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5 of the Coupled Model Intercomparison Project (CMIP5) 
GCMs are downscaled to CFSR grid points in Ontario for 
the period from 1981 to 2100. The results show that this 
method is capable of generating high resolution details 
without changing large scale characteristics. It results in 
much lower absolute errors in local scale details at most 
grid points than simple spatial downscaling methods. Biases 
in the downscaled data inherited from GCMs are corrected 
with a linear method for temperatures and distribution map-
ping for precipitation. The downscaled ensemble projects 
significant warming with amplitudes of 3.9 and 6.5 °C for 
2050s and 2080s relative to 1990s in Ontario, respectively; 
Cooling degree days and hot days will significantly increase 
over southern Ontario and heating degree days and cold days 
will significantly decrease in northern Ontario. Annual total 
precipitation will increase over Ontario and heavy precipita-
tion events will increase as well. These results are consistent 
with conclusions in many other studies in the literature.

Keywords  Downscaling · Ensemble optimal 
interpolation · Ontario · Localization · CMIP5 · Daily 
temperature · Daily precipitation

1  Introduction

Global mean surface temperature changes for the period till 
the end of the twenty-first century are projected to likely 
exceed 1.5 °C relative to the 1850–1900 (IPCC, Field et al. 
2014). In south-central Canada, extreme temperature related 
weather presents a much greater risk to human health during 
heat waves (Cheng et al. 2008a). As temperature increases, 
heat-related mortality is projected to be more than doubled 
by 2050s and tripled by 2080s from the current condition 
(Cheng et al. 2008b). As the most populated and the second 

Abstract  A novel method for daily temperature and pre-
cipitation downscaling is proposed in this study which com-
bines the Ensemble Optimal Interpolation (EnOI) and bias 
correction techniques. For downscaling temperature, the day 
to day seasonal cycle of high resolution temperature of the 
NCEP climate forecast system reanalysis (CFSR) is used as 
background state. An enlarged ensemble of daily tempera-
ture anomaly relative to this seasonal cycle and information 
from global climate models (GCMs) are used to construct 
a gain matrix for each calendar day. Consequently, the rela-
tionship between large and local-scale processes represented 
by the gain matrix will change accordingly. The gain matrix 
contains information of realistic spatial correlation of tem-
perature between different CFSR grid points, between CFSR 
grid points and GCM grid points, and between different 
GCM grid points. Therefore, this downscaling method keeps 
spatial consistency and reflects the interaction between local 
geographic and atmospheric conditions. Maximum and min-
imum temperatures are downscaled using the same method. 
For precipitation, because of the non-Gaussianity issue, a 
logarithmic transformation is used to daily total precipita-
tion prior to conducting downscaling. Cross validation and 
independent data validation are used to evaluate this algo-
rithm. Finally, data from a 29-member ensemble of phase 
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largest province of Canada, Ontario is vulnerable to cli-
mate change (Chiotti and Lavender 2008). Over Ontario, 
there is no significant trend in annual precipitation for the 
period 1951–2010, except for the southern area where 
exists a significant increasing trend (Mach and Mastrandrea 
2014). The annual heavy precipitation days, very heavy 
precipitation days and very wet days and extreme wet days 
are projected to significantly increase over major parts of 
Ontario under the A2 scenario (Deng et al. 2016). The 5th 
assessment report (AR5) of the IPCC (2014) concludes 
that Global warming leads to an intensification of the water 
cycle and attendant effects on heavy and extreme precipi-
tation events and is likely to lead to more frequent daily 
precipitation extremes. These changes are important for 
a number of potential impacts, including floods, erosion, 
water resources, agriculture and ecosystems (IPCC, Field 
et al. 2014). Thus, it becomes increasingly important for the 
provincial and municipal governments as well as the public 
to be aware of future climate changes at local scales. High 
resolution climate projection data at multiple time scales 
(annual, monthly and daily) is necessary for governments to 
develop climate adaptation/mitigation strategies to address 
local impacts.

The geography of Ontario is significantly different from 
other areas in Canada. It is bordered by Great Lakes, Hud-
son Bay and James Bay. Within Ontario, there are more 
than 250,000 small lakes, large areas of uplands, particu-
larly within the Canadian Shield which traverses the prov-
ince from northwest to southeast and also above the Nia-
gara Escarpment in the south. Southern Ontario (south of 
Lake Nipissing) belongs to Great Lakes/St. Lawrence River 
Basins (Environment Canada 1998; Chadwick and Hume 
2009). To generate projections of climate change in Ontario, 
impacts of all these specific geography features should be 
considered (Szeto 2008). The IPCC CMIP5 GCMs could 
not provide a suitable description of the orographic effects 
and land-surface characteristics due to their lower spatial 
resolution. There are several methods that can be used to 
generate region-specific climate information, for example 
high-resolution atmospheric GCMs (AGCMs), variable-
resolution global models, and statistical and dynamical 
downscaling (Flato et al. 2013). Among these methods, the 
most widely used are the dynamical and statistical downscal-
ing. To better represent the sub-grid-scale meteorological 
characteristics, Regional Climate Models (RCM) offer an 
elegant way to integrate local processes through physical 
and dynamical equations. However, they can be extremely 
computer-intensive (Schoof 2015). It is impossible to pro-
duce a large ensemble of decades-long simulations for mul-
tiple GCMs and/or emissions scenarios (Maurer and Hidalgo 
2007). Statistical downscaling uses statistical equations to 
convert global-scale output to regional-scale conditions. 
It needs much less computational effort than dynamical 

downscaling. Thus, it offers the opportunity to use “ensem-
ble” GCM results and are widely used in regional climate 
change studies. Statistical downscaling assumes that there 
is a strong relationship between the predictor and predictand 
and the relationships between large and local-scale processes 
will remain the same in the future (stationarity assump-
tions). There are several categories of statistical downscal-
ing techniques, such as linear methods, weather classifica-
tion, weather generator, etc. A unique class of downscaling 
techniques where the predictor and predicted variables are 
the same, albeit of different scale, have been widely used to 
produce large ensemble for different GCMs and/or multi-
ple emission scenarios. An extensively used method of this 
class is the bias corrected spatial disaggregation (BCSD) 
statistical downscaling approach and its modified versions 
(Wood et al. 2002, 2004; Maurer and Hidalgo 2007; Werner 
2011; Gutmann et al. 2014; Rana and Moradkhani 2015; 
Ning et al. 2015). In this method, averages of temperature 
and precipitation are used to develop empirical statistical 
relationships between large-scale and local-scale variables 
(Werner 2011). The local intensity scaling (LOCI, Schmidli 
et al. 2006) method is another example of this class of tech-
niques (Schmidli et al. 2007; Gao et al. 2014; Deng et al. 
2016). It is a direct downscaling and error correction method 
(DECM). The basic idea of this method is that climate model 
output integrates all relevant predictors. Deviations between 
climate model output and regional- or local-scale observa-
tions are in first order due to systematic climate model errors 
and an incomplete or inaccurate representation of the orog-
raphy (Schmidli et al. 2007). A necessary step of the above 
mentioned direct downscaling methods is to interpolate 
GCM data onto target grid points or stations using spatial 
interpolation considering the effects of a few geographic fac-
tors (e.g., distance, elevation, slope, etc). These factors are 
generally stationary in time. Simple statistical downscaling 
methods are usually unable to keep spatial and temporal con-
sistency, or inter-variable consistency and therefore suffer 
from possible out-of-sample issues (Benestad 2005).

In this study, we propose a novel downscaling method 
motivated by the idea of data assimilation (Kalnay 2003). In 
data assimilation, both observations and numerical models 
are treated as sources of information and the most likely 
state of the atmosphere is estimated from a set of obser-
vations and an atmospheric circulation model. Instead of 
assimilating observations, the proposed downscaling meth-
ods ‘assimilates’ output of GCM into a statistical model 
whose climatology and covariance matrix are extracted from 
the high resolution NCEP climate forecast system reanalysis 
(CFSR, Saha et al. 2010, 2013). EnOI framework proposed 
by Evensen (2003), which is widely used in data assimilation 
practice (Oke et al. 2005; Deng et al. 2011, 2012; Sakov and 
Sandery 2015; Qi and Cao 2015; Srinivasan et al. 2011), will 
be employed in this study. The transfer function of the EnOI 
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is constructed using the output of NCEP climate forecast 
system (CFS) which keeps spatial and temporal consistency. 
Therefore, this method can better represent influencies of 
local geographic factors on local climate than traditional 
interpolation methods. Using this method, daily tempera-
tures (mean, maximum and minimum) and precipitation 
from 29 members of IPCC AR5 RCP 8.5 GCMs are trans-
ferred to the high resolution grid points (0.3125° × 0.3125°) 
of CFSR and biases are further corrected. Temperatures are 
corrected with a linear rescaling method and precipitation is 
corrected with Gamma distribution mapping.

The rest of the paper is organized as the following. Sec-
tion 2 describes the data sets used in this study. Section 3 
provides details of the EnOI downscaling method, its vali-
dation and the methods for bias correction. In Sect. 4 we 
present the downscaled temperatures and precipitation over 
Ontario from an ensemble of GCMs under the IPCC RCP8.5 
(representative concentration pathway 8.5) scenario. Finally, 
we end the paper in Sect. 5 with conclusions and a brief 
discussion.

2 � Data

2.1 � Observations

Observations from 1981 to 2010 at 54 Ontario weather sta-
tions are downloaded from the Environment and Climate 
Change Canada (ECCC) website (http://climate.weather.
gc.ca/climate_normals/index_e.html). These 54 stations 
(Fig. 1a) meet the WMO “3 and 5 rule” (i.e. no more than 
3 consecutive and no more than 5 total missing for either 

temperature or precipitation) (Braun et al. 2015). Variables/
indices downloaded include averages of the temperatures, 
Cooling Degree Days (CDD, Tm > 18  °C) and Heating 
Degree Days (HDD, with Tm < 18 °C), Days with Tx above 
30 °C (DTX30) and Days with Tn below − 20 °C (DTN20), 
total precipitation, extreme daily precipitation, days with 
precipitation  ≥ 5, 10 and 25 mm. The definition of these 
indices can be found in Environment Canada (2012). Aver-
ages of these climate variables will be used for downscaling 
model evaluation and validation.

2.2 � Reanalysis data

Reliable daily observation data at high spatial resolution 
is the key to developing statistical downscaling models for 
daily variables. However, as shown in Fig. 1a, most of the 
stations are located in southern Ontario and there is no obser-
vation over the majority of the central and northern Ontario. 
Alternatively, reanalysis products represent spatially com-
plete and dynamically-consistent estimates of the state of 
the climate system (Dee at al. 2011). There are several high 
resolution (< 50 km) daily reanalysis datasets that cover the 
entire province, for example the new generation of ECMWF 
reanalysis climate data (ERA-interim, Dee et al. 2015), the 
NCEP North America Regional Reanalysis (NARR, Mes-
inger et al. 2004) and the NCEP climate forecast system 
reanalysis (CFSR, Saha et al. 2010, 2013). In this study, 
daily mean, minimum and maximum near surface tempera-
tures and precipitation (Tm, Tn, Tx and Pr respectively) 
from the CFSR over the region between 101°W–70°W lon-
gitude and 38°N–60°N latitude for the period from January 
1, 1981 to December 31, 2010 are used for constructing the 
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Fig. 1   Map of the studied region (Ontario,Canada). (Left) locations 
of CCSM4 grid points within the 350 km buffer region (Buffer_On), 
1522 CFSR grid points within Ontario (solid black dot), 54 weather 

stations (red cross) and a selected CFSR grid point (red dot). (Right) 
the topography of Ontario
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downscaling models. The CFSR is a third generation global 
reanalysis product, with higher temporal (6-h) and spatial 
resolution (0.313° × ~ 0.312°) completed at the NCEP. The 
NCEP CFS is a global, high-resolution, coupled atmosphere-
ocean-land and surface-sea-ice system to provide the best 
estimate of the state of earth system, it can resolve fine scale 
weather and land-surface processes in response to the large-
scale forcing. It has assimilated observations from many 
data sources (Saha et al. 2010, 2013; Wang et al. 2011). 
Especially, CFSR assimilated many hydrological quantities 
from a parallel land surface model forced by the NOAA’s 
Climate Prediction Center (CPC) pentad merged analysis 
of precipitation and the CPC unified daily gauge analysis 
(Wang et al. 2011). Thus, it could better represent the effects 
of land surface process on precipitation. CFSR data is  cho-
sen in this study for downscaling model construction and 
cross-validation due to its good quality and high resolution 
that meet the requirements of this study. For validation of 
the downscaling model, the four variables from the NCEP-
DOE Reanalysis 2 data (1.875° lon × 1.91° lat) provided by 
the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from 
their Web site at http://www.esrl.noaa.gov/psd/ are also used 
in this study.

2.3 � GCM data

Daily data (Tm, Tn, Tx and Pr) from 29 GCMs of CMIP5 
under the scenario RCP8.5 (Table 1) are extracted from the 
Earth System Grid (ESG) data portal (http://cera-www.dkrz.
de/WDCC/ui/). Though most models have multiple ensem-
ble members, without knowledge about which member is 
better than other members over Ontario, only the first mem-
ber from each model is used. Thus, each model used in this 

study is given equal weight when perform simple model 
statistical analysis on the downscaled ensemble (Moss et al. 
2010; Flato et al. 2013). Any knowledge about the perfor-
mance of the model is neglected (Casanova and Ahrens 
2009). Only several models have historical simulations after 
2005 (i.e. 2006–2012); therefore, in this study we consider 
1981–2005 to be the reference period for bias correction. 
Changes over two 30-year periods, 2050s (2041–2070, the 
mid-century) and 2080s (2071–2100, the end of-century) 
relative to present, 1990s (1981–2010), are investigated. 
Accordingly, results from temperatures, precipitation and 
some derived variables are analysed and presented for these 
three time periods. Only data in a buffer region which wraps 
Ontario are used for downscaling (Fig. 1a). GIS software 
ArcGIS 10.1 (Law and Collins 2013; Pimpler 2013; Arm-
strong 2015) was used to create a 350 km buffer for each of 
the CFSR grid points within Ontario and then merge all of 
the individual buffer zones to obtain the integrated buffer 
region for the province. The reason why the value 350 km is 
selected will be described in Sect. 3.

3 � Downscaling methods

The proposed downscaling method includes three steps. 
First, GCM data is transferred to the CFSR grid points 
within Ontario using the EnOI method; then, the biases are 
removed by a linear scaling method for temperatures and 
monthly total precipitation amount; and finally the variance 
amplitudes of temperatures and monthly precipitation are 
adjusted using a variance scaling method. For daily pre-
cipitation, only wet day (pr > = 1.0 mm) precipitation is 

Table 1   The basic information about the models, the associated institution, and the resolution of the atmospheric component

Num Name Institution Lon × Lat N Num Institution Institution Lon × Lat N

1 ACCESS1.0 CSIRO-BOM 1.875° × 1.25° 174 16 GFDL-ESM2G NOAA GFDL 2.5° × 2° 82
2 ACCESS1.3 CSIRO-BOM 1.875° × 1.25° 174 17 GFDL-ESM2M NOAA GFDL 2.5° × 2° 82
3 BCC-CSM1.1 BCC ∼ 2.8° × 2.8° 51 18 INM-CM4 INM 2° × 1.5° 136
4 BCC-CSM1.1-m BCC 1.125° × 1.125° 318 19 IPSL-CM5A-LR IPSL 3.75° × 1.875° 58
5 BNU-ESM GCESS ∼ 2.8° × 2.8° 51 20 IPSL-CM5A-MR IPSL 2.5° × 1.25° 129
6 CanESM2 CCCma ∼ 2.8° × 2.8° 51 21 IPSL-CM5B-LR IPSL 3.75° × 1.875° 58
7 CCSM4 NSF-DOE-NCAR 1.25° × 0.9° 344 22 MIROC-ESM MIROC ∼ 2.8° × 2.8° 51
8 CESM1(BGC) NSF-DOE-NCAR 1.25° × 0.9° 344 23 MIROC-ESM-CHEM MIROC ∼ 2.8° × 2.8° 51
9 CESM1(CAM5) NSF-DOE-NCAR 1.25° × 0.9° 344 24 MIROC5 MIROC ∼ 1.4° × 1.4° 208
10 CMCC-CESM CMCC 3.75° × 3.75° 30 25 MPI-ESM-MR MPI-M 1.875° × 1.875° 116
11 CMCC-CM CMCC ∼ 0.75° × 0.75° 725 26 MPI-ESM-LR MPI-M 1.875° × 1.875° 116
12 CMCC-CMS CMCC 1.875° × 1.875° 116 27 MRI-CGCM3 MRI 1.125° × 1.125° 318
13 CNRM-CM5 CNRM-CERFACS ∼ 1.4° × 1.4° 208 28 MRI-ESM1 MRI 1.125° × 1.125° 318
14 CSIRO-Mk3.6.0 CSIRO-QCCCE 1.875° × 1.875° 116 29 NorESM1-M NCC 2.5° × 1.875° 86
15 GFDL-CM3 NOAA GFDL 2.5° × 2° 82

http://www.esrl.noaa.gov/psd/
http://cera-www.dkrz.de/WDCC/ui/
http://cera-www.dkrz.de/WDCC/ui/
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corrected with Gamma distribution fitting. Details of these 
steps will be presented in the following subsections.

3.1 � Transfer GCM temperatures to CFSR grid points

Data assimilation incorporates observations into the model 
state of a numerical model by taking the weighted mean of 
the observations and the model state. The resulting analysis 
is considered to be the ‘best’ estimate of the state of the 
atmosphere (ocean or other systems) at a particular time. 
EnOI is a computationally efficient data assimilation method 
(Evensen 2003; Oke et al. 2005), which will be used in this 
study to downscale GCM projections to CFSR grid points 
within Ontario. Typical EnOI analysis is computed by solv-
ing the following equation (Oke et al. 2005; Deng et al. 
2011, 2012; Sakov and Sandery 2015; Qi and Cao 2015; 
Srinivasan et al. 2011): 

where X is the state vector;gain matrix (K) is: 

 P is model error covariance matrix estimated from model 
errorX′ 

R is observation error covariance matrix estimated from 
observation error Υ and it is a diagonal matrix because the 
observation error is assumed to be uncorrelated in space 
and time: 

H is an operator that interpolates from model grid to 
observation locations; HX is the interpolated model data at 
observation locations; Y  is observations; (Y − HX) is the dif-
ference between observation and model; α is a scalar that can 
be used to tune the magnitude of the covariance for a par-
ticular application; C is a correlation matrix for localization 
in the horizontal around each observation, its elements are 
generally defined by the quasi-Gaussian function in Gaspari 
and Cohn (1999); superscript a, T, −1 and ′ denote respec-
tively analysis, matrix transposition, inverse and error; The 
open circle between C and P denotes a Schur product (an 
element by element matrix multiplication). For details please 
refer to (Evensen 2003; Oke et al. 2005; Deng et al. 2010, 
2011, 2012; Sakov and Sandery 2015; Qi and Cao 2015; 
Srinivasan et al. 2011). Analyses in this study followed the 
following 6-step approach (a–f).

(a)	 We assume the 365-day annual cycle in the CFSR data 
as a state model and the GCM output as observations. 
Under such assumption, we can use Eq. (1) to down-
scale GCM temperatures to CFSR grid points. Dif-

(1)Xa = X + K(Y − HX),

(2)K = �(�◦P)HT
(
H(��◦P)HT + R

)−1
.

(3)P =
(
X�X�T

)
.

(4)R = ΥΥT .

fering from true dynamical model, the seasonal cycle 
model does not include the interannual variation which 
will alternatively be incorporated into the algorithm by 
assimilating GCM output through Eq. (1). Based on 
CFSR daily data from 1981 to 2010, we estimate the 
gain matrix(K) using the following steps.

(b)	 For simplicity, in the Eq. (2) the parameter α is set 
to 1 and each element of C is set to a step function. 
When generating the values at a CFSR grid point using 
Eq. (1), it is reasonable to only consider data at L GCM 
grid points (defined below) close to the analysis CFSR 
grid point and ignore other distant GCM grid points. If 
a GCM grid point is one of the L grid points we denote 
it as a type-A GCM grid point, otherwise as a type-
B GCM grid point. Then the element of localization 
matrix C is:

The parameter L is model dependent and is a function 
of model horizontal resolution and decorrelation dis-
tance (DD) of the variable to be downscaled. DD is 
defined by World Meteorological Organization (WMO) 
as the distance where the square of spatial autocorre-
lation decrease to below 0.5 (Carrega 2013; Jarraud 
2008). In this study, the 30-year CFSR daily tempera-
ture is used to estimate the DD. Seasonal cycle was 
removed before calculating the autocorrelation coef-
ficients (CORR) between different grid points. Fig-
ure 2a–c show the relationship between CORR and 
distances for daily mean temperature (Tm), maximum 
temperature (Tx) and minimum temperature (Tn), 
respectively. It is observed that the CORR decrease 
with the increase of distance. Averaged over the prov-
ince, the value of DD is 606 (504 ~ 695) kilometers 
(km), 514 (357 ~ 628) km and 494 (346 ~ 590) km for 
Tm, Tx and Tn (see the cross points), respectively. The 
smaller DD values for extreme temperatures are due 
to the fact that extreme events are more sensitive to 
local geographical conditions; and for the same rea-
son, DD varies in space as well. Figure 2d–f show the 
spatial distributions of DD for Tm, Tx and Tn. It is 
observed that DDs are similar in spatial distribution 
pattern among the 3 variables. For example, the values 
of DD are larger in the northern area than in the south-
ern area with maximum value in the region west of 
94°W and minimum value in the southwestern Ontario. 
This DD spatial pattern corresponds to the topography 
shown in Fig. 1b. Differences in amplitude of the values 
among the 3 variables are obvious. Probably the ideal 
situation is to use the spatial varying DD as thresh-
old for searching type-A GCM grid points (defined 

(5)c =

{
1, type − A GCM grid point

0, type − B GCM grid point
.
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in Eq. 5) for each of the CFSR grid points. However, 
the spatial varying DD may lead to problems such as 
the downscaled variable being too smooth when DD 
is large, and this algorithm becomes over complicated 
and much less computational effective. For simplic-
ity, we select 350 km as the threshold for GCM model 
grid point searching because it is close to the minimum 
value of DD in Ontario. After this threshold is deter-
mined, the type-A grid points at each of the CFSR grid 
points for each model will be automatically selected 
by a searching algorithm or by GIS software ArcGIS 
(Pimpler 2013; Law and Collins 2013). The number of 
type-A grid points varies with locations of the CFSR 
and GCM grid points. There are at least four Type-A 
GCM grid points at each of CFSR grid points for all 
GCMs except for CMCC-CESM which has a very low 
resolution (3.75° in longitude and latitude). To make 
point search more effective, we search four nearest grid 
points for this special model instead of using the above 
discussed searching algorithm. Therefore, there will be 
four type-A grid points at CFSR grid points for the 

CMCC-CESM (with the coarsest resolution) whereas 
more than 100 type-A grid points at high latitude for 
model CMCC-CM (with the finest resolution, 0.75° in 
longitude and latitude).

(c)	 Since we use a 365-day climatology of CFSR data 
as the state model, the anomaly relative to the clima-
tology is the error of the model and the error covari-
ance matrix (X�X�T ) in Eq. (3) equals to the anomaly 
covariance matrix. For downscaling daily tempera-
ture, we construct the error covariance matrices using 
an enlarged ensemble to consider the larger range of 
weather condition for each calendar day. All anomalies 
within a 15-day window are considered as the anoma-
lies on the day at the center of the window. For exam-
ple, the window for May 20 and December 3 is [May 
13–May 27] and [November 26–December 10], respec-
tively. Therefore, the ensemble size is enlarged from 
30 to 450. The daily climate mean is also estimated 
with this 450-member ensemble. This large ensemble 
can reflect various possible weather situations around 
the calendar day in the climate system represented by 

Fig. 2   Variation of spatial autocorrelation coefficient as function of 
distance (upper panel) and the spatial distribution of decorrelation 
distances (r2 decreasing below 0.5). The cross point in (a–c) is the 

mean decorrelation distances averaged over Ontario. The black points 
represent the relation for individual grid points in Ontario
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the day to day climate cycle. Since CFSR data is the 
output from CFS which has resolved fine-scale weather 
and land-surface processes in respond to the large-scale 
forcing, the covariance matrixes of CFS at daily time 
scale could represent the spatial correlation structure 
between different grid points caused by the small scale 
(i.e., at CFSR grid resolution) geographical factors 
(e.g., elevations, landscape, land cover etc.). If out-
put from a regional climate model (RCM) is used to 
construct the downscaling model, the procedure is the 
same.

(d)	 We use the inverse distance weighting (IDW) method 
to construct the linear operator H. Since the resolu-
tion of CFSR data (~ 0.3125°) is much higher than 
that of GCMs, interpolate the high resolution data to 
low resolution GCM grid point is easy. At first, search 
for the four nearest CFSR grid points around each 
GCM grid point, calculate the distances (< ~ 35 km in 
Ontario) between that GCM grid point and the four 
nearby CFSR grid points, and establish the normalized 
inverse of the distances as the weight for IDW. Thus, 
H is a sparse matrix with a dimension of N × 1552, 
where N (see Table 1) is the total number of GCM grid 
points from which data would be considered for the 
downscaling and 1552 is the total number of the CFSR 
grid points within Ontario. The values of N  depend 
on the GCM grid system, for example the minimum 
value of N is 30 for CMCC and the maximum value 
of N is 725 for CMCC-CM. With the estimated opera-
tor H, it is straightforward to calculate the term HX. 
The term �

(
�◦

(
X′X′T

))
HT is the localized covariance 

matrix between CFSR grid points and GCM grid points 
(a 1552 × N matrix) and the term �H

(
�◦

(
X′X′T

))
HT 

is the localized covariance matrix of GCM grid points 
(an N × N matrix). Therefore, Eq. (1) has considered 
the relationships between different CFSR grid points, 
between CFSR grid points and GCM grid points and 
between different GCM grid points. These relationships 
reflect the comprehensive impacts of geographic condi-
tions on weather and climate.

(e)	 In a real data assimilation system, R is the errors in 
observations. In present paper, the goal of the first step 
(a) is to transform the information from GCMto CFSR 
grid points by the gain matrix. A large R may force the 
system towards CFSR seasonal cycle and loss the signal 
of future climate change in the output of the GCMs. So, 
in this study we set R as a small fraction (10%) of the 
diagonal of the model error covariance matrix P. Thus, 
the downscaled data will be dominated by the informa-
tion transferred by the gain matrix from GCMs. This is 
the goal of all downscaling practice. The treatment is 
reasonable because generally at the location where the 
anomaly is large the GCMs may have a large error as 

well. The negative impacts of the arbitrary small con-
stant will be reduced in bias correction steps. We tried 
other small values (e.g., 0.5, 1 and 5%), their impacts 
to the final result are negligible. This error estimation 
method is widely used when it is difficult to estimate 
the errors in observations (Deng et al. 2012; Hopson 
2014). The problem caused by the small error assump-
tion is similar to that in regional climate models driven 
by GCMs, i.e. “garbage in garbage out” (Hall 2014). 
We leave this problem for the bias correction step to 
deal with.

(f)	 After all of the above mentioned terms are determined, 
365 gain matrix K defined by Eq. (2) can be estimated 
for Tm, Tx and Tn, respectively. Without loss of gen-
erality, as an example, Fig. 3 illustrates the spatial dis-
tribution of elements of the gain corresponding to a 
CFSR grid point (the red circle in Fig. 1a at (79.063°W, 
44.493°N) on January 15 and July 15) for downscal-
ing CCSM4 temperatures. Theoretically, there are N 
(= 344, GCM grid points) terms in the gain vector for 
this selected grid point. However, because of the impact 
of the localization function defined by Eq. (5), the ele-
ments of the gain vector are zero except for the L type-
A points. At this selected point, there are 35 (L = 35) 
CCSM4 grid points (red dots) within the 350 km buffer 
(the red circle in Fig. 1a). The value at a grid point rep-
resents the weight of the GCM data at this grid point. 
The higher the value, the bigger the impact of the GCM 
grid point on the selected CFSR grid point. Figure 3 
shows (1) the maximum gain appears at the nearest 
GCM grid point and quickly decreases with distance; 
(2) the gain decreases faster in the west than in the east 
due to the difference in surface property (lakes in the 
west and land in the east); (3) decreases faster in sum-
mer (e.g., July) than in winter (e.g., January) due to the 
fact that dominant weather systems change with sea-
son; and (4) the gain decreases faster in extreme tem-
perature (Tn and Tx) than in mean temperature (Tm) 
due to extreme temperatures are more sensible to local 
landscape.As an example, Fig. 4 shows spatial distri-
bution of temperature from CCSM4 on July 15, 2008, 
before and after using Eq. (1). It is observed that after 
using Eq. (1), the finer scale spatial variation features 
caused by finer scale geophysical factors (e.g., eleva-
tion, land cover, etc.) are added to the maps. The impact 
of some small lakes that is not resolved in the CCSM4 
is clearly resolved in the downscaled data. Since the 
error (R) of GCM data is set to a small fraction of the 
covariance matrix, the contribution of the first term (X) 
in Eq. (1) is small, the general climatology resolved 
by the GCM model remains almost unchanged. Thus, 
if the GCM has biases, Eq. (1) will not significantly 
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reduce the bias. Therefore, the biases should be further 
corrected using additional steps.

3.2 � Transfer GCM precipitation data to CFSR grid 
points

3.2.1 � Precipitation transformation

For daily precipitation downscaling, the construction of the 
gain Matrix is not straightforward.Precipitation is always 
positive, non-Gaussian and the number of days with precipi-
tation are much shorter than the length of the time window 
(31 days for precipitation) for estimating the error covarianc 
matrix. Usually, both observed and modelled precipitations are 
transformed before downscaling. Lien et al. (2015) reviewed 
techniques used for precipitation transformation. Among these 
transformation methods, the logarithmic transformation has 
been widely used to the precipitation assimilation and downs-
caling (McLaughlin et al. 2002; Hou et al. 2004; Lopez 2011; 
Lien et al. 2015). Therefore, in this study we use it to transfor-
mate precipitation data: 

(6)y = ln
(
y0 + �

)
,

 where y0 is the original daily precipitation, y is the trans-
formed precipitation, and α (= 1) is a tunable constant added 
to prevent the singularity at zero precipitation 

(
y0 = 0

)
. 

Thus, for days with zero (or no) precipitation days, y = 0. 
Downscaling is then conducted to the transformed precipita-
tion. The final downscaled results are then transformed back 
using the following equation: 

To avoid the underestimation of covariance, days with-
out precipitation at both grid points were not used (Baigor-
ria et al. 2007). Previous studies show that the spatial cor-
relation during the frontal rainy season are characterized 
by a widely spread pattern in a northeast-southwest direc-
tion around locations which is perpendicular to the usual 
weather front paths. During the convective rainy season, 
correlations are characterized by small concentric patterns 
in which correlations decrease rapidly over short distances 
from each locations. For simplicity, we use 200 km as the 
threshold value for search type-A grid points. Similar to 
temperature, for some low resolution models, at least four 

(7)y1 = exp (y) − �.
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Fig. 3   Gains at the CFSR grid point of −79.063°W, 44.493°E (red 
star) for downscaling temperature (a, b), minimum temperature (c) 
and maximum temperature (d) from CCSM4 on January 15 (a, c) and 
July 15 (b, d). The contour interval is 0.05. The star (asterisk) rep-

resents the location of the chosen CFSR grid point and the red dots 
represent locations of nearby CCSM4 grid points within the 350 km 
buffer shown in Fig. 1a
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Type-A GCM grid points at each of CFSR grid points 
should be selected for downscaling.

3.3 � Bias correction

In present paper, we use the linear scaling method to cor-
rect biases in mean, and variation scaling method to correct 
biases in variance. These methods are simple and have been 
widely used in many downscaling studies (Teutschbein and 
Seibert 2012; Fang et al. 2015; Deng et al. 2016). For com-
pleteness, we provide the following brief descriptions on 
these methods.

3.3.1 � Linear scaling of temperature

The analysed temperature is often corrected with help of 
an additive term based on the difference of long-term mean 
between observation and historical run data (Teutschbein 

and Seibert 2012; Lenderink et al. 2007; Fang et al. 2015), 
expressed by the following equation: 

where X represents the variable to be corrected; �m repre-
sent the means; superscript d and 1 represents downscaling 
and first step of bias correction, respectively; subscript obs, 
hist and proj represent observation (reanalysis), historical 
runs and projection runs, respectively. Since most historical 
simulation data of CMIP5 GCMs end in 2005, there are only 
25-year data that overlay with the CFSR data (1981–2010). 
So, we use the 25-year (1981–2005) mean of CFSR data to 
correct the bias in the mean of each GCM.

3.3.2 � Variance scaling

In general, GCMs often underestimate the variance of temper-
ature. Many extreme climate indices are based on daily tem-
peratures (e.g., CDD, HDD, Tx30 and Tn20); the underesti-
mated variance may lead to the estimated indices significantly 
depart from reality. Therefore, the variance should be further 
scaled. After using Eq. (8), we scale the standard deviation of 
the model anomalies with the following equation: 

Eventually, the corrected data Xd,2

proj
 has the same mean and 

standard deviation as the CFSR data 
(
Xobs

)
 during the 25-year 

historical run period (1981–2005). This procedure is applied 
to temperature data month by month from 1981 to 2100.

3.3.3 � Wet day precipitation bias correction

We use the same method used for temperature correction to 
correct biases in monthly and annual total precipitation. Daily 
precipitation, which mainly used to estimate some indices, 
such as R10mm, R20mm, 30-year return levels, etc., will be 
corrected with distribution fitting method. Since the indices 
are based on wet day (daily precipitation ≥ 1 mm) precipita-
tion, in the present paper we focus on correction of wet day 
precipitation. The distribution fitting method has been used 
in downscaled CMIP3 precipitation correction (Deng et al. 
2016). For completeness, the method is described below. Pre-
vious studies (e.g., Waggoner 1989; Watterson 2005) have 
demonstrated that the most preferred distribution to fit wet-
day rainfall amounts is the 2-parameter Gamma distribution 
function: 

(8)X
d,1

proj
= Xd

proj
+ �m

(
Xobs

)
− �m

(
Xd
hist

)
,

(9)X
d,2

proj
= �m

(
X
d,1

proj

)
+

[
X
d,1

proj
− �m

(
X
d,1

proj

)]
×

�
(
Xobs

)

�
(
Xhist

) .

(10)X ∼ Γ(𝛼, 𝛽) =
x𝛼−1e−x𝛽

Γ(𝛼)𝛽𝛼
for x ⩾ 0 and 𝛼, 𝛽 > 0,

Fig. 4   Comparison of daily mean temperature on July 15, 2008 from 
CCSM4 before (a) and after (b) downscaling
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where α and β are respectively the shape and scale param-
eters of the distribution. The expectation is E (= α × β). We 
use the 2-parameter Gamma distribution to fit wet-day pre-
cipitation at each grid point. The goal of precipitation bias 
correction is to make the model data and reanalysis data have 
the same total wet days for the reference period 1981–2005 
and follow same distribution. This method adjusts the pre-
cipitation series at each of the 1552 grid points in Ontario 
by removing the bias in wet-day frequency and intensity. To 
achieve these goals, firstly, we determine a threshold 

(
Rc

)
 

of wet days at each grid point for each ensemble member: 

 where F is the empirical cumulative density function (CDF), 
so FDS and FCFSR refer to the CDFs of downscaled and CFSR 
precipitation, respectively. Thus, the total wet days (daily 
precipitation ≥ Rc) of downscaled data exactly equals the 
total wet days (daily precipitation ≥ 1 mm) of CFSR data for 
the reference historical period (1981–2005). The next step 
is to adjust the intensity of wet-day precipitation to make 
the estimated expectation 

(
Em

)
 of GCM data at a grid point 

equal that of the reanalysis data 
(
Eo

)
, i.e. 

(
Em = Eo

)
. Two 

steps are needed to get the adjustment coefficient 
(
r = r1r2

)
. 

Firstly, we use the following formula to adjust the model wet 
day precipitation data: 

where y(1) and y are the model value after and before correc-
tion respectively, r1 =

Eo

�
(0)
m

, E(0)
m

= �(0)
m

× �(0)
m

 and Eo = �o × �o 

is estimated expectation of wet day precipitation of the 
model run and the CFSR for the overlap period (1981–2005). 
�(0)
m

 and �(0)
m

 are shape and scale parameter of model data 
respectively, �o and �o are the shape and scale parameters of 
CFSR data respectively, and the value 1.0 mm is standard 
threshold value of observed wet day. After using Eq. (10), 
the threshold of wet day of the model data 

(
R
c

)
 is replaced 

with 1.0 mm. Subsequently, the shape and scale parameters 
of the adjusted model data change from �(0)

m
 and �(0)

m
 to �(1)

m
 

and �(1)
m

. Therefore the result from Eq. (12) should be further 
corrected using the following equation 

 where r2 =
Eo

�
(1)
m

, and �(1)
m = �(1)

m
× �(1)

m
 is the estimated expec-

tation of model wet day precipitation from Eq. (10). Finally, 
the estimated expectation of model data from Eq.  (13), 
�
(2)
m = �(2)

m
× �(2)

m
, is exactly equals to Eo. With this method, 

we can get Rc and coefficient r = r1r2 at each grid point for 
each ensemble member. Then they are used to correct the 
wet-day daily precipitation amount for the projection 
periods.

(11)R
c
= F

−1
DS

(
F
CFSR(1mm)

)

(12)y(1) =
(
y − R

c

)
× r1 + 1.0,

(13)y(2) =
(
y(1) − 1.0

)
× r2 + 1.0,

3.4 � Evaluation and validation

Two experiments are carried out to evaluate the downscaling 
method: (1) K-fold cross validation based on outputs from 
three historical runs for the 25-year base period (1981–2005) 
and (2) comparison downscaled data from the low resolu-
tion NCEP_Reanalysis_2 data with observations and ERA-
Interim data.

3.4.1 � Cross‑Validation for the historical period

To evaluate the transfer method we proposed in this study 
(described in Sects. 3.1, 3.2), a five-fold cross-validation is 
carried out to test the downscaled outputs for the 25-year 
base period (1981–2005) from CCSM4, GFDL-ESM2M 
and CanESM2 historical runs (Kohavi 1995; Gutiérrez et al. 
2013). We run the downscaling model 5 times. Each time, 
5-year (1981–1985,1986–1990, 1991–1995, 1996–2000 
and 2001–2005) data are used for testing, and the other left 
20-year data are used for estimating the gain matrix. For 
comparison, the Inverse Distance Weighted (IDW) interpo-
lation method is applied to generate the spatial distribution 
of daily data. IDW is widely used as a simple spatial down-
scaling method (Akinyemi and Adejuwon 2008; Mandal and 
Simonovic 2017) and is often used as the first step in some 
empirical downscaling methods as well, for example the 
QQ-mapping (Li et al. 2012) and the local intensity scaling 
(LOCI: Schmidli et al. 2006; Deng et al. 2016).

Evaluation is carried out using the 25-year averages of 
monthly mean for the four basic variables. Since the goal of 
the transfer function (1) is to add high resolution detail to 
CFSR grid points, large spatial scale variation are removed 
from the 25-year averages (of CFSR, IDW and EnOI data) 
by substracting the spatial running means prior to the com-
parison. The running mean at a CFSR grid point is esti-
mated based on data at CFSR grid points within a 2.5° 
latitude × 2.5° longitude moving window which centered at 
the subject grid point. Then, the differences between the 
original data and the running mean of the CFSR, IDW and 
EnOI data (denoted respectively as Zc, ZI and ZE) may rep-
resent the local climate information. The absolute errors of 
EnOI and IDW data are estimated by E1 (= ||ZE − ZC

||) and 
E2 (= ||ZI − ZE

||) at each of the 1522 CFSR grid points for 
Pr, Tm, Tx and Tn. Next, the difference between the errors 
(dE = E1–E2) are calculated. If dE < 0, the EnOI method 
outperforms the IDW method and vise versa. Finally, we 
can check if the EnOI method outperforms the IDW method 
based on the ratio of the number of points (N1) where dE < 0 
to the number of points (N0 = 1522-N1) where dE ≥ 0. The 
ratio N1/N0 represents how better (N1/N0 > 1) or worse 
(N1/N0 < 1) is the EnOI method relative to the simple IDW 
method. The spatial averaged differences of error dE were 
compared as well.
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3.4.2 � Independent validation by comparing downscaled 
NCEP data with observations and ERA‑Interim data

Since GCMs deal with climate rather than weather, it is 
inappropriate to compare the downscaled data from GCMs 
with observations day by day. To further evaluate the pro-
posed downscaling method at multiple timescales, the low 
resolution NCEP_Reanalysis 2 data is downscaled to the 
CFSR grid points. Then, the downscaled data can be com-
pared with station observations and another high resolution 
reanalysis data ERA-interim at daily scale.

3.5 � Projection and uncertainty analysis

After daily temperatures and precipitation for the period 
1981–2100 from 29 GCMs are downscaled and bias-cor-
rected, some variables that represent climate averages and 
extremes are projected for 2050s and 2080s. The spreads of 
the multiple model ensemble are calculated to characterize 
the uncertaintiesin these variables (Knutti et al. 2010). In 
general, one would expect that larger (smaller) ensemble 
spread implies more (less) uncertainties in the projection 
(Hopson 2014). There are a few metrics of ensemble spread, 
such as ensemble standard deviation, mean absolute devia-
tion, etc. In this study, the standard deviation (S) is used to 

measure the spread of the ensemble for the given projection 
ensemble �i (Hopson 2014): 

where M (= 29) is the ensemble size, 𝜃 denotes the ensemble 
mean.

4 � Results

4.1 � Validation of the proposed downscaling model

4.1.1 � Comparing errors in monthly avarages 
of downscaled GCMs data

Two cross-validation mesures are applied to evaluate the 
EnOI downscaling method, the ratio N1/N0 and the differ-
ence in absolution error (E1–E0). Figure 5 shows the ratios 
(left) and differencs (right) for models CCSM4 (top panel), 
GFDL-ESM2M (middle panel) and CanESM2 (bottom 
panel), respectively. The ratio figures (Fig. 5a, c, e) clearly 
show that the EnOI method outperforms the IDW for Tm 

(14)S =

√√√
√ 1

M − 1

M∑

m=1

(
𝜃m − 𝜃

)2
,

Fig. 5   Variations of N1/N0 
(left) and E1–E0 (right) of Pr 
(cyan), Tm (black), Tx (red) 
and Tn (blue) with month. The 
ratios N1/N0 are based on the 
number of CFSR grid points 
where the EnOI outperforms 
IDW (N1) to the left grid points 
(N0 = 1522–N1). The unit for 
(E1–E0) is °C for temperatures 
and mm for precipitation. The 
values of E1–E0 for precipita-
tion had been multiplied by a 
factor 0.5 for easy visualization
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(black line) and Tx (red line) for all of the three GCMs for 
almost all months. The numbers of grid points where the 
EnOI generates smaller error doubled the numbers of grid 
points where the IDW generates small error for Tm and Tx 
during most months. For Pr, the EnOI performs much bet-
ter than IDW in cold seasons for GFDL-ESM2M. There 
is no significant difference between the two methods for 
the other two GCMs. For Tn from CCSM4, at most grid 
points (N1/N0 > 2) the EnOI method performs better than 
the IDW method while the EnOI method performs better 
in cold months but worse in warm months. Consistent with 
the results of the ratios, the absolute errors (Fig. 5b, d, f) 
show the reduction of errors by EnOI relative to the IDW. 
Averaged over Ontario, errors from IDW are 0.5 – 3 mm for 
Pr, 0.2 – 0.4 °C for Tm, 0.2 – 0.7 °C for Tx and 0.2 – 0.4 °C 
for Tn. Generally, the maximum errors happen in summer 
months. From Fig. 5b, d, f, we can see that EnOI performs 
better in all months for Tm and Tx. For Pr and Tn the EnOI 
method perferms better than the IDW method for most 
months although the results are model dependent. The EnOI 
method has larger errors than IDW method in some summer 
months. In summary, the EnOI method performs much better 
than the IDW method at most grid points for most varibles 
from most analized GCMs. It is important to note that the 
EnOI generates much better Tm and Tx which are critical 
for climate impact studies. Spatially, the EnOI method per-
forms better in northern areas for precipitation and better in 
mountainous southern areas for temperatures (not shown).

4.1.2 � Comparing errors in downscaled NCEP data

To assess the accuracy of the proposed downscaling tech-
nique, firstly NCEP Reanalysis-2 data are downscaled to 
CFSR grid points and after that the downscaled data are 
compared with ERA-Interim reanalysis. Comparison 
between observations at the 54 stations and the downscaled 
data at the corresponding closest CFSR grid points is per-
formed as well. The spatial distribution of the 30-year mean 
from NCEP II, EC and DS data for annual total precipitation 
and annual mean temperature are shown in Fig. 6. It shows 
that the spatial distribution patterns of downscaled precipi-
tation (bottom left panel), ERA-Interim data (central left 
panel) and that of original NCEP II data (top left panel) are 
similar. Some local features, which appear in ERA-data but 
miss in the NCEP II data, are observed in the downscaled 
data. For mean temperature (right panel of Fig. 6) the three 
data sets are very similar to each other. But we still could 
discern improvements in central and southern area generated 
by the downscaling method. Similar situations are observed 
in Tx and Tn (not shown). Figure 7 demonstrates the relation 
between the data from downscaling (DS) at 54 CFSR grid 
points and at the corresponding closest weather stations. It 
is observed that they have good linear correlation in general. 

At northern areas where mean Tm < 5.5 °C, downscaled Tm 
and Tn are higher than their corresponding observed val-
ues, and downscaled values of Tx are lower than observed 
Tx. In other area, the downscaled temperatures are around 
the observed ones. Almost at all grid cells, the downscaled 
precipitation amounts are smaller than observations at the 
corresponding closest stations. Downscaled precipitation 
is smaller than observation at almost all stations, except 
for several station in northern area. These biases are partly 
inherited from coarse NCEP II data and partly generated by 
the downscaling method because the interpolation procedure 
may smoothes small-scale spatial variability. They will be 
considered in the bias correction procedure.

To summarize goodness-of-fit of the quantiles for daily 
data, the widely used Quantile–quantile plot (QQ-plot) 
method is used in this study. Figure 8 depicts QQ-plots of 
the downscaled quantiles against the observed quantiles 
of daily data at five selected stations. Points on a QQ-plot 
that fall on the diagonal line indicate that the downscaled 
and observed datasets come from a same distribution and, 
in this case, suggest that the downscaling procedure accu-
rately captured the distribution of the local-scale daily data 
(Kirchmeier et al. 2014). Points on a QQ-plot that fall on 
the regression line indicate that there exists a good linear 
relationship between quantiles of the two datasets. Figure 8 
demonstrates a relatively good fit for Tm, Tx and Tn at the 
stations. There is a very good linear relationship between 
the quantiles although some regression lines do not exactly 
match the diagonal line and there are departures at the 
upper-tail points and lower-tail points. The downscaled Tm 
and Tx is biased towards a slightly higher temperature at 
station b and e. This good relationship justify the application 
of the linear bias correction method for temperatures. The 
QQ-plot for precipitation shows that the downscaled data 
and observed data match very well for wet day precipita-
tion less than 20 mm/day, but downscaling underestimate 
precipitation greater than 20 mm/day at four of the five sta-
tions (a–d), except at station e. As previously mentioned, the 
underestimation may be inherited from NCEP II precipita-
tion and the interpolation procedure. Further correction will 
be conducted to reduce these systematic errors.

As mentioned above, the method proposed in Sects. 3.1 
and 3.2 only transfers the variables from GCMs to CFSR 
grid points. It can not correct biases inherited from GCMs. 
Figure 9 displays biases in six varibles. As examples, only 
results from three models and ensemble mean are presented. 
It is observed that the CCSM4 model has large biases in all 
of the six variables. Temperatures (Tm, Tx and Tn) show 
warm bias in all of the three models and the 29-member 
ensemble (except Tx in GFDL-ESM2M) over Ontario. Pre-
cipitation shows dry bias at most locations. Since the CFSR 
data is considered as observation for bias correction, after 
using Eq. (8), the means of all models become the mean of 
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CFSR (blue circles) which are much closer to the observed 
normals (the blue straight line). The differences between 
the observed normals and CFSR data are possibly due to 
the gridded CFSR values are linearly interpolated to the 54 
weather stations, it is possible to introduce minor errors dur-
ing the interpolation where specific local geographic con-
ditions were not fully accounted for. Although the CFSR 
data is not real observation, it should be better than gridded 
data merely based on observation at conventional weather 
stations, especially in areas where the observational data is 
sparse, such as the majority of central to northern Ontario. 
This bias correction approach is conducted for the results 
from other ensemble members for current and future projec-
tions as well.

4.2 � Projected Temperature and precipitation changes

Model-projected warming varies in space and time. Fig-
ure 10 shows spatial distribution of the 29-member ensem-
ble mean of Tm, Tx, Tn and Pr in 1990s and correspond-
ing projected changes in 2050s and 2080s. It is observed 
that the amplitude of warming increase from southwest 
to northeast. Averaged over Ontario, Tm, Tx and Tn will 
increase 3.9(6.5) °C, 3.5(6.0) °C and 4.3(7.1) °C in 2050s 
(2080s), respectively. These results are in good agreement 
with the conclusion of the recent dynamical downscal-
ing study (Wang et al. 2015). This demonstrated that the 
downscaling approach in this study is capable of account-
ing for some impacts from local geophysical features as 

Fig. 6   Comparison between 30-year mean of NCEP (top), EC-interim (middle) and downscaled (bottom) total precipitation (left, unit: mm), 
average temperature(right, unit: °C)
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Fig. 7   Scatterplot of 30-year (1981–2010) average of daily mean (a), maximum (b) and minimum (c) temperature and annual total precipitation 
(d) downscaled from NCEP reanalysis II dataset versus 30-year averages at the 54 weather stations in Ontario

Fig. 8   QQplot of daily tem-
perature (Tm) in summer, daily 
maximum temperature (Tx) in 
July, daily minimum tempera-
ture (Tn) in January and wet day 
precipitation in a year at five 
weather stations: (a) 91.9°W, 
50.117°N; (b) 84.783°W, 
47.967°N; (c)78.733°W, 
44.333°N; (d)82.95°W, 
42.267°N; (e) 74.733°W, 
45°N. The horizontal and 
vertical coordinates represents 
observation and downscaled 
data, respectively. The dashed 
red line is linear regression line 
between them and the diagonal 
line represent x = y
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well as dynamical downscaling approaches using expen-
sive regional climate models. The local geographic condi-
tions (latitudes, land covers, topography, etc) significantly 
affect the temperature change amplitudes. The maximum 
increasing amplitudes in the northeastern area are much 
larger than the minimum increasing amplitude in the 
southwestern area. As temperatures increasing, some 
temperature related climate indices will significantly 
change as well. As temperature increasing, annual total 
precipitation is projected to increase in about 40 – 100 mm 
(1 – 10%) in 2050s and 80 – 150 mm (6 – 20%) in 2080s 
(Fig. 10i–k). These increases mainly happen in winter 
and spring (December, January and February) but sum-
mer (June, July and August) precipitation is projected to 
decrease in most area for 2050s and 2080s over Ontario 
(figures not shown). Averaged over whole province, pre-
cipitation will increase about 6 and 11% annually and 24 
and 42% in winter for 2050s and 2080s, but decrease about 
2 and 2% in summer.

4.3 � Projected changes in indices

Figure 11 shows some derived variables and their changes, 
including cooling degree days (CDD), heating degree days 
(HDD), hot days (TX30) and cold days (TN20) in 1990s 
and their projected changes in 2050s and 2080s. Cur-
rently (1990s), only small parts of southern Ontario need 
energy for cooling in summer (Fig. 11a), while the prov-
ince needs large amount of energy for heating (Fig. 11d); 
days with Tx > 30  °C (TX30) is less than 33 days in 
Ontario (Fig. 11h); and there are more than 50 days with 
Tn < − 20 °C in area north of 50°N and less than 10 such 
cold days in southwestern Ontario (Fig. 11k). As tempera-
tures continue increase, more and more areas will need 
cooling in summer (Fig. 11b, c). The CDD will increase 
more significantly in the south than in the north. The HDD 
will significantly decrease with larger decreasing ampli-
tude in the north (Fig. 11e, f) because of the bigger ampli-
tude of temperature increase (Fig. 10). TX30 increase 
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more significantly in the south than the north (Fig. 11i, 
j). TN20 decrease significantly in the north (Fig. 11l, m). 
Averaged over Ontario, HDD will decrease 1144 °C (18%) 
and 1802 °C (29%), and CDD will increase 151 °C (148%) 

and 324 °C (318%) in 2050s and 2080s, respectively. Tx30 
will increase 15 (214%) and 34 days (486%), and Tn20 
will decrease 16 (30%) and 27 days (51%) in 2050s and 

Fig. 10   Maps of the 29-member ensemble mean of mean (a–c), 
maximum (d–f) and minimum (g–h) temperatures, and annual total 
precipitation for periods 1981–2010 (left), and their change in 2041–

2070 (middle) and 2071–2100 (right) relative to 1981–2010. Blue 
contours are boundary of lakes and the black lines are boundary of 
municipalities
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2080s, respectively. As total precipitation increase, the 
events of heavy precipitation (R10mm) will also increase 
over most part of Ontario. This increasing trend is consist-
ent with the conclusion drew based on downscaled data 
from CMIP3 A2 GCMs (Deng et al. 2016) using the Gen-
eral Linear Model (Katz 2010).

4.4 � Ensemble spread

Because the Earth’s climate system is characterized by 
multiple spatial and temporal scale, uncertainties do not 
usualy reduce at a single, predictable rate (Cubasch et al. 
2013). The bias correction reduces the uncertainty inher-
ent in the downscaled results. However, the corrected 

Fig. 11   Maps of the 29-member ensemble mean of CDD (a–c), HDD (d–f), TX30 (h–j) and TN20 (k–m) for the scenario RCP8.5 in 1981–
2010 (left) and their changes in 2041–2070 (middle) and 2081–2100 (right) relative to 1981–2010



428	 Z. Deng et al.

1 3

means do not complete overlap with the observed normal 
(Fig. 9). Ensemble spread is often used to measure such 
uncertainty. Figure 12 shows the spatial distribution of 
ensemble spread of Tm, Tx, Tn, Pr and the 5 associated 
indices in 2050s. It is observed that the spatial distribution 
patterns of Tm, Tx and Tn are very similar to each other 
(Fig. 12a–c). The spreads are large in the north and small 
in the south. The spread distribution of HDD and Tn20 
(days with Tn < −20 °C) are similar. The spatial distribu-
tion of CDD and Tx30 are similar with small values in the 
northeastern Ontario where the CDD and Tx30 are small 
(Fig. 12a, h) and their changes are small as well (Fig. 12b, 
i). The spatial distribution patterns of these variables are 
similar to that in 2080s (not shown) but with larger values 
because the ensemble spread increase with time. Different 
from temperature, the spread in Pr are larger in southern 
area than in northern area due to the larger amplitude of 
total precipitation. The uncertainty in R10mm are large 
over mountain area in the central Ontario.

5 � Summary and discussion

Dynamical and statistical downscaling are the two widely 
used methods to generate high resolution regional climate 
data. They have their advantages and disadvantages. How to 
take the advantages of these methods and relieve the nega-
tive impacts of their disadvantages is an evolving topic. 
This study proposed a hybrid method to construct downs-
caling models using outputs of GCMs and CFSR, based on 
the framework for EnOI. We say it is a hybrid-like method 
because it takes advantages of both an assimilation based 
statistical downscaling approach (cost effective) and a high-
resolution reanalysis system (i.e. CFSR) with better consid-
eration of impacts from local geophysical features.

We use the day to day seasonal cycle of the high resolu-
tion spatially consistent daily reanalysis data as background 
state; the difference between outputs of GCM and the back-
ground state is spatially distributed onto the reanalysis grid 
points by a transfer function. The transformation maps the 

Fig. 12   Projected ensemble spread of annual Tm (a), Tx (b), Tn (c), CDD (d), HDD (e), Tx30 (f), Tn20 (g), Pr (h) and R10mm (i) for 2050s
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variables between the nearby GCM grid points and the CFS 
grid points. The results show that this method is capable of 
downscaling the GCM daily data to local scale with fairly 
reasonable confidence. The first step in statistical down-
scaling methods is to transformate GCM data onto target 
stations or grid point. Differing from some tradition downs-
caling methods which directly interpolate GCM data to tar-
get locations only considering impacts of limited constant 
geographic factors (distance, elevation, slope, etc), we use 
temporal varying gain matrix that can reflect the temporal 
variation of the interactions between the atmosphere and 
many local geographic factors at the reanalysis data resolu-
tion. These interactions vary with time which are reflected 
by the reanalysis models such as the CFS through coupling 
component models for the climate system. Biases are further 
corrected using the widely used linear scaling approach.

To validate the downscaling model, two experiments are 
carried out, a five-fold cross validation and an independent 
data comparison. The cross validation results show that the 
proposed EnOI method significantly outperforms the sim-
ple IDW method for Tm and Tx at most grid points. But its 
performance for Pr and Tn is season and model dependent. 
In the independent data comparison experiment, the lower 
resolution reanalysis data are downscaled to higher resolu-
tion grid points and then compared with observations and 
another high resolution reanalysis data. The results dem-
onstrate that the EnOI method is capable of keeping large 
scale pattern from the low resolution model (e.g., GCM) and 
adding local details from the high resolution model (e.g., 
RCM). The good linear relation between the quantiles of 
downscaled daily data and real observation justifies the bias 
correction methods that are used to downscaled GCM data. 
Using the same methods, near surface temperatures (Tm, Tx 
and Tn) of a 29-member CMIP5 GCM ensemble under the 
IPCC AR5 RCP8.5 scenario are downscaled in Ontario. The 
result shows that averaged over the entire province, annual 
mean temperature will increase by respectively 3.9 to 6.5 °C 
in 2050s (2041–2070) and 2080s (2071–2100) relative to 
1990s (1981–2010). Annual average minimum (maximum) 
temperature increases faster (slower) than mean tempera-
ture. The temperature increases with larger amplitude in the 
north than the south. Lakes play significant rule in modify-
ing the changing amplitudes. Cooling degree days (CDD) 
increase significantly in the south and heating degree (HDD) 
decreases significantly in north. Hot days (Tx > 30 °C) will 
increase in the province with maximum increase in southern 
Ontario, and cold days (Tn < −20 °C) will decrease with 
maximum decreasing in northern Ontario. The ensemble 
spreads are larger in the north than other areas for tempera-
tures (Tm, Tx and Tn), HDD and Tn20. For CDD and Tx30, 
large spreads happen in southern Ontario where the large 
absolute values of these variables appear. As temperature 
continue increasing, precipitation will also increase in most 

part of the province with larger amplitude in the eastern 
area and larger uncertainty in the southern area. The heavy 
precipitation event will increase significantly as well.

Usually the EnOI method requires running dynamical 
models, but our novel downscaling does not need, therefore 
it is a more computational efficient method which keeps 
spatial consistence to certain extent. The transfer function 
(gain matrix) reflects the complicated interactions between 
geographic factors and the atmosphere.

The EnOI method can be easily applied to other high 
resultion data. If outputs from a high resolution RCM simu-
lation were used to construct the transfer function, then the 
transfer function would vary with year as well. For exam-
ple, we can use the output of a high resolution RCM to 
construct the gain matrices for downscaling practice. This 
could relieve the negative impact of traditional statistical 
downscaling methods caused by the stationarity assump-
tions in which relationships between large and local-scale 
processes will remain the same in the future. In this study, 
gain matrices are constructed for each variable (Tm, Tx, 
Tn or Pr) independently to consider the interaction between 
geographic conditions and the variable at the reanalysis reso-
lution. As demonstrated, the method proposed in this paper 
obviously improved the traditional statistical downscaling 
by implicitly keeping spatial and inter-variable consistence, 
and is useful for generating large ensemble of high resolu-
tion downscaling climate projections; note that, this method 
does not explicitly account for the interactions among vari-
ables and this may impact the coherence among them; and 
this could be improved by constructing multivariate gain 
matrices in our future research. Though this method has 
some advantages of dynamical downscaling because it is 
constructed from high resolution reanalysis data, it is still a 
statistical method. The transfer matrix (gain) only changes 
with calendar days but does not change with years. As cli-
mate changes, the relationship between large scale change 
and small scale variation represented by the gain matrix 
may change as well. In the future, we will use high resolu-
tion dynamical downscaling results to construct the transfer 
matrix which will change with time (day and years), thus 
will relieve the negative effects of this problem.

To make the EnOI applicable to downscaling, some 
assumptions are made. For example, it is assumed that the 
outputs of GCMs as observations with error variance as a 
small portion (10%) of the diagonal of the background (i.e. 
CFSR) error covariance matrix and does not change with 
years. Despite the assumptions are necessary for this study, 
they seems too confident. In this study, the proposed EnOI 
method is compared only with a very simple IDW down-
scaling method. Further comparison with other available 
advanced statistical downscaling methods may be helpful 
to understand the advantages and disadvantages of the EnOI 
method; this will be part of our future work. We will also 
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look into further improving the EnOI method, for example, 
by re-designing the background error covariance matrix and 
observation error covariance to make them more realistic.
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