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global warming. Although the results are based on a single 
RCM–GCM chain, we believe that they have general value 
in providing insight in the fraction of the uncertainty in high-
resolution climate information that is irreducible, and can 
assist in the correct interpretation of fine-scale information 
in multi-model ensembles in terms of a forced response and 
noise due to internal variability.

Keywords  Regional climate change · Internal variability · 
Precipitation extremes · Signal-to-noise · Initial-condition 
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1  Introduction

To increase our ability to make predictions of changes of 
the climate—and associated weather—in response to anthro-
pogenic forcing of the climate system (human induced 
aerosols, land use change and greenhouse gas emissions), 
commonly multi-model ensembles of climate simulations 
are explored, as provided by e.g. the modelling initiatives/
projects CMIP (Meehl et al. 2000) for global climate model 
(GCM) simulations and CORDEX (Giorgi et al. 2009), 
PRUDENCE (Christensen and Christensen 2007), ENSEM-
BLES (Van der Linden and Mitchell 2009) and NARCCAP 
(Mearns et al. 2012) for dynamically downscaled model 
ensembles. While the application of multiple models pro-
vides an estimate of the robustness of the model results, the 
interpretation of the differences between the individual sim-
ulations is not straightforward (Räisänen and Palmer 2001; 
Tebaldi and Knutti 2007; Tebaldi et al. 2011; Deser et al. 
2012a; Von Storch and Zwiers 2013). The total projected 
change in an individual climate simulation results from the 
response of the simulated climate system to anthropogenic 
forcing, referred to as the forced response or climate change 
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signal, and internal variability. Internal, or natural, variabil-
ity of the climate system originates from the inherent chaotic 
nature of atmospheric/oceanic/land surface processes and 
their interactions, and is unpredictable. It is always present 
and causes the weather and climate to be variable even when 
averaged over periods up to multiple decades (e.g. Kendon 
et al. 2008; Deser et al. 2012a, b). As long as the internal 
variability is large compared to the forced response, it is an 
irreducible source of uncertainty (noise) in the estimation of 
the forced response (signal) and prediction of the future cli-
mate (e.g. Räisänen 2001; Hegerl et al. 2004; Kendon et al. 
2008; Hawkins and Sutton 2009; Deser et al. 2012a, b; Fis-
cher et al. 2013; Xie et al. 2015). The relative importance of 
internal variability is generally larger for precipitation than 
for temperature, larger in the extra-tropics than in the trop-
ics, and is particularly large for climate/weather extremes 
at local to regional scales (Hegerl et al. 2004; Kendon et al. 
2008; Hawkins and Sutton 2009, 2011; Deser et al. 2012a; 
Maraun 2013; Fischer et al. 2013, 2014; Xie et al. 2015).

To be able to correctly interpret climate change projec-
tions—and differences between the members of a multi-
model ensemble—in terms of the forced response and noise 
due to internal variability, the magnitude of the internal vari-
ability must be known. Internal variability can be estimated 
from single simulations (or observations) by time filtering 
of the results (Hawkins and Sutton 2009, 2011; Addor and 
Fischer 2015). However, it can be derived more accurately 
and straightforwardly from large ensembles performed with 
a single-model configuration, created by perturbation of the 
atmospheric initial state (e.g. Deser et al. 2012a, b). The 
ensemble members of such an ensemble differ due to inter-
nal variability alone.

For global climate models (GCMs) a number of these 
large single-model ensembles are available and have been 
analyzed (Selten et al. 2004; Deser et al. 2012a, b, 2014; 
Fischer et al. 2013, 2014; Hawkins et al. 2016). At the spatial 
resolution typical for GCMs it was found that much of the 
spread in multi-model ensembles can be explained by inter-
nal atmospheric variability, especially in the extra-tropics 
and for precipitation (Deser et al. 2012b, 2014; Fischer et al. 
2014). Moreover, for temperature and precipitation extremes 
Fischer et al. (2013) and Fischer and Knutti (2014) have 
shown that internal variability mainly causes uncertainty 
in the location of changes in extremes, but that ensemble 
members largely agree on the fraction of the domain (globe, 
continents, large countries) where changes are experienced.

While simulations with GCMs provide information on 
large-scale patterns of climate change and variability, for 
impact assessments, e.g. in hydrology, agriculture and urban 
drainage, climate information is required on the regional 
or local scale. This high-resolution information can be 
generated by dynamical downscaling of the GCMs with 
regional climate models (RCMs). For Europe—the focus 

of our analysis—modelling efforts such as PRUDENCE, 
ENSEMBLES and most recently EURO-CORDEX (Jacob 
et al. 2014) have provided large multi-model ensembles of 
RCM simulations, at increasing spatial resolution (~12 km 
currently). Such multi-model RCM ensembles have been 
used extensively to explore changes in climate (extremes) 
over Europe (e.g. Frei et al. 2006; Fowler et al. 2007; Rajc-
zak et al. 2013; Kjellström et al. 2013; Jacob et al. 2014; 
Vautard et al. 2014), and as input in hydrological models 
to assess changes in flood magnitude in response to cli-
mate change (e.g. Rojas et al. 2012; Alfieri et al. 2015). 
Taking into account more detail in topography, land-use, 
coastlines and smaller-scale atmospheric processes than can 
be resolved by GCMs and low resolution RCMs allows a 
better representation of the magnitude, variability and the 
small-scale spatial pattern of climate variables, especially 
for precipitation (e.g. Frei et al. 2006; Fowler et al. 2007; 
Maraun et al. 2010; Kotlarski et al. 2014; Prein et al. 2016; 
Giorgi et al. 2016). While there is more confidence in the 
representativeness of the climate variables, the internal vari-
ability is larger at these local (grid-cell) scales as well, limit-
ing the predictability of the high-resolution forced response. 
This is especially the case for precipitation, due to the non-
linear and local character of (extreme) precipitation events 
(Giorgi and Bi 2000; Frei et al. 2006; Fowler et al. 2007; 
Kendon et al. 2008; Hawkins and Sutton 2011; Fischer et al. 
2013; Maraun 2013; Sieck and Jacob 2016). Remarkably, the 
role of internal variability in the predictability of the high-
resolution forced response received relatively little attention 
and is consequently still rather uncertain (e.g. Kendon et al. 
2010; Kjellström et al. 2011; Déqué et al. 2012).

The internal variability in the RCM is partly forced by 
the atmospheric flow conditions at the lateral boundaries 
(i.e. inherited from the GCM), but is also generated within 
the regional model domain. The relative importance of these 
two sources depends on several factors, such as the circula-
tion type, season, and domain size (e.g. Giorgi and Bi 2000; 
Christensen et al. 2001; Lucas-Picher et al. 2008; Sieck and 
Jacob 2016). Here, we do not distinguish between internal 
variability generated within the domain or forced from the 
boundary. When mentioning single-model or initial-condi-
tion RCM-GCM ensembles we refer to an ensemble created 
by a single RCM, downscaling multiple members of the 
same GCM that differ only in their initial conditions.

Kendon et al. (2008) examine the robustness of mean and 
heavy precipitation changes based on a 3-member initial-con-
dition ensemble of an RCM resolved at 50 km horizontal res-
olution and conclude that a much larger ensemble would be 
both valuable and required to fully sample the multi-decadal 
internal variability and predict the forced response. Kjell-
ström et al. (2011) show that internal variability sometimes 
dominates over uncertainty due to model formulation. They 
sample internal variability from a 3-member initial-condition 
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ensemble as well, and also Kjellström et al. argue that larger 
(initial-condition) ensembles would be valuable. Analyses 
of large high-resolution single-model RCM–GCM ensem-
bles spanning (parts of) Europe have, to our knowledge, not 
been published since. The research on this subject has been 
limited to small single-model ensembles (Déqué et al. 2007; 
Kendon et al. 2008; Kjellström et al. 2011 and; Imbery et al. 
2013), large single-model ensembles but analyzed over rela-
tively small domains (Addor and Fischer 2015) and methods 
sampling internal variability from single simulations (inter-
annual variability) (Maraun 2013; Kjellström et al. 2013). 

To obtain an accurate estimate of the local-scale forced 
response and the relative role of multi-decadal internal vari-
ability in mean and extreme daily precipitation, we analyze 
a 16-member initial-condition ensemble conducted with the 
GCM EC-EARTH, which is regionally downscaled with 
the RCM RACMO2 over Western Europe and the Alps, at 
a resolution of 0.11° (12 km), for the period 1950–2100 
(Lenderink et al. 2014 and; Lenderink and Attema 2015). 
The resolution is equal to the highest-resolution EURO-
CORDEX simulations. Lenderink and Attema (2015) have 
used this ensemble in the development of a scaling approach 
for local precipitation extremes, and already revealed some 
characteristics of the ensemble mean response versus indi-
vidual ensemble members for mean and extreme precipita-
tion indices. Here we look deeper into the ‘issue’ of signal 
and noise, focusing on the following three questions: How 
robust is the high-resolution spatial response pattern? When 
and where does the local-scale climate change signal emerge 
from internal variability? Given the internal variability, how 
much information on the local-scale forced response is con-
tained in individual ensemble members?

For the first two questions we use an approach similar 
to Kendon et al. (2008) and Deser et al. (2012a, b, 2014) to 
estimate the forced component of the precipitation response 
(the mean response across the 16-members) and internal 
variability (the standard deviation across the ensemble).

In part 1 of the analysis we first consider the forced 
response in the ‘absence’ of internal variability and ana-
lyze its characteristics. Despite the relatively large ensem-
ble, internal variability may still affect the ensemble mean 
response (Hegerl et al. 2004)—a patchy spatial structure as 
seen in the multi-model mean response of heavy precipita-
tion may be an indication that this indeed is the case (Vau-
tard et al. 2014; Fischer et al. 2014; Xie et al. 2015). By 
testing pattern robustness through time, we test whether 
(small-scale) geographical features in the spatial pattern of 
the forced response are actual features of the forced response 
or originate from noise.

Internal variability is quantified in part 2 of the analysis, 
where we determine statistical significance of the forced 
response (certainty on the sign of the change) and look at 
emergence of the forced response (signal, S) from internal 

variability (noise, N), using a signal-to-noise (S/N) perspec-
tive (e.g. Hegerl et al. 2004; Giorgi and Bi 2009; Hawkins 
and Sutton 2009, 2011; Hawkins et al. 2016; Deser et al. 
2012a, b, 2014; Kendon et al. 2008; Fischer et al. 2014).

In the last part of the analysis, concerning the information 
retrievable from individual ensemble members, we deter-
mine the pattern similarity between the forced response 
and the individual ensemble members for different levels of 
global warming, following Fischer et al. (2014). The pattern 
similarity is used as measure for the ‘predictive’ value of 
individual ensemble members for the forced response. The 
results are relevant for the correct interpretation of multi-
model ensembles in terms of the forced response (signal) 
and internal variability (noise). As long as the predictive 
value of a single ensemble member for the forced response 
is low (i.e. the relative role of internal variability is large) 
(multi-model) ensemble members cannot be expected to 
agree on the response (Tebaldi et al. 2011).

2 � Models and methodology

2.1 � Models and domain

The 16-member ensemble is generated with the RCM KNMI-
RACMO2 (Van Meijgaard et al. 2008, 2012) driven by the 
GCM EC-EARTH 2.3 (Hazeleger et al. 2012). EC-EARTH 
was run 16 times from 1850 to 2100, each member starting 
from a slightly different initial state (the 1st until the 16th of 
January 1850 from an initial model run), under forcing of his-
torical emissions until 2005 and the RCP8.5 greenhouse gas 
concentration pathway from 2006 onwards (Riahi et al. 2007; 
Van Vuuren et al. 2011). Each of the EC-EARTH members 
was subsequently downscaled on a 0.11° (~12 km) resolved 
domain of 222 × 216 grid-cells (longitude × latitude), cov-
ering Western Europe including the Alps for the period 
1950–2100. The lateral-boundary relaxation zone counts 16 
grid-cells on all sides. The greenhouse gas and aerosol forc-
ing in the EC-EARTH as well as in the RACMO simulations 
has been implemented to conform with CMIP5 prescriptions 
(Collins et al. 2013). The resolution of the RACMO grid 
matches that of the 0.11° EURO-CORDEX simulations 
(Jacob et al. 2014), but the domain is rotated slightly differ-
ently. The domain that is used in the analysis, spanning the 
region 7°W–15°E, 45°N–60°N, is shown in Fig. 1.

To evaluate whether the RACMO-EC-EARTH model 
chain realistically simulates part of the internal vari-
ability, we compare the simulated inter-annual vari-
ability with the corresponding variability in the gridded 
observational dataset E-OBS (Klein Tank et al. 2002), 
and in an ERA-Interim forced RACMO run in the period 
1981–2010, the reference period (see below). Results of 
the evaluation are presented in the supplementary material 



4748	 E. E. Aalbers et al.

1 3

(S1). Overall, we find a high similarity between simulated 
and observed inter-annual variability (Figs. S1.1, S1.2). 
Differences (small under-, respectively overestimations of 
the inter-annual variability in the simulations compared to 
observations in mean summer precipitation, respectively 
precipitation maxima in summer and winter, described in 
detail in S1) will be reflected in the multi-decadal vari-
ability, but are not expected to have considerable influ-
ence on the analyses presented in this paper.

Given the limited temporal coverage of the observa-
tional data, we cannot assess the variability on multi-
decadal time scales in the observational data in similar 
fashion as for the simulated data (Hawkins et al. 2016). 
However, a large part of the internal variability on longer 
time scales consists of the integration of the inter-annual 
variability (Fischer et al. 2013; Thompson et al. 2015). If 
we neglect the year-to-year correlation, the variance on 
longer time scales is given by the year-to-year variance 
divided by the number of years. Indeed, in our model, the 
variance of 30-year mean precipitation indices is highly 
similar to the estimate based on the inter-annual vari-
ability in a 30-year period (see supplement, Figs. S1.4 
and S1.5). This, together with the relatively good repre-
sentation of inter-annual variability in the RACMO-EC-
EARTH ensemble, gives confidence in the representa-
tion of the variability on longer time scales. The relation 
between inter-annual variability and longer term trends is 
further discussed by Thompson et al. (2015).

2.2 � Precipitation indices, seasons, time horizons

We analyze changes in mean and extreme daily precipita-
tion in winter (December–February, DJF) and summer 

(June–August, JJA) over the period 1981–2100. The analysis 
is restricted to the land pixels in the domain, which is where 
the impact of changes is predominantly felt. We adopt a rela-
tively large set of precipitation indices to be able to evaluate 
how the change depends on the extremity of the event. These 
are mean daily precipitation (RRmean), mean annual maxi-
mum daily precipitation (RX1day) and daily precipitation 
with a return period (T) of 10 and 20 years (RX1dT10 and 
RX1dT20) in winter and summer.

The T year return values of daily precipitation intensities 
are estimated by fitting a Generalized Extreme Value (GEV) 
distribution to the annual daily precipitation maxima. The 
cumulative distribution function is: 

and µ, σ and ξ are the location, scale and shape parameters, 
respectively (Coles et al. 2001). Maximum likelihood fit-
ting is used to estimate the GEV parameters. The T year 
return value xT of daily precipitation can subsequently be 
calculated by: 

R package ‘ismev’ has been used to perform the maxi-
mum likelihood fitting.

In the main part of our analysis we consider relative 
changes in precipitation indices in 30-year future periods 
relative to the reference period 1981–2100. For ensemble 
member i this reads: 

with F being the value of the precipitation index in a future 
30-year period and C the value of the index in the refer-
ence period. The three independent periods 2011–2040, 
2041–2070 and 2071–2100 are referred to as early, middle 
and end of the twenty-first century. In these periods, the 
coinciding global mean temperature rise in the driving EC-
EARTH simulations since the reference period is respec-
tively 0.8, 1.9 and 3.4 °C for the ensemble mean, with a 
standard deviation of typically 0.05 °C between the mem-
bers. Global mean warming in the reference period with 
respect to ‘pre-industrial times’ (1861–1890) is 0.9 °C in 
the EC-EARTH simulations.

Additionally, we compute the relative change in precipi-
tation per degree global warming using the entire simula-
tion period (1981–2100) instead of time slices. For mean 
and annual maximum daily precipitation this is done by a 
linear regression on global mean temperature from the driv-
ing EC-EARTH simulation(s), per member (120 years) and 
for all members at once (16 × 120 model years). The thus 
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determined change per degree global warming is normal-
ized with mean daily precipitation, respectively mean annual 
maximum daily precipitation in the reference period.

For precipitation extremes with longer return periods for 
the time slices method we fit a stationary GEV to the 30 (29 
in DJF) maxima per 30-year period, per member. For the 
‘linear regression’ method we fit a GEV to the entire simu-
lation period per member (120 years) and all members at 
once (16 × 120 model years), allowing the location and scale 
parameters to vary with time (t) (e.g. Westra et al. 2013; 
Kharin and Zwiers 2005): 

where y(t) is a time-varying covariate, taken as the global 
mean temperature in the driving EC-EARTH simulation, 
and µ0, σ0, α and β additional parameters that have to be 
determined by maximum likelihood fitting.

If changes in precipitation scale linearly with global mean 
temperature, linear regression using the entire simulation 
period filters more of the internal variability and yields a 
more robust estimate of the forced part of the precipitation 
change (Fischer et al. 2014).

2.3 � Separation of forced response and internal 
variability

The only difference between the model runs is the initial 
atmospheric state in EC-EARTH, therefore the forced cli-
mate response in all members is equal and the members 
differ due to the internal variability only. This internal 
variability may originate from both the global and regional 
model simulations. We estimate the forced climate response 
(signal, S)—given the applied model chain and forcing sce-
nario—as the ensemble mean response (Eq. 6). The standard 
deviation across the ensemble is used as a measure for the 
internal variability (noise, N, Eq. 7). 

where n is the number of ensemble members (n = 16).
It should be noted that determining the forced response 

from the arithmetic ensemble mean over relative changes 
with different values in the reference period, introduces a 
spurious increase in the ensemble mean, as also pointed 
out by Sippel et al. (2017) in a slightly different context. 
Consider one ensemble member with a future doubling of 
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precipitation from 1 to 2 mm/day, so a relative change of 2/1. 
In another ensemble member (with a different realization of 
internal variability) precipitation is projected to decrease 
from 2 to 1 mm/day. In this case, there is no systematic 
change between the control and future period, but the ensem-
ble mean response of the relative change gives an artificial 
increase of 25%.

In practice changes are usually much smaller, and the 
effect in the RACMO results is typically in the order of 
0.1–0.2%/°C of the climate change response. For changes 
in rare extremes, however, the effect is larger, up to 0.8%/°C. 
These error estimates and results of alternative, arguably 
better methods to determine the forced response are given 
in the supplement (S2). Here, we stick to the conventional 
approach as this method is commonly used in the analysis 
of multi-model ensembles.

2.4 � Signal‑to‑noise and statistical significance

The signal-to-noise ratio (S/N) expresses the magnitude of 
the forced response (signal) compared to internal variability 
(noise): 

To test statistical significance of the forced response we 
apply the t-test, allowing us to express the test statistic in 
terms of S/N (comparable to Kendon et al. 2008; Deser et al. 
2012b). For the null-hypothesis of no change, H0:ΔR = 0, 
the test statistic (Y) is: 

With �m =
�ΔR

√
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, the standard error of the ensemble mean 

response, this leads to: 

We assume that under the null-hypothesis Y has a t(n − 1) 
distribution. Since precipitation can either increase or 
decrease, we consider a two-sided test, and reject H0 when 
the response is larger or smaller than 95% of the possible 
outcomes under H0, i.e. at the 5% significance level or 
smaller: 
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with tn−1,0.025 the right tail critical value of the distribution. 
For n = 16, tn−1,0.025 = 2.13 and a significant change at the 
5% level1 is indicated by |S/N| > 0.55.

The assumption that Y has a t(n  −  1) distribution 
implies that the sampling distribution of ΔRi, and thus 
�i = ΔRi − ΔR, is normally distributed. Since we use rela-
tive differences, the distribution could be positively skewed, 
meaning that significant changes could be detected too 
early in areas with increasing precipitation and too late in 
areas with decreasing precipitation. In the supplement (S3) 
we show for a selection of grid cells the distribution of �i 
derived from all 30-year periods, which generally is rea-
sonably close to a normal distribution. However, we note 
that there is uncertainty associated with this choice. A non-
parametric test, or empirical bootstrapping to estimate the 
distribution of Y under the null-hypothesis, could be used to 
explore this further.

3 � Forced response

3.1 � Forced response at the end of the century

We first consider the mean response over the 16 ensem-
ble members—our estimate of the forced response due to 
enhanced greenhouse gas concentrations—at the end of the 
century. This period is chosen in order to obtain the largest 
signal, thereby reducing the relative impact of the internal 
variability, i.e. the noise component. We show the spatial 
pattern of the forced response in mean daily precipitation 
(RRmean), annual maximum daily precipitation (RX1day) 
and daily precipitation with a return period of 20 years 
(RX1dT20), for the winter and summer season (Fig. 2).

In winter we find an overall increase in mean and extreme 
precipitation (Fig. 2, top row). The spatial response pattern 
at least partially reflects orographic features like the Central 
Massif, the Alps, the mountain ranges of Great-Britain and 
the Scandinavian Mountains, with generally smaller relative 
increases—and even small decreases for extreme precipita-
tion—at the (north)western flanks of the mountain ranges, 
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Fig. 2   Maps of the forced response in the period 2071–2100 rela-
tive to 1981–2010 for mean daily precipitation (RRmean), annual 
maximum daily precipitation (RX1day) and daily precipitation with 

a return period of 20 years (RX1dT20), in winter (DJF, top row) and 
summer (JJA, bottom row)

1  For |S/N| = 0.45, the change is significant at the 10% level, 0.76 at 
1% level, 0.85 at 0.5% level, 2 < 0.1% level.



4751Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal…

1 3

where precipitation is already relatively high in the reference 
period. This is in agreement with the findings of Gao et al. 
(2006) and Jacob et al. (2014). In absolute terms (mm/day), 
increases are generally higher at the most western flanks of 
the mountain ranges (coasts of Great-Britain and Norway) 
than in the surrounding area. For the Alps however the wind-
ward areas with small or even opposed signal compared to 
the surroundings in relative terms, have a small or opposed 
(obviously) signal in absolute terms as well, especially for 
the extreme precipitation indices. Highest absolute changes 
in extreme precipitation are found in northern Italy, south 
of the Alps. Again considering relative changes (Fig. 2, top 
row), the forced response in mean and extreme precipitation 
display a very similar spatial pattern. However, the 16-mem-
ber mean response in extreme precipitation has an added 
patchiness at the smallest scale, with locally stronger inten-
sification. Whether the latter is a robust feature through time 
or rather an influence of the noise component is examined 
in Sect. 3.3.

In summer, the forced response in mean precipitation 
does not seem to be correlated with the forced response pat-
tern in extreme events (Fig. 2, bottom row). There is a clear 
gradient in the forced response pattern of mean precipita-
tion, with strong relative drying in the south and west of the 
domain (south-western France and United Kingdom), gradu-
ally reducing and turning into moistening in the north–east. 
Exceptions to this drying gradient are the high elevated areas 
along the west-coast of Norway and Scotland and in the 
Alps, where increases in mean precipitation are displayed 
amidst drying in the surroundings, consistent with Giorgi 
et al. (2016). The forced response in summer precipitation 

extremes shows an intensification in the majority of the 
domain. Annual maximum daily precipitation in summer 
decreases in the south and southwest of the domain, where 
mean summer drying is largest, but moderately increases 
elsewhere. A stronger intensification over a larger area is 
seen in the response of daily precipitation intensities with 
a longer return period (20 years in Fig. 2). Whereas the 
forced response in mean summer precipitation has a rather 
smooth spatial pattern with a few small-scale features at high 
elevated areas, the response pattern of extreme precipita-
tion is far more patchy, especially for the longer return peri-
ods. This suggests that in the 16-member mean response of 
extreme precipitation in summer, the noise is not ‘filtered 
out’ completely.

To further examine how the forced response in mean and 
extreme daily precipitation relate to each other, we employ 
a spatial pooling approach over the entire land domain, 
where a spatial probability distribution function (pdf) is con-
structed from the response per grid cell. In Fig. 3 we plot 
the pdf of the response in the indices shown in Fig. 2 and 
add the pdf for precipitation with a return period of 10 years 
(RX1dT10). In winter, as to be expected from the spatial 
pattern, the pdfs of the forced response in mean and extreme 
precipitation almost completely overlap, with roughly equal 
median values. The right tail however is slightly increas-
ing for more extreme precipitation (the patches with higher 
intensification for RX1day and RX1dT20 in Fig. 2), indi-
cating that higher intensity events increase more strongly 
and in a larger part of the domain. In summer, the pdf of 
mean precipitation change is bimodal. This indicates that 
there is a rather narrow transition zone between two regimes 
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Fig. 3   Spatial probability distribution of the forced response in the 
period 2071–2100 relative to 1981–2010, over all land points in 
the domain, in a winter and b summer. Shown are the pdf of mean 
(RRmean, black) and extreme daily precipitation [RX1day (green), 

RX1dT10 (blue) and RX1dT20 (red)]. The spatial median of the 
forced response is indicated in the right corner (number), and by the 
dashed vertical lines in the plots
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of climate change response. Despite the decrease in mean 
precipitation, the extremes show a clear increase in most of 
the region, which is strongest for the 20-year return value. 
Furthermore, the spatial variability of the ensemble mean 
response also increases for longer return periods, as shown 
by the broadening of the distribution.

3.2 � Aggregated response as function of global warming

Having determined the forced response at the end of the cen-
tury, we now examine how the forced response in mean and 
extreme precipitation evolves within the twenty-first century.

We plot the forced response as a function of the mean 
global near-surface temperature rise in the driving EC-
EARTH simulations (instead of time), in order to examine 
whether linear scaling of the response applies [the underly-
ing assumption in pattern scaling, see Mitchell (2003) and 
Tebaldi and Arblaster (2014)]. Moreover, the agreement in 
the response magnitude among different models is larger 
when the response is considered at a fixed level of global 
warming instead of at a fixed period in time (Fischer et al. 
2014; Vautard et al. 2014), which makes our results bet-
ter comparable with other model ensembles. Lastly, it links 
regional climate change to global mean temperature rise for 
which climate mitigation targets are set (Vautard et al. 2014; 
Seneviratne et al. 2016).

We consider the forced response in the 30-year periods 
starting every 10 years between 2011 (the first non-overlap-
ping period with the reference period) and 2071, coinciding 
with a mean global warming in the EC-EARTH simulation 
ranging between 0.8 and 3.4 °C compared to the reference 
period. We consider the forced response aggregated over all 
land pixels in the domain, and plot the median and standard 
deviation of the pdf as function of global warming (Fig. 4). 
The forced responses of all precipitation indices—in spatial 
aggregate—scale roughly linearly with global warming for 
a global temperature rise larger than around 1.3 °C. In win-
ter, mean and extreme precipitation intensify with approxi-
mately the same rate (as in Fig. 3a) with a median increase 
of 4.2–5.0% °C−1 (Fig. 4a). The shading around the median 
of the pdf of mean (grey) and 20-year precipitation extremes 
(red) marks the response between the 5% lowest and highest 
pixels in the domain. The spatial variability clearly increases 
with global warming. If the spatial variability would origi-
nate solely from a structural spatial pattern in the forced 
response, i.e. the pattern is constant through time and pre-
cipitation in every pixel scales linearly with global warming, 
the spatial variability is expected to increase linearly as well. 
For mean winter precipitation this is indeed the case, see 
Fig. 4 (y-axis on the right-hand side), where we plotted the 
spatial variability (2 times the standard deviation) as func-
tion of global warming. For precipitation extremes we see 
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Fig. 4   Evolution of the forced response with global mean tem-
perature rise for a winter and b summer. On the left y-axis (dashed 
lines), the spatial median of the pdf of the forced response in mean 
(RRmean, black) and extreme precipitation [RX1day (green), 
RX1dT10 (blue) and RX1dT20 (red)] are shown. The shading around 

the median marks the response between the 5th and 95th percentiles 
of the spatial distribution (so the spatial spread) for RRmean (black) 
and RX1dT20 (red). On the right y-axis (dotted lines) the spatial 
spread is shown as well, but for all indices and expressed as two times 
the standard deviation (std)
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a relatively large increase between the reference period and 
the first independent 30-year period (ΔTglob = 0.8 °C), after 
which the increase in spatial variability continues linearly at 
a smaller rate. This indicates the presence of a noise compo-
nent in the ensemble mean response.

The decrease of the spatially aggregated response in 
mean summer precipitation starts off gently for low lev-
els of global warming (Fig. 4b). After global warming 
reaches about 1.3 °C the decrease continues linearly at a 
rate of −4.8% °C−1. The intensification of summer extremes 
depends on the return period, and ranges for the spatial 
median between 1.9% °C−1 for RX1day to 4.9% °C−1 for 
RX1dT20. Note that there is a part of the domain in which 
the ensemble mean response in extreme precipitation is neg-
ative (see the red shading reaching out to lower than zero for 
RX1dT20 in Fig. 4b). The area with decreasing precipitation 
extremes is larger for less extreme events (relatively large 
area in the southern part of the domain for RX1day; a much 
smaller area with decreasing RX1dT20, recall Fig. 3b). In 
contrast to winter, the spatial variability of the ensemble 
mean response in mean summer precipitation increases 
faster than for precipitation extremes. This relatively large 
increase can be related to the expansion and strengthening 
of the drying gradient over the domain with global warming, 
see Sect. 3.3. The ensemble mean response in precipitation 
extremes seems to be affected by a noise component (as in 
winter), given the non-linear increase of the spatial variabil-
ity of the ensemble mean response in precipitation extremes.

3.3 � Robustness of the response pattern through time

In the following we assess the robustness of the forced 
response pattern through time, i.e. we test whether pat-
tern scaling is valid (Mitchell 2003; Tebaldi and Arblaster 
2014) and whether the spatial features we find in the forced 
response at the end of the century are actual features of the 
forced response or originate from internal variability (which 
is random ‘noise’, i.e. not robust through time).

We first consider the spatial response pattern in mean and 
20-year extreme precipitation for the three independent peri-
ods 2011–2040, 2041–2070, and 2071–2100. The response 
is normalized by the global mean temperature rise to be able 
to compare the results for the different time periods. We also 
consider the estimate of the response based on all model 
years (1981–2100) determined by linear regression (lin.reg.) 
or a non-stationary GEV fit (GEV μ, σ ~ Tglob), with global 
mean temperature as dependent variable, respectively covar-
iate (Fig. 5). When linear scaling of the forced response with 
global mean temperature rise is valid, this yields a more 
robust estimate of the forced response.

For mean precipitation the main features of the forced 
response pattern (overall moistening in winter, drying gra-
dient in summer) are present in all periods (Fig. 5, top 

row), and the pattern similarity between the response at 
the end and in the middle of the century is particularly 
high. In winter, early in the century, the intensification of 
mean precipitation is generally larger per degree global 
warming (up to 15% °C−1 locally) than in later periods 
(up to 10% °C−1), but the geographic pattern with rela-
tively small responses along the northwest oriented moun-
tain ranges, emerging more clearly in the middle of the 
century, is already visible. Although we cannot exclude 
that the ensemble mean still contains a noise component 
causing this larger intensification in the first period, the 
initial larger increase in precipitation could be related 
to a stronger local warming and corresponding stronger 
humidity increase per degree global warming in the same 
period (Lenderink and Attema 2015). The response deter-
mined by linear regression (Fig. 5, right column) is almost 
indistinguishable from the response determined from the 
30-year period at the end of the century, despite the initial 
faster increase in precipitation.

In summer, while in later periods almost everywhere 
in Western Europe summer drying is projected, the forced 
response early in the century displays an increase in mean 
precipitation in a relatively large part of the domain (east-
ern Germany and further to the north–east). Moreover, the 
projected drying in the south of the domain is not as strong 
as in later periods, and the spatial pattern of the response is 
slightly more patchy. The gradual expansion of the drying 
area suggests a non-linear response in mean summer precipi-
tation. The projected summer drying over Western Europe is 
associated with a change in atmospheric circulation (to dom-
inant easterly winds), governed by higher pressures over the 
British Isles (Lenderink et al. 2014; Haarsma et al. 2015). 
This is a feature of the CMIP5 ensemble, and is reproduced 
by the EC-EARTH ensemble. The development of the anom-
alous high pressures has been explained by changes in the 
Hadley cell circulation (CMIP5, Lau and Kim 2015) and a 
weakening of the Atlantic meridional overturning circulation 
(AMOC) (CMIP5, EC-EARTH, Haarsma et al. 2015). Under 
RCP8.5, CMIP5 models project a continuous weakening 
of the AMOC throughout the twenty-first century (Cheng 
et al. 2013), which might explain the gradual expansion of 
summer drying over time (global warming). Additionally, 
due to summer soil drying, a large-scale Mediterranean 
heat low develops (CMIP3 models, EC-EARTH), enhanc-
ing the easterly winds and thus summer drying over Europe 
(Haarsma et al. 2009). Despite the non-linearity according to 
the 30-year period differences, the forced response estimate 
determined by linear regression over the entire simulation 
period is again almost equal to the forced response based 
on the 30-year period difference at the end of the century.

For extreme precipitation, in both winter and summer, 
the response pattern early in the century is characterized 
by a much larger spatial heterogeneity (larger patchiness) 
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than in the two later periods, with regions exhibiting larger 
increases (>15% °C−1) as well as decreases in precipitation 
(<−12.5% °C−1). This patchiness is a clear manifestation of 
the larger role of internal variability early in the century. In 
winter, the pattern similarity in the forced response increases 

in later periods. In summer, at the larger scale, there seems 
to appear a pattern with decreasing precipitation extremes 
south of the Massif Central and the Alps and increasing pre-
cipitation elsewhere, but at the pixel scale, for the time hori-
zon applied here, small-scale features are not robust through 

Fig. 5   Maps of the forced response per degree global warming for 
RRmean (top two rows) and RX1dT20 (bottom two rows) in winter 
and summer. The first three columns show the estimates for the peri-
ods 2011–2040, 2041–2070 and 2071–2100, based on the 30-year 
time slices. The last column shows the estimates based on precipita-

tion in the full period 1981–2100, determined by linear regression of 
mean precipitation on global mean temperature (lin.reg); by a GEV fit 
with global temperature as covariate and non-stationary location (μ) 
and scale (σ) parameter for RX1dT20 (GEV μ, σ ~ Tglob)
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time. The GEV fit on all members and years with global 
temperature as covariate gives a response in RX1dT20 with 
a smaller patchiness and smaller positive relative changes 
(in the right tail of the distribution) than the ensemble mean 
response based on a stationary fit in the 30-year periods 
per ensemble member. In summer, the absolute differ-
ence between the two estimates of the forced response in 
RX1dT20 is in the order of 1.7% °C−1 (see Table S2.1). This 
difference is partly related to the use of the 60 additional 
years and the linear scaling of μ and σ with mean global tem-
perature [both methods yield a reasonably small uncertainty 
(Fig. S2.3)]. Partly, however, it is caused by taking the arith-
metic ensemble mean of relative changes in precipitation, 
as introduced in Sect. 2.3 and elaborated on in supplemen-
tary material S2. The spurious increase due to the averag-
ing method is very small for RRmean and RX1day (spatial 
median of the absolute increase <0.1–0.2% °C−1, hardly 
visible in Figs. 5 and S2.1–2), but is larger when internal 
variability and relative changes are larger. For RX1dT20 
in summer the spurious increase is around 0.8% °C−1. The 
results based on the conventional method (Eq. 8) hold for all 
methods, but the magnitude of the response in precipitation 
extremes may deviate.

To quantify the pattern similarity of the forced response 
estimates in different time periods we calculate a simple 
pattern correlation (Pearson) between the ensemble mean 
response determined at the end of the century (‘best’ 
estimate of the forced response) and the ensemble mean 
response in earlier periods. Again, the 30-year periods start-
ing every 10 years between 2011 and 2071 are considered. 

Note that the time slices partially overlap and that only one-
third of the points shows fully independent results. In Fig. 6a 
the pattern similarity, expressed as the correlation coefficient 
(⍴), is plotted as a function of global temperature rise. The 
pattern similarity between the forced response at the end of 
the century and in earlier periods is relatively low early in 
the century, and increases for higher levels of global warm-
ing (⍴ = 0.41–0.92 early in the century, 0.58–0.98 in the mid-
dle of the century).

Whereas mean precipitation is more robust through time 
in summer (ρ = 0.92–0.98, early to middle of the century) 
than in winter (ρ = 0.72–0.90), this is the other way around 
for extreme precipitation. In winter, the spatial response pat-
tern is fairly robust from the middle of the century onwards 
for all extreme indices, with a spatial correlation between 
the forced response at the end and in the middle of the 
century ranging between 0.83 for annual maximum daily 
precipitation and 0.69 for precipitation with a return period 
of 20 years. In summer this is 0.81, respectively 0.58. The 
response pattern in extreme summer precipitation with a 
longer return period therefore is not considered to be robust 
across time at the resolved resolution. We associate the lack 
of a robust response pattern with a high relative impact of 
internal variability (see also e.g. Mitchell 2003; Tebaldi and 
Arblaster 2014). This suggests that, at the grid-cell scale, 
the forced response in extreme summer precipitation has, 
at the end of the century, not emerged yet from internal 
variability. This is likely linked to the local character and 
unpredictable behavior of convective extreme precipitation, 
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Fig. 6   a Spatial correlation of the forced response at the end of 
the century and the forced response in earlier periods, in winter 
(crosses) and in summer (triangles) as function of global warming, 
for RRmean, RX1day and RX1dT20. b Spatial correlation between 

the ensemble mean response in mean precipitation and precipita-
tion extremes (RX1day, RX1dT10, RX1dT20) as function of global 
warming
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which contributes importantly to the precipitation extremes 
in summer, even in daily sums.

In the first part of this section we shortly discussed 
the high degree of similarity in the spatial response pat-
tern between mean and extreme precipitation in winter. In 
Fig. 6b we plot the spatial correlation between the ensemble 
mean change in RRmean and the three extreme precipita-
tion indices in winter and summer, as function of global 
warming. Not surprisingly, the spatial correlation between 
the ensemble mean change in mean and extreme precipita-
tion is much higher in winter (up to ρ = 0.82 respectively 
0.61 for RX1day and RX1T20 at the end of the century) 
than in summer (ρ = 0.64, respectively 0.23), and is lower 
for more extreme precipitation indices. For lower levels of 
global warming, the spatial correlation is lower. This indi-
cates that the similarity in the spatial pattern of change in 
mean and extreme precipitation, which we see mainly in 
winter, is a feature of the forced climate response.

4 � Emergence from internal variability

4.1 � Internal variability

To illustrate the character and large role internal variabil-
ity may play for different indices, we give two examples 
of the projected change in individual ensemble members. 
Figure 7 shows the total response in mean precipitation in 
winter in 2041–2070 according to two ensemble members 
with completely opposing spatial patterns. One member (15) 
projects strong drying south of the Alps and moistening in 
west-central Europe, whereas another member (13) projects 
strong moistening south of the Alps and drying in west-
central Europe, and the ensemble mean response shows an 
overall moistening (Fig. 7c). Findings of Kjellström et al. 
(2013) and Deser et al. (2016) suggest that the opposite 
patterns in the individual members as shown here origi-
nate from internal variability in the large scale atmospheric 
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circulation, associated with the North Atlantic Oscillation. 
For comparison, Fig. S5.1 shows the same information, but 
now for the driving EC-EARTH simulations. The contrast-
ing large-scale pattern between the two members (13 and 15) 
is similar to the RACMO output, but the contrast is smaller 
(smaller increases in member 15, smaller/no decreases in 
member 13) and of course lacks spatial detail.

In a second example we show the change in extreme sum-
mer precipitation (RX1dT20) (Fig. 8), illustrative for the 
character of internal variability in (smaller-scale) precipi-
tation extremes. The individual realizations show a highly 
patchy pattern, with locally considerable increases as well 
as decreases in high intensity precipitation, in the order of 
±45% with respect to the reference period, whereas the 
ensemble mean response is a general increase in the order 
of 15% (Fig. 8c). In addition to large-scale variability, an 
additional spatial heterogeneity, related to the small spatial 
scale of (convective) extreme events in summer, can be dis-
tinguished. When larger spatial scales are considered, part of 
this small-scale internal variability averages out [the locally 
strong intensification ‘seen’ in the individual realizations can 

manifest itself everywhere, but not everywhere at the same 
time (Fischer et al. 2013)]. Again there is some similarity 
between the RACMO results and the driving EC-EARTH 
results (members 5 and 15), yet due to the patchiness of the 
results at spatial scales close to the grid-scale this similarity 
is difficult to assess (see Fig. S5.1).

Next we consider the internal variability separately from 
the forced response, expressed as the standard deviation 
across the ensemble. Opposed to what is shown by the indi-
vidual ensemble members in Figs. 7 and 8, Fig. 9 gives an 
estimate of the spread that can be expected at a grid-cell 
basis. The spread in the ensemble is fairly constant through 
time (not shown), and we consider the internal variability at 
the end of the century only (Fig. 9).

The internal variability in mean winter precipitation has 
a clear spatial pattern, with relatively low values (5–10%) in 
the majority of the domain and higher values (15–30%) at 
the south-eastern flanks of the Alps, in the Po basin and in 
small areas along the south-west oriented coasts of Norway 
and Sweden (Fig. 9a). This captures to a large extent the dif-
ference between the two ensemble members in Fig. 7. For 
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Fig. 9   Internal variability (N) in mean and extreme precipitation 
in winter (top row) and summer (bottom row) for the period 2071–
2100 relative to 1981–2010. The maps show the internal variability 
in RRmean (left column) and RX1dT20 (middle). The right column 

shows the spatial distribution function of RRmean (black), RX1day 
(green), RX1dT10 (blue) and RX1dT20 (red), with the spatial median 
indicated by the dashed lines and in the upper right corner
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precipitation extremes the internal variability is larger and 
spatially more heterogeneous (Fig. 9b), reflecting the higher 
spatial variability associated with extreme events. To exam-
ine how the magnitude and spatial variability in the internal 
variability vary with the precipitation index, we consider 
the internal variability in spatial aggregate, in similar fash-
ion as we did for the forced response in Fig. 3. Clearly, the 
longer the return period, the larger the internal variability of 
the associated precipitation event (domain median ranging 
between 11% for RX1day and 19% for RX1dT20), and the 
higher the spatial heterogeneity (Fig. 9c).

In summer, internal variability of mean precipitation is 
distributed more evenly over the domain than in winter, 
with values around 6% over the majority of the domain, but 
higher internal variability in the south of Sweden (around 
10%) (Fig. 9d). Also in summer the internal variability of 
precipitation extremes is larger than in mean precipitation 
with a domain median ranging between 12 and 26% for 
RX1day and RX1dT20 respectively (Fig. 9e, f). Note that 
the internal variability of summer extremes is larger and 
features a smaller-scale patchiness than in winter.

4.2 � Signal‑to‑noise at the end of the century

The signal-to-noise ratio provides information on the relative 
importance of the forced response over internal variability 
(one standard deviation across the ensemble) and on the 
significance of the projected change. Given our 16-member 
ensemble, for |S/N| ≥0.55 the null-hypothesis of no system-
atic change is rejected at the 5% significance level, based 
on a two sided t-test. In other words, for |S/N| ≥0.55, the 
forced response has statistically emerged from the noise due 
to internal variability and we have confidence in the direc-
tion of the change.

In Fig. 10 we show the S/N in mean and extreme precip-
itation at the end of the century. The grey shading marks 
the area where the projected change is non-significant at 
the 5% level. In winter, S/N is relatively large for mean 
precipitation (S/N >2.3 in 50%, >0.55 in 99% of the land 
area, Fig. 10a). Non-significant changes are found where 
the forced response is relatively weak (in the Alps and the 
Scandinavian Mountains), which is not per se where the 
internal variability is high. As we have seen, the forced 
response in extreme precipitation scales with mean pre-
cipitation, but the internal variability is much larger for 
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Fig. 10   As Fig. 9 but for the signal-to-noise ratio. The grey shading marks the area where the change is non-significant at the 5% level
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precipitation events with longer return periods. The S/N in 
extreme precipitation therefore is smaller for more extreme 
events (spatial median S/N ranges between 1.8 (RX1day) 
and 1.0 (RX1dT20), Fig. 10b, c). The land area where 
changes are non-significant is larger for more extreme 
events, and is located where the forced response in mean 
precipitation is weak as well (Alps and Scandinavian 
Mountains, Fig. 10b). Note that while the forced response 
features decreases in precipitation in a small fraction of 
the domain (Fig. 5b), only positive changes in mean and 
extreme precipitation are found to be significantly different 
from zero (Fig. 10c).

In summer, the spatial pattern in S/N for mean precipi-
tation follows the pattern of the forced response as a result 
of the spatially uniform internal variability (Fig. 10d). 
Non-significant changes are found in the north-eastern 
part of the domain in the transition zone of decreasing 
and increasing precipitation. Significant changes are pre-
dominantly negative (median S/N <−2.5), but small areas 
in the Alps, Scottish Highlands and Scandinavian Moun-
tains feature significant increases in precipitation (S/N up 
to 2). Owing to the large internal variability, the S/N in 
summer precipitation extremes is rarely larger than 1.0 
(median S/N ~0.6 for all extreme indices). Non-significant 
changes are found south of the Alps and in western France 

and in smaller areas scattered over the domain, without 
clear spatial structure (Fig. 10e). Since in summer both 
the internal variability and the intensification of extremes 
increase for more extreme precipitation, the S/N is simi-
lar for all extreme indices (Fig. 10f). The median S/N is 
equal, but the tail of the pdf is slightly fatter for shorter 
return periods.

4.3 � Emergence of the forced climate response

Next we look at the development of S/N throughout the 
twenty-first century as function of global temperature rise, 
i.e. at the emergence of the forced climate response. In the 
reference period (1981–2010), the global temperature rise 
since ‘pre-industrial’ times (1861–1890) is 0.9 °C in the EC-
EARTH ensemble. Note that we consider climate change—
and thus emergence—with respect to this reference period, 
when anthropogenic changes in other variables may have 
already occurred as well, at least at global scales (e.g. King 
et al. 2015; Fischer and Knutti 2015).

Following the S/N and the fraction of the land experienc-
ing significant changes throughout the twenty-first century 
(Fig. 11) we see an earlier emergence of the forced response 
in winter than in summer and in mean than in extreme pre-
cipitation, when aggregated over the entire domain. Locally 
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Fig. 11   Evolution of S/N (left y-axis, dashed lines) and fraction of 
the land experiencing significant changes in mean and extreme pre-
cipitation (right y-axis, dotted lines) with global temperature rise 
in winter (a) and summer (b). For S/N the crosses mark the spa-
tial median for mean (RRmean, black) and extreme precipitation 

[RX1day (green), RX1dT10 (blue) and RX1dT20 (red)]; the shading 
around the median indicates S/N between the 5th and 95th percentiles 
of the spatial distribution of the response for RRmean (black) and 
RX1dT20 (red). The light grey band around the x-axis indicates |S/
N| <0.55
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this may be different though. In Figs. S4.1 and S4.2 we 
show the maps of S/N for the three independent periods 
2011–2040, 2041–2070 and 2071–2100, which for example 
show that south of the Alps, in part of the Po basin, emer-
gence is earliest in heavy winter precipitation (RX1day), 
followed by mean precipitation in summer and winter.

In winter, in the entire domain, early in the century 
already 89% of the land experiences significant changes in 
mean precipitation, reaching 99% at the end of the century 
(Fig. 11a). Non-significant changes early in the century 
are found south of the Alps and Massif Central and in the 
Scottish Highlands and Scandinavian Mountains, i.e. in the 
same locations as in later periods but covering larger areas 
(Figs. 10a, S4.1). For precipitation extremes the domain 
median S/N increases almost linearly with global warm-
ing (Fig. 11a). At the beginning of the century the forced 
response in RX1day is significant in more than 64% of the 
land area. The signal in precipitation events with longer 
return periods emerges later, at higher levels of global warm-
ing. For RX1dT20 the spatial median S/N reaches values 
above 0.55 around the middle of the century, when the 
global temperature rise exceeds 1.5 °C.

In summer, due to the weaker signal in a large part of 
the domain, the S/N is smaller and significant changes 
are found in only 26% of the domain early in the century, 
which gradually increases to 83% at the end of the century. 
Emergence is earliest for projected decreases in mean sum-
mer precipitation in the south-western part of the domain 
[France, south England (Fig. S4.2)] and for increases at the 
western flanks of the Scandinavian Mountains and Scottish 
Highlands and a few areas in the Alps. For higher levels of 
global warming the signal of decreasing precipitation gradu-
ally emerges from southwest to northeast. In the northeast 
of the domain, where increases in precipitation in earlier 
periods turn into decreases in later periods (recall Fig. 5), 
the signal does not emerge from internal variability within 
the simulation period. For summer extremes, S/N and the 
increase in S/N are relatively small for all extreme indices. 
Early in the century, the forced response is significant in less 
than 10% of the domain, and only after a global warming of 
approximately 2.5 °C is reached there is significant change 
in more than half of the land domain (RX1day to RX1dT20). 
Recall from Fig. 10f that, while the spatial median S/N is 
approximately equal for all extreme indices, the tail of the 
pdf is fatter for precipitation with shorter return periods, 
suggesting earlier emergence of changes in RX1day than 
in more extreme precipitation. While early in the twenty-
first century the fraction of the land experiencing significant 
changes is indeed (slightly) larger for RX1day than for the 
more extreme precipitation indices, in later periods this is 
not the case anymore (Fig. 11b). However, where the signal 
has emerged, S/N is generally larger for RX1day than for 
RX1dT10 and RX1dT20, see Fig. S4.2.

5 � Information in single ensemble members

We have seen that, while the forced response significantly 
emerges from internal variability over the course of the 
twenty-first century for all indices but extreme summer pre-
cipitation, the internal variability may cause single simula-
tions to deviate largely from the forced response (Figs. 7, 8). 
When the forced response of a certain precipitation index 
starts to dominate over the internal variability, the response 
pattern in the individual simulations is expected to more 
closely resemble the pattern in the forced response. The pat-
tern similarity between individual members is consequently 
expected to increase for higher levels of global warming and 
associated higher S/N as well (Fischer et al. 2014). We have 
calculated the pattern similarity between the forced response 
at the end of the century and the precipitation change in all 
individual ensemble members for different levels of global 
warming using a simple pattern correlation (Fig. 12a). It 
shows the amount of information on the forced response 
pattern that can be obtained if only a single simulation (per 
model) is available.

For low levels of global warming the pattern similarity is 
limited for all indices, but indeed increases for higher levels 
of global warming and associated higher S/N. Moreover, 
pattern similarity is larger for mean than for extreme pre-
cipitation, again consistent with the associated larger S/N. 
However, given that aggregated over the land domain, the 
S/N until late in the twenty-first century is smaller for mean 
precipitation in summer than in winter (see Fig. 11), the 
pattern similarity in mean summer precipitation is surpris-
ingly high for all levels of global warming (ρ = 0.47 early in 
the century to 0.89 at the end of the century). Apparently, 
although the spread in the response still exceeds the ampli-
tude in a large part of the domain (|S/N| <2) until late in the 
century, the location of the transition zone between decreas-
ing precipitation in the south and increasing precipitation in 
the north–east is a consistent feature in the individual simu-
lations. Also for extremes, based on S/N one would expect 
a larger difference between the pattern similarity in winter 
and summer, especially in RX1day. Yet, also for summer 
extremes there is consistency in the location of the transition 
zone south in the domain (Fig. 2e) in the individual mem-
bers. While the inter-annual variability in mean summer pre-
cipitation in the current climate is captured rather well (S1), 
the inter-member spread in the pressure response in EC-
EARTH (related to decreasing precipitation over Europe, see 
Sect. 3.3) does not span the full CMIP5 range (Lenderink 
et al. 2014). The rather robust response in summer precipi-
tation may therefore be a feature of EC-EARTH, and the 
inter-member pattern similarity in the summer precipitation 
response may be smaller (or larger) in other initial-condition 
RCM-GCM ensembles.
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Overall, even for high levels of global warming we find 
that individual members provide limited information on the 
forced response in extreme precipitation in winter (ρ = 0.50 
and 0.35 for RX1day and RX1dT20 respectively, for a global 
warming of 3.4 °C at the end of the century) and summer 
(ρ = 0.49 and 0.32). For mean precipitation the pattern simi-
larity is reasonable in winter (ρ = 0.56) and unexpectedly 
high in summer (ρ = 0.89). This illustrates that, when one is 
interested in determining the forced climate response pattern 
given a certain model and forcing scenario, an ensemble of 
simulations is required, just to ‘filter out’ internal variability. 
While in our ensemble the response pattern in mean summer 
precipitation is rather insensitive to internal variability, this 
does not necessarily apply for other driving GCMs as well, 
as discussed above.

Additionally, we plot the mean pattern similarity between 
all combinations of ensemble members (Fig. 12b). This can 
be seen as the ‘predictability’ of the real climate (forced 
response + internal variability) for a given single simula-
tion in a perfect model world. It is also the upper limit of 
the pattern similarity that can be found between members 
of a multi-model ensemble (see also Tebaldi and Arblaster 
2014). For high levels of global warming (end century), the 
pattern similarity for mean summer precipitation is still rela-
tively large (ρ = 0.77), but for all other indices, including 
mean winter precipitation, internal variability results in a 
poor agreement on the pattern (ρ < 0.30).

To reduce the influence of internal variability and 
maximize the information in individual simulations we 

apply a linear regression of precipitation on global mean 
temperature over the full period (1981–2100), following 
Fischer et al. (2014). Under the assumption that the pre-
cipitation response scales linearly with global warming, 
linear regression over a longer simulation period more effi-
ciently ‘filters’ internal variability than using time slices 
to determine the response. Fischer et al. (2014) show for 
the global domain and resolution of GCMs that the regres-
sion method results in a larger agreement in magnitude 
and pattern of (extreme) precipitation response estimates 
according to individual ensemble members compared to 
the time slices method. Here we examine whether this 
is the case for the high-resolution response in Western 
Europe as well.

For mean and annual maximum daily precipitation we 
perform per member a linear regression on global mean 
temperature from the driving EC-Earth member. For pre-
cipitation extremes with longer return periods we fit a non-
stationary GEV distribution to the period 1981–2100 (see 
Methods). Recall (Fig. 5) that the forced response estimate 
based on linear regression is rather similar to the estimate 
of the forced response based on the 30-year time slices for 
the period 2071–2100 for mean and annual maximum pre-
cipitation in winter and summer. For extremes with longer 
return periods and associated higher internal variability, 
differences between the two methods are larger. The mean 
pattern similarity in the response in individual realiza-
tions based on linear regression (non-stationary GEV fit) is 
shown in Fig. 12a, b (LR). For RRmean and RX1day there 
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the estimates of the response in individual ensembles members based 
on linear regression (RRmean and RX1day) and a non-stationary 
GEV fit (RX1dT20)
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is only a slight improvement in the agreement between the 
forced response and an individual simulation (Fig. 12a) and 
between two individual simulations (Fig. 12b) when using 
linear regression. For RX1dT20 a considerable amount of 
internal variability is filtered out, with individual simula-
tions more closely resembling the forced response (and thus 
each other) than for the time slices method for the period 
2071–2100. However, pattern correlations for RX1dT20 do 
not exceed 0.45 (Fig. 12a), respectively 0.20 (Fig. 12b) in 
both winter and summer and the information contained in 
individual simulations on the structural response pattern in 
precipitation extremes remains rather poor.

6 � Discussion and conclusions

We have for the first time presented results of the analysis 
of a large single model RCM-GCM ensemble over West-
ern Europe including the Alps for the period 1981–2100 at 
a resolution (0.11°) relevant for impact studies. This sin-
gle-model ensemble has been investigated in terms of the 
ensemble mean response in mean and extreme daily precipi-
tation in winter and summer (i.e. the estimate for the forced 
response or climate change signal), as well as the difference 
between the ensemble members, which measures internal 
variability (noise).

6.1 � Robust small‑scale geographical features

We find robust (small-scale) geographical features in the 
forced response of mean and annual maximum daily precipi-
tation in winter and summer, partially reflecting the orogra-
phy in the domain. In winter this also applies for more rare 
events (return periods up to 20 years), the pattern of which 
is highly correlated with the forced response in mean pre-
cipitation. In summer however, we find significant changes 
in a large part of the domain, but the internal variability 
of small-scale precipitation extremes is too large to find a 
robust pattern in the forced response through time. There 
does seem to appear a larger-scale pattern with a structural 
intensification of extreme summer precipitation over most 
of Western Europe and decreasing precipitation in northern 
Italy and southern France, but longer simulation periods or 
an even larger ensemble should confirm this.

6.2 � Winter extremes scale with mean precipitation, 
summer extremes intensify more strongly 
for longer return periods

In winter, mean and extreme precipitation increase with the 
same rate of change with global warming, and the scaling is 
fairly constant throughout the century (linear scaling from 

the middle of the century onwards). In summer, mean pre-
cipitation not only gradually decreases with global warm-
ing, but the drying area seems to expand to the northeast as 
well. This indicates a non-linear response to global warming. 
Heavy summer precipitation generally intensifies and the 
spatial median scales linearly with global warming. The area 
with intensifying summer extremes and the rate of intensi-
fication is larger for precipitation events with longer return 
periods. This confirms that pattern scaling with global mean 
temperature (Mitchell 2003; Tebaldi and Arblaster 2014) is 
applicable for the high resolution spatial pattern of mean 
and extreme winter precipitation for the RCP8.5 emission 
scenario [for scenarios with strong mitigation, pattern scal-
ing might not be as efficient (Tebaldi and Arblaster 2014)]. 
For mean summer precipitation the response pattern does 
not scale linearly over the full range of global temperature 
rise, and for summer extremes pattern scaling could not be 
confirmed due to the high noise component.

6.3 � Earlier emergence in winter than in summer

In most of Western Europe, the local-scale forced response 
in mean and extreme precipitation emerges earlier from 
internal variability in winter than in summer, except for the 
southern and southwestern part of the domain (incl. south-
ern England) where the signal of decreasing precipitation is 
strong. For extreme precipitation the difference in time of 
emergence is primarily caused by differences in the inter-
nal variability, which is much larger for extreme events in 
summer—generally convective events—than for extreme 
precipitation in winter associated with larger-scale systems. 
Moreover, the signal is weaker for moderately extreme 
events in summer than in winter.

Emergence occurs earlier for mean precipitation than for 
precipitation extremes and, in winter, earlier for extremes 
with shorter return periods. Our results are in qualitative 
terms in agreement with Kendon et al. (2008), who ana-
lyzed changes in precipitation over Europe in terms of S/N 
as well. Also in studies using GCMs, at the grid-cell scale, 
this behavior of earlier emergence in mean than in extreme 
precipitation is found (King et al. 2015), but when aggre-
gated over larger areas, extreme precipitation emerges earlier 
from the noise than mean precipitation. This is explained 
by the relatively strong reduction of internal variability in 
spatially aggregated precipitation extremes and, globally, a 
larger fraction of the domain with increasing precipitation 
extremes than increasing mean precipitation (Fischer and 
Knutti 2014; Fischer et al. 2014; King et al. 2015). Whether 
the effect of aggregation on emergence of extremes is as 
large for the domain and resolution of the RACMO-EC-
EARTH ensemble should be subject to further study.
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6.4 � Individual members are poor predictors 
for the forced response in precipitation extremes

Individual simulations provide rather limited information 
on the local-scale forced response pattern in precipitation 
extremes in winter and summer, even for high levels of 
global warming, owing to the relatively large internal vari-
ability. While individual simulations to some extent agree 
on the response pattern in mean winter precipitation, they 
show a higher level of agreement on the response pattern in 
mean summer precipitation. Despite a relatively low S/N in 
mean summer precipitation, the location of the transition 
zone between decreasing precipitation in the southwest and 
increasing precipitation in the northeast is, at least in this 
ensemble, rather robust. For all other precipitation indices, 
individual simulations (in single-model ensembles, but like-
wise in multi-model ensembles) cannot be expected to agree 
on the response pattern.

6.5 � Implications

The results imply that climate change (impact) studies based 
on small (single or multi-model) ensembles are, in general, 
of little value. Although they provide insight in a small range 
of possible futures, the climate change signal, important 
for risk assessments, cannot be determined reliably. There 
seems to be a tendency in (hydrological) climate change 
impact studies to use larger multi-model ensembles of cli-
mate simulations as input (e.g. Dankers and Feyen 2009; 
Madsen et al. 2014; Alfieri et al. 2015), which is encouraged, 
although to find a statistically significant signal, the use of 
(multiple) single-model initial-condition ensembles may be 
preferable.

For the interpretation of high-resolution information in 
multi-model ensembles our results imply that the individual 
simulations should not be expected to show similar patterns 
in precipitation changes until late in the twenty-first century 
apart from mean summer precipitation. If we would like to 
determine and compare the forced climate response accord-
ing to different models, the production of a larger number of 
single-model ensembles is a prerequisite, as already stated 
by e.g. Deser et al. (2012b) and Fischer et al. (2014) for 
GCMs; by Giorgi and Bi (2000) and Kendon et al. (2008) for 
RCMs, providing high-resolution information on the forced 
response.

Jacob et al. (2014) show the ensemble mean response of a 
subset of the 0.11° EURO-CORDEX ensemble forced with 
the same emission scenario as our ensemble. Interestingly, 
the spatial pattern in this ensemble is—by visual inspec-
tion—highly similar to the ensemble mean response of the 
RACMO-EC-EARTH ensemble for mean as well as heavy 
precipitation in winter and summer. The highest-resolution 
features (grid-cell scale) cannot be compared by visual 

inspection, but the general agreement in the response pattern 
suggests that much of the inter-model spread in the EURO-
CORDEX ensemble originates from internal variability and 
that the underlying forced response agrees reasonably well 
across different GCMs (and RCMs).

7 � Limitations and outlook

As discussed in the supplementary material, the conven-
tional method of averaging relative changes arithmeti-
cally across members to determine the ensemble mean 
response in precipitation introduces a spurious positive 
bias in the response estimate. Using geometric means or 
arithmetic averaging over absolute changes does not suf-
fer from such a spurious increase. The bias is very small 
for mean precipitation and moderately extreme precipita-
tion indices, but when the internal variability is large, and 
both large positive and large negative changes are found 
in the individual simulations (extreme precipitation events 
in summer), the spurious increase is larger (~0.8% °C−1 in 
RX1dT20 in summer). Moreover, estimating the response 
in extremes based on a non-stationary GEV fit on the 
entire simulation period yields smaller positive changes 
than the estimate based on a stationary GEV on 30-year 
periods. Nevertheless, while the magnitude of the change 
in extreme precipitation depends on the method that is 
used, the main conclusions are independent of the applied 
method.

The conclusions drawn here are, intentionally, based on 
a single RCM-GCM chain. The benefit of using a single-
model initial-condition ensemble is that in separating the 
forced response from internal variability other sources of 
uncertainty (model uncertainty, scenario uncertainty) are 
ruled out, which allows the formulation and testing of a 
well-posed statistical hypothesis concerning the signifi-
cance of the forced response. The inter-annual variability 
in precipitation in our ensemble is, compared to observa-
tions, captured fairly well, which gives confidence that 
also the natural variability at longer time scales is ade-
quately represented. Yet, the sensitivity of the GCM and 
RCM to the (external) forcing of course is model depend-
ent, so it is not obvious how general our results are. It 
would be very interesting to repeat our analyses with other 
initial-condition ensembles in order to assess the robust-
ness of our results.

In this study we focused on the high-resolution forced 
response in precipitation and examined to what extent a sig-
nal is detectable from internal variability at the local scale. 
Although we find that in summer, at the grid-cell scale, sig-
nificant trends in extremes could not be established every-
where in the domain, not even at the end of the century under 
RCP8.5, this does not imply that changes in precipitation 
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extremes are unimportant from a risk perspective consider-
ing larger areas. Aggregation of changes over larger areas 
(e.g. river basins) could lead to a better signal-to-noise ratio 
and better detectability of trends. Whether that enhances the 
robustness of the results and how this aggregated informa-
tion can be used in e.g. climate impact and risk assessment 
studies is subject of further study.
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