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1  Introduction

El Niño-Southern Oscillation (ENSO) is a dominant mode of 
interannual variability in the tropics. ENSO can significantly 
affect tropical and extratropical climate (e.g. Ropelewski 
and Halpert 1987; Trenberth et al. 1998; Webster et al. 
1998; Wang 2002; Chen et al. 2014). Previous works have 
pointed out that ENSO can affect the strength of the East 
Asian summer monsoon (EASM) in the following year 
(e.g. Huang and Wu 1989; Zhang et al. 1996; Lau and Nath 
2003; Chen 2002; Wang et al. 2000; Wu et al. 2003; Yim 
et al. 2008; Chen et al. 2016a). The pronounced low-level 
anomalous anticyclone/cyclone (WNPAC/WNPC) over the 
western North Pacific (WNP) (Zhang et al. 1996; Weisberg 
and Wang 1997; Wang et al. 1999) plays an important role 
in ENSO and ENSO’s climate. For example, the WNPAC 
induces the easterly wind anomalies in the equatorial west-
ern Pacific, which in turn terminates ENSO and serves as 
a negative feedback in the ENSO western Pacific oscillator 
(Weisberg and Wang 1997; Wang et al. 1999). During the 
El Niño decaying phase, the anomalous southwesterly on 
the northwestern flank of the WNPAC may strengthen the 
EASM and enhance the moisture transport from the tropics 
to subtropical frontal region, thus increasing the rainfall over 
Yangtze River valley, South Korea, and Japan (Zhang et al. 
1999; Chen 2002; Lee et al. 2006).

Wang et al. (2000) showed that the WNPAC can arise 
from atmospheric Rossby wave response to suppressed 
convective heating, which is induced by local ocean sur-
face cooling and subsidence forced remotely by the central 
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to eastern Pacific sea surface temperature (SST) warming. 
Even though the warming in the tropical Pacific decays and 
vanishes in summer, the WNPAC can sustain via the local 
air-sea interaction during El Niño decaying year (Wang 
et al. 2000). It is known that El Niño can induce tropical 
Indian Ocean (TIO) SST warming by atmospheric bridge 
(e.g. Klein et al. 1999) and oceanic processes (e.g. Xie et al. 
2002; Liu and Alexander 2007; Du et al. 2009), like a battery 
charging a capacitor. However, with the decay of El Niño, 
the TIO warming unleashes its influence in summer via east-
ward propagating Kelvin wave, like a discharging capacitor 
(Yang et al. 2007). The surface friction drives northeasterly 
wind into the equatorial low pressure in the baroclinic Kel-
vin wave, and induces surface convergence on the equator 
and divergence off the equator, thereby triggering suppressed 
deep convection and anomalous anticyclone over the western 
North Pacific (Xie et al. 2009). Xie et al. (2016) provided 
an overview of a coupled ocean–atmosphere mode over the 
Indo-Pacific called Indo-western Pacific ocean capacitor 
(IPOC), which combines the views of local air-sea interac-
tion (Wang et al. 2000) and of Indian Ocean capacitor effect 
(Xie et al. 2009). In spring, the Northwest Pacific cooling 
and low level atmospheric Rossby wave (anomalous anticy-
clone) are coupled via wind-evaporation-SST feedback in 
the presence of trade winds, and such local SST cooling can 
trigger a summer feedback that arises from the interaction 
of the anomalous anticyclone and the North Indian Ocean 
warming in the Asian monsoon season (Xie et al. 2016). 
Recently, Xie and Zhou (2017) also provided a unified view 
of seasonal modulations of El Niño-related atmospheric 
variability in the Indo-Pacific.

A super El Niño event occurred in 2015–2016 with its 
maximum intensity in winter 2015 (Fig. 1b). This El Niño 
event was fully established in spring 2015, and rapidly 
developed into one of the three strongest El Niño episodes in 
record. Due to the impact of such super El Niño event, along 
with global warming background, the global surface tem-
perature and air temperature over China in 2015 broke the 
observational record (Zhai et al. 2016). During the mature 
phase of the 2015/16 El Niño, an anomalous anticyclonic 
circulation in the lower troposphere prevailed over the Phil-
ippines, enhancing the southwesterly wind and substantially 
increasing precipitation in southern China (Zhai et al. 2016; 
Chen et al. 2016b).

Historically, La Niña events always follow several (but 
not all) strong El Niño events, including the 1997/98 El 
Niño. Some climate models indicated that La Niña devel-
opment was possible in the third quarter of 2016 and its 
intensity was likely to be weak. However, the strong 2015/16 
El Niño ended in May 2016 (Fig. 1b). The La Niña condi-
tion was not well established in the central to eastern Pacific 
(Fig. 1b). More importantly, there was no obvious anoma-
lous anticyclonic circulation in the lower troposphere over 

the WNP in summer (Fig. 2d). Such feature was so different 
from that in 1997/98 El Niño decaying summer (e.g. Wang 
and Weisberg 2000). In 1998, the intensity of WNPAC was 
very strong in summer (Figs. 2h, 3h), enhancing the strength 
of EASM, resulting in serious flooding over most part of 
southern China (Zhang et al. 1999). Natural questions are: 
Why the intensity of WNPAC was so weak in this super El 
Niño decaying summer? What was the role of Indo-Pacific 
SST anomalies in maintaining the WNPAC from spring to 
summer in 2016?

Previous studies noticed that the TIO SST anomalies can 
affect the Indo-Pacific climate (e.g. Du et al. 2011; He et al. 

(a)

(b)

Fig. 1   a Correlations with December Niño3.4 SST index and b SST 
Anomalies in three ocean regions for 2015–2016 (solid line) and 
1997–1998 (dash line): Niño3.4 region (5°S–5°N, 170°W–120°W; 
black), North Indian Ocean (0–20°N; 40°E–100°E; red) and tropical 
western North Pacific (10°–20°N, 150°E–170°E; blue). Thick curves 
in a indicate the correlations are significant at 95% confidence level, 
based on the student’s t test. The HadISST1 dataset for 1979–2016 
has been detrended before computing the SST indices. The SST indi-
ces are smoothed by 3  month running means. The superscripts “0” 
and “+1” denote current year and subsequent year, respectively
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2015; Hu et al. 2014; He and Wu 2014; Wu et al. 2012; 
Zhan et al. 2011, 2014). For example, Zhan et al. (2011) 
argued that the eastern TIO summer SST anomalies could 

significantly influence the western Pacific summer mon-
soon and the equatorial Kelvin wave activity over the west-
ern Pacific, thus affecting the tropical cyclone genesis in 

(a)

(b)

(e)

(f)

(c)

(d)

(g)

(h)

Fig. 2   SST (°C, shading) and low-level wind (vectors) anomalies from March-April-May (MAM) to June-July-August (JJA) in year 2016 (left 
panels) and year 1998 (right panels)
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the WNP and largely determining the number of tropical 
cyclones. Wu et al. (2012) investigated the interdecadal 
change in the relationship between southern China summer 

rainfall and tropical Indo-Pacific SST. Comparisons were 
made between the 1950–1960s and the 1980–1990s, and 
they found that a larger southeast TIO SST forcing coupled 

(a)

(b)

(e)

(f)

(c)

(d)

(g)

(h)

Fig. 3   Low-level wind (m/s, vectors) and precipitation (mm/day, shading) anomalies from MAM to JJA in year 2016 (left panels) and year 1998 
(right panels)
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with a stronger and more extensive WNP subtropical high in 
recent decades would induce circulation anomalies reaching 
higher latitude, influencing South China directly.

In this study, we focus on the decaying phase of the 
2015/16 El Niño. The objective of this paper is to reveal 
that the southeast tropical Indian Ocean (SETIO) plays a role 
in modulating the anticyclonic circulation over the South 
China Sea (SCS) and the northeast Indian Ocean during the 
El Niño decaying year. The evolution of SST anomalies in 
the 2015/16 El Niño provides insights into the influence of 
SETIO SST variability on Indo-Pacific climate. The rest of 
the paper is organized as follow. Section 2 describes the 
dataset, method and climate model utilized in this study. 
Section 3 presents the observed SST, precipitation and 
atmospheric circulation anomalies during the decaying 
phase of the 2015/16 El Niño. Section 4 clarifies the influ-
ence of the SETIO on East Asian Climate through numerical 
model experiments. Section 5 gives the concluding remarks 
and discussions.

2 � Data and methodology

The following datasets were used in this study: (1) National 
Centers for Environmental Prediction/National Center for 
Atmospheric Research (NCEP/NCAR) reanalysis data (Kal-
nay et al. 1996) with a horizontal resolution of 2.5° longi-
tude × 2.5° latitude; (2) Climate Prediction Center (CPC) 
Merged Analysis of Precipitation (CMAP, Xie and Arkin 
1997) data on a 2.5° × 2.5° grid; (3) the monthly SST data 
on a 1° × 1° grid from the Met Office Hadley Center (Had-
ISST1, Rayner et al. 2003); (4) the monthly surface latent 
heat flux data on a 1° × 1° grid from objectively analyzed 
air–sea fluxes (OAFlux) products (Yu et al. 2008). The 
NCEP/NCAR reanalysis data and CMAP precipitation data 
are provided by the NOAA/OAR/ESRL PSD, Boulder, Col-
orado, USA, and downloaded from the web at http://www.
esrl.noaa.gov/psd/. Above monthly datasets are available 
from January 1979 to October 2016. The seasonal anoma-
lies were derived by subtracting the corresponding seasonal 
mean climatology for the period 1979–2016. In addition, the 
long-term linear trend was removed from all the datasets.

To extract the leading mode of East Asian climate, 
we used the multivariate empirical orthogonal function 
(MV-EOF) analysis on a set of meteorological fields (i.e. 
precipitation, 925-hPa zonal and meridional winds) in 
April–May–June (AMJ) for the period 1979–2016. The 
analysis was performed within a domain including both 
East Asia and WNP (i.e. 5°N–40°N, 95°E–150°E). Anoma-
lies were firstly calculated by removing the climatological 
mean and then normalized with respect to each variable so 
that each variable gets equal weight in the MV-EOF analy-
sis. The three input fields of normalized AMJ anomalies for 

each year were concatenated into an N-dimensional vector 
as input vector. N is three times the number of grid points in 
the selected domain, and the number of all input vectors is 
38 in this study. Finally, an area-weighted covariance matrix 
was constructed for the combined fields to carry out the MV-
EOF analysis. More details can be found in Wang (1992). By 
using MV-EOF method, we can capture the spatial coherent 
anomaly pattern between low-level circulation and precipita-
tion in East Asia.

The Community Atmosphere Model Version 4 (CAM4), 
which was developed with significant community collabora-
tion at NCAR, was used in this study. CAM4 is the atmos-
pheric component of Community Climate System Model 
Version 4 (CCSM4) that was released in 2010 (Gent et al. 
2011). The CAM4 simulations used finite-volume dynamic 
core (Lin 2004) on a horizontal resolution roughly equiva-
lent to 0.9° latitude × 1.25° longitude, with 26 vertical lev-
els in a hybrid sigma-pressure coordinate system extend-
ing from the surface to approximately 3.5-hPa. A general 
overview of CAM4 mean climate simulation can be found 
in Neale et al. (2013).

In order to clarify the role of SETIO SST anomalies in 
modulating East Asian climate during the decaying phase of 
the 2015/16 El Niño, we conducted two sets of model exper-
iment. One is control run (CTRL run), which was forced by 
climatological mean annual cycle of SSTs. The climatologi-
cal SSTs in CTL run were from the merged HadISST1-OI.v2 
SST products, which were specifically developed as surface 
forcing datasets for CAM simulations (Taylor et al. 2000; 
Hurrell et al. 2008). The monthly climatological SSTs in 
CAM4 model were computed during the period 1982–2001 
(Hurrell et al. 2008). The other one was forced by the warm 
SST anomalies (Fig. 7) in the SETIO added to the climato-
logical mean annual cycle of SST (SETIO run). The SST 
anomalies shown in Fig. 7 are detrended monthly SST anom-
alies for 2016. We only extracted the positive SST anomalies 
from February to August in SETIO. In the SETIO run, the 
monthly SST was set to the respective climatological mean 
for months other than those shown in Fig. 7. Each run is a 
35-year continuous simulation and the last 30-year results 
are analyzed in this study. A student’s t test is utilized to 
examine the statistical significance of the difference between 
the SETIO run and CTRL run.

3 � Indo‑Pacific climate variations 
during the decaying phase of the 2015/16 El 
Niño

In MAM 2016, cold SST anomalies appeared in the WNP 
and warm SST anomalies were located in the North Indian 
Ocean (Fig. 2a). The cooling over the WNP might sup-
press the deep convection there and maintain the WNPAC 

http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/
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(Fig. 3a). However, the North Indian Ocean warming cor-
responds to in-situ below normal precipitation (Fig. 3a), 
which indicates that the North Indian Ocean SST anomalies 
were likely a response to the atmospheric change instead of 
a forcing of the atmosphere in spring (Wu et al. 2008; Wu 
and Yeh 2010).

The anomalous anticyclone over the Indo-Pacific was obvi-
ous from MAM to AMJ in 2016 (Figs. 2a, b, 3a, b). In sum-
mer (JJA), its intensity was weak, and only weak anticyclonic 
circulation appeared over the SCS (Figs. 2d, 3d). This is very 
different from the evolution of WNPAC in the following sum-
mer of the 1997/98 El Niño (Figs. 2h, 3h). From spring to 
summer, there was a low-level “C-shape” wind anomaly pat-
tern with anomalous easterly wind in the north and anomalous 
westerly wind in the south over the eastern TIO (Figs. 2, 3). In 
spring, this “C-shape” wind anomaly was asymmetric along 
the equator with northeasterly wind anomaly in the north 
and northwesterly wind anomaly in the south (Figs. 2a, 3a). 
After that, it moved northward about five latitudes and further 
noticeable, especially in summer (Figs. 2d, 3d).

The SST cooling in the WNP gradually decayed from 
MAM to JJA and disappears in summer (Fig. 2). This result 
is consistent with former studies, which argued that with 
the retreat of easterly trade winds in the Asian monsoon 
season, the positive thermodynamic feedback between the 
WNPAC and the underlying SST turns to be a negative feed-
back (Chou et al. 2009), thus decreasing the negative SST 
anomalies in the WNP and its local forcing effect (Wu et al. 
2010).

Typically, after the mature phase of El Niño, the North 
Indian Ocean displays a double-peak warming (Fig. 1a). The 
second peak is larger in magnitude, and can persist into sum-
mer (Du et al. 2009) as the first notice in the SCS (Wang 
et al. 2006). In 2016, the North Indian Ocean warming per-
sisted from spring to summer with its intensity gradually 
weakening (Fig. 1b). From AMJ to JJA, the southern part 
of the Bay of Bengal received above normal precipitation, 
which suggests that the North Indian Ocean was discharging 
at that time (Fig. 3b–d). However, the summertime North 
Indian Ocean warming in 2016 was much weaker than 
that in 1998 (Fig. 1b), thus its remote forcing effect on the 
WNPAC may be weak in 2016. Since the local SST anoma-
lies decayed quickly and vanished in summer, and the North 
Indian Ocean warming was weak (Fig. 1b), the intensity of 
the WNPAC in summer 2016 was weak. Besides, the lack of 
following La Niña development might also partly explain the 
weak intensity of WNPAC in summer 2016 (e.g. Fan et al. 
2013; Chen et al. 2016a).

The strongest positive precipitation signal in the Indo-
Pacific region in 2016 was over the SETIO (Fig. 3). Corre-
sponding to such strong positive precipitation anomalies, the 
positive SST anomalies persisted from spring to summer in 
the SETIO (Figs. 2a–d, 3a–d). Besides, lower level westerly 

wind anomalies prevailed over the southern TIO from spring 
to summer 2016 (Figs. 2a–d, 3a–d).

To provide more evidence for the asymmetric anomaly 
pattern over the eastern TIO, we computed the zonal mean 
SST, precipitation and 925-hPa wind anomalies between 
95°E and 110°E (Fig. 4). From late spring to early summer 
in 2016, the asymmetric wind anomaly pattern along the 
equator was rather clear in the eastern TIO. Although both 
the southern part and northern part of SST anomalies within 
the East Indian Ocean were positive, the SST anomalies in 
the SETIO were warmer than those in the northeast tropical 
Indian Ocean during February-March-April (FMA) 2016.

At the same time, the convection over the southeast Indian 
Ocean gradually enhanced. The meridional thermal gradi-
ent within the East Indian Ocean might induce anomalous 
ascent in the southern hemisphere and anomalous northerly 
crossing the equator, which were favorable for the forma-
tion of “C-shape” wind anomalies in lower troposphere over 
the eastern TIO (Fig. 4). This point is further supported by 
Fig. 5, which shows the latitude-height section plots of 
anomalous vertical motion and specific humidity averaged 
over 95°E–110°E. Clearly, from spring to early summer, the 
specific humidity anomaly displayed a dipole pattern with 
wet condition in the south of the equator and dry condition 
in the north of the equator. In addition, there was an anoma-
lous vertical cell over the eastern TIO. The anomalous verti-
cal circulation directly connected the descent over Indochina 
Peninsula, eastern part of the Bay of Bengal and western 
part of the SCS to the ascent over the SETIO (Figs. 3a–d, 5).

Furthermore, we investigated the origin of the SST 
warming in the SETIO. The SETIO SST warming began 
in boreal autumn in 2015 (Fig. 6). At the same time, the 

Fig. 4   Zonal mean SST (°C, shading) precipitation (mm/day, con-
tours) and 925-hPa wind (m/s, vectors) anomalies in the East Indian 
Ocean (95°E–110°E). The contour levels for precipitation anomalies 
are −1.5, −0.5, 0.5, 1.5, 2.5, and 3.5 mm/day, respectively
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Fig. 5   Meridional circulation 
and specific humidity (g/kg, 
shading) anomalies averaged 
over 95°E–110°E from MAM to 
JJA in year 2016. The p-velocity 
(i.e. omega, Pa/s) anomalies are 
multiplied by −50

(a)

(b)

(c)

(d)

(a) (b)

Fig. 6   Temporal evolution of anomalies in the SETIO (90°E–110°E, 15°S–0). a Precipitation (blue line) and SST (red line) anomalies. b Sur-
face latent heat flux (blue line) and SST (red line) anomalies
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convection in situ was suppressed with more shortwave 
radiation into the surface, triggering the SST warming in 
the SETIO (Fig. 6a). Then, the SETIO SST warming gradu-
ally developed and peaked in boreal spring in 2016 (Fig. 6). 
The negative latent heat flux anomalies show that the ocean 
reduced the heat release into the atmosphere (Fig. 6b), which 
help the development or the maintenance of the SETIO SST 
warming.

4 � Role of the SETIO in Indo‑Pacific climate

The above analyses suggest that the SETIO SST anomalies 
may play a role in influencing regional climate. The strong 
updraft induced by positive SST anomalies in the SETIO 
causes the formation of an anomalous vertical circulation 

with lower level cross-equatorial southward flow and upper 
level cross equatorial northward flow. As revealed by pre-
vious works (e.g. Wu et al. 2012; Hu et al. 2014), such a 
vertical circulation links SCS climate variability to the SST 
variability off the Sumatra coast. As the SETIO warming 
can induce anomalous sinking motion over the SCS, so the 
suppressed convection may partly contribute to the mainte-
nance of anomalous anticyclonic circulation over the SCS.

Besides, we have computed the lead-lag correlation 
between SST and precipitation. The simultaneous correla-
tion coefficient between SST and precipitation in the SETIO 
is positive (about 0.42). The SETIO maximum SST anoma-
lies lead the precipitation anomalies by about 2 months (Fig-
ure not shown), indicating that the SETIO SST can force the 
atmosphere. Since there were North Indian Ocean warming 
and WNP cooling during spring to early summer in 2016, 

Fig. 7   SST anomalies from Feb to Aug used in SETIO run
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we may probably overestimate the influence of the SETIO 
warming in modulating the WNPAC from observations. 
To further reveal the impacts of the SETIO, two idealized 
CAM4 numerical experiments (i.e. CTRL run and SETIO 
run) are conducted. The model runs are designed to iden-
tify the role of SETIO SST anomalies (Fig. 7) in modulat-
ing Indo-Pacific climate. The forcing effect of the SETIO 
warming can be evaluated by analyzing the ensemble mean 
difference between SETIO run and CTRL run.

The simulated precipitation and 925-hPa wind difference 
between SETIO run and CTRL run are shown in Fig. 8. In 
response to the positive SST anomaly in the SETIO, the 
convection in situ is significantly enhanced from spring to 
summer. Negative precipitation anomaly appears north of 
the positive precipitation anomaly in the SETIO. The SCS, 
the eastern part of the Bay of Bengal, and the Philippine 
Sea suffer less rainfall. A “C-shape” wind anomaly pattern 
forms in spring over the eastern TIO with anomalous north-
easterly in the northern hemisphere and northwesterly in the 
southern hemisphere. This “C-shape” wind anomaly pat-
tern shifts northward about five latitudes in summer. Such 
numerical results are similar to the observational findings 
shown by Fig. 3. To the north of the “C-shape” circulation 

anomaly pattern, there is an anomalous anticyclone over 
the SCS (Fig. 8). The southwesterly wind anomalies in the 
northwest flank of the anomalous anticyclone enhances the 
water vapor transport in the subtropical frontal region in 
East Asia. Thus, there is an above normal rain band extend-
ing from the lower reach of the Yangtze River Valley to 
the south of Japan Islands. Besides, most part of southern 
China has more rainfall from spring to summer (Fig. 8). In 
our sensitivity experiment, we put the SST forcing in the 
SETIO. In fact, the response stands for or is equivalent to 
an atmospheric response to meridional cross-equatorial SST 
gradient, which has been investigated in the tropical Atlantic 
(Xie and Carton 2004). The atmospheric response to meridi-
onal cross-equatorial SST gradient may be similar in differ-
ent ocean basins. For example, when exploring the failure 
factors of 2014 El Niño prediction, Zhu et al. (2016) put the 
negative SST anomalies in the southeastern tropical Pacific 
in their experiments and they found a similar wind response 
to that in our study related to the SETIO SST warming.

Figure 9 illustrates the response of mid-level vertical 
velocity, high-level velocity potential and divergent wind to 
the SETIO warming. The 200-hPa velocity potential anoma-
lies display a north–south dipole pattern over the East Indian 

(a)

(b)

(c)

(d)

Fig. 8   Simulated precipitation (mm/day, shading) and 925-hPa wind 
(m/s, vectors) difference between SETIO run and CTRL run. The 
only precipitation anomalies that are significant at 90% confidence 

level are plotted. The black vectors denote that the wind anomalies 
are significant at 90% confidence level according to student’s t test
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Ocean with negative value in the south and positive value in 
the north. Corresponding to the high-level velocity potential 
anomaly pattern, there is anomalous upward vertical motion 
over the SETIO, which is accompanied by high-level diver-
gence in situ. Meanwhile, anomalous downward vertical 
motion appears near the Bay of Bengal, Indochina Peninsula 
and the SCS, which corresponds to high-level convergence.

The anomalous meridional circulation in the East Indian 
Ocean links the Bay of Bengal, Indochina Peninsula and 
SCS climate to the SETIO SST anomalies (Fig. 10). The 
numerical results of SETIO run further confirm that the 
SETIO SST anomalies from spring to summer 2016 play an 
important role in modulating Indo-Pacific climate.

5 � Summary and discussion

In this study, we investigate the role of SETIO SST warm-
ing in modulating Indo-Pacific climate during the decay-
ing phase of the 2015/16 El Niño. For this super El Niño 
event, although the related positive SST anomalies within 
the central to eastern Pacific were strong in its mature 
phase (previous winter), its intensity decayed quickly and 

transited into a normal condition in the following summer. 
The cooling in the WNP was obvious in spring; however, 
with the decay of the 2015/16 El Niño and the onset of the 
Asian summer monsoon, such cooling nearly vanished in 
summer. There was a North Indian Ocean warming dur-
ing spring to summer in 2016. In spring, the positive SST 
anomalies in the North Indian Ocean was more like a pas-
sive response to atmosphere change (less rainfall and more 
solar radiation, Fig. 3a), rather than an atmospheric forc-
ing. In summer, the North Indian Ocean warming might 
unleash its influence on Indo-Pacific climate (Hu et al. 
2011; Kosaka et al. 2013; Xie et al. 2016), but its forcing 
effect seemed to be weak as its warming intensity was 
weak. During spring to early summer of this extreme El 
Niño decaying phase, there was an anomalous anticyclone 
over the WNP (WNPAC). The WNPAC covered a larger 
area and was stronger in spring compared to that in sum-
mer. To the northwest flank of the WNPAC, the anomalous 
southwesterly in the lower troposphere brought more water 
vapor to the subtropical frontal region, thus most part of 
South China suffered more rainfall.

Although the results are based on a case study, the influ-
ence of SETIO SST anomalies is not just confined to this 

(a)

(b)

(c)

(d)

Fig. 9   Simulated 500-hPa omega (Pa/s, multiplied by 100, shading), 
200-hPa velocity potential (106m2s−1, contours) and divergent wind 
(m/s, vector) differences between SETIO run and CTL run. The con-

tour levels for velocity potential anomalies are −1.0, −0.5, −0.25, 
0.25, 0.5 and 1.0, respectively. The only omega and divergent wind 
anomalies that are significant at 90% confidence level are plotted
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super El Niño event. Figure 11 shows the regressions of 
precipitation and wind onto the SETIO SST index. In gen-
eral, the AMJ SETIO warming induces above-normal pre-
cipitation over the south tropical Indian Ocean and below-
normal precipitation over the eastern part of the Bay of 
Bengal, most part of the SCS and WNP (Fig. 11a). Corre-
spondingly, the low-level wind anomalies over the eastern 
TIO feature “C-shape” flows with anomalous westerly in 
the south of equator and anomalous easterly north of the 
equator. The anomalous easterly extends into the western 
Pacific and forms an anomalous anticyclone over the SCS 
and WNP (Fig. 11a). In JJA, the regression results over the 
East Indian Ocean and western North Pacific are similar 
to those in AMJ, except that the regression pattern shifts 
northward about five latitudes (Fig. 11b). These features well 
match the results shown in our case study and numerical 
model experiments.

We also find that the SST over the SETIO has a close 
relationship with East Asian Climate during the transition 
period from spring to summer (AMJ). Figure 12 presents the 

leading mode of multivariate EOF analysis (MV-EOF) on 
a set of three meteorological fields (including precipitation, 
the zonal and meridional winds at 925-hPa) in AMJ. The 
leading mode accounts for about 21.5% of the total variance 
for all three fields together. The spatial pattern of the leading 
MV-EOF mode shows a north–south dipole pattern with dry 
anomalies over the Indochina Peninsula, the SCS and Philip-
pine Sea, and, wet condition along the Yangtze River valley 
to southern Japan. At lower troposphere, a dominant feature 
is an anomalous anticyclone with enhanced southwesterly 
winds prevailing on its northwestern flank from the northern 
SCS to the middle and lower reaches of the Yangtze River 
and enhanced easterly winds between 5°N and 20° N. The 
correlation between the AMJ SETIO SST index and time 
series of leading principal component (PC1) is significantly 
high (about 0.51), which indicates that the SST in the SETIO 
can be a predictor to East Asian climate in AMJ. Addition-
ally, the correlation between previous winter (November-
December-January) Niño 3.4 SST index and following late 
spring (AMJ) SETIO SST index is also significantly high 

Fig. 10   Simulated meridional 
circulation and specific humid-
ity (g/kg, shading) differences 
averaged over 95°E–110°E 
between SETIO run and CTRL 
run. The p-velocity (i.e. omega, 
Pa/s) anomalies are multiplied 
by −50

(a)

(b)

(c)

(d)
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(about 0.65). The result indicates that the SETIO SST warm-
ing and cooling usually follow an ENSO event in the Pacific.
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