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and zonal circulations and promotes the baroclinic evolu-
tion of the horizontal circulation. The simplified model also 
indicates that the absolute vorticity of the horizontal circu-
lation is not conserved, and its changes can be described 
by changes in the vertical vorticities of the meridional and 
zonal circulations. Moreover, the thermodynamic equation 
shows that the induced meridional and zonal circulations 
and advection transport by the horizontal circulation in turn 
cause a redistribution of the air temperature. The simplified 
model reveals the fundamental rules between the evolution 
of the air temperature and the horizontal, meridional and 
zonal components of global atmospheric circulation.

Keywords Three-pattern decomposition of global 
atmospheric circulation · New dynamical equations of 
horizontal, meridional and zonal circulations · Three-
dimensional vorticity equations · Simplified dynamical 
equations

1 Introduction

The Rossby wave at middle–high latitudes and the Hadley 
and Walker circulations at low latitudes are significant in 
the evolution of global atmospheric circulation. The evolu-
tion of the ridges and troughs of the Rossby wave provides 
valuable information for the analysis and prediction of 
large-scale weather processes in the middle–high latitudes 
(Rossby 1939; Charney 1947; Charney and Eliassen 1949). 
In contrast, the Hadley and Walker circulations are criti-
cal to the global water vapor transport and energy balance 
(Oort and Peixóto 1983; Bowman and Cohen 1997; Tren-
berth and Stepaniak 2003; Hosking et al. 2012). However, 
these global circulations have clear interdecadal variations 
under the global warming conditions in recent decades. For 

Abstract The three-pattern decomposition of global 
atmospheric circulation (TPDGAC) partitions three-dimen-
sional (3D) atmospheric circulation into horizontal, meridi-
onal and zonal components to study the 3D structures of 
global atmospheric circulation. This paper incorporates the 
three-pattern decomposition model (TPDM) into primi-
tive equations of atmospheric dynamics and establishes a 
new set of dynamical equations of the horizontal, meridi-
onal and zonal circulations in which the operator proper-
ties are studied and energy conservation laws are preserved, 
as in the primitive equations. The physical significance of 
the newly established equations is demonstrated. Our find-
ings reveal that the new equations are essentially the 3D 
vorticity equations of atmosphere and that the time evolu-
tion rules of the horizontal, meridional and zonal circula-
tions can be described from the perspective of 3D vorticity 
evolution. The new set of dynamical equations includes 
decomposed expressions that can be used to explore the 
source terms of large-scale atmospheric circulation varia-
tions. A simplified model is presented to demonstrate the 
potential applications of the new equations for studying 
the dynamics of the Rossby, Hadley and Walker circula-
tions. The model shows that the horizontal air temperature 
anomaly gradient (ATAG) induces changes in meridional 
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example, the Hadley circulation has an intensified trend, 
especially in the Northern Hemisphere in winter (Chen 
et  al. 2002, 2014; Wielicki et  al. 2002; Mitas and Clem-
ent 2005; Sohn and Park 2010), with its descending branch 
moving towards the pole (Fu et  al. 2006; Lu et  al. 2007; 
Hu and Fu 2007; Nguyen et al. 2013), indicating poleward 
expansion of the tropical belt and poleward shifting of the 
subtropical jet stream (Archer and Caldeira 2008; Seidel 
et  al. 2008; Davis and Birner 2013). The evolution char-
acteristics of the Walker circulation are currently under 
debate. A number of studies have suggested a strength-
ening trend and a westward shift of the Walker circula-
tion in recent decades (Sohn et al. 2013; L’Heureux et al. 
2013; Bayr et  al. 2014; McGregor et  al. 2014; Ma and 
Zhou 2016), and these trends affect the distribution pat-
tern of tropical precipitation. However, some studies have 
indicated that the Walker circulation has been weakening 
because of anthropogenic forcing (Held and Soden 2006; 
Vecchi and Soden 2007; Yu and Zwiers 2010; Tokinaga 
et al. 2012; DiNezio et al. 2013). Such interdecadal varia-
tions of the Hadley and Walker circulations may induce a 
shift in the global climate belt and increase the frequency 
of extreme weather and climate events, thereby increasing 
social and economic losses (Karnauskas and Ummenhofer 
2014; Ma and Zhou 2016).

On the other hand, the Rossby, Hadley and Walker circu-
lations exhibit complex interactions. For example, accord-
ing to observations and model simulations, the Rossby 
wave at middle–high latitudes can propagate to tropical 
areas and affect tropical weather and climate (Kiladis and 
Weickmann 1992a, b; Kiladis and Feldstein 1994), whereas 
the Hadley and Walker circulations at low latitudes are 
closely related to anomalous behavior of global circula-
tion. Studies on the variations of the Rossby, Hadley and 
Walker circulations and the interactions between the cir-
culations at low latitudes and middle–high latitudes are of 
critical importance (Kiladis and Feldstein 1994). Although 
many efforts have been devoted to the variations in and 
interactions among these circulations (e.g., Charney 1969; 
Zhang and Webster 1992; Kiladis and Weickmann 1992a, 
b; Kiladis and Feldstein 1994), the underlying dynamical 
mechanisms are not completely understood. Thus, new the-
ories and methods are needed to explore these issues.

On the basis of the basic features of global atmospheric 
circulation, we defined the horizontal, meridional and 
zonal circulations, which can be regarded as the global 
generalization of the Rossby, Hadley and Walker circula-
tions, and then developed a novel three-pattern decompo-
sition of global atmospheric circulation (TPDGAC) (Xu 
2001; Hu 2006, 2008; Liu et  al. 2008; Deng et  al. 2010; 
Hu et  al. 2015, 2017). The TPDGAC method partitions 
global atmospheric circulation into the horizontal, meridi-
onal and zonal circulations within three orthogonal planes 

to study the three-dimensional (3D) structures and vari-
ations of global atmospheric circulation (Hu et  al. 2015). 
This study aims to establish the dynamical equations of the 
horizontal, meridional and zonal circulations by using the 
three-pattern decomposition model (TPDM) and primitive 
equations of atmospheric dynamics, thereby providing new 
opportunities to study the dynamics of the Rossby, Hadley 
and Walker circulations under nonuniform global warming.

This paper is organized as follows. The TPDGAC is 
introduced in Sect. 2. The dynamical equations of the hori-
zontal, meridional and zonal circulations are established 
and the physical interpretation of the new equations are 
presented in Sect. 3, and the operator properties and energy 
conservation law are also studied. In Sect. 4, the basic evo-
lution rules of the horizontal, meridional and zonal circu-
lations are interpreted with a simplified model of the new 
dynamical equations. Finally, a summary is presented in 
Sect. 5.

2  Three-pattern decomposition of global 
atmospheric circulation

According to Hu et  al. (2015), the Rossby wave at mid-
dle–high latitudes and the Hadley and Walker circulations 
at low latitudes can be generalized globally, and these gen-
eralized circulations are called the horizontal, meridional 
and zonal circulations. The global atmospheric circula-
tion is then decomposed into three orthogonal components 
(horizontal, meridional and zonal circulations), and the 
three-pattern decomposition method is called the TPDGAC 
(Hu et al. 2015). The main procedures of the method will 
be introduced in this section.

To resolve the unit inconsistency in calculating the 3D 
vorticity vector in the pressure coordinates, the spherical �
-coordinate system is used in the TPDGAC. Namely, we 
assume � =

p

Ps

, where p is the atmospheric pressure and Ps 

is the pressure at the earth’s surface. It should be noted that 
the unit vector i⃗  of the �-coordinate system points from 
west to east along the latitude circles, j⃗  points from north 
to south along the longitudinal direction, and k⃗ points from 
the earth’s surface to the earth’s center (Hu et al. 2015).

If we assume Ps = 1000hPa, then the velocities of 
the atmosphere in the spherical �-coordinate system are 
defined as follows:

with the same unit of s−1, and the continuity equation can 
be represented as follows:

(1)u� =
u

a
, v� =

v

a
, �̇� =

𝜔

Ps

,

(2)1

sin 𝜃

𝜕u�

𝜕𝜆
+

1

sin 𝜃

𝜕(sin 𝜃v�)

𝜕𝜃
+

𝜕�̇�

𝜕𝜎
= 0,
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where a is the earth’s radius, � is the longitude, � is the 
colatitude and u, v and � are the velocities in the pressure 
coordinate system.

According to the basic features of the Rossby, Hadley and 
Walker circulations, we define the global horizontal, meridi-
onal and zonal circulations as follows:

The horizontal circulation V⃗ ′
R
 has zero vertical velocity, the 

meridional circulation V⃗ ′
H

 has zero zonal wind, and the zonal 
circulation V⃗ ′

W
 has zero meridional wind. However, the veloc-

ity components of V⃗ ′
R
 are varying with the height, and the 

components of V⃗ ′
H

 and V⃗ ′
W

 are varying with the longitude and 
colatitude, respectively. They satisfy the following continuity 
equations, respectively:

Equation (4) ensures that the components of V⃗ ′
R
, V⃗ ′

H
 and 

V⃗ ′
W

 can be quantitatively represented by the stream functions 
R(�, �, �), H(�, �, �) and W(�, �, �) as follows:

For large-scale motions, the global atmospheric circula-
tion can be expressed as the superposition of the horizontal, 
meridional and zonal circulations defined above. Namely, for 
V⃗ �(𝜆, 𝜃, 𝜎) = u�(𝜆, 𝜃, 𝜎 )⃗i + v�(𝜆, 𝜃, 𝜎 )⃗j + �̇�(𝜆, 𝜃, 𝜎)k⃗ satisfy-
ing the continuity Eq. (2), we have

with the following components:

(3)

⎧⎪⎨⎪⎩

V⃗ �

R
(𝜆, 𝜃, 𝜎) = u�R(𝜆, 𝜃, 𝜎 )⃗i + v�R(𝜆, 𝜃, 𝜎 )⃗j,

V⃗ �

H
(𝜆, 𝜃, 𝜎) = v�H(𝜆, 𝜃, 𝜎 )⃗j + �̇�H(𝜆, 𝜃, 𝜎)k⃗,

V⃗ �

W
(𝜆, 𝜃, 𝜎) = u�W (𝜆, 𝜃, 𝜎 )⃗i + �̇�W (𝜆, 𝜃, 𝜎)k⃗.

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

sin 𝜃

𝜕u�R
𝜕𝜆

+
1

sin 𝜃

𝜕(sin 𝜃v�R)

𝜕𝜃
= 0,

1

sin 𝜃

𝜕(sin 𝜃v�H)

𝜕𝜃
+

𝜕�̇�H
𝜕𝜎

= 0,

1

sin 𝜃

𝜕u�W

𝜕𝜆
+

𝜕�̇�W

𝜕𝜎
= 0.

(5)

⎧⎪⎪⎨⎪⎪⎩

u�R = −
𝜕R

𝜕𝜃
, v�R =

1

sin 𝜃

𝜕R

𝜕𝜆
,

v�H = −
𝜕H

𝜕𝜎
, �̇�H =

1

sin 𝜃

𝜕(sin 𝜃H)

𝜕𝜃
,

u�W =
𝜕W

𝜕𝜎
, �̇�W = −

1

sin 𝜃

𝜕W

𝜕𝜆
.

(6)V⃗ � = V⃗ �

H
+ V⃗ �

W
+ V⃗ �

R
,

(7)

⎧⎪⎪⎨⎪⎪⎩

u� = u�W + u�R =
𝜕W

𝜕𝜎
−

𝜕R

𝜕𝜃
,

v� = v�R + v�H =
1

sin 𝜃

𝜕R

𝜕𝜆
−

𝜕H

𝜕𝜎
,

�̇� = �̇�H + �̇�W =
1

sin 𝜃

𝜕(sin 𝜃H)

𝜕𝜃
−

1

sin 𝜃

𝜕W

𝜕𝜆
.

We refer to Eq. (6) or Eq. (7) as the TPDM (Hu et al. 2015). 
However, Eq. (4) cannot ensure the uniqueness of R, H and 
W because V⃗ ′

R
, V⃗ ′

H
 and V⃗ ′

W
 have three spatial dimensions. The 

following restriction condition help us to pick up the correct 
ones (Theorems 1 and 2 in Hu et al. 2015):

By using Eqs. (7) and (8), we have

where �� =
1

sin �

�v�

��
−

1

sin �

�(u� sin �)

��
 represents the ver-

tical vorticity of the entire atmospheric layer and 
Δ3 =

1

sin
2�

�2

��2
+

1

sin �

�

��
(sin �

�

��
) +

�2

��2
 denotes the 3D Lapla-

cian in the spherical �-coordinates. The stream functions R, 
H and W can be obtained by solving Eqs. (9), (10) and (11). 
Thus the global atmospheric circulation V⃗ ′ is decomposed 
into the three-pattern circulations V⃗ ′

R
, V⃗ ′

H
 and V⃗ ′

W
 using 

Eq. (5).

3  Dynamical equations of the horizontal, 
meridional and zonal circulations

On the basis of the TPDM (7) in Sect.  2, we find that the 
components of V⃗ ′ can be rewritten as the following operator 
equation:

with the meaning that the velocities (u�, v�, �̇�) can be repre-
sented by three stream functions (H,W,R). In this section, 
by using Eq. (12), the velocity components (u�, v�, �̇�) in the 
primitive equations are replaced with the stream functions 
(H,W,R) to obtain a new set of dynamical equations of 
the three-pattern circulations (V⃗ �

H
, V⃗ �

W
, V⃗ �

R
) and the physical 

meaning of the new equations will be demonstrated.

3.1  Dynamical equations

The primitive equations of atmospheric dynamics can be 
written as the following operator equation (see Chou 1974, 
1983 and the Sect. 2 and 3 of the supplementary material):

(8)1

sin �

�H

��
+

1

sin �

�(W sin �)

��
+

�R

��
= 0.

(9)Δ3R = �� ,

(10)
�H

��
=

1

sin �

�R

��
− v�,

(11)
�W

��
=

�R

��
+ u�,

(12)
⎛⎜⎜⎝

u�

v�

�̇�

⎞
⎟⎟⎠
=

⎛⎜⎜⎜⎝

0
𝜕

𝜕𝜎
−

𝜕

𝜕𝜃

−
𝜕

𝜕𝜎
0

1

sin 𝜃

𝜕

𝜕𝜆
1

sin 𝜃

𝜕 sin 𝜃

𝜕𝜃
−

1

sin 𝜃

𝜕

𝜕𝜆
0

⎞⎟⎟⎟⎠

⎛
⎜⎜⎝

H

W

R

⎞
⎟⎟⎠
,

(13)B� ��
�

�t
+ (N� + L�)�� = ��,
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where 𝜙� = (u�, v�, �̇�,𝜑�, T)T are the regular variables of 
atmosphere and �� =

�

a
. B� = diag

(
a, a, 0, 0,

R2

0

ac2

)
 is a diag-

onal matrix and R0 is the gas constant for dry air. 
L� = diag(L̃�

1
, L̃�

1
, 0, 0, L̃�

2
) represents the dissipative terms, 

and �� =
(
0, 0, 0, 0,

R0
2

ac2
�

cp

)T

 represents the non-adiabatic 

heating process. N′ is a nonlinear anti-adjoint operator, 
which describes factors such as the nonlinear advection and 
convection, Coriolis force, pressure gradient, and so on. It 
depends on �′ with the following form:

 where, 

and

T = T(p)(or �� = ��(p)) represents the time-mean air tem-
perature (or geopotential function) after globally averaged 
in isobaric surface p, and T  (or �′) is the bias of the air tem-
perature (or geopotential function) related to T  (or �′). The 
other variables presented above are conventional. Owing to 
the above properties, the operator Eq. (13) reveals the nat-
ural characteristics of the atmospheric motions more suc-
cinctly than the primitive equations in the component form 
(Chou 1974, 1983).

Next, we use Eq. (13) to establish the dynamical equations of 
the horizontal, meridional and zonal circulations (represented 

N� =

⎡⎢⎢⎢⎢⎢⎢⎣

a�� aA� 0
1

sin �

�

��
0

−aA� a�� 0
�

��
0

0 0 0
�

��

R0

a�
1

sin �

�

��

1

sin �

�

��
sin �

�

��
0 0

0 0 −
R0

a�
0

R0
2

ac2
��

⎤⎥⎥⎥⎥⎥⎥⎦

,

𝜋� =
u�

sin 𝜃

𝜕

𝜕𝜆
+ v�

𝜕

𝜕𝜃
+ �̇�

𝜕

𝜕𝜎
,

A� = 2Ω cos � + ctg�u�,

L̃�
1
= −a

𝜕

𝜕𝜎
𝜈1

(
g𝜎

R0T̄

)2
𝜕

𝜕𝜎
− a𝜇1∇

2,

L̃�
2
= −

1

a

𝜕

𝜕𝜎
𝜈2

(
g𝜎

R0T̄

)2
𝜕

𝜕𝜎
−

1

a
𝜇2∇

2,

c2 =
R2

0
T̄

g
(𝛾d − �̄�),

∇2 =
1

a2sin2�

�2

��2
+

1

a2 sin �

�

��
sin �

�

��
.

by V⃗ ′
R
, V⃗ ′

H
 and V⃗ ′

W
, respectively). To have the TPDM to comply 

with Eq. (13), Eq. (12) is rewritten as follows:

where � = (H,W,R,��,T)T. If we replace �′ in Eq.  (13) 
with � using Eq. (14) and keep the operator properties of 
Eq. (13) unchanged, we have

The left-side operator C in every term of Eq. (15) is to 
preserve the dissipative nature of the primitive equations, 
which is discussed in detail in Sect. 3.3 of this study and in 
Sect. 3 of the supplementary material. Because the stream 
functions H, W and R are used to replace the velocity fields 
u′, v′ and �̇� in the primitive equations, we call Eq. (15) the 
dynamical equation of the horizontal, meridional and zonal 
circulations. Using Eq.  (8) and applying the correspond-
ing matrix operations, we easily obtain the components of 
Eq. (15) as follows (see Sect. 4 of the supplementary mate-
rial for the specific deducing process):

(14)�� = C� =

⎡
⎢⎢⎢⎢⎢⎣

0
�

��
−

�

��
0 0

−
�

��
0

1

sin �

�

��
0 0

1

sin �

�

��
sin � −

1

sin �

�

��
0 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

� ,

(15)CB�C
��

�t
+ (CN�C + CL�C)� = C��.

(16)

𝜕

𝜕t

(
−
𝜕2H

𝜕𝜎2
+

1

sin 𝜃

𝜕2R

𝜕𝜆𝜕𝜎

)
−

𝜕

𝜕𝜎
𝜋� 𝜕H

𝜕𝜎
−

𝜕

𝜕𝜎
A
� 𝜕W

𝜕𝜎

+
𝜕

𝜕𝜎

(
A
� 𝜕R

𝜕𝜃
+ 𝜋� 1

sin 𝜃

𝜕R

𝜕𝜆

)
+

𝜕

a𝜕𝜎
L̃
�

1

(
1

sin 𝜃

𝜕R

𝜕𝜆
−

𝜕H

𝜕𝜎

)

=
R0

a2𝜎

𝜕T

𝜕𝜃
,

(17)

𝜕

𝜕t

(
𝜕2W

𝜕𝜎2
−

𝜕2R

𝜕𝜃𝜕𝜎

)
−

𝜕

𝜕𝜎
A
� 𝜕H

𝜕𝜎
+

𝜕

𝜕𝜎
𝜋� 𝜕W

𝜕𝜎

+
𝜕

𝜕𝜎

(
A
� 1

sin 𝜃

𝜕R

𝜕𝜆
− 𝜋� 𝜕R

𝜕𝜃

)
+

𝜕

a𝜕𝜎
L̃
�

1

(
𝜕W

𝜕𝜎
−

𝜕R

𝜕𝜃

)

=
R0

a2𝜎

1

sin 𝜃

𝜕T

𝜕𝜆
,

(18)

𝜕

𝜕t
(Δ3R) +

1

sin 𝜃

(
𝜕

𝜕𝜃
sin 𝜃A� 𝜕H

𝜕𝜎
−

𝜕

𝜕𝜆
𝜋� 𝜕H

𝜕𝜎

)

−
1

sin 𝜃

(
𝜕

𝜕𝜃
sin 𝜃𝜋� 𝜕W

𝜕𝜎
+

𝜕

𝜕𝜆
A
� 𝜕W

𝜕𝜎

)

+
1

sin 𝜃

(
𝜕

𝜕𝜃
sin 𝜃𝜋� 𝜕R

𝜕𝜃
+

𝜕

𝜕𝜆
𝜋� 1

sin 𝜃

𝜕R

𝜕𝜆

−
𝜕

𝜕𝜃
A
� 𝜕R

𝜕𝜆
+

𝜕

𝜕𝜆
A
� 𝜕R

𝜕𝜃

)

+
1

a sin 𝜃

𝜕

𝜕𝜆
L̃
�

1

(
1

sin 𝜃

𝜕R

𝜕𝜆
−

𝜕H

𝜕𝜎

)

−
1

a sin 𝜃

𝜕

𝜕𝜃
sin 𝜃L̃�

1

(
𝜕W

𝜕𝜎
−

𝜕R

𝜕𝜃

)
= 0,



2677Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations…

1 3

In the above component equations, we see that the con-
tinuity equation in primitive equations vanishes because 
the TPDM (7) naturally satisfies the continuity Eq.  (2). 
Equations  (16)–(19) reflect the dynamical evolution rules 
between the three-pattern circulations (represented by 
the stream functions H, W and R) and the air temperature 
anomaly (represented by T), and they can be used to diag-
nose and predict the variations of the three-pattern circu-
lations directly from the perspective of stream functions 
instead of from that of the velocity field.

3.2  Physical interpretations: 3D vorticity equations

To identify the physical concepts of the new dynami-
cal equations, we must replace the stream functions H, 
W and R in Eqs.  (16)–(19) with the velocity components 
of the three-pattern circulations. After a rearrangement 
of the terms, we obtain the equivalent expressions of 
Eqs. (16)–(19) as follows (see Sect. 5 of the supplementary 
material for the specific deducing process):

(19)

R2

0

ac2
𝜕T

𝜕t
−

R0

a𝜎

(
1

sin 𝜃

𝜕(sin 𝜃H)

𝜕𝜃
−

1

sin 𝜃

𝜕W

𝜕𝜆

)

+
R2

0

ac2
𝜋�T + L̃�

2
T =

R2

0

ac2
𝜀

cp
.

(20)

𝜕

𝜕t

(
𝜕v�H
𝜕𝜎

+
𝜕v�R
𝜕𝜎

)
+ 𝜋�

(
𝜕v�H
𝜕𝜎

+
𝜕v�R
𝜕𝜎

)
+ ∇3(v

�
H + v�R)

⋅

𝜕V⃗ �

𝜕𝜎
− (f + 2ctg𝜃u�)

(
𝜕u�W

𝜕𝜎
+

𝜕u�R
𝜕𝜎

)

+
𝜕

a𝜕𝜎
L̃�
1
(v�H + v�R) =

R0

a2𝜎

𝜕T

𝜕𝜃
,

(21)

𝜕

𝜕t

(
𝜕u�W

𝜕𝜎
+

𝜕u�R
𝜕𝜎

)
+ 𝜋�

(
𝜕u�W

𝜕𝜎
+

𝜕u�R
𝜕𝜎

)
+ ∇3(u

�
W + u�R)

⋅

𝜕V⃗ �

𝜕𝜎
+ (f + ctg𝜃u�)

(
𝜕v�H
𝜕𝜎

+
𝜕v�R
𝜕𝜎

)
+ ctg𝜃v�

(
𝜕u�W

𝜕𝜎
+

𝜕u�R
𝜕𝜎

)

+
𝜕

a𝜕𝜎
L̃�

1
(u�W + u�R) =

R0

a2𝜎

1

sin 𝜃

𝜕T

𝜕𝜆
,

(22)

𝜕

𝜕t
(Δ3R) + 𝜋�(Δ3R − f ) + (Δ3R − f )

(
1

sin 𝜃

𝜕u�W

𝜕𝜆
+

1

sin 𝜃

𝜕(v�H sin 𝜃)

𝜕𝜃

)

+

(
1

sin 𝜃

𝜕(�̇�H + �̇�W )

𝜕𝜆

𝜕(v�R + v
�
H)

𝜕𝜎
−

𝜕(�̇�H + �̇�W )

𝜕𝜃

𝜕(u�W + u
�
R)

𝜕𝜎

)

+
1

a sin 𝜃

𝜕

𝜕𝜆
L̃
�
1
(v�H + v

�
R) −

1

a sin 𝜃

𝜕

𝜕𝜃
sin 𝜃L̃�

1
(u�W + u

�
R) = 0,

(23)
R2

0

ac2
𝜕T

𝜕t
−

R0

a𝜎
(�̇�H + �̇�W ) +

R2

0

ac2
𝜋�T + L̃�

2
T =

R2

0

ac2
𝜀

cp
,

where f = 2Ω cos �, ∇3 =
1

sin 𝜃

𝜕

𝜕𝜆
i⃗ +

𝜕

𝜕𝜃
j⃗ +

𝜕

𝜕𝜎
k⃗.

Furthermore, we can deduce the 3D vorticity vector of 
the actual velocity vector V⃗ ′ in the spherical �-coordinate 
system as follows:

By the diagnostic analysis, we find that the horizontal 
shears of vertical velocity 

(
𝜕�̇�

𝜕𝜃
and −

1

sin 𝜃

𝜕�̇�

𝜕𝜆

)
 are much 

smaller than the vertical shears of horizontal velocity (− �v�

��
 

and �u
′

��
) for the large-scale motions. Then, we can use − �v�

��
 

and �u
′

��
 to approximate the zonal vorticity and meridional 

vorticity, respectively. Thus, Eq. (24) can be approximately 
represented as follows:

where ��, �� and �� are the zonal, meridional and vertical 
vorticities, respectively.

Then, we combine Eqs.  (20)–(22) with Eq.  (25) and 
make the appropriate deduction (see Sect. 6 of the supple-
mentary material), and Eqs.  (20)–(22) can be rewritten as 
follows:

where D� =
1

sin �

�u�

��
+

1

sin �

�v� sin �

��
 represents the horizontal 

divergence and D𝜆 =
1

sin 𝜃

𝜕v� sin 𝜃

𝜕𝜃
+

𝜕�̇�

𝜕𝜎
 and D𝜃 =

1

sin 𝜃

𝜕u�

𝜕𝜆
+

𝜕�̇�

𝜕𝜎
 

represent the divergence in the meridional and zonal planes, 
respectively. Thus, the newly established dynamical equa-
tions (16)–(18) are actually the zonal, meridional and ver-
tical vorticity equations of global atmospheric circulation.

(24)
∇ × V⃗ � =

(
𝜕�̇�

𝜕𝜃
−

𝜕v�

𝜕𝜎

)
i⃗ +

(
𝜕u�

𝜕𝜎
−

1

sin 𝜃

𝜕�̇�

𝜕𝜆

)
j⃗

+

(
1

sin 𝜃

𝜕v�

𝜕𝜆
−

1

sin 𝜃

𝜕(u� sin 𝜃)

𝜕𝜃

)
k⃗.

(25)
∇ × V⃗ � = 𝜁𝜆 i⃗ + 𝜁𝜃 j⃗ + 𝜁𝜎 k⃗ ≅ −

𝜕v�

𝜕𝜎
i⃗ +

𝜕u�

𝜕𝜎
j⃗

+

(
1

sin 𝜃

𝜕v�

𝜕𝜆
−

1

sin 𝜃

𝜕(u� sin 𝜃)

𝜕𝜃

)
k⃗,

(26)

𝜕𝜁𝜆

𝜕t
= −𝜋�𝜁𝜆 − 𝜁𝜆D𝜆 +

1

sin 𝜃

𝜕v�

𝜕𝜆

𝜕u�

𝜕𝜎
− f 𝜉𝜃

−

(
2ctg𝜃u�

𝜕u�

𝜕𝜎
+ ctg𝜃v�

𝜕v�

𝜕𝜎

)
+

𝜕

a𝜕𝜎
L̃�
1
v� −

R0

a2𝜎

𝜕T

𝜕𝜃
,

(27)

𝜕𝜁𝜃

𝜕t
= − 𝜋�𝜁𝜃 − 𝜁𝜃D𝜃 −

1

sin 𝜃

𝜕u� sin 𝜃

𝜕𝜃

𝜕v�

𝜕𝜎
+ f 𝜁𝜆 − ctg𝜃v�

𝜕u�

𝜕𝜎

−
𝜕

a𝜕𝜎
L̃�
1
u� +

R0

a2𝜎

1

sin 𝜃

𝜕T

𝜕𝜆
,

(28)

𝜕𝜁𝜎

𝜕t
= −𝜋�𝜁𝜎 − 𝜋�(−f ) − 𝜁𝜎D𝜎 − (−f )D𝜎 +

(
𝜕�̇�

𝜕𝜃
𝜁𝜃 +

1

sin 𝜃

𝜕�̇�

𝜕𝜆
𝜁𝜆

)

+

(
1

a sin 𝜃

𝜕

𝜕𝜃
sin 𝜃L̃�

1
u� −

1

a sin 𝜃

𝜕

𝜕𝜆
L̃�
1
v�
)
,
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Next, we will provide the physical interpretation for each 
of the new 3D vorticity equations in the spherical �-coordi-
nate system. For better understanding, we must remember 
that the unit vector j⃗  in the spherical �-coordinate system 
points from north to south along the longitudinal direction 
and k⃗ points from the earth’s surface to the earth’s center 
(Hu et al. 2015).

3.2.1  Vertical vorticity equation

Equation  (28) is the vertical vorticity equation of global 
atmospheric circulation (Holton 2004), and it shows that 
the rate of the change of the local vertical vorticity is 
given by the sum of the six terms on the right side. These 
terms include the advection term of the vertical vorticity, 
the advection term of the geostrophic vorticity, the diver-
gence term of the vertical vorticity, the divergence term of 
the geostrophic vorticity, the tilting or twisting term of the 
horizontal vorticity and the dissipative term (Holton 2004). 
To facilitate an understanding of the zonal and meridional 
vorticity equations, we provide a physical explanation of 
each term on the right side of the vertical vorticity Eq. (28) 
except for the dissipative term.

The advection term of the vertical vorticity, namely, the 
first term −���� on the right side of Eq.  (28), can be 
expanded as −

(
u�

sin 𝜃

𝜕𝜁𝜎

𝜕𝜆
+ v�

𝜕𝜁𝜎

𝜕𝜃
+ �̇�

𝜕𝜁𝜎

𝜕𝜎

)
. If the wind flows 

from west to east (u′ > 0) and there is a stronger anti-
cyclonic vertical vorticity �� (positive vertical vorticity in 
the spherical �-coordinates) in the west than in the east 
(Fig.  1a), then we have 𝜕𝜁𝜎

𝜕𝜆
≅

Δ𝜁𝜎

Δ𝜆
=

(𝜁𝜎 )east−(𝜁𝜎 )west

Δ𝜆
< 0 and 

−
u�

sin 𝜃

𝜕𝜁𝜎

𝜕𝜆
> 0. That is, if there is transport of the vertical 

vorticity from a high value area to a low value area by the 
wind, then a positive local vertical vorticity 

(
𝜕𝜁𝜎

𝜕t
> 0

)
 will 

be generated.
Because the Coriolis parameter depends only on the 

colatitude �, the advection term of the geostrophic vorti-
city is −��(−f ) = −v�

�(−f )

��
. Because −f = −2Ω cos 𝜃 < 0 

(geostrophic vorticity −f  is negative in the spherical �
-coordinates), then we have 𝜕(−f )

𝜕𝜃
> 0, i.e., the geostrophic 

vorticity (cyclonic vertical vorticity) in high latitudes is 
lower (higher) than that in low latitudes in the Northern 
Hemisphere. If the wind flows from north to south (v′ > 0 
in the spherical �-coordinates) and the geostrophic vorticity 
is transported from high latitudes to low latitudes, then the 
cyclonic vertical vorticity will be increased in low latitudes, 
i.e., there will be a decrease in the local vertical vorticity 
(−v� 𝜕(−f )

𝜕𝜃
< 0, Fig. 1b).

According to Eq. (2), the divergence term of the vertical 
vorticity −��D� can be rewritten as 𝜁𝜎

𝜕�̇�

𝜕𝜎
. If there is an anti-

cyclonic vertical vorticity (𝜁𝜎 > 0) and the flow is horizon-
tally convergent, i.e., D𝜎 < 0 

(
𝜕�̇�

𝜕𝜎
> 0

)
, then −𝜁𝜎D𝜎 > 0. 

Specifically, if the flow is horizontally convergent (the ver-
tical velocity increases in the vertical direction), then the 
vertical vortex tube will be elongated and narrowed 
(Fig. 1c), thereby leading to an increase in the local vertical 
vorticity.

Similarly, the divergence term of the geostrophic vorti-
city −(−f )D� can be rewritten as (−f ) 𝜕�̇�

𝜕𝜎
. For the geos-

trophic vorticity −f < 0 in the spherical �-coordinates 
(cyclonic vertical vorticity), if the flow is convergent, i.e., 
D𝜎 < 0 

(
𝜕�̇�

𝜕𝜎
> 0

)
, then −(−f )D𝜎 < 0. That is, if the flow is 

horizontally convergent (the vertical velocity increases in 
the vertical direction), then the vertical vortex tube will be 
elongated and narrowed (Fig.  1d), thereby leading to an 
increase in the geostrophic vorticity, i.e., decrease in the 
local vertical vorticity.

The fifth term 𝜕�̇�

𝜕𝜃
𝜁𝜃 +

1

sin 𝜃

𝜕�̇�

𝜕𝜆
𝜁𝜆 on the right side of 

Eq.  (28) is the tilting or twisting term of the horizontal 
vorticity. The mechanism of this term is illustrated in 
Fig. 1e, which shows that if a positive meridional vorticity 
𝜁𝜃 > 0 occurs and the vertical velocity increases in the 
colatitude direction 

(
𝜕�̇�

𝜕𝜃
> 0

)
, then the horizontal vorticity 

will be tilted, thereby generating a positive vertical vorti-
city 

(
𝜕�̇�

𝜕𝜃
𝜁𝜃 > 0

)
.

3.2.2  Zonal vorticity equation

Equation (26) is the zonal vorticity equation, which shows 
that the rate of the change of the local zonal vorticity 
is given by the sum of the seven terms on the right side. 
These terms are the advection term of the zonal vorticity, 
the divergence term of the zonal vorticity, the tilting or 
twisting term of the vertical vorticity, the Coriolis force 
term, the curvature effect term, the dissipative term and the 
meridional air temperature anomaly gradient (ATAG) term. 
As with the descriptions of Eq.  (28), the curvature effect 
term and dissipative term are not discussed.

The advection term of the zonal vorticity −���� is equal 
to −

(
u�

sin 𝜃

𝜕𝜁𝜆

𝜕𝜆
+ v�

𝜕𝜁𝜆

𝜕𝜃
+ �̇�

𝜕𝜁𝜆

𝜕𝜎

)
. Similarly to the mechanism 

of advection term in the vertical vorticity equation, if there 
is wind transport of the zonal vorticity from a high value 
area to a low value area, then a positive local zonal vorti-
city will be generated (Fig. 2a).

According to the definition of the divergence in the 
meridional plane (D�) and Eq. (2), the divergence term of the 
zonal vorticity −��D� can be rewritten as ��

1

sin �

�u′

��
. If there is 

a positive zonal vorticity 𝜁𝜆 > 0 and the flow in the meridi-
onal plane is convergent D𝜆 < 0 

(
1

sin 𝜃

𝜕u′

𝜕𝜆
> 0

)
, i.e., the zonal 

velocity u′ increases in the zonal direction, then the zonal 
vortex tube will be elongated and narrowed, thereby causing 
an increase in the local zonal vorticity (Fig. 2b).
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The third term 1

sin �

�v′

��

�u′

��
 on the right side of Eq.  (26) 

represents the zonal vorticity generated by the twisting of 
the vertical vorticity. If there is a positive vertical vorti-
city 1

sin 𝜃

𝜕v′

𝜕𝜆
> 0 and the zonal velocity increases in the � 

direction 
(

𝜕u′

𝜕𝜎
> 0

)
, then the vertical vorticity will be 

tilted (Fig. 2c), thereby resulting in the generation of pos-
itive zonal vorticity 

(
1

sin 𝜃

𝜕v′

𝜕𝜆

𝜕u′

𝜕𝜎
> 0

)
.

The Coriolis force term in Eq.  (26) is −f ��, and the 
mechanism is shown in Fig.  2d. If there is a positive 
meridional vorticity 𝜁𝜃 > 0, then the Coriolis force (−f ) 
will deflect the meridional vorticity to the right of the 

direction of �� in the Northern Hemisphere, thus leading 
to a negative zonal vorticity (−f 𝜉𝜃 < 0). Section 7 of the 
supplementary material demonstrates that the effect of 
the Coriolis force on the horizontal vorticity is the same 
as that on the horizontal velocity.

The last term on the right side of Eq. (26) is the meridi-
onal ATAG term − R0

a2�

�T

��
. If there is a positive meridional 

ATAG 
(

𝜕T

𝜕𝜃
> 0

)
 in the Northern Hemisphere, then an 

anomalous ascending motion and an anomalous descending 
motion will be generated in the low and high latitudes 
(Fig. 2e), respectively. As shown in Fig. 2e, the anomalous 

(a) (b)

(c)

(e)

(d)

Fig. 1  Local vertical vorticity generation by the terms on the right 
side of the vertical vorticity equation: a advection term of the vertical 
vorticity, b advection term of the geostrophic vorticity, c divergence 

term of the vertical vorticity, d divergence term of the geostrophic 
vorticity, and e tilting or twisting term of the horizontal vorticity
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circulation resulting from the meridional ATAG generates a 
negative zonal vorticity 

(
−

R0

a2𝜎

𝜕T

𝜕𝜃
< 0

)
.

3.2.3  Meridional vorticity equation

The physical interpretation of the meridional vorticity 
Eq. (27) is almost the same as that of the zonal vorticity 
Eq.  (26) except for the direction of the vorticity. Equa-
tion  (27) shows that the rate of the change of the local 
meridional vorticity is described by the sum of the seven 
terms on the right side, which are the advection term 
of the meridional vorticity, the divergence term of the 
meridional vorticity, the tilting or twisting term of the 
vertical vorticity, the Coriolis force term, the curvature 
effect term, the dissipative term and the zonal ATAG 

term. Similarly to the description of Eqs.  (26) and (28), 
the curvature effect term and dissipative term in Eq. (27) 
are not discussed.

The advection term of the meridional vorticity −���� can 
be expanded as −

(
u�

sin 𝜃

𝜕𝜁𝜃

𝜕𝜆
+ v�

𝜕𝜁𝜃

𝜕𝜃
+ �̇�

𝜕𝜁𝜃

𝜕𝜎

)
. As in the mech-

anisms of the advection terms in the vertical and zonal vor-
ticity equations, if there is transport of the meridional vorti-
city from a high value area to a low value area by the wind, 
then a positive local meridional vorticity will be generated 
(Fig. 3a).

According to the definition of the divergence in the 
zonal plane (D�) and Eq.  (2), the divergence term of the 
meridional vorticity −��D� can be rewritten as ��

1

sin �

�(v� sin �)

��
. 

If there is a positive meridional vorticity 𝜁𝜃 > 0 and the 

(a) (b)

(c)

(e)

(d)

Fig. 2  Local zonal vorticity generation by the terms on the right side of the zonal vorticity equation: a advection term of the zonal vorticity, b 
divergence term of the zonal vorticity, c tilting or twisting term of the vertical vorticity, d Coriolis force term, and e meridional ATAG term
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flow in the zonal plane is convergent D𝜃 < 0 (
1

sin 𝜃

𝜕(v� sin 𝜃)

𝜕𝜃
> 0

)
, i.e., the meridional velocity v′ increases 

in the colatitude direction, then the meridional vortex tube 
will be elongated and narrowed, thereby causing an 
increase in the local meridional vorticity (Fig. 3b).

The third term − 1

sin �

�(u� sin �)

��

�v�

��
 is the meridional vorti-

city generated by the twisting of the vertical vorticity. If 
there is a positive vertical vorticity − 1

sin 𝜃

𝜕(u� sin 𝜃)

𝜕𝜃
> 0 and 

the meridional velocity increases in the � direction (
𝜕v′

𝜕𝜎
> 0

)
, then the vertical vorticity will be tilted (Fig. 3c), 

thereby leading to a generation of positive meridional vorti-
city 

(
−

1

sin 𝜃

𝜕(u� sin 𝜃)

𝜕𝜃

𝜕v�

𝜕𝜎
> 0

)
.

The Coriolis force term on the right side of Eq. (27) is 
f ��, and the mechanism is shown in Fig. 3d. If there is a 

positive zonal vorticity 𝜁𝜆 > 0, then a positive meridional 
vorticity will be generated 

(
f 𝜉𝜆 > 0

)
 by the deflection of 

Coriolis force ( f ).
The last term on the right side of Eq.  (27) is the zonal 

ATAG term R0

a2�

1

sin �

�T

��
. If there is a positive zonal ATAG (

𝜕T

𝜕𝜆
> 0

)
, then an anomalous ascending motion and an 

anomalous descending motion will be generated in the east 
and west (Fig. 3e), respectively. As shown in Fig. 3e, the 
anomalous circulation caused by the zonal ATAG generates 
a positive meridional vorticity 

(
R0

a2𝜎

1

sin 𝜃

𝜕T

𝜕𝜆
> 0

)
.

As a summary of Sect. 3.2, we need to point out that the 
new dynamical equations (26)–(28) not only interpret the 
mechanisms of evolution of the global atmospheric circula-
tion through the perspective of 3D vorticities but also can 

(a) (b)

(c) (d)

(e)

Fig. 3  Local meridional vorticity generation by the terms on the 
right side of the meridional vorticity equation: a advection term of 
the meridional vorticity, b divergence term of the meridional vorti-

city, c tilting or twisting term of the vertical vorticity, d Coriolis force 
term, and e zonal ATAG term
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be used to study the source terms of the variations and non-
linear interaction processes of the horizontal, meridional 
and zonal circulations.

In fact, according to Eqs. (7) and (25), the 3D vorticities 
can be written as follows:

where ��H and ��R represent the zonal vorticities of the 
meridional and horizontal circulations, ��W and ��R repre-
sent the meridional vorticities of the zonal and horizontal 
circulations, and ��R, ��H and ��W represent the vertical vor-
ticities of the horizontal, meridional and zonal circulations.

If we insert the component representations of ��, �� and 
�� into Eqs. (26)–(28), then we obtain the decomposed 3D 
vorticity equations of the horizontal, meridional and zonal 
circulations. Apparently, the nonlinear evolution processes 
and the source terms [especially the nonuniform global 
warming, i.e., the meridional and zonal ATAG terms in 
Eqs. (26) and (27)] of the variations of the three-pattern cir-
culations can be investigated by using the decomposed 3D 
vorticity equations. That will be discussed in more detail in 
a future study.

3.3  Operator properties and energy conservation law

For the newly established dynamical equations of the 
horizontal, meridional and zonal circulations, we can 
demonstrate that the dissipative characteristics of the 
primitive equations remain preserved. In fact, for any 
�1 = (H1,W1,R1,�

�
1
, T1)

T and �2 = (H2,W2,R2,�
�
2
, T2)

T, 
we define the inner product of �1 and �2 as follows:

Thus, for Eq. (15) with the suitable boundary conditions 
(see Sects. 1 and 4 of the supplementary material), we have 
the following operator properties:

(29)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�� ≅ ��H + ��R ≅

�
−
�v�

H

��

�
+

�
−
�v�

R

��

�
,

�� ≅ ��W + ��R ≅
�u�

W

��
+

�u�
R

��
,

�� = ��R + ��H + ��W =

�
1

sin �

�v�
R

��
−

1

sin �

�(u�
R
sin �)

��

�

+
1

sin �

�v�
H

��
−

1

sin �

�(u�
W
sin �)

��
,

(30)

(�1,�2) =

1

∫
0

�

∫
0

2�

∫
0

(H1H2 +W1W2 + R1R2

+ ��

1
��

2
+ T1T2) sin �d�d�d�.

(C�1,�2) = (�1,C�2), (CB
�C�1,�2) = (�1,CB

�C�2),

(CL�C�1,�2) = (�1,CL
�C�2), (CN

�C�1,�2) = (�1,−CN
�TC�2),

which show that C, CB′C and CL′C are self-adjoint and 
CN′C is anti-adjoint. In fact, the self-adjointness of C keeps 
the properties of operators B′, N′ and L′ in the primitive 
equations (13) unchanged.

Furthermore, by multiplying � = (H,W,R,��,T)T with 
both sides of Eq. (15) and taking the inner product defined 
by Eq. (30), we have

By using the definition of matrix B′ and the self-adjoint-
ness of CB′C, we have

and (see Sect. 8 of the supplementary material for the spe-
cific deducing process)

Equation (33) indicates that (CB�C� ,�) represents 
the total energy of the three-pattern circulations. Because 
CN′C is anti-adjoint, we have (CN�C� ,�) = 0. Thus, by 
using Eq. (32), we can rewrite Eq. (31) as follows:

 which is the energy conservation law of the large-scale 
three-pattern circulations, and it shows that the energy evo-
lution is caused by the dissipation (CL�C� ,�) and external 
forcing (C��,�).

4  Basic evolution rules of the horizontal, 
meridional and zonal circulations

In this section, we will show the potential applications of 
the new dynamical equations in studying the dynamics of 
the horizontal, meridional and zonal circulations.

(31)

(
CB�C

��

�t
,�

)
+ (CN�C� ,�) + (CL�C� ,�) = (C��,�).

(32)
(
CB�C

��

�t
,�

)
=

1

2

�

�t
(CB�C� ,�),

(33)

(CB�
C� ,�) =

1

∫
0

�

∫
0

2�

∫
0

{
a

(
−
�2H

��2
+

1

sin �

�2R

����

)
H

+ a

(
−
�2W

��2
+

�2R

����

)
W

}
sin �d�d�d�

+

1

∫
0

�

∫
0

2�

∫
0

{
a(−Δ3R)R +

R0
2

ac2
T
2

}
sin �d�d�d�

=

1

∫
0

�

∫
0

2�

∫
0

{
a(u�

W
+ u

�
R
)
2
+ a(v�

H
+ v

�
R
)
2
+

R0
2

ac2
T
2

}

sin �d�d�d�.

(34)
1

2

�

�t
(CB�C� ,�) + (CL�C� ,�) = (C��,�),
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4.1  A simplified model

To highlight the basic evolution rules, we first neglect the 
dissipative term CL′C� and forcing term C�′ in Eq.  (15), 
thus resulting in the following:

In addition, because the hydrostatic equilibrium leads to 
large-scale horizontal motions, we are interested to know 
how the atmospheric circulation with only the horizontal 
component induces the meridional and zonal circulations. 
In other words, it is assumed that there is only horizontal 
circulation at the initial time; hence, the terms about H and 
W in Eq. (35) are eliminated except for the time derivative 
terms. Thus, the operator CN′C in Eq. (35) is simplified as 
follows:

where m13 = a
�

��
A� �

��
+ a

�

��
�� 1

sin �

�

��
, m23 = a

�

��
�� �

��
−

a
�

��
A
′ 1

sin �

�

��
 and m33 = a

1

sin �

(
�

��
A
� �

��
−

�

��
sin ��� �

��

)
−

a
1

sin �

(
�

��
A
� �

��
+

�

��
�� 1

sin �

�

��

)
.

Moreover, to prevent false forces from changing the 
energy conservation law, the anti-adjointness of CN′C 
should be preserved after the simplification (Chou 1974, 
1983), i.e., the components m13 and m23 must be zero. Then, 
after rearranging the terms, we arrive at a simplified model 
of Eq. (15) as follows:

where ��
R
=

u�R

sin �

�

��
+ v�

R

�

��
 and Δ2 =

1

sin
2�

�2

��2
+

1

sin �

�

��

(
sin �

�

��

)
.

(35)CB�C
��

�t
+ CN�C� = 0.

CN�C =

⎡⎢⎢⎢⎢⎣

0 0 m13 −
R0

a�

�

��

0 0 m23

R0

a�

1

sin �

�

��

0 0 m33 0

−
R0

a�

1

sin �

�

��
sin �

R0

a�

1

sin �

�

��
0

R0
2

ac2
��

⎤⎥⎥⎥⎥⎦
,

(36)
�

�t

(
−
�2H

��2
+

1

sin �

�2R

����

)
=

R0

a2�

�T

��
,

(37)
�

�t

(
�2W

��2
−

�2R

����

)
=

R0

a2�

1

sin �

�T

��
,

(38)
�

�t
(Δ3R) = −��

R
(Δ2R − f ),

(39)

�

�t

(
R0

2

a2c2
T

)
=

R0

a2�

1

sin �

(
�

��
sin �H −

�W

��

)
−

R0
2

a2c2
��

R
T ,

4.2  Physical interpretation of the simplified model

To illustrate the physical concepts more clearly, we insert 
Eq. (5) into Eqs. (36)–(39) and rewrite them as follows:

where dh

dt
=

�

�t
+ ��

R
. Equations  (40)–(43) show the basic 

evolution rules between the horizontal ATAG and the hori-
zontal, meridional and zonal circulations.

4.2.1  Components of 3D vorticities in the simplified model

We first introduce the components of Eqs.  (40)–(43). 
According to Eq.  (29), we know that − �v�H

��
 represents the 

zonal vorticity of V⃗ ′
H

 and �u
′
W

��
 is the meridional vorticity of 

V⃗ ′
W

. In addition, − �v�R

��
 and �u

′
R

��
 denote the zonal and meridi-

onal vorticities of V⃗ ′
R
, respectively. We usually use − �v�H

��
 

and �u
′
W

��
 to represent the intensities of the meridional and 

zonal circulations (i.e., V⃗ ′
H

 and V⃗ ′
W

), respectively. We also 
use �u

′
R

��
 and �v

′
R

��
 to represent the baroclinicity of the hori-

zontal circulation V⃗ ′
R
.

Furthermore, by using Eqs. (5) and (8), we generate the 
following:

and

Then, according to Eq.  (29), we know that Δ2R is the 
vertical vorticity of the horizontal circulation V⃗ ′

R
, and 

(Δ2R − f ) is the absolute vorticity of V⃗ ′
R
. �

2R

��2
 denotes the 

vertical vorticities of the meridional circulation V⃗ ′
H

 (repre-
sented by ��H) and the zonal circulation V⃗ ′

W
 (represented by 

��W). In addition, by using Eqs. (4) and (7), we can easily 
prove

(40)
�

�t

(
−
�v�H
��

)
+

�

�t

(
−
�v�R
��

)
= −

R0

a2�

�T

��
,

(41)
�

�t

(
�u�W

��

)
+

�

�t

(
�u�R
��

)
=

R0

a2�

1

sin �

�T

��
,

(42)
dh

dt
(Δ2R − f ) = −

�

�t

(
�2R

��2

)
,

(43)
𝜕

𝜕t

(
R0

2

a2c2
T

)
=

R0

a2𝜎
(�̇�H + �̇�W ) −

R0
2

a2c2
𝜋�

R
T ,

(44)Δ2R =
1

sin �

�v�R
��

−
1

sin �

�u�R sin �

��
= ��R,

(45)�2R

��2
=

1

sin �

�v�H
��

−
1

sin �

�u�W sin �

��
= ��H + ��W ,

(46)Δ2R +
�2R

��2
= Δ3R = ��R + ��H + ��W = �� .
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where D� represents the horizontal divergence of the actual 
atmospheric circulation. Equation  (47) suggests that the 
vertical vorticities of V⃗ ′

H
 and V⃗ ′

W
 are caused by the horizon-

tally divergent motions. Thus, Eqs. (45) and (46) show that 
Δ2R, 1

sin �

�v′H

��
 and − 1

sin �

�u�W sin �

��
 are actually a decomposition 

of the vertical vorticity of atmosphere (Hu et al. 2017).

4.2.2  Dynamics between the horizontal ATAG 
and three‑pattern circulations

Similarly to Sect. 3.2, Fig. 4 shows the physical meaning of 
Eqs. (40)–(42). First, if we assume that the initial horizon-
tal circulation V⃗ ′

R
 in the simplified model is barotropic, i.e., 

�u�R

��
= −

�v�R

��
= 0, then the horizontal ATAG in the isobaric 

surface is zero, that is, 1

a sin �

�T

��
= −

1

a

�T

��
= 0. According to 

initial conditions H = W = 0 (there is only horizontal cir-
culation at the initial time), we then have − �v�H

��
=

�u�W

��
= 0 

and �
2R

��2
= 0 by using Eqs. (40)–(42). Thus, the meridional 

and zonal circulations will not be induced, and Eq.  (42) 
shows that the evolution of the horizontal circulation V⃗ ′

R
 is 

controlled by the conservation law of the absolute vorticity, 
i.e., dh

dt
(Δ2R − f ) = 0.

If the initial horizontal circulation V⃗ ′
R
 is baroclinic, that 

is, �u
′
R

��
≠ 0 and − �v�R

��
≠ 0, then the horizontal ATAG in 

the isobaric surface is not zero. Equations  (40) and (41) 
indicate that − 1

a

�T

��
 and 1

a sin �

�T

��
 will induce the evolution 

of V⃗ ′
H

 and V⃗ ′
W

. In addition, the horizontal ATAG will also 
cause the evolution of the baroclinicity of V⃗ ′

R
 [denoted by 

(47)

1

sin �

�u�W

��
+

1

sin �

�(v�H sin �)

��
=

1

sin �

�u�

��
+

1

sin �

�(v� sin �)

��
= D� ,

�

�t
(−

�v�R

��
) and �

�t
(
�u�R

��
) in Eqs. (40) and (41)] that further has 

effects on the evolution of V⃗ ′
H

 and V⃗ ′
W

.
For the constant horizontal ATAG, Eqs.  (40) and (41) 

show that the meridional circulation V⃗ ′
H

 will be strength-
ened when − �v�R

��
 is decreasing. In contrast, V⃗ ′

H
 will be 

weakened when − �v�R

��
 is increasing. We reached similar 

conclusions for the zonal circulation V⃗ ′
W

. The relationships 
between the baroclinicity of V⃗ ′

R
 and the intensity of V⃗ ′

H
 (or 

V⃗ ′
W

) are essentially the transformation between the zonal 
vorticities (or meridional vorticities) of V⃗ ′

R
 and V⃗ ′

H
 (or V⃗ ′

W
).

Furthermore, according to Eq. (45), the meridional and 
zonal circulations induced by the horizontal ATAG and the 
baroclinicity of the horizontal circulation will cause 
�2R

��2
≠ 0. Then, the vertical vorticity �� will be partitioned 

into three parts, i.e., �� = ��R + ��H + ��W. Thus, Eqs. (42) 
and (46) show that the absolute vorticity (Δ2R − f ) of cir-
culation V⃗ ′

R
 is not conserved, because of the transformation 

of the vertical vorticities between the horizontal circulation 
and vertical circulations (meridional and zonal circula-
tions). The change in (Δ2R − f ) is generally determined by 
the evolution of the vertical vorticities of V⃗ ′

H
 and V⃗ ′

W
. Spe-

cifically, according to Eqs.  (42) and (45), (Δ2R − f ) will 
increase when the meridional and zonal circulations have a 
negative change in vertical vorticity, i.e., 

(
𝜕𝜁𝜎H

𝜕t
+

𝜕𝜁𝜎W

𝜕t

)
< 0

, and (Δ2R − f ) will decrease if 
(

𝜕𝜁𝜎H

𝜕t
+

𝜕𝜁𝜎W

𝜕t

)
> 0. Further-

more, the thermodynamic Eq. (43) shows that the vertical 
circulations V⃗ ′

H
 and V⃗ ′

W
 and the advection transport by the 

horizontal circulation will conversely cause the redistribu-
tion of the air temperature field.

Fig. 4  Schematic diagram of 
the basic evolution rules of the 
horizontal ATAG, the horizon-
tal circulation and the meridi-
onal and zonal circulations
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5  Summary

In this study, a novel three-pattern decomposition model 
of global atmospheric circulation (TPDGAC) was used to 
establish the dynamical equations of the horizontal, meridi-
onal and zonal circulations. Furthermore, the physical 
meaning of the newly established equations was investi-
gated and a simplified model was presented to demonstrate 
the potential applications of the new dynamical equations 
in studying the dynamics of the Rossby, Hadley and Walker 
circulations with the nonuniform global warming.

Because the TPDGAC can equivalently represent the 
global atmospheric circulation by the horizontal, meridi-
onal and zonal circulations, we can incorporate the three-
pattern decomposition model (TPDM) into primitive equa-
tions of atmospheric dynamics to obtain new dynamical 
equations of the three-pattern circulations. The new equa-
tions completely describe the evolution mechanisms of the 
horizontal, meridional and zonal circulations from the per-
spective of the evolutions of 3D vorticities.

Similarly to the physical meaning of the vertical vorti-
city equation, the zonal and meridional vorticity equations 
reveal the evolution dynamics of the meridional and zonal 
circulations, respectively. The rate of change of the local 
zonal (or meridional) vorticity is given by the sum of the 
advection term of the zonal (or meridional) vorticity, the 
divergence term of the zonal (or meridional) vorticity, the 
tilting or twisting term of the vertical vorticity, the Coriolis 
force term, the curvature effect term, the dissipative term, 
and the meridional (or zonal) air temperature anomaly gra-
dient (ATAG) term. The meridional (or zonal) ATAG is an 
important factor in the evolution of the zonal (or meridi-
onal) vorticity.

A simplified model of the newly established equations 
reveals the basic evolution rules between the ATAG and the 
horizontal, meridional and zonal circulations. It indicates 
that the horizontal ATAG not only induces the meridional 
and zonal circulations but also causes the evolution of the 
baroclinicity of the horizontal circulation. In addition, the 
baroclinicity of the horizontal circulation in turn has effects 
on the evolution of the meridional and zonal circulations. 
For the constant horizontal ATAG, the meridional and 
zonal circulations are strengthened when the baroclinic-
ity of the horizontal circulation decreases. In contrast, the 
meridional and zonal circulations are weakened when the 
baroclinicity of the horizontal circulation increases.

Furthermore, the simplified model shows that the hori-
zontal circulation and the induced meridional and zonal 
circulations cause a decomposition of the vertical vorticity. 
The transformation of the three decomposed vertical vorti-
cities prevents the conservation of the absolute vorticity of 
the horizontal circulation, and the change is approximately 
described by the evolution of the vertical vorticities of the 

meridional and zonal circulations. The absolute vorticity of 
the horizontal circulation increases or decreases when the 
meridional and zonal circulations have negative or positive 
changes in vertical vorticity.

This study and its prequel of the TPDGAC (Hu et  al. 
2015) present a new dynamical theory of the global hori-
zontal, meridional and zonal circulations. Because the hori-
zontal circulation is the global generalization of the Rossby 
wave at middle–high latitudes and the meridional and zonal 
circulations are the global generalizations of the Hadley 
and Walker circulations at low latitudes, appropriately sim-
plifying the newly established dynamical equations pro-
vides potential opportunities for studying the dynamical 
mechanisms of the variations in and interactions among the 
Rossby, Hadley and Walker circulations.

As a next step, we will numerically simulate the sim-
plified model to quantitatively analyze the relationships 
between the ATAG and the horizontal, meridional and 
zonal circulations. We will also use the new dynamical 
equations to determine the source terms that cause obvious 
variations in the three-pattern circulations and will inves-
tigate the relationships between changes in the Rossby, 
Hadley and Walker circulations and the nonuniform global 
warming (ATAG) in recent decades.

Acknowledgements This work was supported by the National Nat-
ural Science Foundation of China (41475068, 41475064, 41530531 
and 41630421) and the Foundation of Key Laboratory for Semi-Arid 
Climate Change of the Ministry of Education in Lanzhou University. 
All of the authors express thank to the editor and anonymous review-
ers for their useful suggestions and comments.

References

Archer CL, Caldeira K (2008) Historical trends in the jet streams. 
Geophys Res Lett 35:L08803. doi:10.1029/2008gl033614

Bayr T, Dommenget D, Martin T, Power SB (2014) The eastward 
shift of the Walker circulation in response to global warming and 
its relationship to ENSO variability. Clim Dyn 43:2747–2763. 
doi:10.1007/s00382-014-2091-y

Bowman KP, Cohen PJ (1997) Interhemispheric exchange by seasonal 
modulation of the Hadley circulation. J Atmos Sci 54:2045–2059. 
doi:10.1175/1520-0469(1997)054<2045:Iebsmo>2.0.Co;2

Charney JG (1947) The dynamics of long waves in a baro-
clinic westerly current. J Meteorol 4:135–162. 
doi:10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2

Charney JG (1969) A further note on large-scale 
motions in the tropics. J Atmos Sci 26:182–185. 
doi:10.1175/1520-0469(1969)026<0182:AFNOLS>2.0.CO;2

Charney JG, Eliassen A (1949) A numerical method for predicting the 
perturbations of the middle latitude westerlies. Tellus 1:38–54. 
doi:10.3402/tellusa.v1i2.8500

Chen J, Carlson BE, Del Genio AD (2002) Evidence for strengthening 
of the tropical general circulation in the 1990s. Science 295:838–
841. doi:10.1126/science.1065835

https://doi.org/10.1029/2008gl033614
https://doi.org/10.1007/s00382-014-2091-y
https://doi.org/10.1175/1520-0469(1997)054%3C2045:Iebsmo%3E2.0.Co;2
https://doi.org/10.1175/1520-0469(1947)004%3C0136:TDOLWI%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)026%3C0182:AFNOLS%3E2.0.CO;2
https://doi.org/10.3402/tellusa.v1i2.8500
https://doi.org/10.1126/science.1065835


2686 S. Hu et al.

1 3

Chen S, Wei K, Chen W, Song L (2014) Regional changes in the 
annual mean Hadley circulation in recent decades. J Geophys Res 
119:7815–7832. doi:10.1002/2014jd021540

Chou J (1974) A problem of using past data in numerical weather fore-
casting. Sci China Ser A 6:814–825

Chou J (1983) Some properties of operators and the effect of initial con-
dition. Acta Meteorol Sin 41:385–392 (in Chinese)

Davis NA, Birner T (2013) Seasonal to multidecadal variability of 
the width of the tropical belt. J Geophys Res 118:7773–7787. 
doi:10.1002/jgrd.50610

Deng B, Liu H, Chou J (2010) An analysis on large-scale air–sea inter-
active linkages between the tropical Indian Ocean and the Pacific 
Ocean during ENSO events. J Trop Meteorol 16:305–312

DiNezio PN, Vecchi GA, Clement AC (2013) Detectability of changes 
in the Walker circulation in response to global warming. J Clim 
26:4038–4048. doi:10.1175/Jcli-D-12-00531.1

Fu Q, Johanson CM, Wallace JM, Reichler T (2006) Enhanced mid-
latitude tropospheric warming in satellite measurements. Science 
312:1179. doi:10.1126/science.1125566

Held IM, Soden BJ (2006) Robust responses of the hydrological cycle 
to global warming. J Clim 19:5686–5699. doi:10.1175/Jcli3990.1

Holton JR (2004) Circulation and vorticity. In: Cynar F (ed) An intro-
duction to dynamic meteorology, 4th  edn. Elsevier, Amsterdam, 
pp 86–114

Hosking JS, Russo MR, Braesicke P, Pyle JA (2012) Tropical convective 
transport and the Walker circulation. Atmos Chem Phys 12:9791–
9797. doi:10.5194/acp-12-9791-2012

Hu S (2006) The three-dimensional expansion of global atmospheric 
circumfluence and characteristic analyze of atmospheric vertical 
motion. Dissertation, Lanzhou University (in Chinese)

Hu S (2008) Connection between the short period evolution structure 
and vertical motion of the subtropical high pressure in July 1998. J 
Lanzhou Univ 44:28–32 (in Chinese)

Hu Y, Fu Q (2007) Observed poleward expansion of the Hadley circu-
lation since 1979. Atmos Chem Phys 7:5229–5236. doi:10.5194/
acp-7-5229-2007

Hu S, Chou J, Cheng J (2015) Three-pattern decomposition of global 
atmospheric circulation: part I—decomposition model and theo-
rems. Clim Dyn. doi:10.1007/s00382-015-2818-4

Hu S, Cheng J, Chou J (2017) Novel three-pattern decomposi-
tion of global atmospheric circulation: generalization of tradi-
tional two-dimensional decomposition. Clim Dyn. doi:10.1007/
s00382-017-3530-3

Karnauskas KB, Ummenhofer CC (2014) On the dynamics of the Had-
ley circulation and subtropical drying. Clim Dyn 42:2259–2269. 
doi:10.1007/s00382-014-2129-1

Kiladis GN, Feldstein SB (1994) Rossby wave propagation into the trop-
ics in two GFDL general circulation models. Clim Dyn 9:245–252. 
doi:10.1007/BF00208256

Kiladis GN, Weickmann KM (1992a) Circulation anomalies associated 
with tropical convection during northern winter. Mon Weather Rev 
120:1900–1923. doi:10.1175/1520-0493(1992)120<1900:Caawtc
>2.0.Co;2

Kiladis GN, Weickmann KM (1992b) Extratropical forcing of tropi-
cal Pacific convection during northern winter. Mon Weather Rev 
120:1924–1939. doi:10.1175/1520-0493(1992)120<1924:Efotpc>
2.0.Co;2

L’Heureux ML, Lee S, Lyon B (2013) Recent multidecadal strengthen-
ing of the Walker circulation across the tropical Pacific. Nat Clim 
Change 3:571–576. doi:10.1038/Nclimate1840

Liu H, Hu S, Xu M, Chou J (2008) Three-dimensional decomposition 
method of global atmospheric circulation. Sci China Ser D 51:386–
402. doi:10.1007/s11430-008-0020-9

Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under 
global warming. Geophys Res Lett 34:L06805. doi:10.1029/200
6gl028443

Ma S, Zhou T (2016) Robust strengthening and westward shift of the 
tropical Pacific Walker circulation during 1979–2012: a com-
parison of 7 sets of reanalysis data and 26 CMIP5 models. J Clim 
29:3097–3118. doi:10.1175/Jcli-D-15-0398.1

McGregor S, Timmermann A, Stuecker MF, England MH, Merri-
field M, Jin FF, Chikamoto Y (2014) Recent Walker circulation 
strengthening and Pacific cooling amplified by Atlantic warming. 
Nat Clim Change 4:888–892. doi:10.1038/Nclimate2330

Mitas CM, Clement A (2005) Has the Hadley cell been strengthening 
in recent decades? Geophys Res Lett 32:L03809. doi:10.1029/20
04gl021765

Nguyen H, Evans A, Lucas C, Smith I, Timbal B (2013) The Hadley cir-
culation in reanalyses: climatology, variability, and change. J Clim 
26:3357–3376. doi:10.1175/Jcli-D-12-00224.1

Oort AH, Peixóto JP (1983) Global angular momentum and energy bal-
ance requirements from observations. Adv Geophys 25:355–490. 
doi:10.1016/S0065-2687(08)60177-6

Rossby CG (1939) Relation between variations in the intensity of the 
zonal circulation of the atmosphere and the displacements of the 
semi-permanent centers of action. J Mar Res 2:38–55

Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropi-
cal belt in a changing climate. Nat Geosci 1:21–24. doi:10.1038/
ngeo.2007.38

Sohn BJ, Park SC (2010) Strengthened tropical circulations in past 
three decades inferred from water vapor transport. J Geophys Res 
115:D15112. doi:10.1029/2009jd013713

Sohn BJ, Yeh SW, Schmetz J, Song HJ (2013) Observational evidences 
of Walker circulation change over the last 30 years contrast-
ing with GCM results. Clim Dyn 40:1721–1732. doi:10.1007/
s00382-012-1484-z

Tokinaga H, Xie SP, Deser C, Kosaka Y, Okumura YM (2012) Slow-
down of the Walker circulation driven by tropical Indo-Pacific 
warming. Nature 491:439–443. doi:10.1038/nature11576

Trenberth KE, Stepaniak DP (2003) Seamless poleward atmospheric 
energy transports and implications for the Hadley circulation. J 
Clim 16:3706–3722. doi:10.1175/1520-0442(2003)016<3706:Spa
eta>2.0.Co;2

Vecchi GA, Soden BJ (2007) Global warming and the weakening 
of the tropical circulation. J Clim 20:4316–4340. doi:10.1175/
JCLI4258.1

Wielicki BA et al (2002) Evidence for large decadal variability in the 
tropical mean radiative energy budget. Science 295:841–844. 
doi:10.1126/science.1065837

Xu M (2001) Study on the three dimensional decomposition of large 
scale circulation and its dynamical feature. Dissertation, Lanzhou 
University (in Chinese)

Yu B, Zwiers FW (2010) Changes in equatorial atmospheric zonal cir-
culations in recent decades. Geophys Res Lett 37:L05701. doi:10.1
029/2009gl042071

Zhang C, Webster PJ (1992) Laterally forced equatorial perturbations 
in a linear model. Part I: stationary transient forcing. J Atmos 
Sci 49:585–607. doi:10.1175/1520-0469(1992)049<0585:Lfepia
>2.0.Co;2

https://doi.org/10.1002/2014jd021540
https://doi.org/10.1002/jgrd.50610
https://doi.org/10.1175/Jcli-D-12-00531.1
https://doi.org/10.1126/science.1125566
https://doi.org/10.1175/Jcli3990.1
https://doi.org/10.5194/acp-12-9791-2012
https://doi.org/10.5194/acp-7-5229-2007
https://doi.org/10.5194/acp-7-5229-2007
https://doi.org/10.1007/s00382-015-2818-4
https://doi.org/10.1007/s00382-017-3530-3
https://doi.org/10.1007/s00382-017-3530-3
https://doi.org/10.1007/s00382-014-2129-1
https://doi.org/10.1007/BF00208256
https://doi.org/10.1175/1520-0493(1992)120%3C1900:Caawtc%3E2.0.Co;2
https://doi.org/10.1175/1520-0493(1992)120%3C1900:Caawtc%3E2.0.Co;2
https://doi.org/10.1175/1520-0493(1992)120%3C1924:Efotpc%3E2.0.Co;2
https://doi.org/10.1175/1520-0493(1992)120%3C1924:Efotpc%3E2.0.Co;2
https://doi.org/10.1038/Nclimate1840
https://doi.org/10.1007/s11430-008-0020-9
https://doi.org/10.1029/2006gl028443
https://doi.org/10.1029/2006gl028443
https://doi.org/10.1175/Jcli-D-15-0398.1
https://doi.org/10.1038/Nclimate2330
https://doi.org/10.1029/2004gl021765
https://doi.org/10.1029/2004gl021765
https://doi.org/10.1175/Jcli-D-12-00224.1
https://doi.org/10.1016/S0065-2687(08)60177-6
https://doi.org/10.1038/ngeo.2007.38
https://doi.org/10.1038/ngeo.2007.38
https://doi.org/10.1029/2009jd013713
https://doi.org/10.1007/s00382-012-1484-z
https://doi.org/10.1007/s00382-012-1484-z
https://doi.org/10.1038/nature11576
https://doi.org/10.1175/1520-0442(2003)016%3C3706:Spaeta%3E2.0.Co;2
https://doi.org/10.1175/1520-0442(2003)016%3C3706:Spaeta%3E2.0.Co;2
https://doi.org/10.1175/JCLI4258.1
https://doi.org/10.1175/JCLI4258.1
https://doi.org/10.1126/science.1065837
https://doi.org/10.1029/2009gl042071
https://doi.org/10.1029/2009gl042071
https://doi.org/10.1175/1520-0469(1992)049%3C0585:Lfepia%3E2.0.Co;2
https://doi.org/10.1175/1520-0469(1992)049%3C0585:Lfepia%3E2.0.Co;2

	Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations
	Abstract 
	1 Introduction
	2 Three-pattern decomposition of global atmospheric circulation
	3 Dynamical equations of the horizontal, meridional and zonal circulations
	3.1 Dynamical equations
	3.2 Physical interpretations: 3D vorticity equations
	3.2.1 Vertical vorticity equation
	3.2.2 Zonal vorticity equation
	3.2.3 Meridional vorticity equation

	3.3 Operator properties and energy conservation law

	4 Basic evolution rules of the horizontal, meridional and zonal circulations
	4.1 A simplified model
	4.2 Physical interpretation of the simplified model
	4.2.1 Components of 3D vorticities in the simplified model
	4.2.2 Dynamics between the horizontal ATAG and three-pattern circulations


	5 Summary
	Acknowledgements 
	References


