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Abstract
Quantifying the predictability limits of chaotic systems and their forecast models is an important issue with both theoretical 
and practical significance. This paper introduces three invariant statistical properties of attractors, namely the attractor radius, 
global attractor radius (GAR), and the global average distance between two attractors, to define the geometric characteristics 
and average behavior of a chaotic system and its error growth. The GAR is 

√

2 times the attractor radius. These invariant 
quantities are applied to quantitatively measure the global and local predictability limits (both have practical and potential 
predictability limits, which correspond to the attractor radius and GAR, respectively) of both global ensemble average fore-
casts and one single initial state, respectively. Both the attractor radius and GAR are intrinsic properties of a chaotic system 
and independent of the forecast model and model errors, and thus provide more accurate, objective metrics to assess the global 
and local predictability limits of forecast models compared with the traditional error saturation or asymptotic value (AV). 
Both the Lorenz63 model and operational forecast data are used to demonstrate the theoretical aspects of these geometric 
characteristics and evaluate the feasibility and effectiveness of their application to predictability analysis.

1  Introduction

Many nonlinear physical systems in the real world (e.g., the 
atmosphere and the ocean) display complex chaotic behav-
ior that makes prediction of their variations challenging. 
Because of their high sensitivity to errors in the initial state, 
there is a predictability problem in these systems, as well as 
in their forecast models, which are subject to model errors 

(Lorenz 1963; Wolf et al. 1985; Fraedrich 1987; Li and Ding 
2011, 2015; Tang et al. 2013; Duan and Huo 2016; Liu et al. 
2016; Lucarini et al. 2016; Mu et al. 2017). For example, the 
atmosphere, as a nonlinear dynamical system, has a chaotic 
attractor (Lorenz 1963; Ruelle and Takens 1971; Ott 1981; 
Lions et al. 1997; Li and Chou 1996, 1997a, b; Li and Wang 
2008), and two initially close trajectories can diverge in 
phase space. Numerical weather prediction (NWP) and cli-
mate prediction inevitably tend to be less accurate with sim-
ulation time and become useless beyond a certain time limit, 
which is defined as the predictability limit (Mu et al. 2003, 
2010; Bauer et al. 2015; Vannitsem and Lucarini 2016). 
Since pioneering works (Lorenz 1965; Charney et al. 1966; 
Smagorinsky 1969) recognized that the predictability limit 
for the synoptic scale is about 2 weeks, the atmospheric pre-
dictability limit has been used as a fundamental assessment 
indicator in the development of numerical models and fore-
casting techniques (Mu et al. 2017; Duan and Zhao 2015).

Early studies used the doubling time of the root-mean-
square error (RMSE) of forecasts to measure the initial error 
growth and the predictability (Charney et al. 1966; Sma-
gorinsky 1969; Lorenz 1982). Dalcher and Kalnay (1987) 
suggested that the doubling time of small errors is not a 
good measure of error growth, and the saturation or asymp-
totic value (AV) of RMSE provides a better measure of the 
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predictability limit. In most studies, the predictability limit 
has been defined as the time when the forecast error exceeds 
95% of the AV (Dalcher and Kalnay 1987; Simmons and 
Hollingsworth 2002; Buizza 2010). A threshold of 71% of 
the forecast error AV has also been used, and corresponds 
to climatic variability (Savijärvi 1995; Buizza 2010). Not-
withstanding the widespread use of AV, it turns out to be a 
limited approach to measure the predictability limit. The 
error growth in deterministic forecasts is largely determined 
by model deficiencies for medium- and extended-range fore-
casts (Orrell et al. 2001). This means that the AV of forecast 
error depends on the numerical model used, and thus is not 
an objective threshold to quantify and compare the predicta-
bility limits between predictions from different models. Par-
ticularly, when a forecast model has significant drift-related 
error compared to the attractor of verifying analyses, the AV 
of forecast error may be an inaccurate threshold for quantify-
ing the predictability limit and the 71% threshold may not be 
close to the variability of the actual system. Additionally, the 
forecast-error growth and predictability of individual cases 
are flow-dependent (Corazza et al. 2003). Therefore, it may 
be difficult to identify the error AV to evaluate the local 
predictability limit (i.e., the predictability limit of individ-
ual cases). Another approach, the nonlinear local Lyapunov 
exponent theory (Ding and Li 2007, 2008; Ding et al. 2008, 
2010, 2015; Li and Ding 2011, 2013, 2015), was proposed to 
quantify the global and local predictability limits of chaotic 
systems. When the exact equations of a dynamical system 
are known or observational data covering a long period of 
time are available, this is an effective method. However, 
similar to the AV threshold approach mentioned above, this 
approach may be susceptible to uncertainties in measuring 
global and local predictability limits using forecast models 
that have associated model errors.

This study proposes a unified framework for quantify-
ing global and local predictability limits of both chaotic 
dynamical systems and their forecast models. Three invari-
ant statistical properties of attractors are introduced, namely 
the attractor radius, global attractor radius (GAR), and the 
global average distance (GAD) between two attractors, as 
metrics to quantify global and local predictability limits. 
Moreover, some basic properties of these geometric charac-
teristics of attractors are investigated.

The remainder of the paper is arranged as follows. Sec-
tion 2 introduces the definitions of the attractor radius, GAR, 
and GAD, their relevant theoretical properties, and criteria 
for quantifying global and local predictability limits. The 
models and data used in this work are described in Sect. 3. 
Section 4 presents the results of applying the attractor radius 
and GAR to quantifying global and local predictability lim-
its of an original dynamical system and its forecast model, 
along with a comparison with the traditional error AV 
method. Finally, conclusions are drawn in Sect. 5.

2 � Methodology

2.1 � Attractor radius, GAR and GAD definitions

Let � be a compact attractor of the semigroup S, and � be a 
state column vector on � . � is a closed, bounded and invari-
ant set, i.e., S(t)� = � . Probability theory can be used to 
study the statistical characteristics of the state of attractor � . 
Let � be the sample space,  be a set of subsets of � and a 
σ-field, the probability measure P:→[0,1]. Then, the triplet 
( � ,  , P) is a probability space. According to the ergodic 
theory of attractors (Eckmann and Ruelle 1985), there are 
invariant (ergodic) measures and Eckmann and Ruelle (1985) 
and Farmer et al. (1983) introduced some invariant probability 
measures such as entropy, dimensions and characteristic expo-
nents (also called Lyapunov exponents) to study the properties 
of dynamical systems. To quantitatively estimate predictabil-
ity limit of strange attractors, some other invariant probability 
measures of attractors are introduced. First, let F(�) be the 
probability density function (PDF) of � on � , and f

(

x(I)
)

 be 
the marginal density function in the direction of x(I) , then for 
a compact attractor � , its PDF and marginal density function 
are invariant. In the following the norm || ⋅ || is the L2-norm. 
To reduce space, the derivation process of some formulas and 
theorems is given in “Appendix”, and main concepts are sum-
marized in Table 1.

Definition 1  Let �i be a specific state on a compact attractor 
� , then the local attractor radius (LAR, RL) with respect to 
the point is defined as follows: 

where E represents the expectation, and the corresponding 
marginal LAR in the direction of x(I) is 

Particularly, let �E be the mean state of � , i.e., �E = E(�) , 
� ∈ � . The point �E is referred to as the center of the attractor 
(not necessary on the attractor), and the attractor radius (RE) 
and marginal attractor radius (RE

(I)) are expressed as follows: 

The geometric meaning of LAR is the expectation of 
the root-mean-square distance between one specific state 

(1)RLi = RL(�i) =

√

E
(

‖

‖

�i − �‖
‖

2
)
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√
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2
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√

E
(

‖
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2
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and all other states on an attractor, which is an extension 
of the definition of the radius of an n-sphere. In fact, they 
are equivalent if � is a periodic attractor or an n-sphere. 
Physically, the LAR is an indicator of the average behavior 
of the attractor subset relative to a specific state as the sub-
set expands and fills up the whole attractor. The attractor 
radius has the same form as the standard deviation (SD) 
in statistics, which represents the variability of a variable.

Definition 2  The global attractor radius (GAR, RG) of a com-
pact attractor � is defined as the average or expected value 
of the LAR of � , i.e., 

The corresponding marginal GAR in the direction of 
x(I) is 

This indicates that the GAR is an expectation of the 
root-mean-square distance between any two randomly cho-
sen points on an attractor.

(5)RG =

�

E(R2

L
) =

�

E
�

‖� − �‖2
�

, �, � ∈ �.

(6)R
(I)

G
=

√

E

(

(

R
(I)

L

)2
)

.

Theorem 1  The (marginal) LAR and (marginal) attractor 
radius of a compact attractor � satisfy 

Moreover, one has 

where diE and djE denote the root-mean-square distances 
of xi and xj on � from the mean state of � , respectively, 
and d(I)

iE
 and d(I)

jE
 are the corresponding distances in the 

direction of x(I) . Furthermore, in the phase space of � the 
points �i with the same LAR are on the intersection of the 
attractor set and a sphere of center �E and radius diE.

The minimum value of the LAR of an attractor is the 
attractor radius.

Theorem 2  A constant proportion relationship between the 
(marginal) GAR and (marginal) attractor radius of a compact 
attractor � exists as: 

(7)RLi ⩾ RE, R
(I)

Li
⩾ R

(I)

E
.

(8)RLi > RLj, if diE > djE,

(9)R
(I)

Li
> R

(I)

Lj
, if d

(I)

iE
> d

(I)

jE
,

(10)RG =
√

2RE, R
(I)

G
=
√

2R
(I)

E
.

Table 1   Main concepts and their definitions

Concept Definition

Local attractor radius (LAR) The expectation of the root-mean-square distance between one specific state and all 
other states on an attractor

Attractor radius The expectation of the root-mean-square distance between all states on an attractor and 
the center of the attractor

Global attractor radius (GAR) The expectation of the root-mean-square distance between any two randomly chosen 
points on an attractor

Local average distance (LAD) The expectation of the root-mean-square distance between one specific state on an 
attractor and all states on another attractor

Global average distance (GAD) The expectation of the LAD between two attractors
Global practical predictability limit The time when the global ensemble average RMSE reaches the attractor radius for the 

first time
Global potential predictability limit The time when the global ensemble average RMSE reaches the GAR of an attractor for 

the first time
Local practical predictability limit The time when the local ensemble average RMSE reaches the attractor radius for the 

first time
Local potential predictability limit The time when the local ensemble average RMSE reaches the GAR of an attractor for 

the first time
Global practical predictability limit of a forecast model The time when the global ensemble average RMSE reaches the minimum of the attrac-

tor radii of real attractor and model attractor for the first time
Global potential predictability limit of a forecast model The time when the global ensemble average RMSE reaches the minimum of the GARs 

of real attractor and model attractor for the first time
Local practical predictability limit of a forecast model The time when the local ensemble average RMSE reaches the minimum of the attractor 

radii of real attractor and model attractor for the first time
Local potential predictability limit of a forecast model The time when the local ensemble average RMSE reaches the minimum of the GARs 

of real attractor and model attractor for the first time
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This conclusion is consistent with the error covariance 
analysis of numerical predictions from Leith (1974) and 
Kalnay (2002). In addition, Theorem 2 provides a simple, 
practical approach to calculate the GAR by calculating 
the attractor radius, which can greatly reduce the compu-
tational burden. In order to discuss the predictability of a 
model that is an approximation of a chaotic system (e.g., 
atmospheric models, which are approximations of the real 
atmosphere), some average distances between two attrac-
tors must be introduced.

Definition 3  Let � and ℬ be two compact attractors, and �i 
be a point on � . The local average distance (LAD) from � 
to ℬ with respect to �i is: 

and the corresponding marginal LAD in the direction 

(I) is R(I)

L
(�i,ℬ) =

√

E

(

‖

‖

‖

x
(I)

i
− y(I)

‖

‖

‖

2
)

.

Definition 4  The global average distance (GAD) between 
two compact attractors � and ℬ is the expected value of the 
LAD between the two attractors, i.e. 

Theorem 3  For two compact attractors � and ℬ , one has 

Theorem 3 provides an effective method to calculate the 
GAD between two attractors, which can save considerable 
computational time.

Theorem 4  If the GAD between two compact attractors � 
and ℬ equals their GARs, then the two attractors have the 
same radius and the same center as well. Additionally, with 
respect to any point on � or ℬ the LAD equals the LAR.

In practice, the long-term historical records of a chaotic 
system and a large amount of forecast data from a model 
of the system can be used to estimate its attractor radius 
and GAR, as well as the GAD between the attractors of the 
system and its forecast model, even if its exact equations 
are unknown. We have the following corollary.

Corollary 1  The attractor radius and GAR of a compact 
attractor and the GAD between two compact attractors are 
invariant quantities.

(11)RL(�i,ℬ) =

√

E
(

‖

‖

�i − �‖
‖

2
)

, �i ∈ 𝒜, � ∈ ℬ,

(12)
RG(𝒜,ℬ) =

�

E
�

R2

L
(𝒜,ℬ)

�

=

�

E
�

‖� − �‖2
�

, � ∈ 𝒜, � ∈ ℬ.

(13)R
G
(𝒜,ℬ) =

√

R2

E
(𝒜) + R2

E
(ℬ) + d2(�E, �E).

2.2 � Quantifying global and local predictability 
limits

The attractor radius and GAR are in essence statistics of the 
average behavior of chaos. For NWP, if the forecast RMSE 
averaged over a great number of samples exceeds the GAR 
calculated from the attractor of verifying analyses, the fore-
casts cannot be more accurate than a randomly chosen state 
from the attractor on average, and thus become useless. In 
other words, the GAR as an invariant property of an attractor 
provides an objective metric that can be used to determine 
whether forecasts are still skillful, i.e., predictability. For an 
n-dimensional nonlinear dynamical system, 

where � and � are n-dimensional column vectors, the 
system has a compact attractor � . Considering the evolu-
tion of the state � on � , let �(t) be a fiducial orbit with the 
initial value �0 = �(0) , 𝐱̂(t) be its perturbed orbit with the 
initial value 𝐱̂0 = 𝐱̂(0) , and �0 = �(0) be an initial perturba-
tion vector. Then, 

The RMSE between the two orbits is defined as 

For global predictability, the global ensemble average of 
error growth must be investigated, and is defined as 

where 
⟨

e2(�0, �0, t)
⟩

N
= ∫

�
e2
(

�(t0), �(t0), t
)

d� , < >N 
denotes the ensemble average of samples of sufficiently large 
number N (N → ∞). For the local predictability of one initial 
state, we define a local ensemble average of error growth, 

where Ω0 is a sphere of center �0 and radius �0 = ‖

‖

�0
‖

‖

 , 
⟨

e2(�0, �0, t)
⟩

N→∞
= ∫

Ω(t)
e2(�(t0), �(t0), t)d� , Ω(t) = S(t)Ω0.

Ding and Li (2007) and Li and Ding (2011, 2015) indi-
cated that for chaotic systems, the ensemble mean relative 
growth of initial error has a property of saturation—i.e., it 
tends to a saturation value. Similarly, the global ensemble 
RMSE tends to the GAR (which equals the AV) with time. 
The saturation value of error growth (i.e., the GAR) repre-
sents the average distance between two randomly chosen 
points on an attractor (Li and Ding 2015). Almost all of the 
initial information is lost when the global ensemble RMSE 
reaches the GAR, and further prediction therefore becomes 
meaningless. Note that the attractor radius in Li and Ding 
(2015) is actually the GAR described here. Because 

(14)
d�(t)

dt
= �(�(t)),

(15)𝐱̂0 = 𝐱0 + �0.

(16)e(𝐱0, �0, t) = ‖�(t)‖ = ‖𝐱̂(t) − 𝐱(t)‖.

(17)ē(𝛿0, t) =

�

⟨e2(�0, 𝛿0, t)⟩N , �0 ∈ �,

(18)ē𝐱0 (𝛿0, t) =

�

⟨e2(𝐱̂0, 𝛿0, t)⟩N , 𝐱̂0 ∈ Ω0,
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71% ≈ 1

�
√

2 , 71% of the forecast error AV used as the 

threshold in Savijärvi (1995) and Buizza (2010) is equivalent 
to using the attractor radius RE as the threshold. There are 
two types of predictability limit corresponding to the attrac-
tor radius and GAR, the practical predictability limit and the 
potential predictability limit (also known as the maximum 
predictability limit). Figure 1a illustrates typical mean error 
growth in a nonlinear chaotic system as a function of time, 
along with the practical predictability limit and the potential 
predictability limit. As shown, the global practical predict-
ability limit and the global potential predictability limit are 
determined as the times when the global ensemble average 
RMSE reaches the attractor radius and GAR, respectively, 
i.e., 

Where Tpr and Tpo are the global practical and potential 
predictability limits, respectively. The error growth will 
enter a strong nonlinear phase with a steadily decreasing 
growth rate when the magnitude of the mean error exceeds 
the attractor radius (Fig. 1a). For a “perfect” model without 
model errors, we may choose 95% of the GAR as the cri-
terion to measure Tpo , following previous studies (Dalcher 
and Kalnay 1987; Simmons and Hollingsworth 2002; Buizza 
2010).

Different initial states have different predictability. The 
local practical and potential predictability limits of any 
initial state can be measured by the times when the local 

(19)ē(𝛿0, t)|t<Tpr < RE and ē(𝛿0, t)|t=Tpr = RE,

(20)ē(𝛿0, t)|t<Tpo < RG and ē(𝛿0, t)|t=Tpo = RG,

ensemble average RMSE reaches the attractor radius and 
GAR for the first time, respectively—i.e., 

Next, the predictability of model forecasts is discussed. 
Typically, model errors are present. For example, an approx-
imate model of the dynamical system of Eq. (14) can be 
written as follows: 

where �̃ is an approximation of � in Eq. (14). Let � and 
�M be the attractor of the chaotic system of Eq. (14) and 
the one of its approximate model, Eq. (23), respectively. 
Typically, they are different and thus their predictabilities 
are also different. Considering the two orbits �(t) on � and 
�(t) on �M . Here, �(t) is a fiducial orbit and the initial value 
�0 = �0 + �0 , where �0 is a small perturbation. The error of 
the model forecast is 

The global ensemble average of error growth, ēM , will tend 
to a saturation value with time, which is the GAD between 
the two attractors � and �M . However, the GAD cannot 
directly be used as a threshold to determine the predictability 
limit, because the forecast model has associated model errors. 
Following Theorem 3, let Re = min

(

R
E

(

�M

)

, R
E
(�)

)

 , and 

(21)ē�0 (𝛿0, t)|t=Tpr,�0
= RE and ē�0 (𝛿0, t)|t<Tpr,�0

< RE,

(22)ē�0 (𝛿0, t)|t=Tpo,�0
= RG and ē�0 (𝛿0, t)|t<Tpo,�0

< RG,

(23)
d�(t)

dt
= �̃(�(t)),

(24)
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�

�
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Fig. 1   a  Schematic illustration of the typical mean error growth 
(measured as the global ensemble average RMSE, red) of a nonlinear 
chaotic system as a function of time, and the relationships of the prac-
tical predictability limit (Tpr) and potential predictability limit (Tpo) 
to the attractor radius (RE; lower dashed line) and GAR (RG; upper 
dashed line). b  Same as in (a) but for the error growth of a model 
forecast (blue) and the determination of the practical predictability 

limit ( TM
pr

 ) and potential predictability limit ( TM
po

 ) of the model. The 
upper, middle and lower horizontal dashed lines represent the GAD 
(GADM,O) between the real attractor and model attractor, the mini-
mum Rg the GARs of real attractor and model attractor, and the min-
imum Re of the attractor radii of real attractor and model attractor, 
respectively
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Rg = min
(

R
G

(

�M

)

, R
G
(�)

)

 , then the global and local pre-
dictability limits of the model are determined by 

where TM
pr

 and TM
po

 are the global practical and potential 
predictability limits of the model (Fig. 1b), respectively, and 
TM
pr,�0

 and TM
po,�0

 are the local practical and potential predict-

ability limits of the model. All of the concepts of predictabil-
ity limits mentioned above are summarized in Table 1.

The GAR and the traditional error AV are similar in that 
both are used to determine the predictability limit by identi-
fying the time during which forecasts are chaotic in contrast 
to analyses. However, because a forecast model usually has 
associated model errors and the model attractor �M is dif-
ferent from the real attractor � , the saturation level of the 
global ensemble average RMSE ēM(𝛿0, t) , which corresponds 
to the traditional AV and the GAD between the two attrac-
tors � and �M , is not the same as that of ē(𝛿0, t) (i.e. the 
GAR). Typically, because of model errors, the AV overesti-
mates the error saturation value, resulting in an overestima-
tion of the predictability limit. Furthermore, the difference 
between the GAR of the real attractor and the GAD is a bet-
ter indicator of the degree of model drift or systematic error. 
Additionally, in light of Theorem 3 the 71% of AV threshold 
cannot serve as an accurate approximation of the variabil-
ity of the real system and has therefore lost both physical 
and geometric meaning. In contrast, the GAR and attractor 
radius only depend on the real attractor and are not affected 
by model drift errors. Thus, the GAR and attractor radius are 
more suitable metrics to use to determine the predictability 
limit of a forecast model (Fig. 1b).

(25)ēM(𝛿0, t)|t=TM
pr
= Re and ēM(𝛿0, t)|t<TM

pr
< Re,

(26)
ēM,�0

(𝛿0, t)|t=TM
pr,�0

= Re and ēM,�0
(𝛿0, t)|t<TM

pr,�0

< Re,

(27)ēM(𝛿0, t)|t=TM
po
= Rg and ēM(𝛿0, t)|t<TM

po
< Rg,

(28)
ēM,�0

(𝛿0, t)|t=TM
po,�0

= Rg and ēM,�0
(𝛿0, t)|t<TM

po,�0

< Rg,

3 � Model and data

The model used in this study is the simple Lorenz63 model 
(Lorenz 1963): 

where � = 10 , r = 28 , b = 8∕3 , and for which the well-
known ‘butterfly’ attractor exists. To discuss the predict-
ability of model forecasts, an approximation of the Lor-
enz63 model with associated model errors is chosen, in 
which the parameter b = 10∕3.This approximate model is 
referred to as the imperfect Lorenz63 model. A fourth-
order Runge–Kutta time integration scheme is selected 
with a time step h = 0.01time units (tu) and double preci-
sion is used to calculate numerical solutions.

The Lorenz63 model is continuously integrated for 
1 × 106 tu with a 0.01 tu output interval and used to rep-
resent the ‘true’ system after eliminating the first 104 tu 
trajectory as spin-up. Results are used to calculate the 
attractor radius, GAR, and LAR, and are used as the ref-
erence for verifying forecasts. In addition to a large data 
set simulated from this simple model, the 45-day retro-
spective forecasts of the coupled Climate Forecast System 
(CFSv2) from the National Centers for Environmental Pre-
diction (NCEP) from Jan 1999 to Dec 2010 every 6 h are 
used to evaluate the utility of the attractor characteristic 
parameters presented in this work. The 00Z initial condi-
tions, which are approximately equivalent to the observed 
atmospheric state, are used to verify the forecasts. Note 
that the annual cycle of the series of 00Z initial conditions 
has been removed before the observations are applied to 
the computation of the GAR and LAR of the atmosphere. 
The predictability experiments are summarized in Table 2.

(29)

⎧

⎪

⎨

⎪

⎩

ẋ = −𝜎x + 𝜎y

ẏ = rx − y − xz

ż = xy − bz

,

Table 2   Predictability experiments and the corresponding descriptions

Predictability experiment Description

A ‘perfect’ model scenario The Lorenz63 model with the parameters � = 10 , r = 28 and b = 8∕3

An imperfect model scenario An imperfect Lorenz63 model with the parameters � = 10 , r = 28 and b = 10∕3

Operational forecasts of the CFSv2 The 45-day retrospective forecasts of the coupled Climate Forecast System 
(CFSv2) from the National Centers for Environmental Prediction (NCEP) 
from Jan 1999 to Dec 2010 every 6 h

Observed atmosphere The 00Z initial conditions of the CFSv2, which are approximately equivalent to 
the observed atmospheric state, are used to verify the forecasts
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4 � Attractor radius, GAR and LAR 
in the Lorenz63 model

4.1 � GAR and attractor radius

Figure 2 shows the variations of the marginal GARs for the 
variables x, y, z and the GAR for the vector (x, y, z) in the 
Lorenz63 model as a function of time-series length. The 
figure shows that for any variable or vector, the marginal 
GAR or GAR initially varies slightly, and then gradually 
approaches a constant value with time. The fact that the 
evolution trajectory tends to spread over the whole attractor 
implies that the GAR is an invariant quantity. The marginal 
GARs for the variables x, y, z and the GAR for the vector 
(x, y, z) are 11.21, 12.74, 12.19, and 20.90, and the marginal 
attractor radii and the attractor radius of the system are 7.92, 
9.01, 8.62 and 14.78, respectively. A proportional relation-
ship of 

√

2 between the attractor radius and the GAR exists, 
as proved in Sect. 2.

4.2 � LAR

As described in Sect. 2, the LAR varies with the specific 
location of a point in phase space. Figure 3 illustrates the 
distributions (solid line) of the marginal LAR and the PDF 
for the variables x, y, and z in the Lorenz63 model with 

respect to the reference state. The PDF patterns of the vari-
ables x, y, and z noticeably differ, but in general the prob-
ability near the mean is larger than at the extremities. In 
contrast, the LAR patterns are similar among the variables, 
reaching minima at the mean state (dashed line) and con-
tinuously increasing toward the edge of the attractor. This is 
consistent with Theorem 2, as described in Sect. 2, and fol-
lows from the fact that predictions of extreme events gener-
ally have larger forecast errors compared with events closer 
to the mean, a trend that is independent of the probability 
that specific events occur, and is a natural property of an 
attractor. The application of the LAR can be extended to 
higher-dimensional systems. Figure 4 shows the distribution 
of the LAR on the x–y plane in phase space for the Lorenz63 
model. The figure shows that points with the same LAR are 
on the intersection of the attractor set and a sphere centered 
at the mean state with a radius equal to the distance between 
the points and the mean state, in agreement with Theorem 1, 
as described in Sect. 2.

For the real atmosphere, the LAR can be estimated from 
observational data collected over a long period of time. Fig-
ure 5 shows the distribution of LAR as a function of states 
on the attractor at 500 hPa geopotential height (GHT; with 
the annual cycle removed) at five selected grid points. The 
results are very similar to those in Fig. 3. The anomalies of 
GHT approximately follow a Gaussian distribution at indi-
vidual grid point. The states farther away from the mean 

Fig. 2   Evolution of the marginal 
GAR and GAR for the variables 
(a) x, (b) y, and (c) z and (d) 
vector (x, y, z) in the Lorenz 63 
model as with respect to time-
series length (× 102 tu)
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state have relatively larger LARs compared with the ones 
close to the mean state, which may help explain the more 
remarkable forecast errors for extreme events from atmos-
pheric models.

5 � Global predictability limits

5.1 � A ‘perfect’ model scenario

Forecast RMSE averaged over large samples will gradually 
increase with time, and approach a certain saturation value 
because of the presence of nonlinear chaos. Traditional 

approaches generally use a threshold value of the error 
AV to define the predictability limit. In this section, the 
AV and GAR are compared in a ‘perfect’ model scenario. 
Figure 6 shows the evolution of the global ensemble mean 
RMSE of the variables x, y, and z and vector (x, y, z) with 
the ‘perfect’ Lorenz63 forecast model (the same model 
described in Sect. 3 for the ‘true’ system). A set of initial 
errors with magnitudes 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 
are generated with random numbers and superimposed on 
the ‘true’ states to produce the initial states (5 × 107 in 
total). Forecasts are then carried out for 50 tu. For such 
simple system, forecasts with smaller initial errors have 
higher accuracy and longer predictability limits, which 
is consistent with the previous study (Ding and Li 2007, 
2008). However, for the multi-scale system (Lorenz 1969) 
and coupled system (Ding and Li 2012) this relationship 
between the predictability limits and initial errors no 
longer applies. For the two classes of systems we will fur-
ther investigate this relationship using the approach pre-
sented here in the future. All forecast errors for a particu-
lar point or vector tend to the same saturation value. The 
saturation values corresponding to the variables x, y, and 
z and vector (x, y, z) are 11.21, 12.74, 12.19, and 20.90, 
respectively, and are consistent with the GARs shown in 
Fig. 2. This indicates that the GAR and the AV are equiva-
lent in the perfect model scenario, and that both are able 
to distinguish the different predictability limits that result 
from variations in the initial error size in these experi-
ments. Figure 7 shows the global practical and potential 
predictability limits ( Tpr and Tpo , respectively) of the Lor-
enz 63 model as a function of initial error. Negative linear 
relationships of Tpr and Tpo with the magnitude of the ini-
tial error are observed—i.e., both the global practical and 
potential predictability limits increase as the magnitude 
of the initial error increases. This result is in agreement 
with Ding and Li (2007) who used the nonlinear local 
Lyapunov exponent.

Fig. 3   Distribution (solid line) of the marginal LAR and probability density function (PDF dotted line) for the variables (a) x, (b) y, and (c) z in 
the Lorenz 63 model. The dashed line represents the mean state

Fig. 4   Distribution of LAR on the x–y plane in the phase space of the 
Lorenz63 model
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5.2 � An imperfect model scenario

Deficiencies in numerical models are an important source 
of forecast errors. A simple case, the Lorenz63 model, is 
used as the real system with an imperfect forecast model, as 
described in Sect. 3. The difference between the two mod-
els results from a small deviation in the parameter b in the 
imperfect model (see Sect. 3). Figure 8 shows the evolution 
of the global ensemble mean RMSE of the variables x, y, 
and z and vector (x, y, z) of the imperfect Lorenz63 forecast 
model. The error growth of the imperfect Lorenz63 forecast 
model is similar to that of the Lorenz63 model (Fig. 6), but 
because of the system bias, the GAR of the former is signifi-
cantly larger than that of the latter. Thus, the error growth of 
the imperfect model alone cannot be used to determine its 
predictability of the perfect system, and the global ensemble 
mean RMSE between the Lorenz63 model and the imperfect 

Lorenz63 model must be used. As shown in Fig. 9, the 
global ensemble mean RMSE between the Lorenz63 model 
and the imperfect Lorenz63 model converges to the GAD 
between the two models. Moreover, error growth curves 
with initial errors of different magnitude coincide—i.e., 
they are independent of the magnitude of the initial errors. 
This implies that, in this case, model errors, and not small 
initial errors, play the dominant role in forecast error growth. 
The global practical and potential predictability limits of the 
imperfect Lorenz63 model are 0.8 and 1.9 for the vector (x, 
y, z), 0.8 and 1.9 for x, 0.8 and 1.8 for y, and 0.8 and 2.6 for 
z, respectively. These predictability limits are much shorter 
than those of the original Lorenz63 model (Fig. 7). This 
reflects the predictability deficiencies of the imperfect model 
when used to forecast the evolution of the ‘perfect’ Lorenz 
system. However, a practical problem is that the existing 
models are inevitably of model errors. Applying a forecast 

Fig. 5   Distribution (solid line) of LAR and the probability density 
function (PDF; dotted line) for geopotential height (GHT) at 500 hPa 
in the coupled Climate Forecast System (CFSv2) of the National 

Centers for Environmental Prediction (NCEP) at five grid points: a 
(0°N, 120°E), b (30°N, 120°E), c (30°S, 120°E), d (60°N, 120°E), 
and e (60°N, 120°E)
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model to investigate predictability is also an important tool 
and approach. It is very important to understand how to use 
a forecast model to estimate the attractor radius and global 
attractor radius and the predictability limits. To this end, we 
need to learn how large is the GAD between the real attrac-
tor (it could be estimated by using observational or long 

analysis data series if the exact equations of the system are 
unknown) and the model attractor, and take it into account. 
Usually we may choose a forecast model with smaller GAD 
between its attractor and the real attractor to study predict-
ability and estimate the predictability limits.

Fig. 6   Evolution of global 
ensemble mean RMSE of the 
variables (a) x, (b) y, and (c) 
z, and (d) vector (x, y, z) in the 
Lorenz 63 model with respect 
to lead time (unit: tu) and the 
magnitude of initial error. The 
magnitudes of initial perturba-
tion are 10−2, 10−3, 10−4, 10−5, 
10−6, and 10−7, from left to 
right. The straight line repre-
sents the corresponding GAR of 
each variable
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5.3 � Global predictability limits of the CFSv2

Figure 10 illustrates the mean RMSE of all the CFSv2 
operational forecast cases (from Jan 1999 to Dec 2010) of 
GHT at 500 hPa averaged globally (90°S–90°N) and over 
the extratropical Northern Hemisphere (NH 20°–90°N), the 
extratropical Southern Hemisphere (SH 90°–20°S) and the 
tropics (TRO 20°S–20°N). Because the CFSv2 only makes 
45-day retrospective forecasts for each set of initial condi-
tions, the average of the last 25 forecasts is chosen as an 
estimation of the AV. It can be seen in Fig. 10 that there 
are smaller differences between the AV and GAR for the 
global, extratropical NH and extratropical SH, than for the 
tropics. This indicates that the forecast model has significant 
model drift (or systematic error) in the tropics. Using the 
GAR, the global practical (potential) predictability limits 
for the global, extratropical NH, extratropical SH, and trop-
ics are 7.7 (17.1), 8.0 (18.8), 7.4 (16.0), and 5.6 (8.8) days, 
respectively. The CFSv2 has much lower predictability for 
the tropics compared with the extratropical regions, con-
sistent with Li and Ding (2015). The mean RMSE reaches 
the AV for the global, extratropical NH, extratropical SH, 

and tropics at 29.4, 29.3, 39.1, and 29.4 days, respectively, 
times which are significantly longer than the predictability 
limits found using the GAR, which results from that fact 
that the AV ignores the effects of model-drift-related errors 
on degrading forecast accuracy, and thus overestimates the 
predictability limit.

6 � Local predictability limits

This section considers one case for the Lorenz63 model 
with initial state (− 4.0, 5.0, 20.0) to investigate the quanti-
fication of the local predictability limit for a specific state. 
Projections of the LAR on the x–y plane in the phase space 
of the Lorenz63 model are presented in Fig. 11. Although 
the LAR changes with time, the LAR itself is an attrac-
tor. As the figure shows, the projections of the LAR on 
the x–y plane have a pattern similar to a single butterfly 
wing. Figure 12 shows the evolution of the LAR and the 
local ensemble average RMSE for the initial state speci-
fied above with two initial perturbation magnitudes, 10−2 

Fig. 8   Same as in Fig. 6, but for 
the imperfect Lorenz63 model. 
The dashed lines represent the 
corresponding GAR of the 
Lorenz63 model
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and 10−7 . In this case study, 1 × 106 initial perturbations of 
the initial state are generated with the same perturbation 
size but different directions. These initial errors are added 
to the specified initial state to produce a set of individual 
initial ‘analyses’ and the forecasts are run for 50 tu. In 
fact, this many initial perturbations are not needed, and 
hundreds of initial perturbations (or less) are sufficient. 
Results indicate that unlike the global ensemble mean 
forecast error (for which saturation and convergence to 
the GAR are evident; see Fig. 6), the RMSE in the case of 
a specific initial state varies with time because of a time-
dependent basic flow or ‘flow-dependence’ (Corazza et al. 
2003). The RMSE are initially smaller than the attractor 
radius, which indicates better forecasts. Then, the errors 
gradually increase and exceed both the attractor radius and 
the GAR. The practical and potential predictability limits 
of this initial condition are 10.1 (23.6) and 11.7 (23.6) for 
initial perturbation size 10−2 (10−7). Beyond the potential 
predictability limit, forecast errors begin to undergo fluc-
tuations similar to those of the LAR, and finally converge 

on the trajectory of the LAR, at which point forecasts 
become meaningless.

7 � Conclusions and discussion

This paper introduces several geometric properties of attrac-
tors, the LAR, attractor radius, and GAR of an attractor, as 
well as the LAD and GAD between two attractors, to char-
acterize features and the average behavior of chaotic systems 
and evaluate error growth in nonlinear dynamical systems. 
The attractor radius, GAR, and GAD are invariant quanti-
ties, which are applied to quantitatively determine the global 
and local predictability limits of both global ensemble aver-
age forecasts and a single state in phase space, respectively. 
Both global and local predictability limits have practical and 
potential values, which correspond to the times at which 
the ensemble RMSE reaches the attractor radius and GAR, 
respectively. Both the Lorenz63 model and operational 
forecast data demonstrate the theoretical aspects of these 

Fig. 9   Same as in Fig. 6, but 
for the global ensemble mean 
RMSE between the Lorenz63 
model and imperfect Lorenz63 
model. The solid straight line 
denotes the GAD of each vari-
able between the two models. 
The upper and lower dashed 
lines represent the correspond-
ing GAR and attractor radius of 
the Lorenz63 model, respec-
tively. Note that the six error 
growth curves overlap
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geometric characteristics, and the feasibility and effective-
ness of their application to predictability limit analysis.

The GAR is 
√

2 times the attractor radius. Therefore, 
when a nonlinear dynamical model has no associated 
model error, the global potential and practical predictabil-
ity limits quantified by the GAR and attractor radius are 
equivalent to the thresholds of the traditional AV and 71% 
of AV, respectively. The theory presented here provides a 
general, unified framework for the two traditional criteria 
used to measure predictability limits. However, for a fore-
cast model with associated model errors, the two tradi-
tional thresholds do not work, because the attractor of the 
forecast model is different from that of the original dynam-
ical system, and the AV thresholds overestimate forecast 
skill and the predictability limit. Additionally, for the local 
predictability limit, because of the ‘flow-dependence’ of 
individual cases, the local ensemble average RMSE varies 
with time and does not reach saturation or an AV. Thus, the 
traditional AV threshold is not applicable. Both the attrac-
tor radius and GAR of a nonlinear system are intrinsic 
properties of the system and independent of the forecast 

Fcst_Error
AV 29.4 d
GAR 17.1 d
AR 7.7 d

Fcst_Error
AV 29.3 d
GAR 18.8 d
AR 8.0 d

Fcst_Error
AV 30.1 d
GAR 16.0 d
AR 7.4 d

Fcst_Error
AV 29.4 d
GAR 8.8 d
AR 5.6 d

(a) (b)

(c) (d)

Fig. 10   Mean RMSE from Jan 1999 to Dec 2010 of GHT at 
500 hPa from CFSv2 operational forecast data averaged (a) globally 
(90°S–90°N), and over (b) the extratropical Northern Hemisphere 
(NH 20°N–90°N), c the extratropical Southern Hemisphere (SH 
90°S–20°S), and d the tropics (TRO 20°S–20°N). Black, red, and 

blue dashed lines are the error AV, the attractor radius (AR), and the 
GAR of the time series with 00Z initial conditions, respectively. The 
numbers (in days) in the legends correspond to the time at which the 
mean RMSE reaches the AR, GAR, and AV
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Fig. 11   Projections of the LAR on the x–y plane in the phase space 
of the Lorenz63 model. 1 × 105 points are plotted
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model used, and thus provide more accurate and objec-
tive thresholds to assess the global and local predictability 
limits of forecast models compared with the traditional AV 
threshold. In addition, because of the invariant properties 
of the GAR and attractor radius, the theoretical work pre-
sented here can be used to reduce computational burden 
and storage and avoid repetitive computation, facilitating 
faster, easier measurements of predictability limits.

In practice, the predictability limits on different spa-
tial–temporal scales can be estimated by the attractor 
radius and GAR by using observational data; and then, we 
may analyze the spatial–temporal structures of predictabil-
ity limits and their variations. A noticeable question is how 
much the observational errors influence on the estimation 
of predictability limits. During the recent decades, the per-
formance of NWP models is significantly improved, and 
the observational network become much more accurate 
and extensively covered, resulting in largely reduced anal-
yses errors from the truth and reducing the influence of 
the observational errors on the estimation of predictability 
limits. However, this is worthy of future work. Besides, the 
Lorenze63 model has converging domains, which occur 
within a torus in phase space and also satisfy the fluctua-
tion theorem (Smith et al. 1999; Schalge et al. 2012). The 
retrospective forecasts of the CFSv2 are used to evaluate 
the utility of the attractor invariant quantities presented in 
this paper, however, we still need to employ some high-
dimensional complex dynamical systems or coupled sys-
tems to further validate the predictability theory and meth-
ods in the future so as to better apply them to practice.
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Appendix

This Appendix shows some derivation processes of some 
formulas and theorems in the text. First, it follows that 

The proof of Theorem 1. For a compact attractor � and 
� ∈ � , and �i is a specific point on � , since 

where diE = d(�i, �E) =

√

‖

‖

�i − �E
‖

‖

2  , and �E = E(�) . 
Thus follows Theorem 1.
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Fig. 12   Evolution of the LAR (orange) and local ensemble average 
RMSE (green and blue curves for initial perturbation sizes of 10−2 
and 10−7 , respectively) of the vector (x, y, z) for the Lorenz63 model. 

The initial value is (− 4.0, 5.0, 20.0). The upper and lower black lines 
are the GAR and attractor radius, respectively
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The proof of Theorem 3. For �i , � ∈ � , � ∈ ℬ here � and 
ℬ are two compact attractors, we have 

where  d2(�i, �E) =
‖

‖

�i − E(�)‖
‖

2  ,  �E = E(�) ,  and 
�E = E(�) . Then one has 

Thus follows Theorem 3.
The proof of Theorem 4. For two compact attractors � and 

ℬ , if 

thanks to Theorems 2 and 3, we have 

Thus, d2(�E, �E) = 0 , R2

E
(𝒜) = R2

E
(ℬ) and �E = �E . 

Furthermore, 

Thus follows Theorem 4.
The marginal global practical predictability limit T (I)

pr
and 

the marginal global potential predictability limit T (I)
po

 are deter-
mined as the times when the marginal global ensemble aver-
age RMSE reaches the marginal attractor radius and marginal 
GAR, respectively, i.e., 

The marginal local practical predictability limit T (I)
pr,�0

and 
the marginal local potential predictability limit T (I)

po,�0
 are deter-

mined as the times when the marginal global ensemble aver-
age RMSE reaches the marginal attractor radius and marginal 
GAR, respectively, i.e., 

The marginal global practical predictability limit TM(I)
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and 
marginal global potential predictability limit TM(I)

po
 of a forecast 

model are defined as 
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ē(I)
�0
(𝛿0, t)|t<T (I)

pr,�0

< R
(I)

E
and ē(I)
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 of a forecast model are defined as 
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