S/N > 1) over 14 PSPOTs obtained from RCP2.6 
(green), RCP4.5 (blue), and RCP8.5 (red) scenarios. Left arrows indi-
cate ToEs earlier than 2020 while right arrows depict ToEs later than 
2099. Note that ToE for EAS-AS in RCP2.6 scenario is not shown, 
which is the same as that in RCP4.5 scenario

Fig. 6  ToEs (vertical line) and 
their difference (horizontal bars 
and arrows) between RCP2.6 
and RCP4.5 (blue), and between 
RCP2.6 and RCP8.5 (red) over 
14 PSPOTs. Exact and open 
delays of ToEs are illustrated 
below
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difference in ToE, by at least 20 years, where CMIP3-based 
ToEs are completely outside of 5–95% uncertainty range of 
CMIP5-based ToEs.

We further investigated the ToE difference in these 
three regions (EAS, SAS, and SAF) by comparing the time 
series of signals and noise under the RCP8.5 and SRESA2 
scenario pairs (Fig. 10). The results indicate that signals 
of precipitation changes are larger in CMIP5 than CMIP3, 
whereas difference in noise is not significant. For East Asia 
and South Asia, the signals from two CMIPs are not differ-
ent until 2030 but after then about 3–4% difference appears 
and remains until the end of twenty-first century. Also, over 
South Africa, 5–10% difference in signals remains by the 
end of twenty-first century. Therefore, ToEs of these regions 

are earlier in CMIP5 than in CMIP3 due mainly to stronger 
signals. Results based on the RCP4.5-SRESB1 comparison 
support the stronger signal over these regions in CMIP5 (not 
shown).

The reasons why CMIP5 models have stronger signals in 
these regions remain unclear, warranting further in-depth 
investigations (Lee and Wang 2014). Here we have simply 
checked the possible influence of the model biases in pre-
sent-day climatology. The inter-model correlations between 
future precipitation changes and precipitation climatology 
biases were found to be very low and insignificant for all 
three regions (not shown), suggesting that model bias may 
not be a dominant factor for CMIP3-CMIP5 difference in 
signal amplitudes, consistent with a previous work (Giorgi 
and Coppola 2010). We have also examined the inter-model 
relation between climate sensitivity (using TCR in Tables 1, 
2) and precipitation change signal, which is found to be sig-
nificant in the global mean results (Livia and Timothy 2014). 
In CMIP5 models, the relationship is unclear in South Asia 
and South Africa, while a significant correlation (r = 0.41) 
is seen over East Asia. In CMIP3, however, the results show 
no significant relationship. Precipitation change in East Asia 
in CMIP5 models seems to be more sensitive to radiative 
forcing than CMIP3 models, which might be related to the 
difference in implementation of aerosol effects, monsoon 
circulation, and/or influence of tropical oceans, which needs 
to be investigated in the future work (Lee and Wang 2014).

Signals will emerge earlier when using lower thresholds 
for signal-to-noise ratio. We tested sensitivity of ToEs to dif-
ferent S/N thresholds as S/N > 0.5 and S/N > 2 (not shown). 
Results suggested that some regions such as South Asia and 
South Africa in AS will experience earlier ToEs when using 
S/N > 0.5 and many regions have later ToEs at a more strin-
gent threshold of S/N > 2, consistent with previous studies 
(Hawkins and Sutton 2012; Lee et al. 2016). This indicates a 
high sensitivity of ToEs to the S/N threshold, and one needs 

Fig. 7  Same as Fig. 6 but for comparing ToEs between RCP4.5 and 
RCP8.5

Fig. 8  Comparisons of ToEs over 14 PSPOTs between CMIP3 
SRESB1 scenario (× mark) and CMIP5 RCP4.5 scenario (open cir-
cle). Horizontal box-whisker plots represent 5th to 95th percentile 
ranges of ToEs estimated from 14 randomly-selected CMIP5 models

Fig. 9  Same as Fig. 8 but for CMIP3 SRESA2 scenario and CMIP5 
RCP8.5 scenario
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to choose it with care. We also tested the sensitivity of ToEs 
to using a 30-year moving window for estimating signals. 
The overall results are similar to the case of a 20-year mov-
ing window (not shown), suggesting insensitiveness of ToEs 
to the window interval.

4  Summary and discussion

In this study, we conducted an updated ToE analysis of 
regional precipitation changes during the twenty-first cen-
tury by applying a signal-to-noise ratio method to multi-
model datasets of CMIP5, simulated under three RCP 
scenarios. Following the previous study (GB09), we investi-
gated ToEs over 14 precipitation change hotspots (PSPOTs) 
considering two seasons of April–September (AS) and Octo-
ber–March (OM), and found overall similar results. In addi-
tion, we examined possible ToE delays under mitigation by 
comparing those from a lower emission scenario (RCP2.6) 
with those from higher emission scenarios (RCP4.5 and 

RCP8.5). A few regions are identified with strong benefits 
of mitigation through ToE delays by 26 years and longer. 
The estimated ToE delay would be important information for 
strategy developers to mitigate the effects of climate change. 
To assess robustness of ToE results, we also examined the 
agreement in ToE between CMIP3 and CMIP5, for which 
the same numbers of models were considered for fair com-
parison. The main conclusions are summarized as follows, 
along with implications.

Results from RCP8.5 (high emission scenario) sug-
gest that ToEs occur in the early twenty-first century over 
three northern high-latitude regions (OM wettening), 
East Africa (OM wettening), South Asia (AS wetten-
ing), East Asia (AS wettening) and South Africa (AS 
drying). The Mediterranean (both OM and AS drying) 
is expected to experience ToEs in the mid-twenty-first 
century (2040–2080). There will be no ToEs occurring 
in the twenty-first century in the other five region-sea-
son cases. The RCP2.6 scenario shows significantly later 
ToEs than RCP4.5 and RCP8.5 scenarios, with the delay 

Fig. 10  Comparisons of time 
evolution of precipitation 
change signal (left) and noise 
(right) between CMIP5 RCP8.5 
(red lines) and CMIP3 SRESA2 
results (black lines) for East 
Asia, South Asia, South Africa 
during AS season. Red line and 
pink shading represents mean 
and 5–95% ranges estimated 
from 14 randomly-selected 
CMIP5 models
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ranging from 26 to 67 years or longer over East Africa 
(OM wettening), the Mediterranean (both AS and OM dry-
ing), South Asia (AS wettening), and South Africa (AS 
wettening).

The ToE results from RCP4.5 are generally consistent 
with the results from SRESB1, and ToE results from RCP8.5 
are also similar to the results from SRESA2, supporting the 
findings of GB09. In both cases, the similarity was greatest 
in the drying regions and northern high-latitude wettening 
regions. ToE comparisons between CMIP5 random-sampled 
models and CMIP3 models showed a considerable ToE dif-
ference of at least 20 years over East Asia, South Asia, and 
South Africa during AS in RCP8.5-SRESA2 comparisons, 
which was found to be due to a stronger signal in CMIP5 
models than in CMIP3 models. ToE differences in these 
regions were largely insensitive to model precipitation bias 
or climate sensitivity. Some sensitivity tests indicated that 
ToEs will arrive earlier if a more stringent S/N threshold is 
used, consistent with previous studies. Using 30-year mov-
ing windows for signal definition provides similar ToEs as 
from 20-year moving windows, indicating a weak influence 
of the average period.

Estimates of ToE can be sensitive to the different defi-
nition of signal and noise, and two approaches have been 
developed and applied, one based on multi-model ensem-
bles (MME, Christensen et al. 2007; GB09) and the other 
based on individual models (e.g., Hawkins and Sutton 2012; 
Maraun 2013; Sui et al. 2014). The ToE method based on 
individual model is based on the view of regarding internal 
variability as the only source of noise in the climate system 
(Maraun 2013), in which they estimate ToE from signal 
and noise defined from individual models and then meas-
ure ToE uncertainty considering inter-model differences in 
ToE. Although MME-based methods treat the inter-model 
difference as another source of ‘projection’ noise, the inter-
model noise can arise from model errors related to differ-
ent climate sensitivity as well as from internal variability, 
because model error and internal variability is difficult to 
disentangle due to a small number of simulations available 
for each model, particularly at regional scales (Deser et al. 
2012; Kay et al. 2015). Therefore, although the two methods 
are based on different views, particularly in terms of noise 
definition (including or excluding inter-model uncertainties), 
both are appropriate and have been widely used to analyze 
signal emergence from noise. For the MME-based methods, 
Hawkins and Sutton (2011) analyzed the S/N in regional 
precipitation projections by applying a similar method to 
GB09 to the CMIP3 multi-model ensembles and identified 
the regions with relatively high S/N, which were largely 
consistent with the findings of GB09. Other studies applied 
GB09 method to assess ToEs of regional temperature and 
precipitation changes (Diffenbaugh and Scherer 2011; Dif-
fenbaugh et al. 2011; Mariotti et al. 2015).

It is worth reconciling two ToE methods (although a 
comprehensive analysis is beyond the scope of this updated 
assessment), and we have conducted a sensitivity test using 
CMIP5 data (28 models listed in Table 1) by calculating 
ToEs from each model simulations and comparing the 
results with MME-based ones. For individual models, signal 
is defined as 20-year running means relative to the refer-
ence period (1980–1999) while noise is defined as a standard 
deviation of 20-year mean values, estimated from non-over-
lapping 20-year chunks of pre-industrial control simulations, 
following Hawkins and Sutton (2012) and Sui et al. (2014). 
Nine 20-year mean values from each model are used to make 
the sample size equal across models. Then, ToE is obtained 
for each model run by finding when the absolute value of 
signal is permanently greater than the noise. Figure 11 
shows ToE results obtained from individual model runs for 
the three RCP scenarios. The inter-quantile ranges (IQR, 
25th to 75th percentiles) of individual model ToE values 
show substantially large spread but in many hotspots, the 
IQR includes the ToE estimated from MME, indicating gen-
eral agreement between two ToE methods. There are only a 
few cases with significant difference between two ToE esti-
mates (i.e. MME ToE is beyond the IQR of individual model 
ToEs), including EAS for three RCPs and SAS for RCP8.5. 
Other than these exceptions, ToE estimated from MME 
tends to occur later than median ToE of individual model 
simulations, which is likely due to the larger noise level in 
GB09 method which contains inter-model uncertainty in the 
noise. We found that overall results are similar when using 
only the first run (r1i1p1) for each model to treat all of the 
models equally (not shown).

We note that some other factors may cause ToE uncer-
tainty. Although we have considered this issue by random 
sampling (Figs. 8, 9), different studies assess ToEs or pre-
cipitation changes based on a differing number of models 
depending on their target regions, and model data availabil-
ity. A different baseline period can produce different ToEs as 
well. We used 1980–1999, assuming that society has adapted 
to the current climate (King et al. 2015) and also for com-
parison to the previous GB09 study. A different choice of 
seasons, such as three or four months as relevant for each 
region, may be useful for impact assessment and adaptation 
planning.

Weather and climate extremes with high impacts on 
society have received more attention recently (SedláčekJ 
and Knutti 2014; Bador et al. 2016; King et al. 2016; Leh-
ner et al. 2016; Lin et al. 2016; Schleussner et al. 2016) 
as hottest-recorded temperatures, droughts, and floods have 
appeared with higher frequency. Therefore, it is important to 
effectively inform policy makers and communities impacted 
on the benefits of greenhouse gas mitigation; regions that 
will gain benefits from ToE delay and types of extreme 
events. Also, other types of hotspots, identified based on the 
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climate change impacts on environment and society (Hewit-
son et al. 2014), such as vulnerability or impact hotspots 
(Fraser et al. 2013; Piontek et al. 2014), need to be assessed 
as well.
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